
Machine Unlearning
Lucas Bourtoule*‡§, Varun Chandrasekaran*†, Christopher A. Choquette-Choo*‡§, Hengrui Jia*‡§,

Adelin Travers*‡§, Baiwu Zhang*‡§, David Lie‡, Nicolas Papernot‡§

University of Toronto‡, Vector Institute§, University of Wisconsin-Madison†

Abstract—Once users have shared their data online, it is
generally difficult for them to revoke access and ask for the data
to be deleted. Machine learning (ML) exacerbates this problem
because any model trained with said data may have memorized it,
putting users at risk of a successful privacy attack exposing their
information. Yet, having models unlearn is notoriously difficult.

We introduce SISA training, a framework that expedites the
unlearning process by strategically limiting the influence of a
data point in the training procedure. While our framework is
applicable to any learning algorithm, it is designed to achieve
the largest improvements for stateful algorithms like stochastic
gradient descent for deep neural networks. SISA training reduces
the computational overhead associated with unlearning, even
in the worst-case setting where unlearning requests are made
uniformly across the training set. In some cases, the service
provider may have a prior on the distribution of unlearning
requests that will be issued by users. We may take this prior
into account to partition and order data accordingly, and further
decrease overhead from unlearning.

Our evaluation spans several datasets from different domains,
with corresponding motivations for unlearning. Under no dis-
tributional assumptions, for simple learning tasks, we observe
that SISA training improves time to unlearn points from the
Purchase dataset by 4.63×, and 2.45× for the SVHN dataset, over
retraining from scratch. SISA training also provides a speed-up of
1.36× in retraining for complex learning tasks such as ImageNet
classification; aided by transfer learning, this results in a small
degradation in accuracy. Our work contributes to practical data
governance in machine unlearning.

I. INTRODUCTION

Many applications of machine learning (ML) involve ana-
lyzing data that is collected from individuals. This data is often
sensitive in nature and could include information like medical
records [1] or personal emails [2]. Morever, data pipelines
are often not static [3]: new data is collected regularly and
incrementally used to further refine existing models following
the online learning paradigm [4].

Conversely, data may also need to be deleted. Recently
introduced legislation, such as the General Data Protection
Regulation (GDPR) in the European Union [5], the California
Consumer Privacy Act [6] in the United States, and PIPEDA
privacy legislation in Canada [7] include provisions that re-
quire the so-called right to be forgotten [8]. This requirement,
which has been one of the most controversial in the GDPR,
mandates that companies take reasonable steps to achieve the
erasure of personal data concerning [the individual] [9]. The
unprecedented scale at which ML is being applied on personal

*All student authors contributed equally and are ordered alphabetically.

data motivates us to examine how this right to be forgotten can
be efficiently implemented for ML systems.

Because ML models potentially memorize training
data [10], [11], it is important to unlearn what they have
learned from data that is to be deleted. This problem is
tangential to privacy-preserving ML—enforcing ε-differential
privacy [12] with ε 6= 0 does not alleviate the need for
an unlearning mechanism. Indeed, while algorithms which
are differentially private guarantee a bound on how much
individual training points contribute to the model and ensure
that this contribution remains small [13], [14], there remains
a non-zero contribution from each point. If this was not the
case, the model would not be able to learn at all (see § III).
In contrast, forgetting requires that a particular training point
have zero contribution to the model, which is orthogonal to
the guarantee provided by differential privacy.

Having models forget necessitates knowledge of exactly
how individual training points contributed to model parameter
updates. Prior work showed this is possible when the learning
algorithm queries data in an order that is decided prior to the
start of learning [15] i.e., in the statistical query (SQ) learning
setting [16]. When the dataset is instead queried adaptively,
i.e., a given query depends on any queries made in the past,
convergence of the approach is no longer guaranteed. In the
adaptive setting, the divergence induced by this approach is
bounded only for models which require a small number of
iterations for learning. While it is true that any algorithm in
the PAC setting can be converted to its equivalent in the SQ
learning setting [16], efficient algorithms for SQ learning of
complex models such as DNNs do not exist.

A naive way to have such models provably forget is to re-
train them from scratch. To avoid the large computational and
time overhead associated with fully retraining models affected
by training data erasure, our research seeks to hold ML to
standards such as the right to be forgotten instead through the
ability to unlearn. Given a trained model, unlearning assures
the user that the model is no longer trained using the data
which the user elected to erase. Put another way, unlearning
guarantees that training on a point and unlearning it afterwards
will produce the same distribution of models that not training
on the point at all, in the first place, would have produced.

Due to this strong definition, we do not consider the
setting in which unlearning is used to mitigate poisoning
attacks [17]–[19]; the guarantee we provide is far stricter than
what would be needed for poisoning—i.e., that the loss of
model accuracy due to the poisoning are mitigated. Instead, we
focus on mechanisms that provide the stronger privacy-minded

141

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Lucas Bourtoule. Under license to IEEE.
DOI 10.1109/SP40001.2021.00019

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
19

unlearning guarantee described above in order to satisfy the
right to be forgotten requirement.

Our SISA training approach, short for Sharded, Isolated,
Sliced, and Aggregated training, can be implemented with
minimal modification to existing pipelines. First, we divide
the training data into multiple disjoint shards such that a
training point is included in one shard only; shards partition
the data. Then, we train models in isolation on each of these
shards, which limits the influence of a point to the model
that was trained on the shard containing the point. Finally,
when a request to unlearn a training point arrives, we need
to retrain only the affected model. Since shards are smaller
than the entire training set, this decreases the retraining time
to achieve unlearning. However, by doing so, we are reducing
the amount of data per shard, which may result in a weak
learner [20]. In addition, rather than training each model on
the entire shard directly, we can divide each shard’s data into
slices and present slices incrementally during training. We save
the state of model parameters before introducing each new
slice, allowing us to start retraining the model from the last
known parameter state that does not include the point to be
unlearned—rather than a random initialization. Slicing further
contributes to decreasing the time to unlearn, at the expense
of additional storage. At inference, we use different strategies
to aggregate the predictions of models trained on each shard:
the simplest one is a majority vote over predicted labels.

To demonstrate that SISA training handles streams of un-
learning requests effectively, we analytically compute speed-
ups achieved when the service provider processes unlearning
requests sequentially (i.e., immediately upon a user revoking
access to their data) or in batches (i.e., the service provider
buffers a few unlearning requests before processing them). Our
results show that SISA training achieves more advantageous
trade-offs between accuracy and time to unlearn—compared
to two baselines: (1) the naive approach of retraining from
scratch, and (2) only train on a fraction of the original training
set (i.e., only use one of the shards to predict).

We first turn to simple learning tasks, such as deep networks
trained on Purchase and SVHN. When processing 8 unlearning
requests on Purchase and 18 unlearning requests on SVHN,
we find that SISA training achieves a speed-up of 4.63× and
2.45× over the first baseline—through the combined effect of
partitioning the data in 20 shards each further divided in 50
slices. This comes at a nominal degradation in accuracy of
less than 2 percentage points. The second baseline is only
viable when training on a large fraction 1

S of the data: it
outperforms SISA training by a factor of S but quickly induces
a large cost in accuracy as S increases. Compared to these
baselines, we conclude that SISA training enables the service
provider to find a more advantageous compromise between
model accuracy and time to unlearn. Next, we turn to more
complex learning tasks involving datasets such as Imagenet and
deeper networks. With the same setup (i.e., number of shards
and slices), we observe a speed-up of 1.36×, at the expense
of a greater accuracy degradation (19.45 percentage points for

top-5 accuracy) for 39 requests1. We demonstrate that transfer
learning can significantly reduce this accuracy degradation.

We observe that speed-up gains from sharding exist when
the number of unlearning requests is less than three times
the number of shards. However, for complex learning tasks,
increasing the number of shards results in a decrease in
aggregate accuracy. Slicing, however, always provides a speed-
up. While the number of unlearning requests may seem small,
these are three orders of magnitude larger than those in prior
work [21]. These savings in retraining times enable large
organizations to benefit from economies of scale.

When faced with different distributions of unlearning re-
quests, i.e., requests are not uniformly issued across the
dataset, we present a refined variant of our approach, which
assumes prior knowledge of the distribution of unlearning
requests. We validate it in a scenario that models a company
operating across multiple jurisdictions with varying legislation
and sensitivities to privacy, and accordingly varying distri-
butions of unlearning requests from users based on publicly
available information [21]. Knowing this distribution enables
us to further decrease expected unlearning time by placing the
training points that will likely need to be unlearned in a way
that reduces retraining time. For simple learning tasks, the cost
in terms of accuracy is either null or negligible, depending on
the distribution of requests considered.

In summary, the contributions of this paper are:
• We formulate a new, intuitive definition of unlearning.

Our definition also takes into account non-uniform dis-
tributions of unlearning requests.

• We introduce SISA training, a practical approach for
unlearning that relies on data sharding and slicing to
reduce the computational overhead of unlearning.

• We analytically derive the asymptotic reduction in time to
unlearn points with sharding and slicing when the service
provider processes requests sequentially or in batches.

• We demonstrate that sharding and slicing combined do
not impact accuracy significantly for simple learning
tasks, and that SISA training could be immediately
applied to handle orders of magnitude more unlearning
requests than what Google anticipates is required to
implement the GDPR right to be forgotten [21].

• For complex learning tasks, we demonstrate that a com-
bination of transfer learning and SISA training induces
a nominal decrease in accuracy (∼ 2 percentage points)
with improved retraining time.

II. BACKGROUND ON MACHINE LEARNING

We provide rudiments of machine learning as they apply to
neural networks. We chose to study neural networks because
they almost always generate the largest computational costs
and require investments in dedicated accelerators [22], [23].

Our efforts fall under the realm of supervised machine
learning [24]. Tasks to be learned are defined in a space Z

1For 4 requests, observe an 8.01× speed-up for mini-Imagenet at the
expense of 16.7 percentage points accuracy degradation.

142

of the form X × Y , where X is the sample space and Y is
the output space. For example, X could be thought of as the
space of images and Y as the labels of the images.

Given a dataset of input-output pairs (x, y) ∈ X × Y , the
goal of a supervised learning algorithm is to find a model, i.e.,
a function F : X 7→ Y that maps these inputs to outputs. The
learning algorithm that produces this model uses an optimizer.
It takes in a dataset, a hypothesis space, and an objective:

• Dataset: Consistent with the probably approximately
correct (PAC) learning setting [25], we assume there is
an underlying distribution on Z that describes the data;
the learner has no direct knowledge of the distribution
but has access to a dataset D that is drawn from it. This
dataset D is further split into the training dataset Dtr
and a holdout dataset called the test dataset Dte such
that Dte ∪ Dtr = D and Dte ∩ Dtr = ∅.

• Hypothesis space: An hypothesis is a set of parameter
values w, which together with the model architecture F
selected, represent one possible mapping Fw : X 7→ Y
between inputs and outputs. In our case, the hypothesis is
a neural network and its parameters are the weights that
connect its different neurons (see below).

• Objective: Also known as the loss function, the objective
characterizes how good any hypothesis is by measuring
its empirical risk on the dataset, i.e., approximate the
error of the model on the underlying task distribution
of which we only have a few samples. A common
example is the cross-entropy loss, which measures how
far a model’s outputs are from the label: l(x, y) =
−
∑n−1
i=0 yi ·log(Fw(x)) where n is the number of classes

in the problem.

Given an architecture F , a model Fw is found by searching for
a set of parameters w that minimize the empirical risk of Fw
on the training set Dtr. Performance of the model is validated
by measuring its accuracy on the test dataset Dte.

