
High-Frequency Trading on
Decentralized On-Chain Exchanges

Liyi Zhou ∗, Kaihua Qin ∗, Christof Ferreira Torres †, Duc V Le ‡ and Arthur Gervais ∗
∗Imperial College London, United Kingdom
†University of Luxembourg, Luxembourg
‡Purdue University, United States

Abstract—Decentralized exchanges (DEXs) allow
parties to participate in financial markets while retain-
ing full custody of their funds. However, the trans-
parency of blockchain-based DEX in combination with
the latency for transactions to be processed, makes
market-manipulation feasible. For instance, adversaries
could perform front-running — the practice of exploit-
ing (typically non-public) information that may change
the price of an asset for financial gain.

In this work we formalize, analytically exposit and
empirically evaluate an augmented variant of front-
running: sandwich attacks, which involve front- and
back-running victim transactions on a blockchain-based
DEX. We quantify the probability of an adversarial
trader being able to undertake the attack, based on the
relative positioning of a transaction within a blockchain
block. We find that a single adversarial trader can earn
a daily revenue of over several thousand USD when
performing sandwich attacks on one particular DEX —
Uniswap, an exchange with over 5M USD daily trading
volume by June 2020. In addition to a single-adversary
game, we simulate the outcome of sandwich attacks
under multiple competing adversaries, to account for
the real-world trading environment.

I. Introduction
Decades of asset trading on traditional exchanges have

brought to fruition a veritable collection of market manip-
ulation techniques, such as front-running [6], pump and
dump schemes [54] and wash trading [3]. In the context
of cryptocurrencies, research to date indicates that the
ecosystem requires a greater awareness of such malprac-
tices [54], [21], [45], and better exchange design [12] to pre-
vent misbehavior. Most existing legislation does not reg-
ulate crypto-exchanges to the same degree as traditional
exchanges — leaving ignorant traders open to exploitation
by predatory practices, some of which is close to risk-free.

Decentralized exchanges (DEXs) allow traders to trade
financial assets without giving up asset custody to a
third party. Orders can be placed and matched in their
entirety through immutable blockchain smart contracts,
offering the possibility of censorship resistance, where
orders cannot be modified prior and after execution1.

Disclosure: Arthur Gervais works on the Liquidity Network, a
community-driven, open source layer-2 blockchain scaling solution.

1DEX prevent anyone from censoring trades, even the exchange
itself. Censorship-resistance is a key property of permissionless
blockchains such as Bitcoin and Ethereum, where users remain
custodian over their assets at any point in time.

Censorship-resistant trade is itself made possible through
reliance on an underlying blockchain, which makes public
all attempted and executed trades within its peer-to-peer
(P2P) network. The transparency of the blockchain layer,
however, in combination with the latency for orders to
deterministically execute makes, front-running easier to
undertake — and hence influences negatively the security
of the trader’s assets.

This paper. We focus on a combination of front- and
back-running2, known as a sandwiching, for a single on-
chain DEX. To the best of our knowledge, we are the first
to formalize and quantify sandwich attacks. To make their
sandwich, a predatory trader first observes a blockchain
P2P network for a victim transaction and then rushes to
squeeze it by placing one order just before the transaction
(i.e. front-run) and one order just after it (i.e. back-run).
If the target transaction is going to increase (decrease)
the price of an asset, the adversary can place an order
before which buys (sells) the asset in question, and an
order afterward which sells (buys) the asset again.

We restrict our focus to automated market maker
(AMM) DEXs [52], [4], as opposed to DEXs which operate
limit order books (LOB) [20], on account of their determin-
istic nature which enables us to rely on fewer assumptions
in our analysis. AMM DEXs simplify trading by algo-
rithmically performing market making3, resulting in near-
instant liquidity (i.e. the ability to purchase and sell assets)
for market participants. Uniswap is a prominent example
of an AMM DEX, which, by March 2020, has amassed
a total liquidity of nearly 48M USD (corresponding to a
75% market liquidity share for AMM DEX) and had a
trading volume of over 250M USD since its inception in
November 2018. We formalize, analytically exposit and
empirically evaluate sandwiching on AMM DEXs. We
quantify optimal adversarial revenues and perform a real-
world empirical evaluation of sandwich attacks. We also
study the probability of a transaction having a particular
relative position within a blockchain block, informing the
prospects for such an attack. Finally, to account for a real-
world scenario in which multiple adversaries are likely to

2While the SEC defines front-running as an action on private
information, we only operate on public trade information.

3The process of serving a market with the possibility to purchase
and sell an asset.

428

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Liyi Zhou. Under license to IEEE.
DOI 10.1109/SP40001.2021.00027

20
21

 IE
EE

 S
ym

po
si

um
 o

n
Se

cu
rit

y
an

d
Pr

iv
ac

y
(S

P)
 |

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0

©
20

21
 IE

EE
 |

D
O

I:
10

.1
10

9/
SP

40
00

1.
20

21
.0

00
27

compete over victim transactions, we perform simulations
to quantify the transaction fees resulting from a reactive
fee counter-bidding contest.
Summary of contributions:
• Formalization of sandwich attacks. We state a

mathematical formalization of the AMM mechanism
and the sandwich attack, providing an adversary with
a framework to manage their portfolio of assets and
maximize the profitability of the attack.

• Analytic and empirical evaluation. We analyt-
ically and empirically evaluate sandwich attacks on
AMM DEX. Besides an adversarial liquidity taker, we
introduce a new class of sandwich attacks performed
by an adversarial liquidity provider. We quantify the
optimal adversarial revenue and validate our results
on the Uniswap exchange (largest DEX, with 5M USD
trading volume at the time of writing). Our empirical
results show that an adversary can achieve an average
daily revenue of 3, 414 USD4. Even without collusion
with a miner, we find that, in the absence of other ad-
versaries, the likelihood to position a transaction be-
fore or after another transaction within a blockchain
block is at least 79%, using a transaction fee payment
strategy of ±1 Wei5.

• Multiple Attacker Game. We simulate the sand-
wich attacks under multiple simultaneous attackers
that follow a reactive counter-bidding strategy [21].
We find that the presence of 2, 5 and 10 attackers
respectively reduce the expected profitability for each
attacker by 51.0%, 81.4% and 91.5% to 0.45, 0.17,
0.08 ETH (67, 25, 12 USD), given a victim that
transacts 20 ETH to DAI on Uniswap with a transac-
tion pending on the P2P layer for 10 seconds before
being mined. If the blockchain is congested (i.e. the
victim transaction remains pending for longer than
the average block interval), we show that the break-
even of the attacker becomes harder to attain.

• DEX security vs. scalability tradeoff. Our work
uncovers an inherent tension between the security and
scalability of an AMM DEX. If the DEX is used
securely (i.e. under a low or zero price slippage),
trades are likely to fail under high transaction volume;
and an adversarial trader may profit otherwise.

II. Decentralized Exchanges
At the root of decentralized exchanges are blockchains.

Blockchains, such as Bitcoin [48], enable peers to transact
without trusting third-party intermediaries. The core com-
ponent of a blockchain is a hash-linked chain of blocks [15],
where miners form blocks as a data-structure which accu-
mulates transactions. Blockchains which allow the execu-
tion of smart contracts [53], constitutes the basic building
block for exchanges. A crucial aspect of this paper is

4We disclosed our preliminary results to Uniswap on 18th of
November 2019, which allowed tightening the trader protections.

5The smallest amount of Ether currency, 1 WEI = 10−18 ETH

that in most blockchain designs, transactions are executed
in the sequence in which they are written into a block.
This sequence dependence matters for blockchain-based
exchanges, and will be detailed extensively in Section III.
An exchange is built out of three main components: a
price discovery mechanism, a trade matching engine, and a
trade clearing system. Blockchains allow these components
to be encoded within a smart contract to construct a
decentralized, or non-custodial exchange [33], [52], [5], [43],
[39], [23]. The non-custodial property guarantees that a
trader retains custody over their assets at any point in
time. If all exchange components are implemented within
smart contracts, the exchange qualifies as an on-chain
DEX. If only the trade clearing is realized within a smart
contract, the exchange may be centralized but can retain
the non-custodial property [39].

A. DEX components
A DEX is a game between a liquidity provider and taker.

Liquidity Provider: a market participant that provides
liquidity (financial asset trade offers).

Liquidity Taker: a market participant that buys or sells
one asset in exchange for another asset, by taking the
liquidity offered by a liquidity provider.

Further, we distinguish between two varieties of DEX,
depending on their mechanisms of price discovery.
Order Book: a list of buy and sell orders for a partic-

ular asset, where each order stipulates a price and
and quantity. A liquidity provider quotes bid and
ask prices, with an associated volume, competing for
liquidity taker order flow [5], [43], [39], such that a
match between supply (from a liquidity provider) and
demand (from a liquidity taker) is facilitated (also
referred to as market making).

Automated Market Maker (AMM): A predefined
pricing algorithm automatically performs price-
discovery and market making, using assets within
liquidity pools [52], [4]. Liquidity providers are,
therefore, not required to monitor the market to
adjust bid and ask prices. Liquidity takers can
directly trade against the AMM liquidity. Such
automation also serves to reduce the number of
on-chain transactions, making such mechanisms
particularly suitable for smart contract-based DEXs
given an underlying blockchain that supports only a
limited number of transactions per second (tps).

