
ConDySTA: Context-Aware Dynamic Supplement to
Static Taint Analysis

Xueling Zhang, Xiaoyin Wang, Rocky Slavin, Jianwei Niu
Department of Computer Science, University of Texas at San Antonio, Texas, USA

{xueling.zhang, xiaoyin.wang, rocky.slavin, jianwei.niu}@utsa.edu

Abstract—Static taint analyses are widely-applied

techniques to detect taint flows in software systems.

Although they are theoretically conservative and de-

signed to detect all possible taint flows, static taint

analyses almost always exhibit false negatives due to

a variety of implementation limitations. Dynamic pro-

gramming language features, inaccessible code, and

the usage of multiple programming languages in a

software project are some of the major causes. To

alleviate this problem, we developed a novel approach,

DySTA, which uses dynamic taint analysis results as

additional sources for static taint analysis. However,

naïvely adding sources causes static analysis to lose con-

text sensitivity and thus produce false positives. Thus,

we developed a hybrid context matching algorithm and

corresponding tool, ConDySTA, to preserve context

sensitivity in DySTA. We applied REPRODROID [1], a

comprehensive benchmarking framework for Android

analysis tools, to evaluate ConDySTA. The results show

that across 28 apps (1) ConDySTA was able to detect 12

out of 28 taint flows which were not detected by any of

the six state-of-the-art static taint analyses considered

in REPRODROID, and (2) ConDySTA reported no false

positives, whereas nine were reported by DySTA alone.

We further applied ConDySTA and FLOWDROID to 100

top Android apps from Google Play, and ConDySTA

was able to detect 39 additional taint flows (besides 281

taint flows found by FLOWDROID) while preserving the

context sensitivity of FLOWDROID.

Index Terms—Taint Analysis, Dynamic Supplement,

Context Sensitivity

I. Introduction
Taint analysis [2], [3] can detect taint flows in software

programs and has a wide range of applications in software
and system security such as vulnerability detection [4]–[6],
privacy leak detection [7]–[10], and malware detection [11],
[12] among others. The intensive research e�orts in the
area generally fall into two categories: Dynamic taint

analyses [2] propagate taints at run time through memory
locations so they always find true taint flows. However,
they may miss taint flows which are not triggered during
testing and will cause run-time overhead if applied dur-
ing production. Alternatively, Static taint analyses [3],
propagate taints based on an overestimation of all possible
program paths leading to the detection of all possible taint
flows with no false negatives but some false positives due
to infeasible paths.

Despite the theoretical soundness of static taint anal-
yses, various practical complexities often lead to false

negatives in real-world scenarios. As an example, our
evaluation shows that while FlowDroid, the state-of-
the-art static taint analysis tool for Android apps, finds
281 taint flows in 100 top Android apps but misses at
least 19 taint flows which are confirmed by dynamic taint
analysis. Earlier studies [13], [14] also show the existence
of false negatives in static taint analyses. A later study [15]
performed an evaluation of six state-of-the-art static taint
analysis tools for Android and also reported many common
false negatives not detected by any of the evaluated tools.
Such false negatives may result in undetected vulnerabili-
ties, privacy leaks, malicious apps, etc.

The reason behind these false negatives can often be
attributed to dynamic programming language features
such as reflection calls in Java, dynamically loaded or
generated code, external code execution through database
servers and network servers, and multi-language code (e.g.,
native code and shell scripts). We refer to such features as
blockers as they block the static taint analyses from tracing
taint flows. Existing static taint analysis tools are either
sound only with assumptions on the absence of blockers
(e.g., most Java static analyses assume the absence of
reflection calls / dynamically generated code [16] and do
not consider taint flows through databases and files [17]),
or rely on manual method summaries (e.g., FlowDroid
relies on method summaries to handle Android system
calls and native calls) which are often incomplete and
quickly become obsolete as code evolves.

In this paper, we propose an approach that uses the
results of dynamic taint analysis as additional sources
to supplement static taint analysis as a means to reduce
false negatives. We implement and evaluate our approach
for the Android platform because it has well-established
static taint analysis tools [12], [18], [19] and downstream
applications [6], [7], [9]. Although the e�ectiveness of such
dynamic supplement is limited by the test coverage, our
evaluation shows that it can reduce many false positives
with a simple random testing strategy based on Mon-
key [20].

The base version of our approach is referred as DySTA
(Dynamic Supplement of static Taint Analysis). DySTA
first runs static taint analysis and dynamic taint analysis
with the same set of initial sources, respectively. Once
DySTA observes a variable holding a tainted value in the
dynamic taint analysis that is not observed as tainted by

796

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Xueling Zhang. Under license to IEEE.
DOI 10.1109/SP40001.2021.00040

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
40

the static taint analysis, the variable will be considered a
new source (referred to as an intermediate source to be
di�erentiated from the original sources). For the set of all
intermediate sources, DySTA runs the static taint analysis
again to find additional taint flows. Unlike with static anal-
ysis, dynamic analysis is performed at run time, so it is less
a�ected by blockers and is able to trace taint flows through
dynamically loaded or generated code. Furthermore, even
for pure black boxes (e.g., external flows through network
servers or un-instrumented code), it is still possible to
apply value-based dynamic taint analyses [21] which detect
taint flows based on the observation of unique values preset
at the source locations. As a result, DySTA retains the
static taint analysis ability to trace all possible program
paths outside of blockers which may not be triggered
during testing while gaining the ability to detect traces
through blockers thanks to the taint flows detected by
dynamic taint analysis.

While the above approach can reduce false negatives,
the basic design of DySTA has an important limitation.
Since it simply concatenates static and dynamic taint
flows without any constraints, the context sensitivity of
the original static taint analysis will be lost. Therefore
DySTA alone will lead to additional false positives besides
those in the original static taint analysis for cases where
blockers were analyzed. To overcome this, we further
propose hybrid context matching in which the context
of dynamic taint flows is injected into the intermediate
sources. DySTA is then augmented so the subsequent
static taint analysis considers only taint flows matching
the injected context. By incorporating context matching,
we implemented ConDySTA (Context-aware DySTA) as
an extension of FlowDroid, a state-of-the-art static taint
analysis tool for Android apps. We evaluated DySTA and
ConDySTA with ReproDroid, a benchmarking frame-
work for Android analysis tools [1]. The results show that
both DySTA and ConDySTA were able to reduce 12 out
of the 28 common false negatives missed by all six static
taint analyses considered in ReproDroid, and context
preservation enabled ConDySTA to further eliminate all
nine additional false positives reported by DySTA. We also
performed a comparison of our approach and FlowDroid
on the 100 most downloaded Android apps according to
PlayDrone [22]. Our evaluation showed that, with minimal
testing and dynamic analysis, ConDySTA was able to
detect 39 additional taint flows on top of the 281 taint
flows reported by FlowDroid. Furthermore, ConDySTA
was able to preserve context sensitivity and rule out 1,029
taint flows with context mismatches from the detection
results of DySTA.

This paper presents the following contributions.
• We demonstrate that dynamic taint analysis results

can be used as supplement to static taint analysis to
reduce false negatives in practice.

• We developed a novel approach, ConDySTA, to pre-
serve the context sensitivity of static taint analysis

when supplemented by dynamic taint analysis.
• We performed evaluations using the ReproDroid

benchmark and 100 top Android apps from Google
Play demonstrating that ConDySTA can reduce
many false negatives reported by state-of-the-art taint
analysis tools and largely reduce false positives from
our baseline solution.

The rest of this paper is organized as follows. We first
introduce a running example and describe our motivation
and high-level solution in Section II. Then we formalize
our problem and introduce more details of our approach
in Section III. We then describe our implementation in
Section IV and our comparison with FlowDroid in
Section V. Finally, we discuss the related research e�orts
in Section VII, before we conclude in Section VIII.

II. Running Example and Approach Overview
In this section, we present a running example to moti-

vate and illustrate our approach.

A. Running Example

Consider the example code in Listing 1. In the code,
method foo() simply returns the value it receives as the
argument. In particular, we assume that the parameter
value of foo() is passed to blocker(...), and the value
is fetched in method foo2() by invoking blocker2(), and
foo2() returns the fetched value, which is further returned
by foo(). Here, we do not make assumptions about the
implementation of blocker(...) and blocker2(), but one
example of such an implementation can be the writing
and reading files in the file system or tables in a database,
respectively. Such a taint flow could not be traced as we
assume blocker code portions (i.e., methods blocker(...)
and blocker2()) are not accessible or analyzable by static
taint analysis. Therefore, static taint analyses will not
taint variable inter in Line 6 and will thus miss the
taint flow from method invocation source() in Line 10 to
sink(out) at Line 13.
1 public String foo(String in){
2 blocker(in);
3 return foo2();
4 }
5 public String foo2(){
6 String inter = blocker2(); //an intermediate

source
7 return inter;
8 }
9 public void bar(boolean flag){

10 String in = source(); //an original source
11 String out = foo(in);
12 if(flag){
13 sink(out); //a potential taint flow
14 String in2 = "safe";
15 sink(foo(in2)); //a false positive
16 }
17 }

Listing 1: Static Taint Analysis False Negative Example

B. DySTA Approach

Our basic solution, DySTA, executes the program and
performs dynamic taint analysis after the initial static

taint analysis. In the example, DySTA would taint variable

797

String in = source();

String out = foo(in);

if(flag)

sink(out);

String in2 = “safe”;

String out2 = foo(in2);

blocker(in);

String out = foo2();

sink(out2);

String inter = blocker2();

return inter;

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out in2 out2

0 in out

return out;

0 in out

0 in out

0 in out

0 inter

0 inter

0 inter

foo-call-1

foo-ret-1

foo-call-2

foo-ret-2

foo2-call-1

foo2-ret-1

omitted

foo-call-1
foo-call-1

foo-ret-1
foo-ret-1

foo-call-2 foo-call-2

foo-ret-2
foo-ret-2

foo2-call-1

foo2-ret-1
foo2-ret-1

dynamic taint flow

public void bar(boolean flag) public String foo(String in) public String foo2()

Control flows
Fact Flows (red for real taint flows,
blue for false positive taint flows)

Dynamic Taint Flows

Imprecisely Added Taint without
Context Sensitivity

Fig. 1: Analysis of the Running Example using IFDS Framework

inter at Line 6 as an intermediate source according to
the result of the dynamic taint analysis which is able
to follow the data flow through methods blocker(...)
and blocker2(). Static analysis would then be applied
again incorporating the intermediate source, thus detect-
ing the taint flow at Line 13. However, since DySTA
would not consider the calling context of foo(...) and
foo2(), the taint would be further propagated to the
expression foo(in2) at Line 15, although the argument
in2 passed in here is not a user information value from the
original source method invocation at Line 10. Therefore,
DySTA will detect an additional taint flow at Line 15.
This false positive would be due to the second static taint
analysis which incorporates the intermediate source from
the dynamic analysis which does not include the calling
context. So while the static taint analysis itself is context
sensitive, the combination of dynamic taint analysis and
static taint analysis becomes partially context-insensitive.