We experiment with our approach using neural networks
and deep learning [26]. Deep neural networks (DNNs) are
non-parametric functions organized as layers. Each layer is
made of neurons—elementary computing units that apply
a non-linear activation function to the weighted average of
their inputs. Neurons from a given layer are connected with
weights to neurons of the previous layer. The layout of these
layers and the weight vectors that connect them constitutes the
architecture of the DNN, while the value of each individual
weight (collectively denoted by w) is to be learned. Weights
are updated using the backpropagation algorithm [27]. The
algorithm starts by assigning a random value to each weight.
Then, a data point is sampled from the dataset and the loss
function is computed to compare the model’s prediction to
the data point’s label. Each model parameter value is updated
by multiplying the gradient of the loss function with respect
to the parameter by a small constant called the learning rate.
This algorithm enables learning and gradually improves the
model’s predictions as more inputs are processed.

III. DEFINING UNLEARNING

A requirement of privacy regulations such as the GDPR
or the CCPA is that individuals whose data is housed by
organizations have the right to request for this data to be
erased. This requirement poses challenges to current machine
learning technologies. We define the unlearning problem by
examining these challenges, which then leads us to a formal
model of the unlearning problem. We identify objectives for
an effective approach to unlearning, which we use to show the
ineffectiveness of existing strawman solutions.

A. Why is Unlearning Challenging?

The reason unlearning is challenging stems from the com-
plex and stochastic nature of training methods used to optimize
model parameters in modern ML pipelines.

1. We have a limited understanding of how each data point
impacts the model. There exists no prior work that measures
the influence of a particular training point on the parameters
of a model. While research has attempted to trace a particular
test-time prediction through the model’s architecture and back
to its training data [28], [29], these techniques rely on influence
functions, which involve expensive computations of second-
order derivatives of the model’s training algorithm. Further,
it is not obvious how to modify such influence functions
so that they map the effect of a single training point on
model parameters for complex models such as DNNs. We later
discuss techniques for differentially private learning, which
seek to bound the influence any training point can have
on model parameters, and explain how they are inadequate
because the bound is always non-zero.

2. Stochasticity in training. A great deal of randomness exists
in the training methods for complicated models such as DNNs;
small batches of data (e.g., with 32 points) are randomly
sampled from the dataset, and the ordering of batches varies
between different epochs, i.e., passes of the algorithm through
the dataset. Further, training is often parallelized without ex-
plicit synchronization, meaning the inherent random ordering
of parallel threads may make the training non-deterministic.

3. Training is incremental. Additionally, training is an incre-
mental procedure where any given update reflects all updates
that have occurred prior to it. For example, if a model is
updated based on a particular training point (in a particular
batch) at a particular epoch, all subsequent model updates will
depend, in some implicit way, on that training point.

4. Stochasticity in learning. Intuitively, learning algorithms are
designed to search for an optimal hypothesis in a vast hypoth-
esis space. In the case of neural networks, this space contains
all models that can be defined by setting the weights of a fixed
neural network architecture. PAC learning theory suggests
that the learned hypothesis is one of many hypotheses that
minimize the empirical risk. For example, the common choice
of optimizer for neural networks, stochastic gradient descent,
is capable of converging to one of the many local minima
for any convex loss function. Coupled with the stochasticity

143

��

 + { }��

��

��

Unlearning (hard)

Learning

Reinitialization

≠�� ��

UL(retraining)

UL(slicing)

Fig. 1: Unlearning (red arrow) is hard because there exists no
function that measures the influence of augmenting the dataset D with
point du and fine-tuning a model MA already trained on D to train
(left blue arrow) a model MB for D+{du}. This makes it impossible
to revert to model MA without saving its parameter state before
learning about du. We call this model slicing (short green arrow).
In the absence of slicing, one must retrain (curved green arrow) the
model without du, resulting in a model MC that is different from
the original model MA.

involved in training, it is very challenging to correlate a data
point with the hypothesis learned from it.

B. Formalizing the Problem of Unlearning

We formalize the unlearning problem as a game between
two entities: an honest service provider S, and a user popu-
lation U . The service provider could be a large organization
that collects information from various individuals (such as a
company or hospital). This data is curated in the form of a
dataset D. The service provider uses this data for training
and testing a machine learning model M in any way they
desire. Any user u ∈ U can revoke access to their individual
data du ⊂ D. Observe that du can be a single element in the
dataset, or a set of elements. Within a finite period of time,
the service provider has to erase the revoker’s data and modify
any trained models M to produce M¬du , where M¬du is some
model that could plausibly have been trained if du were not
in D. In Definition III.1, we define plausibility according to
the distribution of models output by the training algorithm.
Further, S must convince u that M¬du is such a model—a
defense akin to that of plausible deniability. Access to data
may be revoked by users sequentially, but the service provider
may choose to perform data erasing in a batched fashion, as
discussed in § VII.

We illustrate this scenario in Figure 1. One can observe
that given a dataset D, it is possible to train one of several
models (e.g., DNNs) that generalize well from this dataset
unless the learning hypothesis class leads to a unique closed
form solution (e.g., linear classifier). We denote two such
models MA and MC . If we add one more data point du to
the dataset D, we can train another model on this new dataset
D′ in many ways. This includes using the parameters of MA

to initialize a new model (rather than randomly initializing it)
and continuing training from there on to obtain model MB .

Since there is no efficient function that measures the influence
of this one additional point du on the parameters in MB , it
is very hard to invert the procedure unless a copy of MA

had been previously saved. Later in § IV, we will define this
strategy, termed slicing. In the absence of slicing, the most
convincing way to obtain plausible deniability, and ensure that
the model is devoid of the influence of a particular training
point du, is to retrain it from scratch without that particular
point (keeping all other training hyperparameters the same)
i.e., use D′ \du to obtain the model MC in our example from
Figure 1. It is conceivable that the parameters of MA and
MC are similar (despite stochasticity in learning) and it is
desired for their performance (in terms of test accuracy) to be
comparable. However, the fact that model MC was obtained
by training on D′ \ du from scratch provides a certificate to
the data owner that their data share was indeed removed. This
conveys a very strong notion of privacy.

Definition III.1. Let D = {di : i ∈ U} denote the training
set collected from population U . Let D′ = D ∪ du. Let DM
denote the distribution of models learned using mechanismM
on D′ and then unlearning du. Let Dreal be the distribution of
models learned usingM on D. The mechanismM facilitates
unlearning when these two distributions are identical.

We draw the attention of the reader to two key aspects of the
definition. First, the definition captures inherent stochasticity
in learning: it is possible for multiple hypotheses to minimize
empirical risk over a training set. As illustrated by models MA

and MC in Figure 1, two models having different parameters
does not imply that they were trained with a different dataset.
Conversely, two models trained with a different dataset do not
necessarily have different parameters. Second, the definition
does not necessarily require that the owner retrain the model
M ′ from scratch on D\du, as long as they are able to provide
evidence that model M ′ could have been trained from scratch
on D′ \ du. In our work, this evidence takes the form of a
training algorithm, which if implemented correctly, guarantees
that the distributions DM and Dreal are identical.

C. Goals of Unlearning

The simple strategy we have discussed thus far i.e., training
a model from scratch on the dataset without the point being
unlearned is very powerful. We refer to this strategy as the
baseline strategy through the rest of the paper. However, for
large dataset sizes, such an approach will quickly become
intractable (in terms of time and computational resources
expended). For example, to be compliant with GDPR/CCPA,
organizations will have to retrain models very frequently. Thus,
any new strategy should meet the following requirements.
G1. Intelligibility: Conceptually, the baseline strategy is very

easy to understand and implement. Similarly, any un-
learning strategy should be intelligible; this requirement
ensures that the strategy is easy to debug by non-experts.

G2. Comparable Accuracy: It is conceivable that the accuracy
of the model degrades, even in the baseline, if (a) the
fraction of training points that need to be unlearned

144

becomes too large, or (b) prototypical points [30] are
unlearned. Even if there is no component of the approach
that explicitly promotes high accuracy, any unlearning
strategy should strive to introduce a small accuracy gap
in comparison to the baseline for any number of points
unlearned.

G3. Reduced Unlearning Time: The strategy should have
provably lower time than the baseline for unlearning any
number of points.

G4. Provable Guarantees: Like the baseline, any new strategy
should provide provable guarantees that any number of
points have been unlearned (and do not influence model
parameters). Additionally, such a guarantee should be
intuitive and easy to understand for non-experts [31].

G5. Model Agnostic: The new strategy for unlearning should
be general i.e., should provide the aforementioned guar-
antees for models of varying nature and complexity.

G6. Limited Overhead: Any new unlearning strategy should
not introduce additional overhead to what are already
computationally-intense training procedures.

D. Strawman Solutions

Based on the requirements discussed earlier, we propose
several strawman candidates for an unlearning strategy. The
goals specified (sometimes in parantheses) are the goals the
strawman solutions do not meet.

1. Differential Privacy: Proposed by Dwork et al. [32], ε-
differential privacy offers probabilistic guarantees about the
privacy of individual records in a database. In our case, ε
bounds the changes in model parameters that may be induced
by any single training point. While several efforts [14], [33]
make it possible to learn with differential privacy, this guaran-
tee is different from what we wish to provide. We require that a
point has no influence on the model once it has been unlearned.
While differential privacy allows us to bound the influence any
point may have on the model, that bound remains non-zero.
This implies that there is a possibility that a point still has
a small but non-zero influence on the model parameters. To
guarantee unlearning, we would need to achieve ε-differential
privacy with ε = 0. This would make it impossible for the
algorithm to learn from the training data (G2).

2. Certified Removal Mechanisms: Other mechanisms relax the
definition of differential privacy to provide certificates of data
removal. This includes two concurrent proposals [34], [35]
The mechanism by Guo et al. [34] uses a one-step Newton
update [29]. While such a mechanism introduces a small
residue, this is masked by adding noise (similar to approaches
in differential privacy). However, as before, their guarantees
are probabilistic, and different from what we wish to provide
with SISA training. Additionally, to train non-linear models,
they resort to pretraining models on public data (for which no
guarantees are provided) or from differentially-private feature
extractors. In summary, such a mechanism is effective for
simple models such as linear regression models, which suggest
that they fall short of achieving G5.

3. Statistical Query Learning: Cao et al. [15] model unlearning
in the statistical query learning framework [16]. By doing so,
they are able to unlearn a point when the learning algorithm
queries data in an order decided prior to the start of learning.
In this setting, it is possible to know exactly how individual
training points contributed to model parameter updates. How-
ever, their approach is not general2 (G5) and does not easily
scale to more complex models (such as those considered in
this work). Indeed, these models are trained using adaptive
statistical query algorithms which make queries that depend
on all queries previously made. In this setting, the approach
of Cao et al. [15] diverges in an unbounded way unless the
number of queries made is small, which is not the case for
the deep neural networks we experiment with.
4. Decremental Learning: Ginart et al. [36] consider the
problem from a data-protection regulation standpoint. They
present a formal definition of complete data erasure which can
be relaxed into a distance-bounded definition. Deletion time
complexity bounds are provided. They note that the deletion
and privacy problems are orthogonal, which means deletion
capability does not imply privacy nor vice versa. However, it
is unclear if the approach presented (Quantized k-Means) is
applicable (G5) and scalable (G6) for all model classes.

IV. THE SISA TRAINING APPROACH

Our discussion thus far motivates why retraining from
scratch while omitting data points that need to be unlearned is
the most straightforward way to provide provable guarantees.
However, this naive strategy is inefficient in the presence of
large datasets or models with high capacity that take a long
time to train. We present, SISA (or Sharded, Isolated, Sliced,
Aggregated) training to overcome these issues.