B. AMM Mechanism
We denote with X/Y an asset pair composed of asset X

and Y . An AMM asset pair X/Y consists of two liquidity
pools, respectively for each asset:
Asset X liquidity pool (x ∈ R+): Total amount of as-

set X deposited by liquidity providers.
Asset Y liquidity pool (y ∈ R+): Total amount of as-

set Y deposited by liquidity providers.

429

Definition 1. The state (or depth) of an AMM market
X/Y is defined as (x, y), x the amount of asset X, y the
amount of asset Y in the liquidity pool. The state at a given
blockchain block N is denoted (xN , yN).

AMM DEXs support the following actions.
AddLiquidity: A liquidity provider deposits δx of asset

X, and δy of asset Y into the corresponding liquidity
pools (cf. Equation 1).

(x, y) AddLiquidity(δx,δy)−−−−−−−−−−−−→
δx∈R+, δy∈R+

(x+ δx, y + δy) (1)

RemoveLiquidity: A liquidity provider withdraws δx of
asset X, and δy of asset Y from the corresponding
liquidity pools (cf. Equation 2).

(x, y) RemoveLiquidity(δx,δy)−−−−−−−−−−−−−−→
δx∈R+≤x, δy∈R+≤y

(x− δx, y − δy) (2)

TransactXforY : A liquidity taker can trade δx of asset
X, increasing the available liquidity of asset X, in
exchange for δy = f(δx − cx(·)) − cy(·) of asset
Y , decreasing the available liquidity of asset Y (cf.
Equation 3). cx(·), cy(·) represent the trade fees in
asset X and Y respectively. f(·) calculates the amount
of asset Y purchased by the liquidity taker. Each
AMM exchange may chose a custom pricing function
f(·) for governing the asset exchange [1]. Note that
the exchange asset pricing cannot be determined by
a simple constant, as the market dynamics of pur-
chasing and selling power must be modeled within
the exchange (i.e. the more assets on would want to
purchase, the higher the fees).

(x, y) TransactXforY (δx)−−−−−−−−−−−−→
δx∈R+

(x+δx, y−f(δx−cx(·))+cy(·))
(3)

Constant Product AMM. The simplest AMM mech-
anism is a constant product market maker, which keeps the
product x×y constant for any arbitrary asset pair (X/Y).
In this work we focus on the constant product model,
because with over 75% market liquidity, this represents the
most prevalent AMM model. In the following, k denotes
the product of supplies (k ∈ R+ = x × y), which remains
constant upon taker transactions. k changes when a liq-
uidity provider deposits, or withdraws X/Y pool funds.
Equation 4 shows the state changes of TransactXforY
under a constant product AMM.

(x, y) TransactXforY (δx)−−−−−−−−−−−−→
δx∈R+

(x+ δx,
xy

x+ δx − cx(·) + cy(·))
(4)

C. Price Slippage
Price slippage is the change in the price of an asset

during a trade. Expected price slippage is the expected
increase or decrease in price based on the volume to
be traded and the available liquidity [51], where the
expectation is formed at the beginning of the trade. The

higher the quantity to be traded, the greater the expected
slippage (cf. Table I). Unexpected price slippage refers to
any additional increase or decrease in price, over and above
the expected slippage, during the interveni period from
the submission of a trade commitment to its execution.
This can be thought of as an expectation error. When an
exchange’s market liquidity changes, the resulting actual
slippage is challenging to foresee (cf. Figure 1), making the
formation of accurate expectations more challenging. We
note the following definitions.
Expected Execution Price (E [P]): When a liquidity

taker issues a trade on X/Y , the taker wishes to
execute the trade with the expected execution price
E [P] (based on the AMM algorithm and X/Y state),
given the expected slippage.

Execution Price (P): During the time difference be-
tween a liquidity taker issuing a transaction, and the
transaction being executed (e.g. mined in a block),
the state of the AMM market X/Y may change.
This state change may induce unexpected slippage
resulting in an execution price P 6= E [P].

Unexpected Price Slippage (P − E [P]): is the differ-
ence between P and E [P].

Unexpected Slippage Rate (P−E [P]
E [P]): is the

unexpected slippage over the expected price.
a) Slippage Example: For example, a liquidity

taker, who intends to trade 1 asset X for 20 Y at an
exchange, results in a price of 0.05, quoted in units of
asset Y . However, by the time the AMM DEX executes
this transaction, if the price increases to 0.1, the liquidity
taker would only receive 10 Y for 1 X. The unexpected
slippage, in this case, is 0.1−0.05 = 0.05. Slippage can also
be negative, i.e. a liquidity taker can receive more asset Y
than expected. If the execution price above decreases to
0.25, the liquidity taker would receive 40 Y for 1 X, with a
corresponding unexpected slippage of 0.1− 0.25 = −0.15.

III. Sandwich Attacks on AMM DEXs
In traditional financial markets, the predatory trading

strategy of front-running involves exploiting (typically
non-public) information about a pending trade, expected
to materially change the price of an asset, by buying or
selling the asset beforehand [6]. If the asset is expected
to rise (fall) in price as a result of the trade, the front-

AMM State 1 AMM State 2

Liquidity X (x) 100 1, 000
Liquidity Y (y) 10 100
Product (k = xy) 1, 000 100, 000
Purchase amount X 1 10 1 10
AMM Price Y/X 0.1000 0.1000 0.1000 0.1000
E [P] Y/X 0.1010 0.1111 0.1001 0.1010
Expected slippage 0.0010 0.0111 0.0001 0.0010
Slippage rate 1.01% 11.11% 0.10% 1.01%

TABLE I: Example price slippages on an AMM DEX.

430

TA created

pending

Block
N+1

Block
N

Block
N+2

Block
N+3

TB created

pending

TC created

pending

pending

TD created

time appearance on the blockchain P2P network

calculate
intended price

calculate
intended price

calculate
intended price

calculate
intended price

Fig. 1: Visualizing the cause of unexpected slippage. E [P]
of TA is based on the AMM state of block N . TA does not
suffer from unexpected slippage, because no concurrent
transactions exist. TB executes in block N + 3. E [P] of
TC ’s is based on block N , as we assume network delays.
If TC and TD change the state of the underlying market,
those may induce unexpected slippage for TB .

runner will seek to buy (sell) the asset before the large
pending transaction executes. AMM DEXs aim to mitigate
malpractice by providing complete transparency about
the available liquidity for assets X, Y , all pending and
performed trades, and therefore removing the role played
by non-public information. However, AMM DEXs also
exacerbate malpractices by quoting asset prices in a fully
deterministic way, providing relative certainty over the
expected price impact of a trade. This enables a front-
running adversary to perform attacks with predictable
outcomes. In the following, we study two sandwich attacks
on constant product AMM asset exchanges:
1) Liquidity taker attacks liquidity taker.
2) Liquidity provider attacks liquidity taker.
In each case, the fundamental intuition is that the delay

in the time taken for a transaction to execute allows an
adversary to profit by exploiting the knowledge of the
direction of a price change. The attacks are called sand-
wich attacks because a victim transaction is sandwiched
between adversarial transactions.

A. System Model

We consider a blockchain P2P network, where a victim
initiates trades on an AMM DEX (cf. Figure 2). An
adversary observes pending victim transactions (i.e. not
yet mined transactions within the memory-, or mempool)
through a spy node (e.g. a custom Ethereum client),
and a miner chooses to include transactions within a
block according to a policy (cf. Section VI). A victim
transaction trades a crypto-currency asset (such as ETH,
DAI, SAI, VERI) to another crypto-asset. We do not con-
sider blockchain forks. While blockchains typically provide
delayed finality after k blocks [27], [29], we consider a
transaction final once included within a block.

Victim

Ethereum
Network

Adversary

1). Victim sends
transaction Tv

2). Broadcast Tv

Miner

Spy
Node

Lightweight
Node/ Full

Node
Miner
Node

3b). Tv added
to mempool

3a). Tv added to mempool

4). Tv observed

6). Adversary sends
TA1 and TA2

5). Profitable?

7). Broadcast
TA1 and TA2

8). TA1 and TA2
added to mempool

9). TA1, Tv, TA2
included in the

same block

Fig. 2: Sandwich attack system.

B. Threat Model

We consider one computationally bounded and econom-
ically rational adversary A (cf. Section VII for an extended
threat model with multiple adversaries), that observes a
zero-confirmation transaction TV from a victim trader V
on a blockchain P2P network. The adversarial trader can
issue its own transaction TA,f with a transaction fee f .
Depending on f , and the age of propagation, TA,f may
be included within the blockchain prior or past TV (cf.
Section VI). In this work we focus on these novel cases
where the adversary is not colluding with a miner, i.e. we
weaken the adversary to quantify a lower bound on the fea-
sibility and profitability of the proposed attacks. Outside
of this work, a (stronger) adversary may collude, or bribe a
miner [40], [46], [14], to influence the transactions ordering
within a block, or even to fork the chain as in to discard
unsuccessful attacks. We moreover assume that an attack
against one victim transaction is independent from other
concurrent attacks towards other victim transactions.