It should be noted that, because dynamic taint analysis
cannot cover all possible paths, static taint analysis may
be necessary to detect the taint flow at Line 13 (i.e.,
when parameter flag is not true during the execution).
Furthermore, the lack of execution coverage on Lines 13-
15 would make it impossible to rule out the false positive
at Line 15 based on dynamic analysis alone (i.e., finding
out foo(in2) at Line 15 is returning value “safe”).

String a = source();

String b = a;

a

a

0

0

0

b

b

a b

Fig. 2: Illustration of Taint Flow Functions

C. Code Analysis with the IFDS Framework

The IFDS framework, developed by Reps, Horwitz and
Sagiv [23], defines a general mechanism to perform inter-
procedural, flow-sensitive, and context-sensitive analysis.
The framework is based on a program’s inter-procedural
control flow graph, referred as the “exploded super graph”.
The exploded super graph of our running example is
presented in Figure 1. In Figure 1, we use dashed arrows
to present control flows. Cross-procedure control flows are
decorated with labels such as “foo-call-1”, “foo-ret-1”, and
“foo-call-2” to di�erentiate call sites. For example, we can
tell from the labels that call edge “foo-call-1” matches with
return edge “foo-ret-1”.

IFDS uses flow functions to represent transfer functions
in flow-sensitive analysis on distributive finite properties.
A flow function consists of a set of “from facts” and
“destination facts”, as well as arrows from the former to
the latter. An arrow from fact a in the “from facts” to fact

798

b in the “destination facts” indicates that if a holds before
the statement is executed, b will hold after the statement
is executed.

For example, Figure 2 shows flow functions of static
taint analysis in which the facts are local variables (in-
dicating that the variable is tainted or not), plus 0, a
special fact that always holds. For statement String a =
source();, the arrow from fact 0 to fact a indicates that
variable a will be tainted no matter what (as 0 always
holds). The arrow from fact b to fact b indicates that if
b is tainted before the statement, then it is still tainted
after its execution. Similarly, for statement String b =
a;, the arrow from a to a indicates that whether a is
tainted is unchanged before and after the statement, and
the arrow from a to b indicates that if a is tainted before
the statement execution, b will be tainted afterward. Given
flow functions of all statements in the exploded super
graph, the inference of a fact at a certain statement can
be deduced to a graph reachability problem. In particular,
it is a CFL reachability problem [24] because along the
reachability path the arrows labeled with call-sites and
return-sites must match to preserve context sensitivity.

In Figure 1, we show the flow functions of all statements
in the three methods as solid arrows to the left of the
control flow graph. Note that for method bar(boolean), we
omitted the fact for variable flag and the flow functions
(and control flow) of the else branch to enhance the
readability of the graph. From the figure, we marked
as red the edges that form the taint flow from method
invocation source() to the method invocation sink(out).
This flow cannot be detected by IFDS because it contains
a dynamic taint flow path (presented as the red dash-
dotted arrow on the top left) through blocker(String)
and blocker2(), which cannot be statically analyzed at
all. Without dynamic taint flow, IFDS finds no flows from
the source to the sinks.

It should also be noted that if we simply add the
dynamic taint flow path as an additional flow as shown
in the graph, IFDS will still not identify the taint flow
(marked in red), because the return edge “foo2-ret-1” will
be mismatched with “foo-call-1” in this flow, and this
flow is actually not along a feasible execution path as it
directly goes from foo(String) to foo2(). Another possible
solution is to add the whole dynamic execution paths
inside blocker(String), blocker2(), and their dependen-
cies into the exploded super graph. However, since the
code inside blockers are out of the box of the original
static analysis, their transfer functions (i.e., flow functions)
may be undefined. This can make the implementation of
combined analysis very complicated and even infeasible.
From figure 1, we can also see that, if we directly use
inter as the source (i.e., adding the dotted blue arrow
from fact 0 to fact inter), IFDS will identify the two
flows to both sink(out) (true positive, marked in red) and
sink(out2) (false positive, marked in blue), because IFDS
allows unmatched call/return sites (feasible paths) but

String inter = blocker2();

return inter;

0 inter

0 inter

0 inter

v

v

foo2-call-1

v

0

0

foo-call-1

0

public String foo2()

Fig. 3: Illustration of ConDySTA Solution

disallows mismatched call/return sites (infeasible paths).

D. Incorporating Context

In ConDySTA, we inject the dynamic calling context
of an intermediate source s to the static taint analysis
from s. In particular, the dynamic calling context of an
intermediate source s consists of all the call-sites that have
not returned on the dynamic taint propagation path from
the original source to s. In the calling context, the call-sites
are ordered in the same order as they are in the dynamic
taint path. In our running example, the dynamic calling
contexts of intermediate source inter at Line 6 will be
foo(in) at Line 11, and foo2() at Line 3.

With the acquired dynamic calling context of s, in the
following static taint analysis from s, ConDySTA will filter
out the static taint propagation paths that do not match
with the dynamic calling context. This is not a straight-
forward process due to recursive calls (for which there can
be infinite static taint propagation paths). In particular,
in the CFL-reachability [24] algorithm to solve the IFDS
problem [23], besides finding feasible paths with matched
call-site-return-site pairs (so that the paths are feasible
with context sensitivity), we need to further identify the
feasible paths containing a sequence of unmatched return-
sites that match with the dynamic calling context C. We
refer to such static taint-propagation paths as C-context-
matching paths.

ConDySTA implements this by extending the exploded
super graph in IFDS framework with a virtual flow to
the intermediate source with the dynamic calling context
as the edges. In the extended graph, we can directly
apply the standard CFL-reachability algorithm, and each
taint propagation path from the original source in the
extended graph can be mapped to a C-context-matching
path. Figure 3 shows the solution of ConDySTA on the

799

running example. From the figure we can see that we
added a virtual fact v, that taints the intermediate source
inter and a number of virtual arrows on v before it taints
inter. These virtual arrows are labeled with call-edges in
the dynamic calling context, and are added in the reverse
order so that they can match the return edges during the
following IFDS analysis.

E. Lack of Dynamic Taint-Propagation Paths

Typical dynamic taint analyses propagate taints along
with read/write accesses to memory locations along with
program execution, so it is natural for them to record
the dynamic taint-propagation paths. However, even this
recording can sometimes be di�cult in practice.

First of all, if the taint propagation is at the OS/hard-
ware level [2], [25], it can be di�cult to map the taint
propagation paths back to source code due to multiple
levels of abstractions. Even if a mapping is constructed,
the mapping can be fragile and specific to a version
of programming language runtime and OS. Second, the
dynamic taint analysis itself may still miss some taint
paths through file systems, databases, and networks. Third
and most importantly, unlike static taint analyses which
are based on relatively stable programming language syn-
tax/semantics, dynamic taint analyses need to work with
most fine-grained system features and implementation
details, so they can be easily out-of-date due to fast
software evolution. For example, there have been two
major dynamic taint analysis frameworks for the Android
system: TaintDroid [2] and TaintART [26]. Neither
of them support analysis on Android system versions
above Android 6 (currently 8 and 9 are the most common
Android versions [27]). Therefore, the simpler value-based
dynamic taint analyses [21] often has better applicability.
In particular, value-based dynamic taint analyses detect
taint flows by inserting taints into the value fetched at
the original sources (e.g., replacing the fetched value
with strange values indicating the source location), or
by changing data values at source locations in di�erent
executions and monitoring correlated value changes at
other locations.

In all of these cases, ConDySTA may face a situation
where the dynamic taint analysis can provide only tainted
code locations, but not the taint propagation paths from
the sources. So for the code in Listing 1, we can tell that
variable inter at Line 7 is tainted, but we may not tell
where the taint comes from and cannot extract the dy-
namic calling context from the dynamic taint-propagation
path. To handle such cases, ConDySTA takes advantage
of a key observation that the dynamic calling context of an
intermediate source s is always a sub-sequence of the call
stack trace of s. So we can directly extract the dynamic
calling context from the stack trace, which is almost always
accessible in dynamic taint analyses. For our example, the
call stack trace for the intermediate source is as below.

at method foo2() (Line 7)

at method foo(String) (Line 3)
at method bar(boolean) (Line 11)
at some method (some line)
...

In the stack trace, the first three items actually provide
the dynamic calling context: a call-site of foo2() at Line
3 of method foo(String) and a call-site of foo(String)
at Line 11 of method bar(boolean). We can see that not
all items of the stack trace belong to the dynamic calling
context. For example, the call-site of bar(boolean) is not
part of the dynamic calling context, because source() is
invoked inside/after it, so the call edge for bar(boolean)
does not need to be matched. On the other hand, if a
call-site belongs to dynamic calling context, all call-sites
above it in the stack trace are part of the dynamic calling
context as the source value must go through these call-
sites to reach the intermediate source as arguments, global
variables, or value containers in blockers.

The key challenge is to decide how long a prefix of the
stack trace needs to be in the dynamic calling context. The
basic idea is that, if a call-site belongs to the dynamic
calling context, it must be executed after the source
location. Therefore, we can determine whether a call-site
belongs to the dynamic calling context by checking the call
stack of the source location or checking for tainted values
in the reachable memory from the call-site.