A. The SISA training Approach to Training

As illustrated in Figure 2, SISA training replicates the
model being learned several times where each replica receives
a disjoint shard (or subset) of the dataset—similar to current
distributed training strategies [37], [38]. We refer to each
replica as a constituent model. However, SISA training devi-
ates from current strategies in the way incremental model up-
dates are propagated or shared—there is no flow of information
between constituent models. For example, if each constituent
model is a DNN trained with stochastic gradient descent,
then gradients computed on each constituent are not shared
between different constituents; each constituent is trained in
isolation. This ensures that the influence of a shard (and the
data points that form it) is restricted to the model that is being
trained using it. Each shard is further partitioned into slices,
where each constituent model is trained incrementally (and
iteratively, in a stateful manner) with an increasing number of
slices. At inference, the test point is fed to each constituent
and all the constituents’ responses are aggregated, similar to
the case of ML ensembles [39].

2Kearns [16] shows that any PAC learning algorithm has a corresponding
SQ learning equivalent. However, an efficient implementations of SQ equiva-
lents for more complex algorithms does not exist, to the best of our knowledge.

145

 : constituent model
 : data split

: slice in data split
: data to unlearn

�� �
�ℎ

� �
�ℎ

�,� �
�ℎ

�
�ℎ

Aggregation Output

�1 �2

1,21,1 1,�1,3

1

2,22,1 2,�

2

2,3

��

Original Training Data

�,2�,1 �,�

�

�,3

Fig. 2: SISA training: data is divided in shards, which are themselves
divided into slices. One constituent model is trained on each shard by
presenting it with incrementally many slices and saving its parameters
before the training set is augmented with a new slice. When data
needs to be unlearned, only one of the constituent models whose
shards contains the point to be unlearned needs to be retrained
— retraining can start from the last parameter values saved before
including the slice containing the data point to be unlearned.

When a data point is to be unlearned, only the constituent
model whose dataset contains this point is affected. More
specifically, a data point is unlearned from a particular slice in
a particular shard. Retraining can start from the last parameter
state saved prior to including the slice containing the data
point to be unlearned: only the models that are trained using
the slice containing the unlearned point need to be retrained.
We will describe each component in more detail in § IV-B.

Observe that our analysis of unlearning however assumes
that the retraining time grows linearly in the size of the dataset.
We validate this assumption in § V-A. However, we make
no assumptions about the nature of the constituent models
or if the constituents are homogeneous (i.e., the same model
or hypothesis class) or heterogeneous (i.e., different models
or hypothesis class). Sharding is possible for any model or
hypothesis class: it has no impact on how training is performed
beyond the smaller set of data each model has access to.
Slicing is possible for any iterative learning algorithm that
is stateful: the algorithm should be such that it can continue
to learn from its current state when presented with new data.
Gradient descent naturally falls under that category. However,
decision tree learning is a counter-example of a technique that
does not benefit from slicing, because it greedily chooses a
feature to add to the decision tree based on how well it splits
the data according to a metric like Gini impurity. For this
reason, when a new slice of data is added, the tree must be
constructed again from scratch. In summary, slicing can be
used for any model that is trained through gradient descent:
e.g., logistic regression and neural networks, but also support
vector machines in some cases [40].

The key requirement of our training strategy is that the

the updates obtained during the iterative training process
are not exchanged between different constituents. Intuitively,
such an approach may seem detrimental to improving the
generalization capabilities of the model; each constituent is
trained on a (significantly) smaller portion of the dataset, and
may become a weak learner [20]. We evaluate this aspect in
§ VII, and discuss trade-offs of several aggregation approaches
to mitigate this effect for different learning tasks.

B. Techniques

1. Sharding: By dividing the data into disjoint fragments and
training a constituent model on each smaller data fragment, we
are able to distribute the training cost. While this means our
approach naturally benefits from parallelism across shards, we
do not take this into account in our analysis and experiments,
out of fairness to the baseline of retraining a model from
scratch (which could also be accelerated by distributing the
computation across multiple machines).

For the remainder of this section, we assume that we have no
prior information associated with the probabilities with which
each individual point might be unlearned. In such a scenario,
a dataset D can be uniformly partitioned into S shards such
that ∩k∈[S]Dk = ∅ and ∪k∈[S]Dk = D. For each shard Dk, a
model (denoted Mk) is trained using the entirety of the data
available in Dk. In § VIII, we explore the scenario where the
distribution of unlearning requests is known to S.

Observe that user u’s data-point du can lie in each of the S
shards with equal probability. Moreover, one of the parameters
of the training can be whether each du be part of only one
shard or several. For simplicity, we will assume that each
du is part of only one shard, as this maximizes the savings
in unlearning time. We discuss this further in § IX. If the
user desires for du to be unlearned, then the service provider
has to (a) first locate the dataset (and shard) in which du is
located, referred to as Du, and (b) retrain from scratch the
corresponding model on Du \du; this will result in a new
model M ′u. In comparison, the baseline would entail retraining
the model from scratch on D \du. Since |D| >> |Du|, the time
required for retraining (henceforth referred to as retraining
time) in the baseline is far greater than in our proposal; our
proposal provides an expected speed-up of S×.3

2. Isolation: Observe that based on the proposal detailed
earlier, the training of each shard occurs in isolation. By
not performing a joint update, we potentially degrade the
generalization ability of the overall model (comprising of all
constituents). However, we demonstrate that for appropriate
choices of the number of shards, this does not occur in
practice for certain types of learning tasks. Isolation is a subtle,
yet powerful construction that enables us to give concrete,
provable, and intuitive guarantees with respect to unlearning.

3. Slicing: By further dividing data dedicated for each model
(i.e., each shard) and incrementally tuning (and storing) the
parameter state of a model, we obtain additional time savings.

3For a single unlearning request.

146

Specifically, each shard’s data Dk is further uniformly parti-
tioned into R disjoint slices such that ∩i∈[R]Dk,i = ∅ and
∪i∈[R]Dk,i = Dk. We perform training for e epochs to obtain
Mk as follows:

1) At step 1, train the model using random initialization
using only Dk,1, for e1 epochs. Let us refer to the
resulting model as Mk,1. Save the state of parameters
associated with this model.

2) At step 2, train the model Mk,1 using Dk,1 ∪ Dk,2, for
e2 epochs. Let us refer to the resulting model as Mk,2.
Save the parameter state.

3) At step R, train the model Mk,R−1 using ∪iDk,i, for
eR epochs. Let us refer to the resulting final model as
Mk,R =Mk. Save the parameter state.

As before, observe that if user u’s data-point du lies in
shard Dk, then it can lie in any of the R slices with equal
probability. Thus, if the user desires for du to be unlearned,
then the service provider has to (a) first locate the slice in
which du is located, referred to as Dk,u, and (b) perform the
training procedure as specified above from step u onwards
using Dk,u \du; this will result in a new model M ′k,u. For a
single unlearning request, this provides a best-case speed-up
up to R+1

2 × compared to using the strategy without slicing
(we discus this in more detail in § V-C).

It is also worth noting that the duration of training for the
constituent models with and without data slicing is different
when they have the same number of epochs. Each epoch takes
less time when only a subset of the slices is being trained
on; on the other hand, training incremental combinations of
slices takes longer because the training process is repeated
after each slice is added. In order to train models with and
without slicing for the same amount of time, we introduce the
following relationship between the number of epochs with and
without slicing. Let D = N

S be the number of points per shard,
where N is the size of the dataset. Let e′ be the number of
epochs without slicing; we seek to find the number of epochs
e =

∑R
i=1 ei to train a model with R slices, where ei is the

number of epochs required to train iD
R samples. We make a

simplifying assumption: we assume that each slice is trained
equally long i.e., ∀i, ei = e

R . We also assume that the training
time is estimated solely based on the amount of training data
(as detailed in § V).

e′D =

R∑
i=1

ei
iD

R
≡ e = 2R

R+ 1
e′ (1)

The speed-up provided by slicing comes at no expense
beyond the overhead induced by storing the state of parameters
before each slice is introduced in training. We explore these
trade-offs in detail in Appendix C.

4. Aggregation: At inference time, predictions from various
constituent models can be used to provide an overall predic-
tion. The choice of aggregation strategy in SISA training is
influenced by two key factors:

1) It is intimately linked to how data is partitioned to form
shards: the goal of aggregation is to maximize the joint
predictive performance of constituent models.

2) The aggregation strategy should not involve the training
data (otherwise the aggregation mechanism itself would
have to be unlearned in some cases).

In the absence of knowledge of which points will be the
subject of unlearning requests, there is no better strategy than
to partition4 data uniformly and to opt for a voting strategy
where each constituent contributes equally to the final outcome
through a simple label-based majority vote. This naturally
satisfies both requirements above.

In cases where constituent models assign high scores to
multiple classes rather than a single class, the majority vote
aggregation loses information about the runner-up classes. In
§ VII-A, we evaluate a refinement of this strategy where we av-
erage the entire prediction vectors (i.e., the post-softmax vector
indicating the model’s confidence in predicting each class)
and pick the label of the highest value. We also considered
training a controller model that re-weights predictions made
by constituent models [41], i.e., that learns which model is best
for predicting on a given test point. However improvements in
accuracy were modest and not worth the cost of now having
to retrain the controller model if its own training data is the
subject of an unlearning request later made by a user.

Take-away. In summary, the techniques discussed here can
provide a best-case speed-up of (R+1)S

2 × in terms of retraining
time (for one unlearning request). However, our approach
introduces several challenges.

C. Challenges

We make no assumptions about (a) the nature of unlearning
requests, (b) the nature of training algorithms, and (c) the
nature of data distribution within both the shards and slices.
This results in several challenges which we discuss below.

1) Weak Learners: We motivate the notion of weak learners
with the concept of task complexity5 – defined as a function
of (a) the input dimensionality, (b) the complexity of the
model (in our case, DNN) used to solve a particular learning
task, and (c) the number of samples per class available to
the model for learning. Datasets such as MNIST [43] are
considered to be simple because they (a) have inputs with
few features, (b) are trained over deep neural networks with
few hidden layers, and (c) have a large number of samples per
class. Instead, Imagenet [44] is considered complex with over
150,000 features and 1000 classes: it requires neural networks
with a large number of hidden layers (in the order of a 100s).

Since each constituent model is trained on a small shard,
these models could be weak learners [20], [45]: in other words,
their accuracy will be lower than a single model trained on the
entire dataset. This effect is more profound in complex learning
tasks. The primary reason for why this accuracy gap could

4Partition applies to both shards and slices here.
5The notion of task complexity is subjective. For example, if MNIST is

considered a simple task, few shot learning [42] of MNIST can be complex.

147

exist is that when each constituent model is trained on very
limited data which is also not prototypical [30]—especially
when the number of samples per class is low; if the model
has high-capacity (as is the case with DNNs), the model might
overfit to the small training dataset.

Some of this accuracy will be recovered by the aggregation
operation. However, we instantiate our approach assuming that
the constituent models trained on shards are all trained with the
same architecture, and the same hyperparameters. Since this
departs from prior work on ML ensembles, which typically
involves an ensemble of heterogeneous models [46] trained
with different techniques, we may not obtain as large benefits
from aggregation as is typically the case.

2) Hyperparameter Search: Additionally, sharding and
slicing may require that the service provider revisit some hy-
perparameter choices made on the entire dataset. For instance,
sharding and slicing may require training with a different
number of epochs. Slicing could also negatively interact with
batching when the service provider is using a large number of
slices—because each slice will be smaller.

If each constituent model requires a different set of hyper-
parameters for optimal performance, then as the number of
models (of the order O(SR)) increases, performing hyperpa-
rameter tuning is a truly challenging problem. Training O(SR)
models, depending on the hyperparameter search needed to
optimize for these challenges, may introduce a computational
overhead. We note that hyperparameters are shared across
constituent models when data is split uniformaly across shards.
In that case, one only needs to train O(R) models to tune the
hyperparameters for slicing.

Take-away. We revisit these challenges in § VII, discuss
the various solutions we explored for each of the problems
listed above, and highlight insights we gained from them.