C. Liquidity Taker Attacks Taker

In our first attack, a liquidity taker targets a victim
liquidity taker who has emits on the blockchain P2P
network an AMM DEX transaction (TransactXforY),
formalizing [4]. The adversary then emits two transactions
(one front- and one back-running) to exploit the victim
transaction TV (cf. Figure 3). These three transactions are
then unconfirmed in the blockchain P2P network, until a
miner choses to include and execute them within a block.
The adversary can influence the position of the adversarial
transactions, relative to the victim transaction, by paying
a higher, or lower transaction fee amount (cf. Section VI).

We refer the interested reader to the Appendix A-A for
the technical details of the involved transactions.

431

TV
TransactXForY

pending

Block
N

Block
N+k

TA1
TransactXForY

pending

TA2
TransactYForX pending

time appearance on the blockchain P2P network

tra
ns

ac
tio

n
or

de
r

Fig. 3: An adversarial liquidity taker A attacks a victim
taker V on an AMM DEX. Transaction TV specifies its
slippage protection based on the AMM state of block N .
The adversary’s goal is to include TA1, TV and TA2 in the
same block N + k, k ∈ Z+ in that sequence.

D. Liquidity Provider Attacks Taker
We present a novel sandwich attack where a liquid-

ity provider targets a victim liquidity taker transaction
(TransactXforY) on the blockchain P2P network. Upon
observing the victim transaction, the adversary emits
three transactions (cf. Figure 4):

1) RemoveLiquidity (increases victim’s slippage)
2) AddLiquidity (restores pool liquidity)
3) TransactY forX (restores asset balance of X)

The (i) front-running RemoveLiquidity transaction re-
duces the market liquidity of the AMM DEX and increases
the victim’s unexpected slippage. The (ii) back-running
AddLiquidity transaction restores the percentage of liq-
uidity A holds before the attack. Finally, (iii) the back-
running transaction TransactY forX equilibrates the ad-
versary’s balance of asset X to the state before the attack.

Note that liquidity providers earn commission fees pro-
portional to the liquidity (i.e. the amount of assets) they
provide to an AMM DEX market. In this attack, the
adversary A withdraws all its assets from the liquidity pool
before TV executes. As such, A foregoes the commission
fees for the victim’s transaction. We refer the interested
readers to Appendix A-B for further technical details.

TV
TransactXForY

pending

Block
N

Block
N+k

TA1
RemoveLiquidity

pending

TA2
AddLiquidity pending

TA3
TransactYForX pending tra

ns
ac

tio
n

or
de

r

time appearance on the blockchain P2P network

Fig. 4: An adversarial liquidity provider A attacks a victim
taker V . TV transacts asset Y for asset X.

E. Model Limitations
1) Margin and Leveraged Trading: Margin trading

is the process of using borrowed funds to amplify trading
profits (or losses). A trader commits a percentage of the
total trade value to open a margin position. For example,

to open a 5× short ETH for DAI position with 10ETH,
the trader needs to commit 2ETH as collateral. A short
position reflects the expectation that the ETH price will
decrease, whereas a long position reflects the opposite. The
margin platform will then lend to the trader 10ETH and
convert those assets to DAI. If the ETH price decreases,
the trader can close the margin trade with a profit.

A limitation of our work is that we do not consider
on-chain margin platforms utilizing AMM exchanges to
open short/long positions (e.g. the recently attacked bZx
platform [49]). An on-chain margin trade system would
enable an adversary to reduce the capital requirements
for sandwich attacks, at the cost of higher transaction fees
(for opening and closing margin trades). Margin trading
is unlikely to affect the adversary’s monetary revenue
because the victim configures a fixed slippage.

2) Blockchain Forks: We do not consider the impact of
stale blocks in our analysis. In practice, it is possible that
a transaction is included in a stale block (on the forked
chain), but is not included in the confirmed blocks (on the
main chain). This stale transaction is typically re-injected
into the blockchain client’s mempool when the stale block
is added as an uncle to the main chain. The stale re-
injection process of adversarial and victim transaction may
increase the failure rate of sandwich attacks, but we leave
quantitative results for future work.

IV. Analytical Evaluation
In this section, we perform the analytical evaluation of

sandwich attacks on Uniswap [52]. Uniswap is the most
popular DEX at the time of writing with 1, 301 markets,
on average 7.30 provider per market and 29.3M USD
liquidity. From Uniswap’s inception in November 2018 to
November 2019, we identified a trade volume of 1.6M ETH
(248M USD), measured on a full archive Geth node (6-core
Intel i7-8700 CPU, 3.20GHz, 64GB RAM, 10TB SSD)6.
In what follows, we base our evaluations on Uniswap
parameters and adopt its liquidity pool distributions [52]
from Ethereum block 9M (mined 25th November 2019). In
this section we present the analytical results for the two
sandwich attacks presented in Section III-C and III-D.

A. Adversarial Liquidity Taker
At Ethereum mainnet block 9M, the ETH/SAI Uniswap

offers 7, 377.53 ETH and 521, 468.62 SAI7. The ETH/DAI
Uniswap offers 4, 660.75 ETH and 693, 706.47 DAI. Given
this market information, and the constant product formula
(cf. Section II), we plot in Figure 5(a) and 5(b) the
revenue of an adversarial taker performing a sandwich at-
tack against another taker. We visualize three unexpected
slippage thresholds (0.1%, 0.5% and 1%). We plot the
lines at which an adversary would break even given a total

6We focus only on transactions executed on Uniswap endpoints
directly, not internal transactions that are routed to Uniswap.

7In the following we adopt the ETH/SAI exchange rate at block
9M as the ETH/USD exchange rate. 1 ETH = 148.97 USD

432

(a) ETH/SAI market (b) ETH/DAI market

Fig. 5: Analytical sandwich attack by a liquidity taker on a taker (Uniswap, block 9M, 0.3% fees, 0.5% unexpected
slippage). If TV transacts 40 ETH for SAI, A gets a max. revenue by front-running TV with a trade 18.59 ETH for
2, 754.32 SAI, and back-running with 2, 754.32 SAI for 18.68 ETH. This results in a profit of 0.08 ETH (11.74 USD),
if A bears 0.01 ETH tx fees. Note that the two sub-legends of each figure apply to both sub-figure 5(a) and 5(b).

(TA1 and TA2) of 0.01 ETH (1.97 USD) and 0.001 ETH
(0.2 USD) worth of transaction fees8. We observe that
the greater the amount of ETH transacted by the victim,
the greater is the adversarial revenue. For example, given
an unexpected slippage protection of 0.5%, an adversarial
taker gains a revenue of 0.01 ETH (2.03 USD) for a
victim transaction trading 25 ETH to SAI on Uniswap.
In contrast, the adversary gains a revenue of 0.14 ETH
(20.71 USD), if the victim trades 50 ETH instead of 25.

a) Optimal Adversarial Revenue: Out of the over
1, 300 Uniswap exchange markets (i.e. coin pairs to trade)
an adversary may need to focus and hold liquidity in
selected markets. In Figure 6 we quantify the maximum
revenue an adversary can expect in a given market, condi-
tional on a suitable victim transaction. Note that MKR
has the highest liquidity (9, 759.83 ETH and 2, 830.27
MKR), followed by SAI (7, 377.53 ETH and 1, 099, 040.91
SAI), WETH (5, 642.08 ETH and 5, 632.25 WETH), SNX
(5, 262.53 ETH and 572, 512.14 SNX) and DAI (4, 660.75
ETH and 693, 706.47 DAI).

b) Minimum Profitable Victim Input: Not every
victim transaction yields a profitable attack. For each
of the five exchanges in Figure 6, we quantify a mini-
mum profitable victim input min.input (under 0.01 ETH
transaction fee and 0.3% commission), under which an
adversary will be unable to make a profit (e.g. 24.26
ETH for SAI per Figure 6). This minimum profitable
victim input amount increases with the liquidity pool size

8At the time of writing, the average Ethereum transaction
fee is 0.13 USD (https://bitinfocharts.com/comparison/
ethereum-transactionfees.html)

(cf. Figure 7). The adversary’s optimal input increases
only slightly (cf. the near horizontal line on Figure 6)
with the victim transaction size, because the ETH value
transacted by the victim is relatively small compared to
the total amount of ETH in the Uniswap exchange. Given
a fixed total slippage, we observe that markets with higher
liquidity (e.g. SAI, MKR) yield higher potential revenues
than lower-liquidity markets (e.g. SNX and DAI) (given
the appropriate victim transaction).

B. Adversarial Liquidity Provider
Figure 8(a) and 8(b) show the revenue of an adversarial

liquidity provider (cf. Section III-D), after TV . We visu-
alize the same adversarial break even lines at 0.01 ETH
(1.97 USD) and 0.001 ETH (0.2 USD). Note that the
adversary can only withdraw a limited amount of liquidity
without triggering the slippage protection on victim’s
transaction. By removing liquidity from an AMM market,
the liquidity provider is forgoing a market commission
(0.3% for Uniswap). To gauge profitability, we consider
the following example where TV purchases 100 ETH from
the SAI Uniswap exchange with 0.5% unexpected slippage.
The optimal strategy is to withdraw 26.58% of the total
liquidity pool, which leads to a revenue of up to 0.28 ETH
(41.71 USD) for the adversary. A passive liquidity provider
with 26.58% of the liquidity pool would only earn 0.08
ETH (11.91 USD) given a commission of 0.3%.

a) Who Loses Money?: Both V and other honest
liquidity providers lose money. V purchases 100 ETH
with 15, 223.02 SAI without triggering a 0.5% slippage
protection as a result of A’s front-running transaction.