III. Approach

In this section, we will first introduce the algorithm for
DySTA and then present the construction algorithm for
dynamic calling contexts in ConDySTA for propagation-
based dynamic taint analysis. Finally, we will describe how
dynamic calling contexts can be extracted for value-based
dynamic taint analysis.

Before describing the approach, we provide the following
static and dynamic taint analysis definitions. In our defi-
nitions, we use the term expression location to describe a
pair of the form (expr, line) where expr is an expression
and line is a description of where the expression is read or
written in the code. For example, an expression location
in our running example is (inter, Line 6).

Definition 1: Static Taint Analysis We define a static
taint analysis as a function STA: (Code, Srcs) æ
TaintLocs, where Code is the code base to be analyzed
and Srcs are the set of expression location in Code serving
as the sources. TaintLocs are a set of expression locations
in Code.

Definition 2: Propagation-Based Dynamic Taint

Analysis We define a propagation-based dynamic taint
analysis as a function Dp: (Code, Inputs, Srcs) æ Paths,
where Code and Srcs are as defined in Definition 1, and
Inputs are input used to execute the code base. Paths are
a set of taint propagating program paths. Each path p in
Path is in the form of (s1, s2, ..., sn), where ÷ src œ Srcs
such that s1 reads src, and ÷ i œ Input such that p is
a contiguous sub-sequence of exec(Code, i) (representing

800

Algorithm 1 DySTA Algorithm
Input:

Code is the code base to analyze
Srcs is the set of source locations
Inputs is the set of inputs for dynamic analysis

Output:

TaintLocs is a set of tainted locations
1: TaintLocs Ω STA(Code, Srcs)
2: Paths Ω Dp(Code, Srcs, Inputs)
3: interSrcs Ω ÿ
4: for all p œ Paths do

5: for all si œ p do

6: if ¬blocked(si) · blocked(si≠1) then

7: for all expression locations t œ si do

8: if tainted(t) · t /œ TaintLocs then

9: Add t to interSrcs
10: end if

11: end for

12: end if

13: end for

14: end for

15: NewTaintLocs Ω STA(Code, interSrcs)
16: TaintLocs Ω TaintLocs fi NewTaintLocs

the execution path of Code with input i), and the taint
can be transitively propagated on p.

Definition 3: Value-Based Dynamic Taint Analysis

We define a value-based dynamic taint analysis as a
function Dv: (Code, Inputs, Srcs) æ LocStacks, where
Code, Srcs, and Inputs are as defined in Definition 2.
LocsStacks are a set of pairs in the form of (loc, stack),
where loc is an expression location that holds tainted value
at least once in the execution, and stack is a corresponding
call stack when loc holds a tainted value.

It should be noted that for both propagation-based
and value-based dynamic taint analysis, one expression
location may be tainted multiple times, and ConDySTA
considers them as di�erent intermediate sources if they
have di�erent taint propagating program paths or call
stacks, because they may have di�erent dynamic calling
contexts which lead to di�erent context matching in the
following static taint analysis.

A. DySTA Algorithm

Based on the definitions above, our algorithm for
DySTA is presented in Algorithm 1. The basic idea behind
the algorithm is to first identify intermediate sources from
the results of dynamic taint analysis (Lines 1-14), and then
apply static taint analysis using them as sources (Lines 15-
16). In particular, we first fetch the results of static taint
analysis using original sources (Line 1), fetch the results
of dynamic taint analysis (Line 2), and initialize the set
of intermediate sources (Line 3). Then, for each statement
in each taint-propagating execution path p (Lines 4-5), we
first check whether the statement is re-entering statically
analyzable code (Line 6). If so, DySTA checks which

Algorithm 2 Construction Dynamic Calling Context
Input:

path is a taint propagating program path
InterSrcs is the set of intermediate sources

Output:

ContextMap is a Hashmap from intermediate sources
on path to their corresponding dynamic calling context

1: DContext Ω ÿ
2: ContextMap Ω ÿ
3: for all si œ p do

4: for all expression locations t œ si do

5: if t œ InterSrcs then

6: ContextMap.Put(t, DContext.copy())
7: end if

8: end for

9: if isCallSite(si) then

10: DContext.push(si)
11: else if isReturnSite(si) then

12: DContext.pop()
13: end if

14: end for

expression locations in that statement are tainted (Lines
7-8), and add those tainted expression locations to the set
of intermediate sources (Line 9).

DySTA extracts intermediate sources from only the
statements re-entering statically analyzable code (referred
to as re-enter statements) to avoid useless intermediate
sources. In a statically analyzable segment of p, a taint
on an earlier statement can be also statically propa-
gated to tainted expression locations in later statements.
Therefore, if static taint analysis using tainted expression
locations in an earlier statement generates resulte, and
static taint analysis using tainted expression locations in
a later statement generates resultl, resulte will be a strict
super set of resultl. Thus, there is no need to extract
intermediate sources from later statements. For similar
reason, in Line 8, we do not consider as intermediate
sources the expression locations that are already tainted
by the original static taint analysis STA. In other words,
we consider only the dynamic taint flows through blockers,
which are not detectable by static taint analyses.

B. Dynamic Calling Context and Graph Extension

For ConDySTA, we extend DySTA with the matching
of dynamic calling contexts. In particular, at Line 15 of
DySTA algorithm, before calling STA to perform IFDS-
based static taint analysis, ConDySTA inserts two pro-
cesses. The first process extracts dynamic calling contexts
for each intermediate source, and the second process ex-
tends the exploded super graph to add the dynamic calling
context to it (see Section II-D and Figure 3). We present
the algorithm we use to construct dynamic calling context
from taint propagation paths as Algorithm 2.

The algorithm walks along the taint-propagating execu-
tion path (Lines 3-4), and collect all call-sites that have

801

not returned in a stack DContext (Lines 9-13). When
an intermediate source t is reached (Line 5), ConDySTA
copies the current DContext and save it as t’s dynamic
calling context.

C. ConDySTA for Value-based Taint Analyses

When the taint-propagating execution path is not avail-
able (e.g., in value-based taint analysis), we cannot take
advantage of the path to fetch the intermediate sources
and the dynamic calling context. In such a case, we directly
use the expression locations detected to hold tainted values
as intermediate sources, and their call stack trace as
dynamic calling contexts, as explained in Section II-E. The
challenge is to determine how many levels in the call stack
trace (denoted as stacki) belong to the dynamic calling
context. Since only the open call-sites executed after the
original source location need to be matched along the taint
path, only items executed after the original source location
need to be identified in the call stack trace.

If the source location is known, we can instrument the
source location and fetch its call stack trace stacks. Then
we compare stacks and stacki to extract their common
post-fix post. We can see that call-sites in post are not-
yet-returned call sites executed before the original source
location, so stacki \ post will be the dynamic calling
context to be matched. If the source location is not known,
we cannot use the solution above. In this case, we can
instrument all call sites in stacki, and scan the reachable
memory locations at the call site to check whether the
tainted value can be observed. If the tainted value exists,
we consider the call-site to be a part of the dynamic calling
context, as the call-site should be executed after the source
location is executed.

IV. Implementation
In our implementation of ConDySTA, we use Flow-

Droid [3] for static taint analysis, as it is a state-of-the-
art tool based on IFDS framework, and is compatible
with the most updated Android system and apps. For
dynamic taint analysis, we use value-based dynamic taint
analysis, because the state-of-the-art propagation-based
tools [2], [26], [28] are all out-of-date and do not work with
Android 6.0 or higher (Android now is at 10). Although
having the weakness of not handling control dependencies
and encrypted data, value-based dynamic taint analysis
also has its advantage on handling pure black boxes (e.g.,
web APIs whose implementations are on remote servers).
Note that ConDySTA can always take advantage of new
dynamic taint analysis once they are available. Figure 4
shows the implementation of DySTA and ConDySTA.
They both first collect intermediate sources with dynamic
analysis, and then detect additional taint flows using static
taint analysis from intermediate sources. ConDySTA ad-
ditionally checks whether an additional taint flow has a
calling context matching with the dynamic calling context
of the corresponding intermediate source.

A. User Profile For Tainted Values

Value-based dynamic taint analysis requires tainted
values for sources. Specifically, we use the values in the
user profile of an Android device as the tainted values.
The information type and taint values are presented in
Table IV in the Appendix.

B. Intermediate Source Collection

When collecting the intermediate sources, we instru-
ment all return values of methods whose return types
are java.lang.String. The reason is that all the tainted
values are of string type and are stored in string variables.
Although they are sometimes organized as fields in objects,
there is often a method declared in the object’s class
to fetch the value of the sensitive data as a string. Due
to performance concern, we only implemented the return
value. In further research, we may apply static analysis or
machine learning to select part of string-type parameters
as instrumentation points.

After instrumentation, we rebuild the smali code back
into APK format for testing. We use the Android Debug
Bridge (adb) to automatically install the rebuilt apps
onto our test device, login with predefined profile if re-
quired, and use Monkey [20] to explore the app for 20
seconds. We use minimal testing in the implementation
and evaluation of ConDySTA to check whether it can
detect additional taint flows even with minimal testing.
So our evaluation results actually show a lower estimation
of the ability of ConDySTA, and equipping ConDySTA
with more advanced testing may further enhance its e�ec-
tiveness. During testing, we utilize the Android system log
to record the return values and call stacks of String type
methods. Table I shows an example where Line 1 shows
the return value; Line 2 shows the method that be invoked
(com.facebook.internal.AttributionIdentifiers.
getAndroidAdvertiserId). The following lines show the call
stack trace of this method. We consider a method as an
intermediate source when its return value contains any
user info in Table IV. In this example, the return value is
the AdvertiserId, so we consider getAndroidAdvertiserId()
as an intermediate source. We also check for concatenated,
reversed and hashed format of the user info. For exam-
ple, "355458061189396_ZX1G22KHQK" is a concatena-
tion form of IMEI and Serial number.

Due to the essential weakness of value-based dynamic
taint analysis, we will miss encrypted values. Please note
that this can be resolved if ConDySTA is integrated with
a propagation-based dynamic taint analysis tool (which
is straightforward once such a tool is available). Further-
more, the taint flow of encrypted values are usually of less
concern.