V. MEASURING TIME

A. Measuring time analytically

Motivation. Measuring time experimentally is difficult be-
cause both hardware and software introduce variance in
measurements. To circumvent these variances, we measure
unlearning time indirectly through the number of samples that
one needs to retrain. We were able to validate, in a controlled
experiment, the linear relationship between the number of
(re)training samples and a model’s training time. This ex-
periment was performed on a workstation equipped with a
RTX2080 Ti accelerator and repeated 5 times to estimate
variance. For the SVHN and Purchase datasets (described in
§ VI-A), the results in Figure 3 show that the number of
samples to retrain is proportional to the retraining time. Note
that we verify this relationship for the MNIST dataset as well,
but omit the figure due to space constraints.

Having established this relationship, the following analysis
calculates the expectation of the number of data points needed
for retraining, given an unlearning request, as the number of
shards and slices vary.

0 100 200 300 400 500 600
Number of Samples (x1000)

0
500

1000
1500
2000
2500
3000
3500
4000

Tr
ai

ni
ng

 T
im

e
(s

)

(a) SVHN dataset

50 100 150 200 250
Number of Samples (x1000)

10
20
30
40
50
60
70
80

Tr
ai

ni
ng

 T
im

e
(s

)

(b) Purchase dataset

Fig. 3: We validate the linear relationship (within error) between
training time and the number of samples trained on. Measurements
are obtained on increments of 10% of the dataset size. We repeat 5
times to report mean and variance, on SVHN and Purchase.

B. Measuring Time for Sharding

Observe that for each unlearning request, a single con-
stituent model is retrained when it arrives sequentially whereas
multiple models are retrained when the requests are batched.
1. Sequential Setting: In the sequential setting, we make two
assumptions: (a) the training data is shuffled and evenly split
into S shards, and (b) each unlearning request can require any
of the S shards to be retrained, with equal probability, at any
step. We explicitly calculate the expectation of the number of
points needed to be used for retraining. To achieve our desired
result, we make a simplifying assumption: the shard sizes stay
roughly the same as points are removed due to unlearning.

If the sharding is uniform, then each model has (roughly) the
same number of initial training data points N

S ; it is obvious
that the first unlearning request will result in retraining of
N
S −1 points for the one shard that is affected. For the second
unlearning request, there will be two cases: the shard affected
in the first unlearning request is affected again, which will
result in retraining N

S − 2 data points with a probability 1
S ,

or any other shard is impacted resulting in retraining N
S − 1

data points with probability 1− 1
S . Thus, inductively, we can

see that for the ith unlearning request, the probability that
N
S − 1− j points (for 0 ≤ j ≤ i− 1) are retrained is(

i− 1

j

)(
1

S

)j (
1− 1

S

)i−j−1

By first summing over all possible combinations of points
that are unlearned in a shard at a specific step, and then
summing over all requests (K in total), we are able to obtain
the expected number of points to be retrained (E(C)) as:

K∑
i=1

i−1∑
j=0

(
i− 1

j

)(
1

S

)j (
1− 1

S

)i−j−1(
N

S
− 1− j

)
This expression can be simplified using the binomial theo-

rem, as described in Appendix D to obtain:

E[C] =

(
N

S
+

1

2S
− 1

)
K − K2

2S
(2)

An upper bound for the above equation can be obtained if
we assume that after each unlearning request, the size of each
shard remains constant. Thus, the cost of any step is N

S . We

148

then have a linear bound for the total cost: N
SK; doubling

the number of shards involves dividing the number of data
points that need retraining by two. This bound captures the
behavior of the expected cost when two conditions are met:
(a) K → 0, and (b) N

S >> 1. Conversely, for K → N , the
quadratic behavior becomes preponderant.
2. Batch Setting: Alternatively, service provider S could aggre-
gate unlearning requests into a batch, and service the batch.
The cost of unlearning the batch is C =

∑S
j=1 (

N
S − uj)hj

where (uj)j∈{1,...,S} are the random variables which indicate
the number of times a shard of index j is impacted, and
(hj)j∈{1,...,S} are the Bernouilli random variables indicating if
a shard of index j is impacted by an unlearning request. We
can show that (uj)j∈{1,...,S} follows a binomial distribution
B(K, 1

S). Thus, the expected cost is:

E[C] = N

(
1−

(
1− 1

S

)K
)
−K (3)

Asymptotically, E[C] ∼ N(1 − exp(Kτ)) where τ =
(− ln(1− 1

S))
−1 when K → 0, and E[C] ∼ N − K when

K → +∞. Thus, the benefits of sharding are most noticeable
when K � N (refer to Appendix E for more details).

C. Measuring Time for Slicing

Our analysis of slicing differs from the analysis we pre-
sented for sharding because unlike shards, which are indepen-
dent, a slice depends on all slices observed before them. Again,
we distinguish two cases: in the first, the service provider
processes unlearning requests sequentially, and in the second,
requests are processed in batches.
1. Sequential Setting: The case where unlearning requests are
processed as a stream is easier to analyze. Since we assume
that the time for retraining a model is proportional to the
number of points needed to be retrained, we need to find the
expectation of the number of samples that will need to be
retrained for a single unlearning request.

Recall from § IV that if an unlearning request happens in
the rth slice, we need to retrain all the way to the Rth slice.
From equation 1, the expected number of samples that need
to retrain is:

E[C] = E

[
R∑
i=r

2e′

R+ 1

iD

R

]
= e′D

(
2

3
+

1

3R

)
(4)

which is an upper bound on the expected number of points to
be retrained for a single unlearning request. The upper bound
is due to the approximation we make about the number of
points per slice D

R remaining constant throughout unlearning.
In § VII, we show that this approximation is acceptable when
K � N . With R → +∞, we have E[C] → 2

3e
′D, which

gives the maximum expected speed-up of 1.5×. With R = 1,
we have E[C] = e′D (or no speed-up).
2. Batch Setting: As before, we denote the number of unlearn-
ing requests processed in a batch as K. In this case, we need
to find the expected minimum value over multiple draws of a
random variable to compute the index of the slice from which

we will have to restart training. Each unlearning request can
still be modelled as a random draw from a uniform distribution
U(1, D). However, the model will now have to be retrained
from the slice which contains an unlearning request and has
the smallest index – all iterations of training on slices that
follow it were impacted by the point included in this slice.

To compute the minimum slice index among all slices af-
fected by the K unlearning requests, we make the simplifying
assumption that multiple unlearning requests are sampled from
a uniform distribution U(1, D) with replacement. Although
this assumption does not hold (the same point would not ask
to be unlearned multiple times), we verify numerically that it
does not significantly affect our estimate. It is intuitive to see
why given that the number of requests is orders of magnitude
smaller than the number of points in the training set.

In Appendix G, we derive the moments of the minimum
Xmin,n of n draws X1, ..., Xn from an uniform distribution
U(a, b) E[min(X0, ..., Xn)] =

na+b
n+1 . This is useful to model

the slice of minimum index rmin impacted by the batch of
unlearning requests. We derive the expected cost to be:

E[C] =
2e′D

R(R+ 1)
(
R(R+ 1)

2
− 1

2
(E[r2min]− E[rmin])) (5)

With K � R, we have E[C] ∼ e′D, which gives no
speed-up (but no degradation either). With K � R, E[C]
decreases in 1

K2 as K → 0. The case K = 1 corresponds
to the sequential setting. In that case, we showed a speed-up
exists as soon as R > 1. Thus there exists a regime, for small
values of K � R, where there is a significant speed-up. We
detail the proof in Appendix H.

VI. IMPLEMENTATION DETAILS

A. Datasets

We provide information about the datasets we used in
Table I. Note that for the Purchase dataset, we follow a
methodology similar to Shokri et al. [47, §6]; we curated
the Purchase dataset by choosing the top 600 most purchased
items based on the category attribute. For Mini-Imagenet,
we follow the process of Vinyals et al. [48] to create a dataset
for supervised classification, not few-shot classification.

Dataset Dimensionality Size # Classes
MNIST [43] 28× 28 60000 10
Purchase [49] 600 250000 2
SVHN [50] 32× 32× 3 604833 10
CIFAR-100 [51] 32× 32× 3 60000 100
Imagenet [44] 224× 224× 3 1281167 1000
Mini-Imagenet [48] 224× 224× 3 128545 100

TABLE I: Dataset characteristics.

Datasets chosen encapsulate variety in the total number of
samples, input dimensionality, samples per class. This allows
us to explore a spectrum of task complexities—the first three
are simple while the three remaining are complex. We will
highlight the importance of this diversity in later subsections.

149

Number of Requests

0 30 60 90 120150
Analy

tica
l T

im
e(s

)

0
800

1600
2400

32004000

A
cc

ur
ac

y(
%

)

86
88
90
92
94

SVHN

Number of Requests

0 30 60 90 120150
Analy

tica
l T

im
e(s

)

0
20

40
60

80

A
cc

ur
ac

y(
%

)

94
95
96
97
98
99

Purchase

Number of Requests

0 30 60 90 120 150
Analy

tica
l T

im
e(s

)

0
30

60
90

120

A
cc

ur
ac

y(
%

)

96

97

98

99

MNIST

SISA (S=10) SISA (S=20) SISA (S=50) 1/S (S=10) 1/S (S=20) 1/S (S=50) Batch K

Fig. 4: We compare the experimental accuracy of SISA training (with different number of shards) with the two baselines on three datasets:
SVHN, Purchase, and MNIST. It is clear that SISA training provides higher accuracy than the 1

S
fraction baseline, along with less retraining

time than the batch K baseline especially when the number of unlearning request is small.

B. Models & Experimental Setup

For simplicity, we use the same model architectures for (a)
the baselines and (b) the SISA training scheme. The details
are presented in Table II. Observe that we consider a variety
of deep neural networks with increasingly more hidden layers
as well as varying layer sizes.

Dataset Model Architecture
MNIST [43] 2 conv. layers followed by 2 FC layers
Purchase [49] 2 FC layers
SVHN [50] Wide ResNet-1-1
CIFAR-100 [51] ResNet-50
Imagenet [44] ResNet-50
Mini-Imagenet [48] ResNet-50

TABLE II: Salient features of DNN models used.

We run our experiments using P100 and T4 Nvidia GPUs,
with 12 and 16 GB of dedicated memory, respectively. We use
Intel Xeon Silver 4110 CPUs with 8 cores each and 192GB
of Ram. The underlying OS is Ubuntu 18.04.2 LTS 64 bit.We
use PyTorch v1.3.1 with CUDA 10.1 and Python 3.6.

VII. EVALUATION

Our evaluation is designed to understand the limitations of
SISA training in the scenario where the service provider has no
information about the nature of the distribution of the unlearn-
ing requests i.e., in the uniform setting. In § VIII, we utilize
explicit knowledge of this distribution (modeled based on re-
cent public insight from Google [21]) to verify that it improves
retraining time. All code (and model checkpoints) are avail-
able at https://github.com/cleverhans-lab/machine-unlearning.
In this section, our experiments tease apart each component
of SISA training. We perform an ablation study to answer the
following questions:

1) What is the impact of sharding on accuracy for varying
numbers of unlearning requests?

2) What is the impact of slicing on accuracy for varying
numbers of unlearning requests?

3) Does SISA training improve the retraining time?
4) Do the findings from above hold for both simple and

complex learning tasks?

We compare our approach against two baselines. They are:
• batch K unlearning requests and retrain the entire model

after every K unlearning requests. This is the same to the
naive baseline of retraining the entire dataset (without the
points to be unlearned) from scratch, in a batch setting.

• train on a 1
S fraction of the data and only retrain when

the point to be unlearned falls into this set.
From our analysis, we draw the following insights on the

applicability of SISA training in practical settings:
1) We observe that the sharding component of SISA training

induces accuracy degradation as (a) the number of un-
learning requests increases, and (b) the number of shards
increases (more so for complex tasks). This stems from
the decrease in the number of samples per class per shard
caused by both (a) and (b) (refer § VII-A).