433

Fig. 6: Sandwich attack optimal revenue for an adversarial
taker when V trades on five Uniswap markets (0.3% fee,
A breaks even at 0.01 ETH).

With no adversary, V only needs 15, 147.28 SAI for the
same amount of ETH, which is 75.74 SAI less. In addition,
this V transaction should increase the liquidity pool from
(7, 377.53 ETH / 1, 099, 040.91 SAI) to (7, 277.53 ETH /
1, 114, 263.92 SAI). Post attack, the liquidity pool remains
with 7, 277.25 ETH and 1, 114, 263.92 SAI, i.e A gains
7, 277.53− 7, 277.25 = 0.28 ETH from the liquidity pool.

b) Optimal Adversarial Revenue: We quantify the
optimal adversarial revenue in Figure 13, after subtract-
ing the foregone opportunity cost (e.g. 0.3% for liquidity
provider on Uniswap), conditional on a suitable victim
transaction. We observe that the forgone commission fee
is relatively stable, given a fixed total slippage, because
the adversary must satisfy the victim’s slippage limit. We
also quantify in Figure 9 the minimum victim input.

c) Impact of Coin Decimals: The number of decimal
places for ERC20 tokens is configurable, though most of

Fig. 7: Minimum profitable victim input on five Uniswap
markets (0.3% fee, A breaks even at 0.01 ETH, 0.5%
unexpected slippage). A liquidity taker does not yield a
profit if TV trades less than 24.26 ETH for SAI.

the coins have 18 decimal places. For example, USDC,
which is the 7th largest Uniswap exchange at block 9M,
has 6 decimal places behind the comma. In Figure 9, we
plot the k = xy curve for SAI if it had 17 decimal places
instead of 18. The minimum victim transaction amount
for A increases from 43.93 ETH to 44.54 ETH, if the
victim purchases ETH using SAI. The minimum victim
transaction amount also increases from 45.3 ETH to 56.3
ETH for ETH to SAI transactions.

C. Overall success of the attacks
Overall, when analytically evaluated, both an adversar-

ial liquidity taker and provider can profit by undertaking
a sandwich attack. The optimal adversarial revenue, how-
ever, depends on the slippage protection setting. By fixing
the unexpected slippage, the adversary’s revenue increases
linearly against the amount of ETH transacted for both
adversarial takers and providers. Alternatively, fixing the
total slippage (unexpected + expected slippage) would
yield an upper bound for both the victim transaction size
and adversarial optimal profit.

V. Empirical Evaluation
Our experimental setup corresponds to the system

model in Figure 2, with a modified adversarial Parity
client. We increase the maximum number of transactions
in the pool of unconfirmed transactions (mempool) from
the default 1024 to 2048. We design a Python script that
subscribes to the modified pub/sub functionality of Parity
and listens for new pending transactions of the target
Uniswap market. Our script computes the profitability of
any given victim transaction, and if an adversarial strategy
proves profitable, the script generates and propagates the
corresponding front- and back-running transaction.

We conduct both experiments (cf. Section V-A and V-B)
on the main Ethereum network against the ETH/VERI

434

(a) ETH/SAI market (b) ETH/DAI market

Fig. 8: Sandwich attack by a liquidity provider on a taker (Uniswap, block 9M, 0.3% fees). If TV trades SAI for 60
ETH with an unexpected slippage of 0.5%, A can achieve a max. revenue by front-running TV with removing 37.76% of
liquidity (eq. 2, 785.97 ETH and 415, 030.47 SAI), and regain 37.76% of liquidity (deposit 2, 749.57 ETH and 420, 542.21
SAI) by back-running TV . Upon rebalancing to ETH, A gains a profit of 0.07 ETH (10.55 USD, break-even 0.01 ETH).

Fig. 9: Minimum profitable victim input on SAI Uniswap
market (0.3% fee, 0.5% unexpected slippage, adversary
break even at 0.01 ETH tx fees). A cannot gain any profit,
if TV trades SAI for less than 43.93 ETH. If SAI had 17
decimal places after the comma instead of 18, the min.
victim transaction amount increases to 44.54 ETH.

Uniswap market and only attack our transactions. The
ETH/VERI market offers the smallest liquidity (0.01 ETH
and 0.07 VERI, total 3.50 USD) out of the 78 Uniswap
exchanges on the Uniswap UI as of block 9M. To ensure
that our results are sufficiently representative, we consider
a time window of 158 days, i.e. several months. Our

adversarial node runs on AWS in Ireland, (4 vCPU, AMD
EPYC 7000, 2.5 GHz, NVMe SSD, max. 10 Gbps network
). The experiments result in three outcomes: (i) success
(all adversarial transactions are included in the same block
as TV), (ii) the front- and back-running transactions are
successful, but not all adversarial transactions are included
in the same block as TV , and (iii) front- or/and back-
running failed.

a) Computing the adversarial transactions: Three
steps allow us to compute the optimal adversarial input
amount. First, the maximum amount A can transact
without breaking V ’s slippage protection (denoted by ô)
is computed using a binary search. Second, we calculate if
the attack is profitable if A inputs ô. As Figure 3 and 4
suggest, if an attack is not profitable at ô, then it is not
profitable for any o < ô. Finally, because Uniswap uses
integer divisions, there might exist o < ô, which results in
the same or more profit. We perform a ternary search to
find the optimal input.

A. Liquidity Taker Attacking Taker
We issue and attack TV purchasing VERI with 0.001

ETH. TV is triggered through the Uniswap UI (default
0.5% unexpected slippage) and at the time of writing
default Metamask gas price (5 GWei9). We repeat this
attack 20 times, and report the results in Table II. On
average, the adversary discovers TV within 450ms, and
requires less than 200ms to compute and send out TA1 and
TA2. During our experiment, TV remains in the adversary’s

91 GWei = 1× 10−9 ETH

435

mempool for an average of 35.84 seconds. We achieve a
success rate of 19 out of 20 attempts. One experiment
failed, where the victim’s transaction TV remained in
the adversarial’s mempool for only 1.677 seconds. In 8
out of 20 experiments, the attack is partially successful,
because the back-running transaction TA2 is mined in a
later block than TV . Two possible causes are that either
TA2 is received after TA1 and TV are mined, or the block
that mined TV is full. We observe that the respective TV
are mostly positioned at the end of the block, which may
indicate network congestion.

B. Liquidity Provider Attacking Taker

We initialize the adversary by adding liquidity to the
ETH/VERI Uniswap contract. We again issue TV purchas-
ing VERI with 0.002 ETH via the Uniswap UI, Metamask
(2 GWei), and attack with our adversarial node. We also
repeat this attack 20 times. Table II shows a summary
of our experiment results. Compared to Section V-A, TV
remains, on average less than 10 seconds in the mempool,
which may indicate that the blockchain network is less
congested at the time of the experiment. We also observe
that the adversarial transactions are relatively closer to
TV within the block. We achieve a success rate of 20 out
of 20 attempts.

Adversarial Taker Adversarial Provider
Mean STD Mean STD

TV Broadcast Duration 0.45s 0.27 0.36s 0.29
A Find Strategy Duration 0.03s 0.00 0.03s 0.00
A Execute Strategy Duration 0.16s 0.60 0.04s 0.00
TV Duration In Mempool 35.84s 33.31 23.09s 10.52
TA1 Duration In Mempool 35.88s 33.19 23.03s 10.52
TA2 Duration In Mempool 48.87s 51.25 23.03s 10.52
TA3 Duration In Mempool N/A N/A 23.03s 10.52
A1 Block Relative Position 0.05 0.22 0.00 0.00
A1 Index Relative Position −10.42 10.26 −2.95 2.34
A2 Block Relative Position 0.70 0.92 0.00 0.00
A2 Index Relative Position 5.45 6.47 4.50 4.90
A3 Block Relative Position N/A N/A 0.00 0.00
A3 Index Relative Position N/A N/A 5.50 4.90
Success 11/20 20/20
Partial Success 8/20 0/20
Failure 1/20 0/20

TABLE II: Results for the liquidity taker/provider attacks
taker. The victim’s transaction TV was triggered manually
using Metamask through Uniswap UI. Adversarial node
and victim have a clock difference of 8.781ms± 6.189ms.

1) Foregone Adversarial Revenues: To understand
the financial potential of our attacks, we estimated the
theoretical revenue for the 79 exchanges of the Uniswap UI
between block 8M and 9M (i.e. recent blocks at the time of
writing), assuming a break-even at 0.01 ETH transaction
fees. Our results (cf. Table III) suggest that within the
reported 158 days, an adversary could have achieved a
revenue of 440, 749.02 USD when attacking as a taker,
and 98, 666.15 USD when attacking as a liquidity provider.
7.4% of transactions are profitable when attacking as a
taker, while 4.2% when attacking as a provider.