C. Applying FlowDroid

We run FlowDroid with the original sources to detect
statically tainted locations and rule them out intermediate
sources, this reduces the source locations for the second

802

installrebuildInstrument GUI TestInstrumented
app

Intermediate
Sources

Additional
Taint FlowsFlowDroid

Predefined User Profile
DySTA Output

APP

String Value

Stack Trace

FlowDroid

ConDySTA Output

Log

Additional
Taint Flows

Context Injection

Match

Fig. 4: Implementation of ConDySTA
1 09-12 16:25:13.442 W System.err: java.lang.Exception: fc1303d8-7fbb-44d8-8a68-a79�ac06fea

2 09-12 16:25:13.443 W System.err: at com.facebook.internal.AttributionIdentifiers.getAndroidAdvertiserId

(AttributionIdentifiers.java:1)

3 09-12 16:25:13.443 W System.err: at com.facebook.marketing.internal.RemoteConfigManager.run

(RemoteConfigManager.java:5)

4 09-12 16:25:13.443 W System.err: at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1133)

5 09-12 16:25:13.443 W System.err: at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:607)

6 09-12 16:25:13.443 W System.err: at java.lang.Thread.run(Thread.java:761)

TABLE I: System log of String method

Intermediate Source

Call: com.facebook.internal.AttributionIdentifiers.getAndroidAdvertiserId()
Location: <com.facebook.marketing.internal.RemoteConfigManager.run()>
Line number: RemoteConfigManager.java: 5

Call: com.facebook.marketing.internal.RemoteConfigManager.run()
Location: < java.util.concurrent.ThreadPoolExecutor.runWorker()>
Line number: ThreadPoolExecutor.java: 1133

Call: java.util.concurrent.ThreadPoolExecutor.runWorker()
Location: <java.util.concurrent.ThreadPoolExecutor\$Worker.run()>
Line number: ThreadPoolExecutor.java: 607

…

Node 1

Node 0

Node 2

Fig. 5: ConDySTA Call Path

round of static analysis and makes sure that ConDySTA
always finds new taint flows. After we collected the inter-
mediate sources, we feed these sources to FlowDroid as
new source locations, and run FlowDroid again.

Context Match. Using the generated full path, we can
perform context matching with the call stack trace. First,
we convert the call stack trace to a call path. For the
example call stack trace in Table I, we generate the call
path as Figure 5. Then, we will convert this call path to
the form of exploded super graph as shown in Figure 3,
and combine it with the exploded super graph generated
by FlowDroid before running it for static taint analysis.

V. Evaluation
In our evaluation, we consider two data sets. The first

data set is a part of ReproDroid [15], a large and
up-to-date benchmark which combines multiple earlier
benchmarks [3], [10], [29] for static taint analysis tools for
Android apps. ReproDroid’s data set primarily consists
of small apps with labeled taint flows (i.e., ground truth)
written by researchers. The second data set consists of
real-world apps from the Google Play store. We selected
the 100 most downloaded apps that could be instrumented

and successfully analyzed by FlowDroid according to
PlayDrone [22], a collection of meta data for Android apps
on the Google Play store. The full list of the apps (as well
as ConDySTA’s implementation and detailed results) are
available at our anonymized project website1.

A. Research Questions and Summarized Answers

• RQ1: How many more taint flows can ConDySTA
detect than static taint analysis alone? 28 taint flows
across 28 apps from the benchmark were not de-
tected by any of the six state-of-the-art static taint
analysis tools. Of those 28 common false negatives,
ConDySTA was able to detect 12. Among the 100
real-world apps, ConDySTA detected 39 more taint
flows than FlowDroid across 12 apps. FlowDroid
detected a total of 281 taint flows across 57 apps in to-
tal. The tainted information included email addresses,
country, language, device’s manufacturer, advertising
ID, user’s full name and username.

• RQ2: How many false positives can context sen-
sitivity preservation reduce compared to naïve dy-
namic supplementation? In the benchmark evalua-
tion, DySTA detected 21 taint flows (12 true positives
and nine false positives) and ConDySTA reduced all

of the nine false positive without missing any true pos-
itives. In the real-world app evaluation, ConDySTA
was able to remove 1,029 taint flows with mismatched
context from the result of DySTA.

• RQ3: Does ConDySTA detect taint flows not de-
tected by the dynamic taint analysis itself? Among
the 39 taint flows detected by ConDySTA, 19 of
them were also directly detected (and thus confirmed)
by dynamic taint analysis, the remaining 20 were
additionally detected through static taint analysis.

1https://sites.google.com/view/condysta2020

803

• RQ4: How e�cient is ConDySTA? The execution
time of ConDySTA ranges from less than one second
(when no intermediate sources are found) to 4,266
seconds, which is comparable to the execution time
of FlowDroid.

B. Evaluation on the Benchmark

A major challenge in evaluating program analysis tools
on real-world applications is the lack of ground truth, so we
first evaluate ConDySTA on the ReproDroid [1] bench-
mark, which consists of apps with taint flows labeled by
earlier researchers. ReproDroid combines three existing
benchmarks: DroidBench [30], ICCBench [29], and DIAL-
DroidBench [10] and contains additional apps with code
features not covered by the three benchmarks. The apps
in ReproDroid are mostly written by earlier researchers
and are simple enough for the researchers to manually
identify and label all taint flows (i.e., pairs of source and
sink locations2) in the app. The apps cover many di�erent
code features to check whether static analysis tools can
handle handle those features. In the initial study [1] on
ReproDroid, the authors evaluated six state-of-the-art
static taint analysis tools: Amandroid [12], DIALDroid
[19], DidFail [31], DroidSafe [32], FlowDroid [18],
IccTA [33], and reported detailed results.

1) Reducing False Negatives: In order to evaluate the
e�ectiveness of ConDySTA on detecting additional taint
flows, we applied ConDySTA on the apps (from Re-
proDroid) which contain at least one taint flow that
cannot be detected by any of the six static taint analysis
tools (i.e., a common false negative of all six tools). We
consider these apps and taint flows because users can
always combine existing static taint analysis tools and
use the union of their results to reduce false negatives,
and we want to check whether ConDySTA can further
reduce false negatives on top of that. We identified 33
common false negative taint flows from 33 apps (one com-
mon false negative per app). Their covered code features
include implicit taint flows, native code, reflection, and
inter component communication. Among the 33 apps, five
of them were out-of-date and thus could not be installed
or crashed immediately upon execution (note that none of
the labeled taint flows in these apps are observed), so they
were excluded. We applied ConDySTA on the remaining
28 apps, and it detected 12 correct taint flows and thus
reduced 12 out of the 28 common false negatives. We also
applied DySTA on the 28 apps and it detected the exact
same taint flows, thus showing that by adding context
sensitivity, ConDySTA did not introduce false negatives.

Table II shows the details of these 12 taint flows.
In the table, the four columns represent their IDs in
the benchmark, covered code features, enclosing apk
names, and source/sink pairs. In flow 124 (ImplicitFlow),
the data has been converted into an array of Char and

2Multiple flows between the same pair of source and sink locations
are considered as one.

copied back to another string before flowing to the
sink. In flows 191 and 192 (Native code), native code
is used to fulfil part of the taint flow. In flows 203 and
206-209, part of the taint flow (sending information
through intents) is fulfilled with method invocations
performed by reflection along with dynamic generation of
class/method signatures used in reflection. In flows 24,
25, 27 and 32, the data is transmitted across components
through intents. Notably, the latter two code features
(Reflection and ICC) are supported by some of the
tested tools (e.g., Amandroid [12], DIALDroid [19],
and IccTA [33]), but they are only partially supported
so some complicated cases cannot be handled as shown
in the result of ReproDroid study [1]. ConDySTA
detected these 12 flows based on intermediates sources
such as de.ecspride.ImplicitFlow1: java.lang.String
copyIMEI(java.lang.String), android.content.Intent:
java.lang.String getStringExtra(java.lang.String),
etc. From the result, we can also see that ConDySTA is
independent from code features (i.e., types of blockers),
so it reduces common false negatives caused by various
types of blockers.

ConDySTA failed to reduce the remaining 16 common
false negatives, simply because the corresponding taint
flows do not involve any string type return values (which
are the only instrumentation points of ConDySTA) and
thus ConDySTA fails to detect intermediate sources. If
ConDySTA instrumented all string type parameters, it
would be able to detect all 28 of the common false
negatives. However, we did not implement ConDySTA to
instrument all string parameters due to the high overhead
(due to the need to extract call-stacks at all instrumen-
tation points) in real-world apps, resulting in a lack of
scalability. In real-world apps, taint flows are much longer
and more complicated so a string type return value is
more likely to be involved. Upon further research, we may
select only part of string-type parameters and other-type
variables as instrumentation points, which may realize the
full potential of ConDySTA.

2) False Positives: To evaluate ConDySTA’s perfor-
mance on reducing false positive caused by context insen-
sitivity, we applied both DySTA and ConDySTA on 43
apps from ReproDroid that contained at least one true
negative. When constructing ReproDroid and earlier
benchmarks, researchers also labeled fake taint flows (i.e.,
pairs of sources and sinks without a flow between them).
These labeled true negatives can be used to check whether
static analysis tools report false positives. Of the 186 such
fake taint flows in the 43 apps, DySTA mistakenly reported
nine of them. With context matching, ConDySTA did not
report any of them, so it reduced nine false positives of
DySTA to zero. Note that ConDySTA is implemented to
supplement a static taint analysis (i.e., FlowDroid), and
the static taint analysis itself may report false positives
which are not caused by ConDySTA.

804

ID Feature Apk Source & Sink
DroidBenchExtend
124 ImplicitFlows ImplicitFlow1 android.telephony.TelephonyManager.getDeviceId()

android.util.Log.i(java.lang.String,java.lang.String)

191 Native SinkInNativeLibCode android.telephony.TelephonyManager.getDeviceId()
mod.ndk.ActMain.cFuncSendData(java.lang.String)

192 Native SourceInNativeCode mod.ndk.ActMain.cFuncGetIMEI(android.content.Context)
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

203 Reflection_ICC OnlyIntent android.telephony.TelephonyManager.getDeviceId()
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

206 Reflection_ICC OnlyTelephony java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

207 Reflection_ICC OnlyTelephony_Dynamic java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

208 Reflection_ICC OnlyTelephony_Reverse java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager. sendTextMessage(java.lang.String, ...)