2) We observe that slicing does not induce accuracy degra-
dation so long as the number of epochs required for
training are recalibrated (refer § VII-A).

3) Even in the worst-case scenario (with no knowledge of
the distribution of unlearning requests), for a certain
number of unlearning requests, a combination of sharding
and slicing significantly outperforms the naive baseline.
If the number of requests exceeds this threshold, SISA
training gracefully degrades to the performance of the
baseline. We can analytically obtain this threshold (refer
§ VII-B) based on our theoretical analysis in § V.

4) SISA training has advantages compared to both the batch
K baseline, and the 1

S fraction baseline in terms of
retraining time and accuracy respectively (refer § VII-A).

A. The Big Picture

To understand the gains, we stress test the approach to
understand its benefits for a very large number of shards
and a very large number of unlearning requests. In all our
experiments (unless mentioned otherwise), SISA training is
performed in the batch setting.

1) Impact of Sharding: As discussed earlier, increasing the
number of shards (S) increases expected unlearning speed-up
(refer § V) for a bounded number of requests. However, we
wish to understand the impact of sharding on accuracy. To this

150

0 10 20 30 40 50 60
Epochs

20

40

60

80

A
cc

ur
ac

y(
%

)
Number
of Slices

1
4
8
16
64

(a) Accuracy vs. Number of epochs for SVHN dataset.

0 5 10 15 20 25 30
Epochs

70

75

80

85

90

95

100

A
cc

ur
ac

y(
%

) Number
of Slices

1
2
4
8
16
32

(b) Accuracy vs. Number of epochs for Purchase dataset.

Fig. 5: Performance of single model trained with data slicing. We train each model 5 times for each number of slices on the SVHN and
Purchase datasets, respectively, and plot the history of validation accuracy and confidence intervals against the number of training epochs.
For a small number of epochs, models with more slicing have lower accuracy, due to the fact that they have significantly less amount of
data at the beginning. As the number of epochs grows and the accuracy reaches a plateau, the accuracy of models converges.

end, we utilize SISA training for a large number of unlearning
requests. Note that the batch K baseline is the same as SISA
training with S = R = 1 in the batch setting.

From our experiments with simple learning tasks involving
the MNIST, SVHN, Purchase datasets (refer Figure 4), we
make the following observations: (a) by increasing S > 20,
we observe a more noticeable decrease in accuracy that is
greater than 5 percentage points (PPs), and (b) increasing
the number of unlearning requests K > 3S degrades the
retraining time to the batch K baseline case (refer Figures 12a
and 12c in Appendix J). The former can be attributed to the
decreasing volumes of data as the number of shards increases.
If the number of shards is greater than 20, we observe that
even simple learning tasks (such as those in Figure 4) tend
to become more complex (refer § IV). This phenomenon can
also be observed if one increases the number of unlearning
requests—after unlearning, each shard has fewer data points.

When we compare the accuracy vs. retraining time for SISA
training with the 2 baselines, we observe that the batch K
baseline has higher accuracy than SISA training, but at the
expense of increased retraining time. As noted earlier, this is
because this baseline is similar to SISA training with one shard
and one slice (ergo losing corresponding speed-ups). The 1

S
fraction has lower retraining times, but lower accuracy due to
the fact that it is trained on a fraction of the entire dataset.
While these findings are consistent independently of the task,
we discuss the varying impact on accuracy next.

Observe that despite having the same benefits over the
batch K and 1

S fraction baselines, SISA training induces more
accuracy degradation for complex tasks (such as Imagenet);
from Figure 6, observe that SISA training is consistently better
than the 1

S fraction baseline. However, with label aggregation,
the average top-5 accuracy6 degradation is 16.14 PPs (batch
K top-5 accuracy on Imagenet with ResNet-50 is 92.87%). To
reduce the accuracy gap, we varied the aggregation strategy
from label aggregation to prediction vector aggregation (refer
§ IV-B). From Figure 14a (in Appendix J), observe that this

6The average top-1 accuracy degradation is 18.76 PPs, when the batch K
baseline is 76.15%.

provides better accuracy, with average improvements of 1.68
PPs in terms of top-1 accuracy and 4.37 PPs in terms of top-5
accuracy (to reduce the top-5 accuracy gap to 11.77 PPs). We
make the same observations on the mini-Imagenet dataset.

To validate our belief that the number of samples per
class per shard impacts generalizability of the constituent
models, we studied its impact on accuracy. From Figure 15 (in
Appendix K), we conclude that the lower number of samples
per class per shard (in complex tasks) induces more accuracy
degradation. In § VII-C, we discuss real world implications of
this gap, and how they can be bridged.

The key takeaway is that it is essential to ensure each shard
has sufficiently many data points to ensure high accuracy at
each constituent model.

3 6 9 12 15 18
Number of Shards

32

40

48

56

64

72

To
p-

1
A

cc
ur

ac
y

(%
)

1/S
SISA
Batch K

(a) Imagenet dataset

3 6 9 12 15 18
Number of Shards

32

40

48

56

64

72

80
To

p-
1

A
cc

ur
ac

y
(%

)

1/S
SISA
Batch K

(b) Mini-Imagenet dataset

Fig. 6: For complex learning tasks such as those involving Imagenet
and Mini-Imagenet, SISA training introduces a larger accuracy gap
in comparison to the batch K baseline. However, it is still more
performant than the 1

S
fraction baseline. Each constituent (and

baseline) utilized the prediction vector aggregation strategy.

2) Impact of Slicing: From Figure 5, we observe that
slicing does not have detrimental impact on model accuracy
in comparison to the approach without slicing if the training
time is the same for both approaches. We ensure that training
time is the same by setting the number of epochs for slicing
based on the calculations in § IV. Combined with the analysis
in § V, it is clear that slicing reduces the retraining time so
long as the storage overhead for storing the model state after
adding a new slice is acceptable (which is linear in the number
of slices).

151

Number of Shards

3 6 9 12 1518Number of Slices369121518

Speed-up

1.0
1.2
1.4
1.6
1.8
2.0

(a) SVHN dataset
Number of Shards

3 6 9 12 1518Number of Slices369121518

Speed-up

1.0
1.5
2.0
2.5
3.0
3.5
4.0

(b) Purchase dataset

Fig. 7: Combined speed-up induced by sharding and slicing in
the batch setting while there are 0.003% of the dataset to be
unlearned. As the number of shards increases, speed-up increases
near proportionally. On the other hand, increasing the number of
slices has diminishing returns beyond a few slices.

3) Combination of Sharding and Slicing: From Figure 7,
we observe that a combination of sharding and slicing induces
the desired speed-up for a fixed number of unlearning requests
(0.003% the size of the corresponding datasets). We utilize
these datasets as they have sufficiently many points, resulting
in us being able to issue more unlearning requests in the
regime where we obtain speed-up (refer § VII-B). Observe
that the speed-up grows rapidly with an increase in S, but
increasing S provides marginal gains in this regime. We
elaborate upon this further in § VII-B and Appendix A.

B. Understanding the Regime

The results presented in § VII-A are exhaustive, and cover
a diverse number of shards, slices, unlearning requests, and
task complexities. However, not all these configurations are
interesting, as some have a detrimental impact on accuracy
(as discussed above). For complex learning tasks, better par-
titioning and aggregation strategies can bridge the accuracy
gap, but the findings we present here are generally applicable.
By fixing the number of shards based on our earlier analysis,
we can bound the accuracy degradation. However, we wish
to understand if there are improvements in retraining time for
any number of unlearning requests given this fixed number of
shards. Our time analysis in § V suggests otherwise. Based
on this analysis, we plot the retraining time as a function
of the number of retraining requests (refer to Figure 12 in
Appendix B). We observe that for both datasets, the regime
where the SISA training approach provides the most retraining
benefits is when the number of unlearning requests (as a
function of the size of the total dataset) is less than 0.075% of
the dataset. If the number of unlearning requests exceeds this
value, then the SISA training approach gracefully degrades
to the performance of the batch K baseline. Next, we turn
to slicing assuming that the number of shards S is fixed
to 20, and observe that the regime where slicing provides
gains is when the number of unlearning requests is less than
0.003% of the dataset (refer Figure 12 in Appendix B). Thus,
to extract benefit from both approaches, the ideal number
of unlearning requests would be the minimum of the two.
Our findings validate that the speed-up exists as long as the

number of unlearning requests K < 3S. While the regime
we provide gains in (≤ 0.003%) may seem very small,
recent work by Bertram et al. [21] shows that in practice, the
number of unlearning requests (as a function of the size of
the total dataset) is much smaller, and is in the order of 10−6.
Additionally, large organizations operate on datasets which
are much larger than those in our experiments; the (narrow)
regime in which SISA training provides a benefit still provides
significant cost reductions.

C. Bridging the Accuracy Gap

For complex learning tasks in the real-world, the common
approach is to utilize a base model trained on public data and
utilize transfer learning to customize it towards the task of
interest. We replicated such a setup by performing transfer
learning using a base model trained on Imagenet (using the
ResNet-50 architecture) to the CIFAR-100 dataset. We then
perform SISA training and measure the accuracy gap between
the baseline (S = 1) and S > 1 cases (refer Figure 8), in
terms of both top-1 and top-5 accuracy (the latter is a more
representative metric for this complex task). We observe that
for this realistic deployment, at S = 10, the top-1 accuracy gap
is reduced to ∼ 4 PPs, while the top-5 accuracy gap is reduced
to < 1 PP. Additionally in this transfer learning setting,
the time analysis for unlearning still holds. Thus, performing
transfer learning enables us to decrease the accuracy degrada-
tion induced by SISA training on complex tasks without (a)
varying the hyperparameters of the constituent models, whilst
(b) maintaining constituent model homogeneity.

5 10 15 20
Number of Shards

70

75

80

85

90

95

100

A
cc

ur
ac

y
(%

)

Top-1 Accuracy (for S=1)

Top-5 Accuracy (for S=1)

SISA Top-1
SISA Top-5

Fig. 8: In the setting of transfer learning (from ImageNet to CIFAR-
100), we observe a lower accuracy degradation induced by SISA
training (with S > 1).

VIII. DISTRIBUTIONAL KNOWLEDGE

In this section, we relax our assumptions and discuss how
additional knowledge of the distribution of unlearning requests
can be beneficial to the service provider. Specifically, we wish
to understand (a) if we can estimate those data points that are
more likely to be unlearned than others based on auxiliary
information, and (b) how this knowledge can be used a priori
to minimize the retraining time and accuracy degradation.

We believe that an owner’s request for unlearning may vary
depending on (a) how their data is used and by whom the
data is used, (b) the general perception of the surrounding
(geographic) population, and (c) incidents related to data

152

Uniform

Adaptive

Likely to unlearn Unlikely to unlearn

Shard 1 Shard 2 Shard 3 Shard 4 Shard 5

Fig. 9: Example of how a service provider aware of the distribution
of unlearning requests may adapt to outperform uniform sharding.

misuse etc. For example, machine learning models are not
adept at dealing with bias; data owners from those populations
who are biased against may wish to request for their data
to be erased. By grouping this data, we can further reduce
unlearning costs, however, it may also harm fair predictions.
Future work should consider these ethical implications. As
before, we assume the existence of a data owner u ∈ U ,
and the data point generated by u to be du. We denote the
probability of user u requesting to have their data erased as
p(u). By aggregating users who are likely to request data
erasure into shards of small sizes, intuitively, we would be
able to reduce the retraining time.

To illustrate, consider a population split between two
groups: the first group H having a high probability pH of being
unlearned and the second group L having a low probability pL
of being unlearned, with pH � pL. If we follow the uniform
sharding of § IV, each shard will contain points from both
groups H and L. Because points from H are very likely to
be unlearned, and each shard contains at least a few points
from group H , it is very likely that all shards will have to
be unlearned—even if the number of unlearning requests is
low. This scenario is illustrated in Figure 9. Alternatively, if
we know the population will follow such a distribution of
unlearning requests, we can adapt our sharding strategy to
concentrate all points from members of group H in relatively
few partitions. This strategy ultimately reduces the total num-
ber of shards whose models need to be retrained. We now
apply this intuition to a more realistic scenario.