Profitable TXs
/ Total TXs

Revenue
(ETH)

Revenue
(USD)

Liquidity taker attacks taker
ETH → Token 878/25, 204 98.15 14, 621.41
Token → ETH 5, 657/602, 85 2, 643.84 393, 852.46
Token → Token 1, 258/196, 72 216.66 32, 275.16
Total 7, 793/105, 161 2, 958.64 440, 749.02
Liquidity provider attacks taker

ETH → Token 444/25, 204 52.55 7, 829.05
Token → ETH 3, 254/60, 285 520.61 77, 555.62
Token → Token 721/19, 672 89.16 13, 281.49
Total 4, 419/105, 161 662.32 98, 666.15

TABLE III: Estimated adversarial revenue for the 79
exchanges on the Uniswap UI, assuming an adversarial
break even cost of 0.01 ETH. Data of 158 days considered
(block 8M to 9M).

C. Slippage
To help an adversary understand how takers config-

ure their slippage, we plot the estimated distribution
of expected slippage and maximum allowed unexpected
slippage in Figure 10. Note that we are using block N ’s
state to calculate the slippages of a transaction mined at
block N+1. Therefore, these slippages are only estimates,
as we do not know the exact block state used by the taker
to create transactions. Past Uniswap transactions have
an average expected slippage of 0.58%, and an average
unexpected slippage of 1.16%.

Fig. 10: Estimated expected and maximum permitted
unexpected slippage on Uniswap transactions (block 8M
to 9M). Most takers trade with c. 1% of maximum unex-
pected slippage (the Uniswap default at the time).

D. Overall success of the attacks
Our empirical results suggest that both an adversarial

liquidity taker and provider can again profit by undertak-
ing a sandwich attack, where the victim trades with the

436

Uniswap default slippage protection strategy at the time
of writing this paper (0.5% total slippage). We crawled
the previous transactions on Uniswap, where it shows that
the most common unexpected slippage configuration is
1%, which is higher than the 0.5% default total slippage
and therefore leads to higher front-running profit. Our
experiments result in a high success rate (only 1 out of
40 failed), mainly because the Ethereum network was not
congested, and the VERI market relatively inactive.

VI. How Miners Order Transactions
One crucial aspect of the potential profitability of the

sandwich attacks centers on how miners order transactions
within blocks. Blockchains typically prescribe specific rules
for consensus, but there are only loose requirements for
miners on how to order transactions within a block. To
gain insight into this, we crawled the Ethereum blockchain
from block 6, 627, 917 (where Uniswap was launched) to
block 9M, constituting a total of 2, 372, 084 blocks, or
equivalently 388 days of data. For each block, we classified
the order of its transactions into one of four classes:
Empty: A block without transactions.
Gas Price: All transactions are sorted in descending or-

der according to the gas price of each transaction.
Parity Default: Transactions are split into groups ac-

cording to Parity’s prioritization (e.g. local transac-
tions first, penalized transactions last). Then, within
each group, the transactions are sorted in descending
order according to each transaction’s gas price.

Unknown: Transactions are not ordered by the gas price
and do not follow parity’s default strategy.

The treatment of transactions depends on the Ethereum
client. At of the time of writing, 78.3% of the Ethereum
clients operate Geth, respectively 20.2% Parity10. Geth
first sorts and separates the list of transactions into lists
of individual sender accounts and sorts them by nonce.
Afterward, they are merged back together and sorted by
gas price, always comparing only the first transaction
from each account. Parity, by default, prioritizes local
and retracted transactions first, and polishes transactions
with heavy computation, and then sorts by gas price. A
transaction is considered local if it is received via the RPC
interface, or the sender of the transaction is part of the list
of locally managed accounts. Miners may choose to modify
the transaction inclusion policy arbitrarily. To individually
categorize each block, we first analyzed the gas price of
each transaction and started by extracting the gas price
only for the first transaction of each sender, while ignoring
the other transactions from the same sender. We only
consider the first transaction because a higher gas price
transaction can be placed behind another transaction with
a smaller nonce. If the extracted gas price list is sorted,
we classify the block as following the “gas price” strategy.
Alternatively, we verify if the gas price list consists of

10https://www.ethernodes.org/

multiple sublists of gas prices, where the gas prices within
each sublist are sorted in descending order. Each sublist
represents a priority group, where transactions within the
same priority group are sorted by gas price. If there are
no more than four sublists of gas prices (local, retracted,
normal, penalized), we classify the block as a “Parity
default” block, otherwise, as “unknown”.

Because both Parity and Geth sort transactions by
default by gas price, it is difficult to identify which client
a miner uses. Moreover, our heuristics may misclassify
blocks as being ordered using gas price instead of Parity’s
default strategy. A miner could have no local transactions
for the block, and all transactions are thus ordered by gas
price. The number of blocks classified as Parity default
should, therefore, be regarded as a lower bound. We
leave it for future work to develop a more precise client
fingerprinting strategy.

A. Miner Transaction Ordering Results
Our results (cf. Table V and Table IV suggest that

roughly 79% of the miners order transactions based on
the gas price, thus likely following Geth’s strategy, and
16% order their transaction after Parity’s default strat-
egy. These results are consistent with the client usage
distribution. We find that 2% of the blocks are empty.
3% of the miners follow an unknown ordering method.
We can conclude that to position a transaction before or
after a target transaction, it is, with a probability of 79%,
sufficient to pay a higher (+1 Wei) or lower gas price
(−1 Wei) — assuming the absence of other front-running
adversaries. If two transactions pay the same gas price,
according to their source code, Parity and Geth include
the transactions after the FIFO principle.

Overall, we find that most miners (c. 79%) order trans-
actions based on the gas price. The dominance of this
transaction order aids an adversary because it makes it
more likely for an adversary that they can control the
placement of their transactions in a block by tweaking the
gas price they offer for each transaction.

B. Gas Price Distribution
We investigate the gas prices for each transaction over

189, 951, 899 transactions included in blocks 6, 627, 917
until block 9M (388 days of data). A gas price of 0 ETH
might indicate that the transaction belonged to the miner.
We find that a transaction has an average gas price of
17.2 ± 10520.1 GWei. The median gas price is 10 Gwei
and the most frequently used gas price is 20 Gwei with
23, 759, 990 transactions (12.5%).

VII. Multiple Adversaries

Our prior analysis only considers the case of a sin-
gle adversary. In this section, we analyze the possible
implications of multiple attackers on the feasibility and
profitability of sandwich attacks through simulations.

437

Transaction Ordering Strategy

Miner Address Empty Gas Price Parity Default Unknown Total Blocks

0xea674fdde714fd979de3edf0f56aa9716b898ec8 9,434 400,546 171,428 23,254 604,662
0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c 16,329 423,103 93,903 35,348 568,683
0x829bd824b016326a401d083b33d092293333a830 7,727 275,013 1,900 20 284,660
0x52bc44d5378309ee2abf1539bf71de1b7d7be3b5 259 210,061 59,141 369 269,830
0xb2930b35844a230f00e51431acae96fe543a0347 0 110,079 19,271 125 129,475
0x04668ec2f57cc15c381b461b9fedab5d451c8f7f 7,130 42,405 257 0 49,792
0x2a65aca4d5fc5b5c859090a6c34d164135398226 1,021 25,569 10,892 251 37,733
0x2a5994b501e6a560e727b6c2de5d856396aadd38 1,170 31,543 5 0 32,718
0x005e288d713a5fb3d7c9cf1b43810a98688c7223 1,097 27,926 30 0 29,053
0x35f61dfb08ada13eba64bf156b80df3d5b3a738d 435 28,214 68 0 28,717

TABLE IV: Classification of the top 10 miners in Ethereum, in terms of the number of blocks mined between blocks
6, 627, 917 until 9M (388 days). We see that miners seem to switch among strategies. Moreover, 4 out of the ten miners
always seem to follow a known strategy. They either order their transactions by gas price or by using Parity’s default
strategy. We also note that the address 0xb293..0347 is the sole miner who did not mine any empty blocks.

Strategy Number of Blocks Ratio

Empty Block 55, 545 0.0234
Order per Gas Price 1, 862, 800 0.7853
Order per Parity Default 384, 150 0.1620
Unknown Ordering 69, 589 0.0293

Total 2, 372, 084 1.0000

TABLE V: Miner transaction ordering methodology be-
tween blocks 6, 627, 917 and 9M (388 days).

A. Extended Threat Model
We extend our threat model from Section III, to account

for additional attackers. For simplicity, we assume that all
adversaries have access to the same financial resources,
internet connection, latency, and computational power.
We identify the following key parameters that impact the
outcome of the simulated game:
Number of Attackers: Intuitively, the more adversaries

are attacking a victim transaction TV , the harder this
endeavor becomes for each attacker. In the following,
we consider 2, 5, and 10 adversaries, which simulta-
neously attack a TV .

Attacker Strategy: Previous work [21] suggests two
transaction fee bidding strategies, namely an adaptive
(reactive counter-bidding) and a non-adaptive (blind
raising) adversarial strategy. We assume that all ad-
versaries follow the reactive counter-bidding strategy,
i.e. an adversary emits a higher transaction fee bid
once the adversary observes a competing transaction.
This strategy is not necessarily optimal, but it may
estimate a lower bound for the sandwich attack’s
front-running transaction cost.