209 Reflection_ICC OnlyTelephony_Substring java.lang.reflect.Method.invoke(java.lang.Object,java.lang.Object[])
android.telephony.SmsManager.sendTextMessage(java.lang.String, ...)

ICCBench
24 IccTargetFinding icc_dynregister1 android.telephony.TelephonyManager.getDeviceId()

android.util.Log.d(java.lang.String,java.lang.String)

25 IccTargetFinding icc_dynregister2 android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

27 IccTargetFinding icc_explicit1 android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

32 IccTargetFinding icc_implicit_mix1 android.telephony.TelephonyManager.getDeviceId()
android.util.Log.d(java.lang.String,java.lang.String)

TABLE II: False negative taint flows detected by ConDySTA

App Package Name
Size

(KLOC)
FlowDroid DySTA

ConDySTA

(Dynamic)

ExecTime(s)

DySTA+

ConDySTA

ExecTime(s)

FlowDroid

com.amazon.mShop.android.shopping 10881 1 25 2(0) 25 257

com.dianxinos.dxbs 3034 1 77 15(6) 4266 1162

com.disney.WMWLite 1489 2 11 2(2) 357 131

com.forthblue.pool 1778 3 22 2(0) 1630 270

com.gameloft.android.ANMP.

GloftDMHM
2540 20 3 3(0) 29 18

com.mxtech.videoplayer.ad 4044 3 4 1(1) 574 27

com.pinterest 5534 0 2 4(4) 95 138

com.sgiggle.production 6015 0 1 1(0) 44 32

com.tubitv 7660 0 5 3(2) 38 273

com.waze 2996 1 1 1(0) 16 115

org.mozilla.firefox 2155 24 74 4(4) 18 1265

paint.by.number.pixel.art.coloring.

drawing.puzzle
4795 0 14 1(0) 23 64

...

Total N/A 281 1068 39(19) N/A

TABLE III: Taint flows detected by ConDySTA in real-world apps

C. Evaluation on Real World Apps

Five of the six tools used in the ReproDroid bench-
mark could not be applied to our real-world app dataset
as four of them (Amandroid, DidFail, DroidSafe, and
IccTA) do not execute on recent apps3 [1], and one
(DIALDroid) targets only inter-app taint flows and not
general intra-app taint flows. For these reasons, we were
able to benchmark ConDySTA against those apps using
ReproDroid’s compatible test set, but we could not

use ReproDroid to compare ConDySTA’s performance
against these tools for modern apps. To address this and
present a more complete evaluation, we also evaluated
ConDySTA on current real-world apps and compared it

3They support up to Android API level 19, and Android API is
currently at level 29

with the remaining working tool, FlowDroid, to test
ConDySTA’s relevance to the current app landscape.

For fair comparison, we count taint flows the same
way as FlowDroid. In particular, multiple taint flows
between the same pair of source and sink locations are
counted as one taint flow. So even if ConDySTA de-
tects a di�erent taint flow for a pair of source and sink
locations between which FlowDroid already detects a
flow, we do not consider ConDySTA to have found a
new taint flow. Furthermore, we use the configuration
of FlowDroid with context sensitivity and least false
negatives (FlowDroid has some configurations sacrific-
ing soundness for performance). Finally, we make sure
ConDySTA and FlowDroid use the same set of sources
and sinks. Column 2 of Table IV shows the sources we
use for each user information type. Note that full name,
user name and password are provide through user input,

805

so we use the EditText.getText() method invocations of
the corresponding UI widget as the sources. To further
confirm, we instrumented the EditText.getText() method
invocations and print out the value passed in to make sure
our input values are caught by these sources.

We present our evaluation results on additionally-
detected taint flows in Table III. In the table, Columns
1-5 present the name of the app, the size of the app
in thousands of lines of smali code (note that we have
only the byte code of apps as they are closed source),
the number of taint flows detected by FlowDroid, the
additional number of taint flows detected by DySTA, the
additional number of taint flows detected by ConDySTA
(with the number of taint flows that also detected by
dynamic taint analysis within these flows in brackets),
and the execution time. Note that as we have 100 apps
and limited space, we present only the apps with at least
one taint flow detected by ConDySTA. The full results are
available in Tables V and VI in the Appendix. Also, for
the execution time, we include only the following context-
aware static taint analysis portion. Since the execution
time of dynamic taint analysis largely depends on the
testing intensity (and we are using minimal testing in our
evaluation), it does not make much sense to combine the
execution time.

1) Additionally Detected Flows Over FlowDroid:

Among the 100 apps tested, FLowDroid detected 281
taint flows using the Android platform sources, while
ConDySTA detected 39 more taint flows. 19 of these 39
were confirmed with dynamic taint analysis and eight
of the remaining can be manually confirmed (see Sec-
tion V-C5 for more detailed inspection results). From
Table III, we can see that these 39 flows are distributed
over 12 di�erent apps. This shows that the practical
complexity that causes unsoundness of static taint analysis
is very common among top Android apps. For some of the
apps (e.g., com.dianxinos.dxbs), FlowDroid detects zero
or very few taint flows while ConDySTA detected many,
which shows that ConDySTA may be very helpful for some
apps where blockers are used intensively.

2) ConDySTA vs. DySTA: A comparison between
Columns 4 and 5 in Table III shows the benefit of
ConDySTA. In particular, ConDySTA reduced 1,029
context-mismatched taint flows from 49 apps. So we can
see that the reduction of context-mismatched taint flows
happens in almost all of the apps. It should be noted that
a context mismatched taint flow may not necessarily be
fake. In very rare cases, the taint flow may happen under
a di�erent context not covered by dynamic taint analysis
or even through another intermediate source not observed
in dynamic taint analysis. However, we believe they should
be removed because they should not be inferred from ob-
served facts of the dynamic taint analysis. As an analogy,
a weather forecaster may have a flaw so that Wednesday’s
weather is always reported to be stormy, which could be
true in rare cases, but the flaw and corresponding forecast-

ing results should be removed because they are not results
from the forecasting model (which may be imperfect by
itself). Note that in our evaluation on ReproDroid, all
the removed context-mismatched taint flows are fake flows.

3) Comparison with Pure Dynamic Taint Analysis:

We further studied whether ConDySTA detects only the
taint flows that are already detected by dynamic taint
analysis. If so, its value would be diminished. Among the
39 taint flows detected by ConDySTA, we instrumented
the sink methods and applied dynamic taint analysis to
check how many taint flows could be detected. The results
are presented in the brackets of Column 5 in Table III,
which shows that 19 taint flows can be detected (and thus
confirmed as true positives) and the remaining 20 cannot
be detected. This shows that ConDySTA does provide
more value by performing static taint analysis from the
intermediate sources.

4) Execution Time: Finally, we recorded the execution
time of ConDySTA (see Column 6 of Table III). We can
see that the execution time is within 5,000s, and for most
of the apps it ranges from several hundred seconds to
thousands of seconds. This is similar to those of Flow-
Droid. Notably, as ConDySTA invokes FlowDroid for
intermediate sources, the largest portion of its execution
can be attributed to FlowDroid. It should be noted
that DySTA+ConDySTA sometimes take much longer
time than simply running FlowDroid because of the
additional intermediate sources.

5) Qualitative Analysis: To understand why Flow-
Droid has the false negatives that ConDySTA detected,
we further performed a qualitative analysis on the taint
flows detected by ConDySTA but not FlowDroid.
Among the 39 taint flows, 23 flows are in apps which are
heavily obfuscated and we were not able to understand
the full taint paths (Note that 11 of the 23 flows were con-
firmed in dynamic taint analysis). Among the remaining 16
flows that we managed to fully understand, six flows were
missed by FlowDroid because the data flowed through
the network (sent to remote servers and fetched back),
four flows were not detected because the data flowed to
local cache files and were later read back, and six flows
were not detected due to FlowDroid’s flawed modeling
of HashMap.putAll(), which we confirmed with a trivial
app with only this function on the taint path. Note that
HashMap is particularly di�cult to handle in static analysis
as it can easily create many false positives if the entire
HashMap is conservatively tainted. Finally, we can see
that the blockers in real-world apps are very di�erent
from those pre-defined in ReproDroid. So ConDySTA’s
independence of blocker types can be an important benefit
when applied to real-world apps.

D. Threats to Validity

One major threat to the internal validity comes from
value-based taint analysis. Due to coincident string
matches, some of the detected false negatives may not

806

be real false negatives. To reduce such threat, we use
complicated profile data to avoid coincident matches, and
manually confirmed all detected false negatives on Re-
proDroid, and a large portion of those from real-world
Android apps. One major threat to the external validity
comes from the size and variety of our subject apps.
To reduce such threat, we consider both a large existing
benchmark and top real-world Android apps.

VI. Discussion

Generality on Dynamic Taint Analysis. Since
ConDySTA needs only intermediate sources (nodes on the
taint paths) and their calling contexts (method invocations
along the taint paths) from the dynamic taint analysis,
ConDySTA should be able to directly take the output of
any propagation-based dynamic taint analysis. Even if the
method invocations along the taint paths are not provided
by the dynamic taint analysis tool (which is unlikely for
propagation-based analysis), ConDySTA can still directly
use the system stack traces at intermediate sources as
estimated calling contexts (just as how it handles value-
based dynamic taint analysis). So, once a new dynamic
taint analysis framework becomes available, ConDySTA
can easily take advantage of it.
Generality on Static Taint Analysis. ConDySTA uses
FlowDroid as the static analysis tool to be supplemented
because it is context-sensitive, very robust to be still able
to handle most Android apps on the market, and has been
adopted by many downstream research e�orts (e.g., [7]
and [9]). DySTA integrates with static taint analysis by
providing intermediate sources as new sources, so it can be
directly used with almost any static taint analysis tools (as
long as they allow adding new sources) without any e�ort.
ConDySTA further encodes calling context into the inter-
procedure control-flow graph in the IFDS framework, so it
can be directly integrated to any IFDS-based static taint
analysis. ConDySTA can be further adapted to integrate
with more broader categories of static taint analyses by
encoding the calling context into the intermediate code
representation the analyses are based on.