A. Realistic Scenario

Modeling realistic distributions of unlearning requests is
a challenging proposition; prior work in this space is lim-
ited. Without data to determine the parameters for a known
distribution, such as a Gaussian, or to learn an underlying
distribution, we design the following scenario based on insight
from the recent work published by Google [21]. Specifically,
we propose a scenario where we assume that an organization
with access to data records from a large number of data owners
operates across various countries, with owners in each region
having varied privacy expectations. We assume the existence
of N countries; the dataset D comprises of per-country datasets
Dc for each country c.7 We have ∩cDc = ∅ and ∪cDc = D.
Each data owner in the country c has a fixed probability
(denoted pc) for issuing a data erasure request i.e., ∀du ∈ Dc,
p(u) = pc. Thus, the data owner issuing an unlearning request
can be modeled as a Bernoulli trial.

7Each per-country dataset is conceptually similar to a shard; the distinction
is made for easier discussion.

It is important to note that this technique can be generalized
to any distribution so long as it is known by the service
provider. Specifically, after selecting a distribution ν that mod-
els the unlearning requests from a population U , we randomly
sample from this distribution to assign the probability p(u)
with which each u ∈ U wishes to perform data erasure.
Each data point is still a Bernoulli trial; however, the sum
χi of these independent Bernoulli trials can be modelled by
a Poisson binomial distribution. Armed with this knowledge,
we can evaluate the expected number of unlearning requests
for this shard Di, over n trials, as E(χi) = np, where
p =

∑
u:du∈Di

p(u)

|Di| , and E(χi) denotes the expectation with
which shard Di is unlearned. By selecting those users u ∈ U
and their corresponding data elements du to create shard Di
such that E(χi) < C for any constant C ≤ 1, we expect to
not have to retrain a model trained using shard Di. DNNs
typically require large data volumes for training; we attempt
to create few data shards, with more data in each shard.

In all experiments we describe in this section, we concep-
tualize a scenario with N = 3 countries – c1, c2 and c3, such
that pc1 = 3 × 10−6,pc2 = 3 × 10−5, and pc3 = 6 × 10−6.
Additionally, |Dc1 | = 0.7717×|D| ,|Dc2 | = 0.1001×|D| and
|Dc3 | = 0.1282× |D|.

B. Distribution-Aware Sharding

a) Approach: This motivates distribution-aware shard-
ing, where the service provider can create shards in a way so
as to minimize the time required for retraining. We discuss
one such approach in Algorithm 1, under the following as-
sumptions: (a) the distribution of unlearning requests is known
precisely, and (b) this distribution is relatively constant over
a time interval. Recall that each data point du ∈ D has an
associated probability p(u) with which it may be erased. We
first sort the data points in the order of their erasure probability,
and points to a shard Di till the desired value of E(Di) is
reached. Once this value is exceeded, we create a new shard
Di+1 and restart the procedure with the residual data D\Di8.
By enforcing a uniform cumulative probability of unlearning
a across shards, Algorithm 1 naturally aggregates the training
points that are likely to require unlearning into a fewer shards
that are also smaller in size.

b) Results: As done for our motivating example, Fig-
ure 10 plots the number of points to be retrained with respect
to the number of unlearning requests for both uniform and
distribution-aware sharding. In expectation, the distribution-
aware strategy decreases the number of points to be retrained.
Yet, because this strategy creates shards of unequal size, we
also need to evaluate the accuracy of our predictions aggre-
gated across constituent models. For the parameters specified
above, we find that our approach generates 19 shards. We find
that the aggregate achieves about 94.4% prediction accuracy
in the regime of unlearning requests we consider, which is
one percent point lower than uniform sharding, at 95.7%. This

8Observe that this strategy holds even when the entire dataset D is replaced
by the dataset for a particular country Dc.

153

Algorithm 1 Distribution-Aware Sharding
Input: Dataset D, constant C

1: procedure ShardData(D, C)
2: sort {du}|D|i=1 by p(u)
3: i← 0
4: create empty shard Di
5: for j ← 0 to |D| do
6: remove du with lowest p(u) from D
7: Di = Di ∪ du
8: if E(χi) ≥ C then
9: Di = Di \ du

10: i← i+ 1
11: create empty shard Di
12: Di = Di ∪ du
13: end if
14: end for
15: end procedure

5 10 15 20

Number of Unlearning Request

100

200

300

400

500

600

N
um

be
r o

f P
oi

nt
s t

o
R

et
ra

in
(1

00
0x

)

Sharding Strategy
uniform
poisson_binomial

Fig. 10: # points (variance shaded) of the SVHN dataset that need to
be retrained for uniform and distribution-aware sharding where users
have varying probability of revoking access to their data.

result means that distribution-aware sharding incurs a trade-off
of accuracy for decreased unlearning overhead. We leave to
future work the exploration of alternatives to majority voting
aggregation that would cope with such imbalanced shard sizes.

IX. DISCUSSION

Unlearning in the Absence of Isolation. Conceptually, SISA
training borrows elements from distributed training and ensem-
ble learning. As discussed earlier, the divide from ensemble
learning stems from the fact that each constituent model in
SISA training is obtained in isolation. Ensemble learning ap-
proaches utilize boosting algorithms [52], even for ensembles
of neural networks [53], to enhance accuracy.
Data Replication. Empirical evidence suggests that beyond a
certain data volume (i.e., shard size), there is performance
degradation in each constituent model when datasets are too
small, or if the learning task is complex. One way to alleviate
this problem is through data replication. However, one must
decide which data point is replicated such that the accuracy
of the constituent models is increased. This selection is a
challenging problem [54]. One must also factor in if access to
the replicated data point is likely to be revoked; if that is the
case, one would intuitively wish to reduce the replication of

such a point to limit overhead on unlearning. Understanding
these trade-offs is of interest and is future work.
Is All Data Useful? Neural networks require large datasets.
However, not all of this data is useful [55]. As discussed
earlier, understanding the importance of each data point to-
wards the final model parameters learned is a challenging
problem. A relatively simpler problem is that of core-set
selection, where the objective is to choose a subset of the
dataset that will produce a hypothesis that is as performant as
one obtained while using the entire dataset [56], [57]. Core-
sets can help reduce the cost of learning. Consequently, they
can also improve the cost of unlearning.
Verified Unlearning. We assume that the service provider per-
forms unlearning in an honest manner. Our approach provides
an intuitive and provable guarantee under the assumption that
the data owner believes the service provider, due to the inher-
ent stochasticity in learning (refer Figure 1). To increase user
confidence, the service provider could release code. One could
imagine that authorities relevant to the enforcement of the
right to be forgotten could audit the code base to validate the
implementation of SISA training. This is sufficient, because of
the design of SISA training, to demonstrate that the point to
be unlearned would not influence model parameters anymore.
However, under certain adversarial settings, this trust need not
be the case. As stated earlier, there is no way to measure the
influence of a data point on the model parameters. Even worse,
these models are often proprietary. Thus, understanding if the
unlearning procedure can be verified, similar to approaches in
other domains [58]–[60], is of merit.

X. CONCLUSIONS

Our work illustrates how to design learning algorithms that
incorporate the need to later unlearn training data. We show
how simple strategies like SISA training can empower users
to expect that their data be completely removed from a model
in a timely manner. While our work was primarily motivated
by privacy, it is easy to see how unlearning can be a first
step towards achieving model governance. We hope this will
spur follow-up work on effective ways to patch models upon
identifying limitations in datasets used to train them.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their insightful
feedback, and Henry Corrigan-Gibbs for his service as the
point of contact during the revision process. This work was
supported by CIFAR through a Canada CIFAR AI Chair,
and by NSERC under the Discovery Program and COHESA
strategic research network. We also thank the Vector Institute’
sponsors. Varun was supported in part through the following
US National Science Foundation grants: CNS-1838733, CNS-
1719336, CNS-1647152, CNS-1629833 and CNS-2003129.

REFERENCES

[1] Y. Liu, K. K. Gadepalli, M. Norouzi, G. Dahl, T. Kohlberger,
S. Venugopalan, A. S. Boyko, A. Timofeev, P. Q. Nelson, G. Corrado,
J. Hipp, L. Peng, and M. Stumpe, “Detecting cancer metastases

154

on gigapixel pathology images,” arXiv, Tech. Rep., 2017. [Online].
Available: https://arxiv.org/abs/1703.02442

[2] M. X. Chen, B. N. Lee, G. Bansal, Y. Cao, S. Zhang, J. Lu, J. Tsay,
Y. Wang, A. M. Dai, Z. Chen et al., “Gmail smart compose: Real-time
assisted writing,” arXiv preprint arXiv:1906.00080, 2019.

[3] X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Her-
brich, S. Bowers et al., “Practical lessons from predicting clicks on ads
at facebook,” in Proceedings of the Eighth International Workshop on
Data Mining for Online Advertising. ACM, 2014, pp. 1–9.

[4] S. Shalev-Shwartz et al., “Online learning and online convex optimiza-
tion,” Foundations and Trends® in Machine Learning, vol. 4, no. 2, pp.
107–194, 2012.

[5] A. Mantelero, “The eu proposal for a general data protection regulation
and the roots of the ‘right to be forgotten’,” Computer Law & Security
Review, vol. 29, no. 3, pp. 229–235, 2013.

[6] “Bill text,” https://leginfo.legislature.ca.gov/faces/billTextClient.xhtml?
bill id=201720180AB375.

[7] O. of the Privacy Commissioner of Canada, “Announcement: Pri-
vacy commissioner seeks federal court determination on key issue
for canadians’ online reputation,” https://www.priv.gc.ca/en/opc-news/
news-and-announcements/2018/an 181010/, Oct 2018.

[8] S. Shastri, M. Wasserman, and V. Chidambaram, “The seven sins of
personal-data processing systems under gdpr,” USENIX HotCloud, 2019.

[9] “Lex access to european union law,” https://eur-lex.europa.eu/eli/reg/
2016/679/2016-05-04.

[10] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[11] N. Carlini, C. Liu, U. Erlingsson, J. Kos, and D. Song, “The secret
sharer: Evaluating and testing unintended memorization in neural net-
works,” in Proceedings of the 28th USENIX Conference on Security
Symposium. USENIX Association, 2019.

[12] C. Dwork, A. Roth et al., “The algorithmic foundations of differential
privacy,” Foundations and Trends® in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, 2014.

[13] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate, “Differentially private
empirical risk minimization,” Journal of Machine Learning Research,
vol. 12, no. Mar, pp. 1069–1109, 2011.

[14] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov,
K. Talwar, and L. Zhang, “Deep learning with differential privacy,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 308–318.

[15] Y. Cao and J. Yang, “Towards making systems forget with
machine unlearning,” in 2015 IEEE Symposium on Security and
Privacy. IEEE, 2015, pp. 463–480. [Online]. Available: https:
//ieeexplore.ieee.org/document/7163042/

[16] M. Kearns, “Efficient noise-tolerant learning from statistical queries,”
Journal of the ACM (JACM), vol. 45, no. 6, pp. 983–1006, 1998.

[17] B. Nelson, M. Barreno, F. J. Chi, A. D. Joseph et al., “Exploiting
machine learning to subvert your spam filter,” in Proceedings of the
1st Usenix Workshop on Large-Scale Exploits and Emergent Threats.
USENIX Association, 2008.

[18] B. I. Rubinstein, B. Nelson, L. Huang, A. D. Joseph, S.-h. Lau, S. Rao,
N. Taft, and J. D. Tygar, “Antidote: Understanding and defending
against poisoning of anomaly detectors,” in Proceedings of the 9th ACM
SIGCOMM Conference on Internet Measurement, 2009.