We assume all adversaries are rational and attack with the
parameters determined by the strategy from Section V, i.e.
each adversary attempts to maximize its profit by fully
exploiting the victim transaction’s allowed slippage.

For a two-player game, we show in Table VI, the
possible transaction permutations after the adversarial
transactions are mined. We show that the adversary who

manages to execute the first front-running transaction
successfully “wins” the sandwich attack. This is because
the victim transaction fails if both A and O execute
the sandwich attack. If the other adversary is irrational
and insists to execute the attack (by e.g. disregarding
slippage protections), both adversaries lose, because both
adversarial front-running transactions fail (e.g. TA1 3, TO1
3, TV 7, TO2 3, TA2 3).

B. Extended System Model
a) Network Layer: The speed at which an ad-

versarial transaction propagates within the blockchain
P2P network influences the number of reactive counter-
bids it receives and the time the transaction is mined.
Related works have extensively studied the asynchronous
nature of blockchain P2P propagation [24], [22], [29], [28].
The propagation is affected by several factors, such as
the network topology, number of nodes, internet latency,
bandwidth, and network congestion, etc. In our work, we
assume that the adversary directly establishes a point-
to-point connection with the miner and the victim. Our
study thereby abstracts away the number of nodes in
the network, the network topology, intermediate devices
(replay nodes, routes, and switches) and TCP congestion
control. Equation 5 shows how we approximate transaction
propagation duration.

Propagation Duration = Transaction Size
Bandwidth +Latency (5)

To determine the distribution of transaction sizes, we
crawl raw transactions sent to the Uniswap DAI market
over 100, 000 consecutive blocks, starting from block 9M.
Our measurements suggest a mean transaction size of
426.27 ± 68.94 Bytes, which we use as parameters for
an assumed normal distribution of the adversarial and
victims’ transaction sizes. For the latency and bandwidth
distribution, we take the mean percentile statistics [37],
[28] and apply linear interpolation to estimate the under-
lying cumulative probability distribution (cf. Table VII).

438

Transaction Execution Order (left to right) Winner Reward for Attacker A Reward for Attacker O

TA1 3 TO1 7 TV 3 TO2 7 TA2 3 A Revenue− Fee(TA1)− Fee(TA2) −Fee(TO1)− Fee(TO2)

TA1 3 TO1 7 TV 3 TA2 3 TO2 7 A Revenue− Fee(TA1)− Fee(TA2) −Fee(TO1)− Fee(TO2)

TO1 3 TA1 7 TV 3 TA2 7 TO2 3 O −Fee(TA1)− Fee(TA2) Revenue− Fee(TO1)− Fee(TO2)

TO1 3 TA1 7 TV 3 TO2 3 TA2 7 O −Fee(TA1)− Fee(TA2) Revenue− Fee(TO1)− Fee(TO2)

TABLE VI: Adversarial payoff for a two player game. Under the assumption that both players A and O are rational,
A “wins” the game if the front-running transaction TA1 is placed in front of TO1, regardless of the position of the
back-running transaction. A transaction that succeeds is denoted by 3, while a transaction that fails, is denoted by 7.

Pct % Latency Provisioned Bandwidth
[37] [28] Model [28] Model

10 99 92 95.5 3.4 3.4
20 116 - 116 - 6.8
33 151 125 138 11.2 11.2
50 208 152 180 29.4 29.4
67 231 200 216 68.3 68.3
80 247 - 247 - 111.3
90 285 276 281 144.4 144.4

mean 209 171 181 55.0 52.8
std. 157 76 62 58.8 50.4

TABLE VII: Latency and bandwidth statistics from our
model based on previous studies [37], [28].

b) Transaction Fees: The transaction gas price,
together with the degree of blockchain transaction conges-
tion (i.e. competing transactions that seek to be mined),
influences the pace at which a transaction is mined. In
our simulations, we sample the gas price of the victim
transaction from a normal distribution with a mean of
(8.76±61.18 GWei), measured at the Uniswap DAI market
from block 9M to 9.1M. We assume that the victim
pays a sufficient transaction fee for its transaction to be
mined in the next block. Empirical data suggests that
the Ethereum average block interval time is 13.5 ± 0.12
seconds [13]. Therefore, we sample the duration of the
victim’s transaction in the mempool from a uniform dis-
tribution between 0 to 30 seconds. When the network
is congested, transactions on Ethereum may stay in the
mempool for longer than 30 seconds, sometimes even tens
of minutes [13]. However, we avoid presenting our analysis
on longer pending duration, as our simulation results (cf.
Figure 11 and Figure 14) show that in the case of multiple
players, the adversarial transaction fee at 30 seconds is
likely to render the attack unprofitable.

c) Miner: We assume the miner order transactions
with descending gas prices to maximize their revenue (cf.
Section VI). Besides, the miners configure a price bump
percentage of 10% to replace an existing transaction from
the mempool. At the time of writing, Geth (used by 78.3%
of the clients) configures price bump percentage to 10%,
while Parity sets 12.5%.

C. Simulation Results
Figure 11 shows the expected profit of an adversarial liq-

uidity taker (cf. Section IV) given 2, 5, and 10 adversaries,

on the Uniswap DAI market at block 9M. The slippage
of the victim transaction is fixed at 0.5%. The minimum
profitable victim input is 14.75 ETH (2, 197.30 USD).

We visualize the line where the expected revenue breaks
even with simulated transaction costs. The transaction
cost is calculated as the simulated gas price (cf. Figure 12)
times the total gas consumed by the adversarial transac-
tion. The gas consumption is randomly sampled from a
normal distribution with mean at 85, 488± 34, 782 (taken
from the Uniswap DAI market average gas consumption
from block 9M to 9.1M). We observe that the break-even
line grows exponentially until the victim transaction is
mined (which is in line with the assumption of a 10%
increase for each transaction price increase). We observe
that the more adversaries, the more competitive the attack
appears. For instance, our simulation suggests that the
sandwich attack is not profitable after the victim transac-
tion remained pending on the P2P network for 27.7, 20.3,
16.3 seconds, given 2, 5 and 10 adversaries respectively,
when the victim V transacts 20 ETH for DAI. We refer
the interested reader to Figure 14 for a visualization of our
simulation when multiple providers attack a taker.

Our results suggest that having multiple attackers does,
in expectation, divide the total revenue among the adver-
saries, minus the transaction fee overhead. Specifically, we
find that the presence of 2, 5 and 10 attackers respectively
reduce the expected profitability of the attack by 51.0%,
81.4% and 91.5% (given the victim transacts 20 ETH to
DAI on Uniswap with a transaction pending on the P2P
layer for 10 seconds before being mined). Note that if the
blockchain is congested (i.e. TV remains pending for more
than 15 seconds), we observe that the break-even of the
attacker becomes harder to attain.

VIII. Related Work
Besides AMM DEX, other types of decentralised ex-

changes exist: limit order book based [5], [43], [39], auc-
tions [23], trusted hardware [12], payment channel [42].
Front-running, and high frequency trading is related to
the thoroughly studied problem of rushing adversaries to
double-spend not yet mined blockchain transactions [35].
Strategically placed and malicious blockchain network
nodes may control when and if miners receive transac-
tions, which can affect the time at which a transaction
is executed within the blockchain [44], [32], [30], [31].

439

(a) Two liquidity taker adversaries (b) Five liquidity taker adversaries (c) Ten liquidity taker adversaries

Fig. 11: Simulated sandwich attack by 2, 5 and 10 competing adversarial liquidity taker on a taker (Uniswap, block
9M, 0.3% fees, 0.5% unexpected slippage).

Fig. 12: The simulated gas price of the “winning” transac-
tion when 2, 5 or 10 adversaries are performing a reactive
counter-bidding attack. Each experiment is run 100, 000
times. We visualize the 95% confidence interval.

The cryptographic literature captures front-running by
allowing a “rushing adversary” to interact with a pro-
tocol [11]. The (financial) high-frequency trading (HFT)
literature [7], [47] has also explored many trading strate-
gies and their economic impact, such as arbitrage, news
reaction strategies etc in traditional markets. Most of the
traditional market strategies are also applicable to AMM
and other decentralized exchanges [21], [8]. Daian et al. [21]
in particular, introduced the concept of gas price auctions
(PGA) among trading bots as well as the concept of
miner extractable value (MEV). Previous studies [10] also
suggest that HFT performance is strongly associated with
latency and execution speed. Multiple forms of malpractice
have been discovered on financial exchanges. Besides the
traditional market manipulation techniques [34] (such as
cornering, front-running, and pump-and-dump schemes),
previous works [41] have also studied new techniques
such as spoofing, pinging and mass misinformation, which

leverage modern technologies such as social media and
artificial intelligence. Such techniques may even be used
to trick HFT algorithms [9]. To counterbalance this inher-
ent trust, regulators conduct periodic and costly manual
audits of banks, brokers, and exchanges to unveil potential
misbehavior. This is a challenging task on DEX, given
weak identities, and missing regulations.