VII. Related Works

We discuss related works in three categories: taint anal-
ysis, coping with unsoundness of static analysis, and static
supplement of dynamic analysis.

A. Taint Analyses for Android

Our approach supplement static taint analysis with
dynamic taint analysis results, so it is related to existing
static and dynamic taint analysis techniques. Here we limit
our discussion for Android due to the large number of
existing work in the area. FlowDroid [3] is a state-of-art
static information analysis tool for Android apps. Other
Android-oriented static information analysis techniques
include CHEX [34], LeakMiner [35], and ScanDroid [36].

Specifically, CHEX [34] detects component hijacking vul-
nerabilities in Android applications by tracking taints be-
tween externally accessible interfaces and sensitive sources
or sinks. LeakMiner [35] is an earlier context-insensitive
information-flow analysis technique for detecting privacy
leaks in Android apps. ScanDroid [36] tracks taint flows
among multiple apps and detects privacy leaks into other
apps. There are also dynamic taint analysis techniques
such as TaintDroid [2] and CopperDroid [37] that perform
OS-level or application-level of dynamic taint propagation.
TaintArt [26] and TaintMan [28] further extends the exist-
ing dynamic taint analysis to support Android RunTime
(ART) which adopts ahead-of-time compilation strategy
and replaces previous virtual-machine-based Dalvik. Jung
et al., [21] proposed PrivacyOracle, which uses di�erential
analysis of tainted values perform dynamic taint analysis
on black-box systems without instrumenting the appli-
cation or the underlying OS. Tripp et al. [38] utilized
Bayesian reasoning to determine if an information release
at a sink point represents a privacy leak. It calculates
the possibility of legitimate information releases at a sink
based on the distance between the information about to
be released and the original sensitive data. Continella et
al. [39] proposed a black-box analysis tool to detect privacy
leaks in mobile apps by analyzing network tra�c. All
of these taint analyses are either static or dynamic and
they all su�ered from the limitations of static analysis or
dynamic analysis. ConDySTA provides a general approach
to use dynamic taint analysis results in static taint analysis
so it can take advantage of all these existing taint analyses
or newly developed taint analyses in the future.

B. Tackling Practical Unsoundness of Static Analysis

Prior researchers have already noticed the unsoundness
of static analysis in practice. Researchers from Cover-
ity [40] explained the challenges of applying static analysis
to real world [41], and they mentioned in the paper that
the static inaccessibility to code as one of the major
challenges. In academia, di�erent dynamic supplements of
static analysis have been proposed. On handling reflec-
tions, Livshits et al. [42] proposed an approach to statically
infer information about reflective call sites from program
code. TamiFlex [16] perform dynamic analysis to record
destinations of reflection calls and use such records to
supplement the program call graph, which is the basis for
many static analyses. DroidRA [43], in contrast, uses static
constant propagation to estimate potential reflection call
destinations in Android apps. On handling dynamically
loaded / generated code, Wei and Ryder [44] developed
blended taint analysis for JavaScript which summarizes
dynamically generated code from dynamic analysis output
and perform static taint analysis based on the summaries.
Averroes [45] generates mock libraries with analysis
summaries so it can be used for replacement of missing
libraries. Dufour [46] proposed to collect calling structure
data at run time, and feed it as input to static method-

807

escape analysis, so that some complicated code portions
can be analyzed more e�ciently. PRuby [47] by Furr et
al. is a static-type inference system for the Ruby pro-
gramming language. It uses dynamic profiles to handle the
three dynamic language features in Ruby: send, require
and eval, which performs reflection invocations, dynamic
code loading, and dynamic code generation, respectively.
ConDySTA is di�erent from all the above works because
it is not specific to any types of blockers and can combine
o�-the-shelf static and dynamic taint analysis, while these
works cope with pre-defined blockers (mainly dynamic
code features). Our evaluation show that blockers in real-
world apps can be very di�erent from the code-feature
blockers considered in ReproDroid, so ConDySTA’s in-
dependence of blocker types is an important advantage
over existing works when applied in practice.

C. Static Supplement to Dynamic Analyses

The third category of research e�orts use static anal-
ysis results to guide or supplement dynamic analysis to
support certain code features or to enhance e�ciency.
To protect users from cross-site scripting (XSS) attacks,
Vogt et al. [48] proposed a dynamic taint analysis frame-
work to monitor sensitive information flows within the
web browser. The framework has a complementary static
analysis to be invoked when necessary to detect indi-
rect control flow dependencies which are not handled
by taint propagation in the dynamic analysis. Concolic
analyses [49] also fall into this category. Several later
e�orts [50]–[52] start from a seed dynamic execution, and
try to generate legal or more test cases by statically
analyzing dependencies among elements on the executed
trace. Christakis et al. [53] further proposed an approach
which takes advantage of static analysis to identify some
verified paths, and guide the dynamic execution to only
unverified paths. Zheng et al. [54] first used static analysis
to collect the activity path towards the sensitive API and
then use dynamic analysis to trigger the UI activity path.
Another large category of works use static analysis to
determine where to add run-time checks and thus reduce
the number of checks and run-time overhead. For example,
Rhodes et al. [55] used static analysis to reduce run-
time checks for data racing by coalescing checks and com-
pressing shadow locations. Sengupta et al. [56] proposed
EnfoRSer, which first statically partitions code into a
number of statically bounded regions, and checks whether
these statically bounded regions are executed atomically
at run time. There are also e�orts on static-analysis-
guided dynamic analysis [50] that try to generate tests
dynamically confirming a statically detected defect, such
as DSDCrasher [57] and Check’n’crash [58]. HARVEST
[59] is a hybrid approach to extract runtime values in
the case of obfuscation and anti-analysis techniques. For
a predefined interesting data, they statically collect the
program slices which contain invocation of the interest-
ing points. For each slice, conditional statements were

removed to avoid anti-analysis feature like time and logic
bombs. In the dynamic analysis stage, HARVEST execute
the slice code and report target interesting values. They
evaluated HARVEST on malware and identified reflective
method invocation on sensitive methods, which is not
detectable by static or dynamic analysis tool. Wong et
al. [60] proposed to detect and reverse language-based
obfuscation via dynamic instrumentation. Ahmand et
al. [61] proposed to automatically targeted triggering the
method of interest (MOI), which used Inter Component
Communications (ICC) for passing data between compo-
nents. Then they extracted runtime values of reflection and
encrypted strings. Xia et al. [62] proposed to reduce the
false positives of static analysis approaches by verifying the
detected leaks through an approximated dynamic analysis.
Compared with these e�orts, ConDySTA works on the
opposite direction that uses dynamic analysis results to
alleviate practical unsoundness of static analysis, and also
injects dynamic context into the static taint analysis.

VIII. Conclusion

In this paper, we explored the use of dynamic taint
analysis as a supplement to static taint analysis to reduce
false negatives. We demonstrated the potential loss of
context sensitivity in such an approach and developed
a hybrid context matching mechanism to retain it. We
further implemented ConDySTA for value-based dynamic
taint analysis as an augmentation for FlowDroid, and
evaluated it on the ReproDroid benchmark and 100 top
Android apps. Our evaluation showed that ConDySTA
was able to reduce 12 of 28 common false negatives present
in all existing tools from ReproDroid and detect 39
additional taint flows from 100 apps which were not de-
tectable by FlowDroid. Furthermore, the use of context-
sensitivity preservation helped remove all nine false posi-
tives and 1,029 context-mismatching taint flows reported
by the baseline solution DySTA.

We believe that the general idea of using dynamic anal-
ysis to reduce false positives in static analysis is promising,
so we plan to work in the following directions. First,
we plan to evaluate ConDySTA on a larger set of apps
and applying ConDySTA to the combinations of other
dynamic taint analyses and static taint analyses on or
beyond Android. Second, we plan to work on the dynamic
supplementation of other static analyses (e.g., type-state
analysis, points-to analysis) with practical unsoundness
while preserving analysis properties. Third, we plan to
explore techniques for guiding dynamic executions through
blockers to better reduce false negatives in static analysis.

Acknowledgment

This work is supported in part by NSF Awards NSF-
1846467, NSF-1736209, NSF-2007718, and NSF-1948244.

808

References
[1] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint

analysis tools keep their promises?” in Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, 2018, pp. 331–341.
[2] W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. Mc-

Daniel, and A. N. Sheth, “Taintdroid: An information-flow
tracking system for realtime privacy monitoring on smart-
phones,” in Proceedings of the 9th USENIX Conference on

Operating Systems Design and Implementation, ser. OSDI’10,
2010, pp. 1–6.

[3] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, 2014, pp. 259–269.
[4] N. Jovanovic, C. Kruegel, and E. Kirda, “Pixy: A static analysis

tool for detecting web application vulnerabilities,” in 2006 IEEE

Symposium on Security and Privacy (S&P’06). IEEE, 2006,
pp. 6–pp.

[5] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proceedings of the

28th ACM SIGPLAN Conference on Programming Language

Design and Implementation, 2007, pp. 32–41.
[6] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically

vetting android apps for component hijacking vulnerabilities,”
in Proceedings of the 2012 ACM conference on Computer and

communications security, 2012, pp. 229–240.
[7] J. Huang, Z. Li, X. Xiao, Z. Wu, K. Lu, X. Zhang, and G. Jiang,

“{SUPOR}: Precise and scalable sensitive user input detection
for android apps,” in 24th {USENIX} Security Symposium

({USENIX} Security 15), 2015, pp. 977–992.
[8] Y. Nan, M. Yang, Z. Yang, S. Zhou, G. Gu, and X. Wang,

“Uipicker: User-input privacy identification in mobile applica-
tions,” in 24th {USENIX} Security Symposium ({USENIX}
Security 15), 2015, pp. 993–1008.