[19] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support
vector machines,” arXiv preprint arXiv:1206.6389, 2012.

[20] M. Kearns, “Thoughts on hypothesis boosting,” Unpublished
manuscript, vol. 45, p. 105, 1988.

[21] T. Bertram, E. Bursztein, S. Caro, H. Chao, R. C. Feman et al., “Five
years of the right to be forgotten,” in Proceedings of the Conference on
Computer and Communications Security, 2019.

[22] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[23] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa,
S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2017, pp. 1–12.

[24] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[25] L. G. Valiant, “A theory of the learnable,” in Proceedings of the sixteenth
annual ACM symposium on Theory of computing. ACM, 1984, pp.
436–445.

[26] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[27] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning repre-
sentations by back-propagating errors,” nature, vol. 323, no. 6088, pp.
533–536, 1986.

[28] R. D. Cook and S. Weisberg, “Characterizations of an empirical influ-
ence function for detecting influential cases in regression,” Technomet-
rics, vol. 22, no. 4, pp. 495–508, 1980.

[29] P. W. Koh and P. Liang, “Understanding black-box predictions via in-
fluence functions,” in Proceedings of the 34th International Conference
on Machine Learning-Volume 70. JMLR. org, 2017, pp. 1885–1894.

[30] B. Kim, C. Rudin, and J. A. Shah, “The bayesian case model: A gen-
erative approach for case-based reasoning and prototype classification,”
in Advances in Neural Information Processing Systems, 2014.

[31] J. H. Saltzer and M. D. Schroeder, “The protection of information in
computer systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–
1308, 1975.

[32] C. Dwork, “Differential privacy,” Encyclopedia of Cryptography and
Security, pp. 338–340, 2011.

[33] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Advances in neural information processing systems, 2009, pp.
289–296.

[34] C. Guo, T. Goldstein, A. Hannun, and L. van der Maaten, “Cer-
tified data removal from machine learning models,” arXiv preprint
arXiv:1911.03030, 2019.

[35] A. Golatkar, A. Achille, and S. Soatto, “Eternal sunshine of the spotless
net: Selective forgetting in deep networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2020, pp. 9304–9312.

[36] A. Ginart, M. Y. Guan, G. Valiant, and J. Zou, “Making AI forget you:
Data deletion in machine learning,” CoRR, vol. abs/1907.05012, 2019.
[Online]. Available: http://arxiv.org/abs/1907.05012

[37] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. Ran-
zato, A. Senior et al., “Large scale distributed deep networks,” in
Advances in neural information processing systems, 2012.

[38] T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis,” ACM Computing Surveys
(CSUR), vol. 52, no. 4, p. 65, 2019.

[39] T. G. Dietterich, “Ensemble methods in machine learning,” in Interna-
tional workshop on multiple classifier systems. Springer, 2000, pp.
1–15.

[40] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter, “Pegasos: Primal
estimated sub-gradient solver for svm,” Mathematical programming, vol.
127, no. 1, pp. 3–30, 2011.

[41] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv preprint arXiv:1701.06538, 2017.

[42] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Advances in neural information processing systems, 2017,
pp. 4077–4087.

[43] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86, pp.
2278 – 2324, 12 1998.

[44] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet:
A Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

[45] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” Journal of computer
and system sciences, vol. 55, no. 1, pp. 119–139, 1997.

[46] D. Opitz and R. Maclin, “Popular ensemble methods: An empirical
study,” Journal of artificial intelligence research, vol. 11, pp. 169–198,
1999.

[47] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership
inference attacks against machine learning models,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 3–18.

[48] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching
networks for one shot learning,” in Advances in neural information
processing systems, 2016, pp. 3630–3638.

[49] C. O. Sakar, S. O. Polat, M. Katircioglu, and Y. Kastro, “Real-time
prediction of online shoppers’ purchasing intention using multilayer
perceptron and lstm recurrent neural networks,” Neural Computing and
Applications, vol. 31, no. 10, pp. 6893–6908, 2019.

155

[50] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Ng, “Reading
digits in natural images with unsupervised feature learning,” NIPS, 01
2011.

[51] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009.

[52] R. E. Schapire, “A brief introduction to boosting,” in Ijcai, vol. 99, 1999,
pp. 1401–1406.

[53] H. Schwenk and Y. Bengio, “Boosting neural networks,” Neural com-
putation, vol. 12, no. 8, pp. 1869–1887, 2000.

[54] B. Settles, “Active learning literature survey,” University of Wisconsin-
Madison Department of Computer Sciences, Tech. Rep., 2009.

[55] S.-J. Huang, R. Jin, and Z.-H. Zhou, “Active learning by querying infor-
mative and representative examples,” in Advances in neural information
processing systems, 2010, pp. 892–900.

[56] C. Baykal, L. Liebenwein, I. Gilitschenski, D. Feldman, and D. Rus,
“Data-dependent coresets for compressing neural networks with
applications to generalization bounds,” CoRR, vol. abs/1804.05345,
2018. [Online]. Available: http://arxiv.org/abs/1804.05345

[57] O. Sener and S. Savarese, “Active learning for convolutional neural
networks: A core-set approach,” arXiv preprint arXiv:1708.00489, 2017.

[58] C. Tan, L. Yu, J. B. Leners, and M. Walfish, “The efficient server audit
problem, deduplicated re-execution, and the web,” in Proceedings of the
26th Symposium on Operating Systems Principles. ACM, 2017, pp.
546–564.

[59] R. S. Wahby, Y. Ji, A. J. Blumberg, A. Shelat, J. Thaler, M. Walfish, and
T. Wies, “Full accounting for verifiable outsourcing,” in Proceedings of
the 2017 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2017, pp. 2071–2086.

[60] S. T. Setty, R. McPherson, A. J. Blumberg, and M. Walfish, “Making
argument systems for outsourced computation practical (sometimes).” in
NDSS, vol. 1, no. 9, 2012, p. 17.

[61] https://math.stackexchange.com/questions/786392/
expectation-of-minimum-of-n-i-i-d-uniform-random-variables.

APPENDIX

A. Simulation of SISA training Time Analysis

To get a more intuitive understanding of unlearning time de-
scribed in § V, we randomly generate K unlearning requests.
We then compute the amount of data that needs to be retrained
by determining the shard and slice each unlearning request
maps to. We then deduce the number of samples that need to
be retrained on, to achieve unlearning through SISA training.
By varying K between 1 and 500, we visualize the speed-
up achieved by SISA training as a function of the number of
unlearning requests made. We repeat the experiment 100 times
to obtain variance. The results are plotted in Figure 11.

1 3 7 20 55 148 403
Number of Requests (logscale)

1x

3x

7x

20x

55x

148x

Sp
ee

d-
up

 (l
og

sc
al

e) S
1
10
20
50
100
150
250

(a) SVHN

1 3 7 20 55 148 403
Number of Requests (logscale)

1x

3x

7x

20x

55x

148x

Sp
ee

d-
up

 (l
og

sc
al

e) S
1
10
20
50
100
150
250

(b) Purchase

Fig. 11: This plot shows the relationship between K and unlearning
time (which is proportional to amount of data to retrain) where S is
shown in the legend and R is set to 20. It is plotted in log-log scale
for the ease of visualizing.
B. Individual Contributions due to Slicing and Sharding

In Equations 3 and 5, we present the unlearning cost
(i.e., number of points needed to be retrained) as functions

of number of unlearning requests, slices, and shards. We
plotted the speed-up induced by SISA in Figure 7, but the
number of unlearning requests is set to a constant for ease
of visualization. Therefore, Figure 12 is plotted to show the
effect of all three variables.

C. Costs Associated With Storage

The slicing introduced by SISA training is trading disk
storage for unlearning speed-up. This is supported by the fact
that the the cost of GPU accelerators is more than the cost of
storage disks. For instance, storage costs $0.026/Gb/Month on
Google Cloud, $0.023/Gb/Month on Amazon Web Services,
and $0.058/GB per month on Azure at the time of writing.
Instead, renting the cheapest GPUs starts at $0.25/hour on
Google Cloud, $0.526/hour on Amazon Web Services, and
$0.90/hour on Azure. To limit usage of GPU accelerators, it
is already a common practice to regularly checkpoint models
during training. Hence, we believe the overhead from slicing
will not be a drawback: in most cases, it will suffice to change
the order in which data is presented during training because
checkpointing is already in place.

D. Sequential Time Analysis of Sharding

Proof:
1. Assumption: At each step and for all shards, the probability
that an unlearning request affects that specific shard is approx-
imately equal to 1

S . The intuition is as follows: if many points
from a specific shard are deleted as unlearning occurs, the
number of such (unlearnable) points decreases and they are
therefore less likely to be deleted. Conversely, if few points
from that shard are deleted, the proportion of those points
increases as points from other shards are deleted. Thus, they
become more likely to be deleted.
2. Intuition: The size of the shard that is affected by the first
request is always N

S . For the second request, it can be either
N
S with probability

(
1− 1

S

)
if the request does not affect the

same shard or
(
N
S − 1

)
with probability 1

S if it does. For the
third request it can be N

S ,
(
N
S − 1

)
, or

(
N
S − 2

)
. Note that

there are two ways to get
(
N
S − 1

)
: either from a shard that

had
(
N
S − 1

)
point before the previous request and that was

not affected by it, or from a shard that had N
S points before

the previous request and that was affected by it.
3. Size of the retraining set: To model this behavior, we define
the event Ei,j as the ith request received landing on shard
s containing N

S − j points, with j ∈ {0, . . . , i − 1}. The
associated cost is N

S − j − 1.
4. Associated probability: The probability of Ei,j given a
configuration of the j requests, i.e., which specific subset of
the i − 1 requests corresponds to those that landed on s, is(
1
S

)j (
1− 1

S

)i−1−j
. The first term of the product means that

shard s was affected j times, and the second term means
that another shard (but not s) was affected i − 1 − j times.
However, there are

(
i−1
j

)
possible configurations of the j

requests that landed on shard s. Thus the probability of Ei,j
is
(
i−1
j

) (
1
S

)j (
1− 1

S

)i−j−1
.

156

0.00 0.05 0.10 0.15
% Dataset to Unlearn

0 151 302 453
Number of Unlearning Requests

300

350

400

450

500

550

600

N
um

be
r o

f S
am

pl
es

 to
 R

et
ra

in
 (x

10
00

)

(baseline: 604815)

(20 shards: 366347)
1.

65
8x # shards

1 (baseline)
5
10
20
50
100

(a) Impact of sharding on the number of points to
retrain(SVHN)

0.00 0.01 0.02 0.03
% Dataset to Unlearn

0 2 4 6 8 10
Number of Unlearning Requests

0

5

10

15

20

25

30

N
um

be
r o

f S
am

pl
es

 to
 R

et
ra

in
 (x

10
00

)

(baseline: 30241)

(50 slices: 20459)

1.
47

8x

slices
1(baseline)
5
10
20
50
100

(b) Impact of slicing on the number of points to
retrain(SVHN)

0.00 0.05 0.10 0.15
% Dataset to Unlearn

0 62 125 187
Number of Unlearning Requests

0

50

100

150

200

250

N
um

be
r o

f S
am

pl
es

 to
 R

et
ra

in
 (x

10
00

)

(baseline: 249992)

(20 shards: 79829)

3.
13

x

shards
1 (baseline)
5
10
20
50
100

(c) Impact of sharding on the number of points to
retrain(Purchase)

0.00 0.02 0.04 0.06 0.08
% Dataset to Unlearn

0 2 4 6 8 10
Number of Unlearning Requests

0.0

2.5

5.0

7.5

10.0

12.5

N
um

be
r o

f S
am

pl
es

 to
 R

et
ra

in
 (x

10
00

)

(baseline: 12500)

(50 slices: 8457)

1.
47

8x

slices
1(baseline)
5
10
20
50
100

(d) Impact of slicing on the number of points to
retrain(Purchase)

Fig. 12: Impact of sharding and slicing on retraining time in a batch setting, as measured by the changes induced in the number of points
needed for retraining (which is a proxy for retraining time). Observe that below a particular number of unlearning requests, both sharding
and slicing provide noticeable improvements. Afterward, both gracefully degrade to the performance of the naive baseline.