IX. Conclusion
In this paper, we have presented two versions of a sand-

wich attack, made possible by the deterministic nature
of an AMM DEX in combination with the time delay
inherent on on-chain exchanges. While the transparency
of DEXs is desirable, it can, however, put users assets
at a security risk and allow both liquidity providers and
liquidity takers to exploit unknowing traders through a
combination of front and back-running. Fixing such front-
running is not trivial because the smaller the allowed
slippage set by a trader, the more likely the trade fails.
Cryptography-based defenses moreover affect the usability
of the AMM DEXes due to multiple rounds of interactions
or trusted off-chain components (cf. Appendix C).

We show how under multiple competing adversaries,
sandwich attacks may still remain profitable. Our work,
sheds light on a dilemma facing DEXs: if the default
slippage is set too low, the DEX is not scalable (i.e. only
supports few trades per block), if the default slippage is too
high, adversaries can profit. We hope that this work draws
attention to this unsolved issue and engenders future work
on open, secure and decentralized finance.

Acknowledgments
We very much thank the anonymous reviewers and

Nicolas Christin for the thorough reviews and helpful
suggestions that significantly strengthened the paper.

440

References
[1] Balancer Exchange. https://balancer.finance/whitepaper/.
[2] Etherum improvement proposal 1014: Skinny create2, 2018. ac-

cessed 26 May, 2020, https://eips.ethereum.org/EIPS/eip-1014.
[3] Blockchain Transparency Report, 2019.
[4] Implementing Ethereum trading front-runs on the Bancor ex-

change in Python, 2019.
[5] Kyber: An on-chain liquidity protocol. Technical report, Kyber

Network, April 2019.
[6] NASDAQ Glossary, 2019.
[7] James J Angel and Douglas McCabe. Fairness in financial mar-

kets: The case of high frequency trading. Journal of Business
Ethics, 112(4):585–595, 2013.

[8] Guillermo Angeris, Hsien-Tang Kao, Rei Chiang, Charlie Noyes,
and Tarun Chitra. An analysis of uniswap markets. arXiv
preprint arXiv:1911.03380, 2019.

[9] Jakob Arnoldi. Computer algorithms, market manipulation
and the institutionalization of high frequency trading. Theory,
Culture & Society, 33(1):29–52, 2016.

[10] Matthew Baron, Jonathan Brogaard, Björn Hagströmer, and
Andrei Kirilenko. Risk and return in high-frequency trading.
Journal of Financial and Quantitative Analysis, 54(3):993–
1024, 2019.

[11] Donald Beaver and Stuart Haber. Cryptographic protocols
provably secure against dynamic adversaries. In Workshop on
the Theory and Application of of Cryptographic Techniques,
pages 307–323. Springer, 1992.

[12] Iddo Bentov, Yan Ji, Fan Zhang, Lorenz Breidenbach, Philip
Daian, and Ari Juels. Tesseract: Real-time cryptocurrency
exchange using trusted hardware. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, pages 1521–1538, 2019.

[13] Bitinfocharts. Ethereum block time.
[14] Joseph Bonneau, Edward W Felten, Steven Goldfeder, Joshua A

Kroll, and Arvind Narayanan. Why buy when you can rent?
bribery attacks on bitcoin consensus. 2016.

[15] Joseph Bonneau, Andrew Miller, Jeremy Clark, Arvind
Narayanan, Joshua A Kroll, and Edward W Felten. Sok:
Research perspectives and challenges for bitcoin and cryptocur-
rencies. In Security and Privacy (SP), 2015 IEEE Symposium
on, pages 104–121. IEEE, 2015.

[16] Sean Bowe, Alessandro Chiesa, Matthew Green, Ian Miers,
Pratyush Mishra, and Howard Wu. Zexe: Enabling decentral-
ized private computation. Cryptology ePrint Archive, Report
2018/962, 2018. https://eprint.iacr.org/2018/962.

[17] Lorenz Breindenbach, Phil Daian, Florian Tramèr, and Ari
Juels. Enter the hydra: Towards principled bug bounties and
exploit-resistant smart contracts. In 27th USENIX Security
Symposium (USENIX Security 18), pages 1335–1352, 2018.

[18] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan
Boneh. Zether: Towards privacy in a smart contract world.
IACR Cryptol. ePrint Arch., 2019:191, 2019.

[19] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas
Hynes, Noah Johnson, Ari Juels, Andrew Miller, and Dawn
Song. Ekiden: A platform for confidentiality-preserving, trust-
worthy, and performant smart contracts. In 2019 IEEE Eu-
ropean Symposium on Security and Privacy (EuroS&P), pages
185–200. IEEE, 2019.

[20] Securities Commission and Exchange. SEC Enforcement Action
Against EtherDelta. Technical report.

[21] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan
Zhao, Iddo Bentov, Lorenz Breidenbach, and Ari Juels. Flash
Boys 2.0: Frontrunning, Transaction Reordering, and Consen-
sus Instability in Decentralized Exchanges. arXiv preprint
arXiv:1904.05234, 2019.

[22] Christian Decker and Roger Wattenhofer. Information propa-
gation in the bitcoin network. In Conference on Peer-to-Peer
Computing, pages 1–10, 2013.

[23] DutchX, July 2019. accessed 12 November, 2019, https://
github.com/gnosis/dx-docs.

[24] Oğuzhan Ersoy, Zhijie Ren, Zekeriya Erkin, and Reginald L La-
gendijk. Transaction propagation on permissionless blockchains:
incentive and routing mechanisms. In 2018 Crypto Valley

Conference on Blockchain Technology (CVCBT), pages 20–30.
IEEE, 2018.

[25] Shayan Eskandari, Seyedehmahsa Moosavi, and Jeremy
Clark. Sok: Transparent dishonesty: Front-running attacks
on blockchain. In Andrea Bracciali, Jeremy Clark, Federico
Pintore, Peter B. Rønne, and Massimiliano Sala, editors,
Financial Cryptography and Data Security, pages 170–189,
Cham, 2020. Springer International Publishing.

[26] Prastudy Fauzi, Sarah Meiklejohn, Rebekah Mercer, and Clau-
dio Orlandi. Quisquis: A new design for anonymous cryptocur-
rencies. 11921:649–678, 2019.

[27] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bit-
coin backbone protocol: Analysis and applications. In Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, pages 281–310. Springer, 2015.

[28] Adem Efe Gencer, Soumya Basu, Ittay Eyal, Robbert Van
Renesse, and Emin Gün Sirer. Decentralization in bitcoin and
ethereum networks. arXiv preprint arXiv:1801.03998, 2018.

[29] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios
Glykantzis, Hubert Ritzdorf, and Srdjan Capkun. On the
security and performance of proof of work blockchains. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, pages 3–16. ACM, 2016.

[30] Arthur Gervais, Hubert Ritzdorf, Ghassan O Karame, and
Srdjan Capkun. Tampering with the delivery of blocks and
transactions in bitcoin. In Conference on Computer and Com-
munications Security, pages 692–705. ACM, 2015.

[31] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Gold-
berg. Eclipse attacks on bitcoin’s peer-to-peer network. In
24th {USENIX} Security Symposium ({USENIX} Security 15),
pages 129–144, 2015.

[32] Sebastian Henningsen, Daniel Teunis, Martin Florian, and Björn
Scheuermann. Eclipsing ethereum peers with false friends.
In 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW), pages 300–309. IEEE, 2019.

[33] Eyal Hertzog, Guy Benartzi, and Galia Benartzi. Bancor
protocol. 2017.

[34] Robert A Jarrow. Market manipulation, bubbles, corners, and
short squeezes. Journal of financial and Quantitative Analysis,
27(3):311–336, 1992.

[35] Ghassan O Karame, Elli Androulaki, and Srdjan Capkun.
Double-spending fast payments in bitcoin. In Proceedings of
the 2012 ACM conference on Computer and communications
security, pages 906–917. ACM, 2012.

[36] Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels.
Order-fairness for byzantine consensus. Cryptology ePrint
Archive, Report 2020/269, 2020. https://eprint.iacr.org/2020/
269.

[37] Seoung Kyun Kim, Zane Ma, Siddharth Murali, Joshua Ma-
son, Andrew Miller, and Michael Bailey. Measuring Ethereum
network peers. In Proceedings of the Internet Measurement
Conference 2018, pages 91–104. ACM, 2018.

[38] A Kosba, A Miller, E Shi, Z Wen, and C Papamanthou. Hawk:
The Blockchain Model of Cryptography and Privacy-Preserving
Smart Contracts. In IEEE Symposium on Security and Privacy,
pages 839–858, 2016.

[39] Aurora Labs. Idex: A real-time and high-throughput ethereum
smart contract exchange. Technical report, January 2019.

[40] Kevin Liao and Jonathan Katz. Incentivizing blockchain forks
via whale transactions. In International Conference on Finan-
cial Cryptography and Data Security, pages 264–279. Springer,
2017.

[41] Tom CW Lin. The new market manipulation. Emory LJ,
66:1253, 2016.

[42] Xuan Luo, Wei Cai, Zehua Wang, Xiuhua Li, and CM Victor
Leung. A payment channel based hybrid decentralized ethereum
token exchange. In 2019 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pages 48–49. IEEE,
2019.

[43] MakerDao. Intro to the oasisdex protocol, September
2019. accessed 12 November, 2019, https://github.com/
makerdao/developerguides/blob/master/Oasis/intro-to-oasis/
intro-to-oasis-maker-otc.md.