[9] X. Wang, X. Qin, M. B. Hosseini, R. Slavin, T. D. Breaux,
and J. Niu, “Guileak: Tracing privacy policy claims on user
input data for android applications,” in Proceedings of the 40th

International Conference on Software Engineering. ACM,
2018, pp. 37–47.

[10] A. Bosu, F. Liu, D. Yao, and G. Wang, “Collusive data leak
and more: Large-scale threat analysis of inter-app communica-
tions,” in Proceedings of the 2017 ACM on Asia Conference on

Computer and Communications Security, 2017, pp. 71–85.
[11] Y. Feng, S. Anand, I. Dillig, and A. Aiken, “Apposcopy:

Semantics-based detection of android malware through static
analysis,” in Proceedings of the 22nd ACM SIGSOFT Inter-

national Symposium on Foundations of Software Engineering,
2014, pp. 576–587.

[12] (2017) Amandroid. [Online]. Available: https://bintray.com/
arguslab/maven/argus-saf/3.1.2

[13] B. Livshits, M. Sridharan, Y. Smaragdakis, O. Lhoták, J. N.
Amaral, B.-Y. E. Chang, S. Z. Guyer, U. P. Khedker, A. Møller,
and D. Vardoulakis, “In defense of soundiness: a manifesto,”
Communications of the ACM, vol. 58, no. 2, pp. 44–46, 2015.

[14] D. King, B. Hicks, M. Hicks, and T. Jaeger, “Implicit flows:
Can’t live with ‘em, can’t live without ‘em,” in International

Conference on Information Systems Security. Springer, 2008,
pp. 56–70.

[15] F. Pauck, E. Bodden, and H. Wehrheim, “Do android taint
analysis tools keep their promises?” in Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, 2018, pp. 331–341.
[16] E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini,

“Taming reflection: Aiding static analysis in the presence of
reflection and custom class loaders,” in Proceedings of the 33rd

International Conference on Software Engineering. ACM,
2011, pp. 241–250.

[17] A. Dasgupta, V. Narasayya, and M. Syamala, “A static anal-
ysis framework for database applications,” in 2009 IEEE 25th

International Conference on Data Engineering. IEEE, 2009,
pp. 1403–1414.

[18] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” in Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and

Implementation, 2014, pp. 259–269.
[19] (2017) Daildroid. [Online]. Available: https://github.com/

dialdroid-android/DIALDroid
[20] A. Developers, “Ui/application exerciser monkey,” 2012.

[Online]. Available: https://developer.android.com/studio/
test/monkey.html

[21] J. Jung, A. Sheth, B. Greenstein, D. Wetherall, G. Maganis, and
T. Kohno, “Privacy oracle: a system for finding application leaks
with black box di�erential testing,” in Proceedings of the 15th

ACM conference on Computer and communications security.
ACM, 2008, pp. 279–288.

[22] (2018) Playdron metadata. [Online]. Available: https://archive.
org/details/android_apps&tab=about

[23] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural
dataflow analysis via graph reachability,” in Proceedings of the

22nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages. ACM, 1995, pp. 49–61.
[24] T. Reps, “Program analysis via graph reachability,” Information

and software technology, vol. 40, no. 11-12, pp. 701–726, 1998.
[25] E. B. Nightingale, D. Peek, P. M. Chen, and J. Flinn, “Paralleliz-

ing security checks on commodity hardware,” in ACM Sigplan

Notices, vol. 43, no. 3. ACM, 2008, pp. 308–318.
[26] M. Sun, T. Wei, and J. Lui, “Taintart: A practical multi-

level information-flow tracking system for android runtime,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer

and Communications Security. ACM, 2016, pp. 331–342.
[27] A. Developers, “Top android os versions,”

2020. [Online]. Available: https://www.appbrain.com/stats/
top-android-sdk-versions

[28] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “Taintman:
an art-compatible dynamic taint analysis framework on unmod-
ified and non-rooted android devices,” IEEE Transactions on

Dependable and Secure Computing, 2017.
[29] F. Wei, S. Roy, and X. Ou, “Amandroid: A precise and general

inter-component data flow analysis framework for security vet-
ting of android apps,” in Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, 2014,
pp. 1329–1341.

[30] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein,
Y. Le Traon, D. Octeau, and P. McDaniel, “Flowdroid: Precise
context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps,” Acm Sigplan Notices, vol. 49, no. 6,
pp. 259–269, 2014.

[31] (2015) Didfail. [Online]. Available: https://www.cert.org/
secure-coding/tools/didfail.cfm

[32] (2015) Droidsafe. [Online]. Available: https://mit-pac.github.
io/droidsafe-src/

[33] (2016) Iccta. [Online]. Available: https://sites.google.com/site/
icctawebpage/source-and-usage

[34] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: Statically
vetting android apps for component hijacking vulnerabilities,”
in Proceedings of the 2012 ACM Conference on Computer and

Communications Security, 2012, pp. 229–240.
[35] Z. Yang and M. Yang, “Leakminer: Detect information leakage

on android with static taint analysis,” in Proceedings of the 2012

Third World Congress on Software Engineering, 2012, pp. 101–
104.

[36] A. P. Fuchs, A. Chaudhuri, and J. S. Foster, “Scandroid:
Automated security certification of android applications,”
Manuscript, Univ. of Maryland, http://www.cs.umd.edu/avik/

projects/scandroidascaa, vol. 2, no. 3, 2009.
[37] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro, “Copperdroid:

Automatic reconstruction of android malware behaviors,” in
22nd Annual Network and Distributed System Security Sympo-

sium, 2015.

809

[38] O. Tripp and J. Rubin, “A bayesian approach to privacy enforce-
ment in smartphones,” in 23rd {USENIX} Security Symposium

({USENIX} Security 14), 2014, pp. 175–190.
[39] A. Continella, Y. Fratantonio, M. Lindorfer, A. Puccetti,

A. Zand, C. Kruegel, and G. Vigna, “Obfuscation-resilient pri-
vacy leak detection for mobile apps through di�erential analy-
sis.” 2017.

[40] “Coverity,” https://scan.coverity.com/.
[41] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem,

C. Henri-Gros, A. Kamsky, S. McPeak, and D. Engler, “A few
billion lines of code later: using static analysis to find bugs in
the real world,” Communications of the ACM, vol. 53, no. 2, pp.
66–75, 2010.

[42] B. Livshits, J. Whaley, and M. S. Lam, “Reflection analysis
for java,” in Asian Symposium on Programming Languages and

Systems. Springer, 2005, pp. 139–160.
[43] L. Li, T. F. Bissyandé, D. Octeau, and J. Klein, “Droidra:

Taming reflection to support whole-program analysis of android
apps,” in Proceedings of the 25th International Symposium on

Software Testing and Analysis. ACM, 2016, pp. 318–329.
[44] S. Wei and B. G. Ryder, “Practical blended taint analysis for

javascript,” in Proceedings of the 2013 International Symposium

on Software Testing and Analysis, 2013, pp. 336–346.
[45] K. Ali and O. Lhoták, “Averroes: Whole-program analysis with-

out the whole program,” in European Conference on Object-

Oriented Programming. Springer, 2013, pp. 378–400.
[46] B. Dufour, B. G. Ryder, and G. Sevitsky, “Blended analysis for

performance understanding of framework-based applications,”
in Proceedings of the 2007 international symposium on Software

testing and analysis, 2007, pp. 118–128.
[47] M. Furr, J.-h. D. An, and J. S. Foster, “Profile-

guided static typing for dynamic scripting languages,”
in Proceedings of the 24th ACM SIGPLAN Conference

on Object Oriented Programming Systems Languages

and Applications, ser. OOPSLA ’09. New York, NY,
USA: ACM, 2009, pp. 283–300. [Online]. Available:
http://doi.acm.org/10.1145/1640089.1640110

[48] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel, and
G. Vigna, “Cross site scripting prevention with dynamic data
tainting and static analysis.”

[49] K. Sen, D. Marinov, and G. Agha, “Cute: a concolic unit testing
engine for c,” in ACM SIGSOFT Software Engineering Notes,
vol. 30, no. 5. ACM, 2005, pp. 263–272.

[50] S. Zhang, D. Sa�, Y. Bu, and M. D. Ernst, “Combined static and
dynamic automated test generation,” in Proceedings of the 2011

International Symposium on Software Testing and Analysis.
ACM, 2011, pp. 353–363.

[51] K. J. Ho�man, P. Eugster, and S. Jagannathan, “Semantics-
aware trace analysis,” ACM Sigplan Notices, vol. 44, no. 6, pp.
453–464, 2009.

[52] D. BabiÊ, L. Martignoni, S. McCamant, and D. Song,

“Statically-directed dynamic automated test generation,” in
Proceedings of the 2011 International Symposium on Software

Testing and Analysis. ACM, 2011, pp. 12–22.
[53] M. Christakis, P. Müller, and V. Wüstholz, “Guiding dynamic

symbolic execution toward unverified program executions,” in
Proceedings of the 38th International Conference on Software

Engineering. ACM, 2016, pp. 144–155.
[54] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou,

“Smartdroid: an automatic system for revealing ui-based trigger
conditions in android applications,” in Proceedings of the second

ACM workshop on Security and privacy in smartphones and

mobile devices, 2012, pp. 93–104.
[55] D. Rhodes, C. Flanagan, and S. N. Freund, “Bigfoot: static

check placement for dynamic race detection,” ACM SIGPLAN

Notices, vol. 52, no. 6, pp. 141–156, 2017.
[56] A. Sengupta, S. Biswas, M. Zhang, M. D. Bond, and M. Kulka-

rni, “Hybrid static–dynamic analysis for statically bounded
region serializability,” in ACM SIGPLAN Notices, vol. 50, no. 4.
ACM, 2015, pp. 561–575.

[57] C. Csallner, Y. Smaragdakis, and T. Xie, “Dsd-crasher: A hybrid
analysis tool for bug finding,” ACM Transactions on Software

Engineering and Methodology (TOSEM), vol. 17, no. 2, p. 8,
2008.

[58] C. Csallner and Y. Smaragdakis, “Check’n’crash: combining
static checking and testing,” in Proceedings of the 27th inter-

national conference on Software engineering. ACM, 2005, pp.
422–431.