5. Expected cost: The expected cost of the ith unlearning
request can be decomposed on the family of events (Ei,j)j
(with only j varying between 0 and i− 1) that partitions the
universe of possible outcomes:

E[Ci] =
i−1∑
j=0

(
i− 1

j

)(
1

S

)j (
1− 1

S

)i−j−1(
N

S
− 1− j

)
(6)

To obtain the total cost, we sum the costs of all unlearning
requests, which is to say we sum over i between 1 and K.

E[C] =

K∑
i=1

i−1∑
j=0

(
i− 1

j

)(
1

S

)j (
1− 1

S

)i−j−1(
N

S
− 1− j

)

=

K∑
i=1

(
N

S
− 1

) i−1∑
j=0

(
i− 1

j

)(
1

S

)j (
1− 1

S

)i−j−1

−
K∑
i=1

i−1∑
j=0

j

(
i− 1

j

)(
1

S

)j (
1− 1

S

)i−j−1

(7)

We can use the fact that j
(
i−1
j

)
= (i − 1)

(
i−2
j−1
)

and apply
the binomial theorem to both inner sums after reindexing the
second inner sum.

E[C] =

(
N

S
− 1

)
K −

K∑
i=1

i− 1

S
(8)

E. Batched Time Analysis of Sharding

Proof: Let S denote the number of shards and K the number
of points in the batch. Let (si)i∈{1,...,K} be random variables
that give the index of the shard impacted by each point in the
batch. We assume that those variables are i.i.d. and that:

∀i ∈ {1, . . . ,K}, si ∼ U(0, S)

We can define (hj)j∈{1,...,S} which are Bernoulli random
variables whose value is 1 when shard j is impacted. We have:

hj = 0⇐⇒ ∀i ∈ {1, . . . ,K}, si 6= j

Thus P(hj = 0) =
(
1− 1

S

)K
. We define the total cost C

of retraining as the number of points that need to be retrained
while processing the batch as C =

∑S
j=1 hj |Dj |

To obtain |Dj |, we define (uj)j∈{1,...,K}, the random vari-
ables that count the number of times each shard is affected.
These variables count the number of successes in a repetition

157

of independent Bernoulli experiments, namely counting the
number of times si = j, when i varies from 1 to K. Thus:

∀j ∈ {1, . . . , S}, uj ∼ B

(
K,

1

S

)

C =

S∑
j=1

hj

(
N

S
− uj

)
=

S∑
j=1

(
Nhj
S
− ujhj

)
(9)

By construction,
hj = 0⇐⇒ uj = 0

Thus ujhj = uj and:

C =

S∑
j=1

(
Nhj
S
− uj

)
Using the linearity of the expected value and the expected

values of Bernouilli and binomial random variables,

E[C] =

S∑
j=1

(
N

S

(
1−

(
1− 1

S

)K
)
− K

S

)

= N

(
1−

(
1− 1

S

)K
)
−K

(10)

F. Sequential Time Analysis of Slicing

Proof: When a model is trained on an entire shard (i.e., without
slicing) of size D = N

S for e′ epochs, the number of samples
seen by the training algorithm is proportional to e′D. Recall
from § IV that we modified the number of epochs e when
slicing is applied (refer to equation 1). For each slice indexed
r, we use data from the first r slices (i.e., rDR samples), training
the model for 2e′

R+1 epochs. Therefore, if an unlearning request
hits the rth slice, we need to retrain the model from the rth

slice to the Rth slice, leading to the following retraining cost
(i.e., number of samples):

C =

R∑
j=r

2e′

R+ 1

jD

R
=

2e′D

R(R+ 1)

(
R(R+ 1)

2
− r(r − 1)

2

)
(11)

We model the index of a slice hit by an unlearning request
by the random variable r ∼ U({1, . . . , R}). The expected cost
can be expressed as:

E[C] =
2e′D

R(R+ 1)

(
R(R+ 1)

2
− 1

2

(
E[r2]− E[r]

)
)

)
(12)

We can compute the two first moments of r:

E[r] =
∑R

k=1 kP(r = k) = R+1
2

E[r2] =
∑R

k=1 k
2P(r = k) = (R+1)(2R+1)

6

And plug them into the expected cost:

E[C] =
e′D

R

(
R− 2R+ 1

6
+

1

2

)
= e′D

(
2

3
+

1

3R

)
(13)

Note that for R > 20, the speed-up starts to plateau and any
increase in R does not provide a significant speed-up gain.

G. Moments of the Minimum of Draws from a Uniform
Distribution

Let X1, ..., Xn denote the n draws we make from a
uniform distribution U([a, b]). We would like to compute
the expectation of the minimum of these draws, denoted as
Xmin,n = mini∈{1,...,n}(Xi).
Proof: Our proof follows material found online [61]. First
recall that the cumulative distribution function of any Xi is
FXi

= x−a
b−a 1[a,b] + 1[b,+∞) We then compute the CDF of

Xmin,n:

FXmin,n(x) = P(Xmin,n ≤ x)

= 1− P(Xmin,n > x)

= 1− P

(
n⋂

i=1

(Xi > x)

)

= 1−
n∏

i=1

P(Xi > x)

=

(
1−

n∏
i=1

(
1− x− a

b− a

))
1[a,b] + 1[b,+∞)

=

(
1−

(
b− x

b− a

)n)
1[a,b] + 1[b,+∞)

(14)

where the antepenultimate line holds because the draws are
independent. We now take the derivative and obtain the density
function:

fXmin,n(x) =
n

b− a

(
b− x

b− a

)n−1

1[a,b] (15)

We compute the first moment of Xmin,n by using an
integration by part:

E[Xmin,n] =

∫ +∞

−∞
xfXmin,n(x)dx =

na+ b

n+ 1
(16)

Similarly, we can compute the second moment by using two
integrations by part (or the first moment of Xmin,n+1):

E[X2
min,n] =

∫ +∞

−∞
x2fXmin,n(x)dx

= a2 +
2(b− a)

n+ 1

(n+ 1)a+ b

n+ 2

(17)

H. Batched Time Analysis of Slicing
Proof: In the batch setting, we retrain all the slices be-
tween the slice rmin having the minimal index that has been
hit after K requests and the Rth slice. Since the indices
(ri)i∈{1,...,K} ∼ U({1, . . . , R}) i.i.d. (we assume the requests
to be independent), we can use results of previous sections to
compute the moments of rmin. The expected cost becomes:

E[C] =
2e′D

R(R+ 1)

(
R(R+ 1)

2

− 1

2

(
1 +

2(R− 1)

K + 1

(K + 1) +R

K + 2
− K +R

K + 1

)) (18)

I. Lone Shard Baseline Time Analysis

Definition: A lone shard is a model trained on a 1
S fraction

of the dataset. The remainder of data is not used for training.

158

1) Sequential Setting:
1. Assumption: The assumptions made in Appendix D are valid
here, though we only have one shard of initial size N

S . The
probability of it being impacted is approximately equal to 1

S .
2. Size of the retraining set: We can develop a reasoning
very similar to Appendix D. At each step, two cases are
possible. Either we affect a shard, the only shard we have.
This corresponds to the event Ei,j of Appendix D if the shards
has already been affected j times, or we affect no shard with
cost 0. We call this event Zi.
3. Associated probabilities: The probability of Zi, since we
have only one shard, is 1 − 1

S . Notice that in Appendix D
this event had zero probability. The probability of Ei,j is
1
S

(
i−1
j

) (
1
S

)j (1
S

)i−1−j
. The factor 1

S accounts for the fact
that request i affects a shard with probability 1

S , the rest of
the formula is similar to the one in Appendix D.
4. Expected cost: We can easily show that we obtain a formula
for the expected cost similar to the one in Appendix D but with
a 1
S factor:

E[C] =
1

S

(
N

S
+

1

2S
− 1

)
K − K2

2S2
(19)

Thus the lone shard baseline provides a S× speed up w.r.t.
SISA training. However, this fact should not discourage the
use of SISA training since the lone shard baseline will perform
poorly in terms of accuracy on complex learning tasks.

2) Batched Setting: Let K denote the batch size. We model
whether the ith request of the batch affects the training set (or
not) by a Bernoulli random variable hi ∼ B(1

S) i.i.d. We
define sK =

∑
i hi the number of times the shard is affected

for the batch. By construction, sK ∼ B(K, 1
S). The number

of points to retrain when the batch is processed is simply the
total number of points in the training set minus the number of
times the shard is affected: C = N

S − sK . Thus:

E[C] =
N −K

S
(20)

Recall that the batched cost of SISA training is:

E[C] = N

(
1−

(
1− 1

S

)K
)
−K (21)

For K � N , we roughly have a cost of N(1− exp(−Kτ))
where τ = (− ln(1− 1

S))
−1 for SISA training.

Thus for small enough K, there might exist a regime where
SISA training outperforms the lone shard baseline. Determin-
ing a usable value of K in that regime is the challenge – K
can not be less than 1. Note that K = 1 is exactly the first
step of the sequential setting: the lone shard baseline provides
a S× speed up w.r.t. SISA training (refer § I1). It turns out this
regime is impractical. Therefore, for small values of K, the
lone shard baseline outperforms SISA training with a speed-up
of at least S×. Once again, those findings must be considered
along with their impact on accuracy, and are meaningless by
themselves.

J. Impact of aggregation strategy

Due to the nature of SISA, we need to aggregate the
predictions of different models. Here we tested 2 aggregation
strategies on 4 datasets respectively, the results can be found
in Figures 13 and 14.

0 30 60 90 120 150 180
Number of Shards

78

81

84

87

90

93

96

A
cc

ur
ac

y
(%

)

Aggregation Strategy
Label
Prediction Vector

(a) SVHN

0 30 60 90 120 150 180
Number of Shards

86

88

90

92

94

96

A
cc

ur
ac

y
(%

)

Aggregation Strategy
Label
Prediction Vector

(b) Purchase

Fig. 13: We explore the effect of aggregating labels versus aggre-
gation prediction vectors, on Purchase and SVHN. It can be seen
that on these easy datasets, changing aggregation strategy does not
influence performance of the models significantly.

6 9 12 15 18
Number of Shards

70

72

74

76

78

80

82

84
To

p-
5

A
cc

ur
ac

y
(%

) Aggregation Strategy
Label
Prediction Vector

(a) Imagenet

3 6 9 12 15 18
Number of Shards

75

78

81

84

87

90

93

To
p-

5
A

cc
ur

ac
y

(%
) Aggregation Strategy

Label
Prediction Vector

(b) Mini-Imagenet

Fig. 14: We explore the effect of aggregating labels versus aggre-
gation prediction vectors, on Mini-ImageNet and ImageNet. It can
be seen that on these hard tasks such as classifying high-resolution
images, a good aggregation strategy is able to help recover more
accuracy.
K. Impact of number of samples per class on learnability

The results from Figure 15 suggest that as the number of
samples per class goes down, so does the accuracy. This is the
case with increased sharding for complex learning tasks.

0 200 400 600 800 1000 1200
Average Number of Samples/Class

0
10
20
30
40
50
60
70
80

A
cc

ur
ac

y
(%

)

Fig. 15: We plot the test accuracy as a function of the average
number of samples per class. Observe that as the average number of
samples per class increases, so does the accuracy.

159

		2022-08-24T18:53:17-0400
	Preflight Ticket Signature