[59] S. Rasthofer, S. Arzt, M. Miltenberger, and E. Bodden, “Har-
vesting runtime values in android applications that feature anti-
analysis techniques.” in NDSS, 2016.

[60] M. Y. Wong and D. Lie, “Tackling runtime-based obfuscation in
android with {TIRO},” in 27th {USENIX} Security Symposium

({USENIX} Security 18), 2018, pp. 1247–1262.
[61] M. Ahmad, V. Costamagna, B. Crispo, and F. Bergadano,

“Teicc: targeted execution of inter-component communications
in android,” in Proceedings of the symposium on applied com-

puting, 2017, pp. 1747–1752.
[62] M. Xia, L. Gong, Y. Lyu, Z. Qi, and X. Liu, “E�ective real-

time android application auditing,” in 2015 IEEE Symposium

on Security and Privacy. IEEE, 2015, pp. 899–914.

Appendix
In our appendix, we present the full profile data (used

in value-based taint analysis) in Table IV. We also present
the full results of ConDySTA’s output and execution time
compared with FlowDroid on 100 real-world Android apps
in Tables V and VI. In the table, for better readability, we
leave a cell empty if its corresponding number of leaks is
zero.

810

User Info Source for FlowDroid

IMEI = "355458061189396" android.telephony.TelephonyManager: java.lang.String getDeviceId()

Serial = android.os.Build: java.lang.String getSerial ()

"ZX1G22KHQK" android.telephony.TelephonyManager: java.lang.String getSimSerialNumber()

AndroidID =
android.provider.Settings.Secure: java.lang.String

getString(android.content.ContentResolver,java.lang.String)

"a54eccb914c21863" android.provider.Settings.System: java.lang.String

getString(android.content.ContentResolver,java.lang.String)

Email =
android.accounts.AccountManager: android.accounts.Account[] getAccounts()

"********@gmail.com"

android.accounts.AccountManager: android.accounts.Account[] getAccountsByType(java.lang.String)

PassWord = "******"

UserName = "******"

android.os.UserManager: java.lang.String getUserName()

android.widget.TextView: java.lang.CharSequence getText()

android.widget.EditText: android.text.Editable getText()

android.widget.TextView: android.text.Editable getEditableText()

language = "English"
java.util.Locale: java.lang.String getDisplayLanguage()

java.util.Locale: java.lang.String getDisplayLanguage(java.util.Locale)

java.util.Locale: java.lang.String getLanguage()

java.util.Locale: java.util.Locale getDefault()

country = "US"

<java.util.Locale: java.lang.String getCountry()

java.util.Locale: java.lang.String getDisplayCountry(java.util.Locale)

java.util.Locale: java.lang.String getDisplayCountry()

android.location.Address: java.lang.String getCountryName()

java.util.Locale: java.util.Locale getDefault()

AdvertiserId = "fc1303d8-7fbb-44d8-

8a68-a79�ac06fea"

com.google.android.gms.ads.identifier.AdvertisingIdClient.Info: java.lang.String getId ()

timezone_1 = "CST"

timezone_2 =

"Central Standard Time"

com.android.exchange.utility... getTimeZoneDateFromSystemTime(byte[],int)

com.android.calendar.Utils: java.lang.String getTimeZone(android.content...)

com.android.calendar.CalendarUtils$TimeZoneUtils:... getTimeZone(...)

java.util.Calendar: java.util.TimeZone getTimeZone()

java.util.TimeZone: java.util.TimeZone getTimeZone(java.lang.String)

java.util.TimeZone: java.util.TimeZone getDefault()

com.adobe.xmp.impl.XMPDateTimeImpl: java.util.TimeZone getTimeZone()

android.util.TimeUtils: java.util.TimeZone getTimeZone(int,boolean,long...)

java.text.DateFormat: java.util.TimeZone getTimeZone()

Manufacturer = "motorola" android.os.Build.MANUFACTURER

NetWork = "Wi-Fi" android.net.NetworkInfo: java.lang.String getTypeName()

TABLE IV: User Info and Corresponding Source

App Package Name
Size

(KLOC)
FlowDroid DySTA

ConDySTA

(Dynamic)

ExecTime(s)

DySTA+

ConDySTA

ExecTime(s)

FlowDroid

art.coloringpages.paint.number.zodiac.free 4348 11 1402 16

com.abtnprojects.ambatana 6094 2 4 620 75

com.adobe.reader 2084 3 45 4841 114

com.amazon.mShop.android.shopping 10881 1 25 2(0) 25 257

com.appsci.sleep 4815 7 5 65 807

com.arlo.app 7178 1 33 1946 197

com.audible.application 7531 2319 2383

com.audiomack 6796 1 18 19

com.aviary.android.feather 2579 5 31 1761 134

com.bbm 8208 1 20 2318

com.bfs.papertoss 2089 7 7 125 32

com.bydeluxe.d3.android.program.starz 5022 6 3319 10

com.calm.android 6352 1 1 209 487

com.cbs.app 8355 19 16

com.chewy.android 2873 23 20

com.classdojo.android 6088 1 19 120

com.cleanmaster.mguard 8771 15 11 2993 536

com.clearchannel.iheartradio.controller 8188 24 25

com.contextlogic.wish 2943 2 19 6082 1259

com.creativemobile.DragRacing 5630 3 4 4069 310

com.creditkarma.mobile 4594 8 14 47

com.devuni.flashlight 2371 1 11 1762 28

com.dianxinos.dxbs 3034 1 77 15(6) 4266 1162

com.discord 3238 8 922 105

com.disney.WMWLite 1489 2 11 2(2) 357 131

com.domobile.applock 2393 2 7 1268 31

com.dropbox.android 5656 56 36

com.drweb 2393 1 1868 26

com.duolingo 4309 1 15 347 191

com.ebay.mobile 8050 21 27

com.enflick.android.TextNow 9949 1 20 151

com.espn.scorecenter 966 26 203

com.facebook.mlite 2326 5 20 361

com.fingersoft.hillclimb 4468 11 36 21

com.forthblue.pool 1778 3 22 2(0) 1630 270

com.fox.now 5085 7 25 39

Total N/A 281 1068 39(19) N/A N/A

TABLE V: Taint flows detected by ConDySTA in real-world apps

811

App Package Name
Size

(KLOC)
FlowDroid DySTA

ConDySTA

(Dynamic)

ExecTime(s)

DySTA+

ConDySTA

ExecTime(s)

FlowDroid

com.game.JewelsStar 2946 2 6 45 12

com.game.SkaterBoy 2571 2 14 80 14

com.gameloft.android.ANMP.GloftDMHM 2540 20 3 3(0) 29 18

com.gameloft.android.ANMP.GloftIAHM 1596 49 40 2158 19

com.gau.go.launcherex 6996 8 41 919 140

com.gau.go.launcherex.gowidget.weatherwidget 4065 8 41 564 171

com.gonoodle.gonoodle 2736 1 17 18

com.goodrx 3883 3 76 160

com.gotv.nflgamecenter.us.lite 6308 2 17 324

com.groupme.android 2942 7 3 77 394

com.grubhub.android 4995 18 26 404

com.hulu.plus 5101 22 304

com.ibotta.android 8898 1521 14

com.imangi.templerun 2425 27 16

com.imangi.templerun2 2403 3 36 13

com.indeed.android.jobsearch 2066 33 39

com.kakao.story 3471 1 8 2150 237

com.konylabs.capitalone 5125 3 236 152

com.life360.android.safetymapd 5844 2 1 51 53

com.mcdonalds.app 8329 21 39

com.microsoft.appmanager 12102 2 26 250

com.microsoft.o�ce.outlook 8169 74 90

com.mxtech.videoplayer.ad 4044 3 4 1(1) 574 27

com.naver.linewebtoon 6744 11 28 37

com.netflix.mediaclient 4682 3 35 7

com.o�erup 8054 43 128

com.outfit7.talkinggingerfree 7787 25 14

com.outfit7.talkingtom 7990 30 20

com.outfit7.talkingtom2free 7958 36 26

com.pandora.android 13149 28 19

com.particlenews.newsbreak 3787 4 16 1016 222

com.picsart.studio 10604 1 41 41

com.pinterest 5534 2 4(4) 95 138

com.pof.android 3533 1 2 34 22

com.popshow.yolo 2801 1 16 67

com.poshmark.app 5163 4 16 13

com.postmates.android 2947 87 1203 515

com.roidapp.photogrid 6867 1 25 3340 750

com.roku.remote 4133 18 82

com.rovio.angrybirdsseasons 1814 1 7 33 23

com.sgiggle.production 6015 1 1(0) 44 32

com.shootbubble.bubbledexlue 1460 6 33 1609 187

com.skype.raider 2563 2 19 15

com.squareup.cash 3654 5 28 293

com.supercell.clashofclans 1141 3 14 3

com.supercell.hayday 1323 3 14 4

com.surpax.ledflashlight.panel 3101 1 31 1165 31

com.tencent.mm 13678 1 1 42 49

com.topfreegames.bikeracefreeworld 4423 70 21

com.tubitv 7660 5 3(2) 38 273

com.UCMobile.intl 6924 7 31 46

com.venmo 4018 3 111 9820 1064

com.viber.voip 2741 12 10 3876 1813

com.waze 2996 1 1 1(0) 16 115

com.yahoo.mobile.client.android.mail 5851 13 441

com.zillow.android.zillowmap 5331 15 5

flipboard.app 3406 569 291

jp.naver.line.android 13113 19 18 126 77

me.pou.app 1923 7 22 159

org.mozilla.firefox 2155 24 74 4(4) 18 1265

paint.by.number.pixel.art.coloring.drawing.puzzle 4795 14 1(0) 23 64

scratch.lucky.money.free.real.big.win 4571 1 30 1220 349

us.ozteam.bigfoot 4628 10 22 426

vStudio.Android.Camera360 6692 9 43 1920

Total N/A 281 1068 39(19) N/A N/A

TABLE VI: Taint flows detected by ConDySTA in real-world apps, Cont.

812

		2022-08-24T23:39:34-0400
	Preflight Ticket Signature