441

[44] Yuval Marcus, Ethan Heilman, and Sharon Goldberg. Low-
resource eclipse attacks on ethereum’s peer-to-peer network.
IACR Cryptology ePrint Archive, 2018(236), 2018.

[45] Vasilios Mavroudis and Hayden Melton. Libra: Fair Order-
Matching for Electronic Financial Exchanges. arXiv preprint
arXiv:1910.00321, 2019.

[46] Patrick McCorry, Alexander Hicks, and Sarah Meiklejohn.
Smart contracts for bribing miners. In International Conference
on Financial Cryptography and Data Security, pages 3–18.
Springer, 2018.

[47] Albert J Menkveld. The economics of high-frequency trading:
Taking stock. Annual Review of Financial Economics, 8:1–24,
2016.

[48] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[49] Kaihua Qin, Liyi Zhou, Benjamin Livshits, and Arthur Gervais.
Attacking the defi ecosystem with flash loans for fun and profit.
arXiv preprint arXiv:2003.03810, 2020.

[50] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew
Green, Ian Miers, Eran Tromer, and Madars Virza. Zerocash:
Decentralized anonymous payments from bitcoin. In Security
and Privacy (SP), 2014 IEEE Symposium on, pages 459–474.
IEEE, 2014.

[51] Slippage. Slippage - Investopedia, 2019.
[52] Uniswap.io, 2018. accessed 12 November, 2019, https://docs.

uniswap.io/.
[53] Gavin Wood. Ethereum: A secure decentralised generalised

transaction ledger. Ethereum Project Yellow Paper, 2014.
[54] Jiahua Xu and Benjamin Livshits. The anatomy of a cryp-

tocurrency pump-and-dump scheme. In 28th USENIX Security
Symposium (USENIX Security 19), pages 1609–1625, 2019.

Appendix A
Sandwich Attack Details

In what follows, we assume that a victim V sends
a transaction TV to trade δVx of X for δVy of Y . The
underlying AMM market starts with the initials state
s0 = (x0, y0). Eq. 6 shows the transition in AMM state
after applying TV without unexpected slippage.

s0
TransactXForY(δV

x)−−−−−−−−−−−−→ (x∗, y∗), δVy = y0 − y∗ (6)

x∗ = x0 + δVx , y∗ = x0y0

x0 + δVx − cx(s0, δVx) + cy(s0, δ
V
y)
(7)

A. Liquidity Taker Attacks Taker
We assume that the adversary A has an initial state

(δA1
x , 0), and attacks by emitting TA1 and TA2.

TA1: a front-running transaction, exchanges δA1
x for δA1

y of
Y and is planned to execute before TV (e.g. by paying
a higher transaction fee than TV). This results in the
state changes of Equation 8 and 9.

s0
TransactXForY(δA1

x)−−−−−−−−−−−−−→ s1 = (x1, y1), δA1
y = y0 − y1

(8)

x1 = x0 + δA1
x , y1 = x0y0

x1 − cx(s0, δA1
x) + cy(s0, δ

A1
x)
(9)

TV : a victim transaction modifies the state as per Equa-
tion 10 and 11.

s1
TransactXForY(δV

x)−−−−−−−−−−−−→ s2 = (x2, y2), δVy = y1 − y2
(10)

x2 = x1 + δVx , y2 = x1y1

x2 − cx(s1, δVx) + cy(s1, δ
V
x)
(11)

TA2: a back-running transaction exchanges δA2
y = δA1

y −
cy(s2, δ

A2
y) for oA2

x of X and is planned to execute
after TV (e.g. by paying a lower transaction fee than
TV). TA2 effectively closes the adversary’s position
that was opened by TA1 (cf. Equation 12 and 13).

s2
TransactXForY(δA2

y)
−−−−−−−−−−−−−→ s3 = (x3, y3), δA2

x = x2 − x3
(12)

x3 = x2y2

y3 − cy(s2, δA2
y) + cx(s0, δ

A2
y), y3 = y2 + δA2

y

(13)
Transaction TA2 swaps the asset Y from transaction

TA1 in exchange for asset X. The corresponding profit
is determined by comparing the input from TA1 and the
output TA2 of asset X (cf. Equation 14).

profit = δA2
x − δA1

x (14)

After the attack, the state of adversary becomes
(δA2
x , 0). Thus, provided the profit exceeds the costs (e.g.

transaction fees and equipment costs), a rational adversary
would undertake the attack.

B. Liquidity Provider Attacks Taker
We use (xN , yN) to denote the state of an AMM ex-

change at block N ∈ Z, where xN , yN are the amounts of
asset X and Y in the liquidity pool (cf. Definition 1). The
liquidity provider owns a share of L ∈ [0, 1] liquidity if it
deposits δx,N = xN

L
1−L of asset X and δy,N = yN

L
1−L of

asset Y into the liquidity pool. We use ZN (x, y) to denote
the USD value of assets at block N , where x is the amount
of asset X and y is the amount of asset Y . Given two
blockchain blocks m,n, where the respective AMM states
differ, the deposit of zm = Zm(xm L

1−L , ym
L

1−L) at block
m, or zn = Zn(xn L

1−L , yn
L

1−L) at block n both results in
a share of L liquidity in the respective market X/Y . For
the following section, we set zm > zn.

1) Attack Profitability: We proceed by defining prof-
itability for an adversary. Lx, L∗x, Ly, L∗y ∈ [0, 1[denote the
proportion of assets X and Y held by the adversary in the
liquidity pools before and after the attack. Analogously,
xA, xA∗, yA, yA∗ ∈ Z+ denote the amounts of asset X and
Y held by the adversary before and after the attack.

(Lx, Ly, xA, yA) attack−−−−→ (L∗x, L∗y, xA∗, yA∗) (15)

The state transition (cf. Equation 15) is profitable to
the adversary, if the following conditions hold:
• L∗x ≮ Lx, L∗y ≮ Ly, xA∗ ≮ xA, yA∗ ≮ yA, and
• At least one of the following holds:
L∗x > Lx, or L∗y > Ly, or xA∗ > xA, or yA∗ > yA

Let x∗ and y∗ denote the amounts of asset X and Y in
liquidity pools after the attack. The corresponding profit

442

is determined by comparing adversary’s states before and
after the attack (cf. Equation 16, 17, 18).

∆A
x = xA∗ − xA + (L∗x − Lx)x∗ (16)

∆A
y = yA∗ − yA + (L∗y − Ly)y∗ (17)

profit = Z(∆A
x ,∆A

y) (18)

2) Attack Execution: We now consider an adversarial
liquidity provider that owns a share Lxx0, Lyy0 of the
total liquidity pool of a AMM X/Y market. The victim’s
transaction TV transacts asset X for Y . If the adversary
does not front-run TV , the AMM state changes according
to Equation 19, 20. In that case, the adversary A receives
a commission fee c, as stated in Equation 21, 22.

s0
TransactXForY(δV

x)−−−−−−−−−−−−→ s1 = (x1, y1), δVy = y0 − y1 (19)

x1 = x0 + δVx , y1 = x0y0

x1 − cx(s0, δVx) + cy(s0, δ
V
x) (20)

cA,TV
x = L× cx(s0, δ

V
x), cA,TV

y = L× cy(s0, δ
V
x) (21)

(Lx, Ly, xA, yA) −→ (Lx, Ly, xA + cA,TV
x , yA + cA,TV

y) (22)

This liquidity provider attempts to gain a profit through
the following order of transactions.
TA1: a front-running transaction executed before TV (e.g.

by paying a higher transaction fee than TV). TA1 with-
draws (Lxx0, Lyy0) from the liquidity pool (x0, y0)
and results in the state changes of Equation 23 and 24.

s0
RemoveLiquidity(Lxx0,Lyy0)−−−−−−−−−−−−−−−−−−−→ s1 = (x1, y1) (23)

x1 = x0 − Lxx0, y1 = y0 − Lyy0 (24)
TV : a victim’s transaction modifies the state according to

Equation 25 and 26.

s1
TransactXForY(δV

x)−−−−−−−−−−−−→ s2 = (x2, y2), δVy = y1 − y2
(25)

x2 = x1 + δVx , y2 = x1y1

x2 − cx(s1, δVx) + cy(s1, δ
V
x)
(26)

TA2: a back-running transaction executes after TV (e.g.
by paying a lower transaction fee than TV). TA2 adds
back liquidity for the adversary to maintain the same
proportion of overall liquidity (Lx, Ly), modifying the
state according to Equation 27 and 28.

s2
AddLiquidity(Lxx2

1−Lx
,

Lyy2
1−Ly

)
−−−−−−−−−−−−−−−−−→ s3 = (x3, y3) (27)

x3 = x2

1− Lx
, y3 = y2

1− Ly
(28)

TA3: executed after TA2, TA3 rebalances the AMM assets
by converting Y to X, such that the adversary retains
the same amount of asset X as before the attack (i.e.
the adversary holds xA+cA,TV

x after the attack). This

rebalancing process is necessary because the amount
of asset X added to liquidity pool in TA2 exceeds the
amount withdrawn from TA1. TA3 modifies the state
according to the Equations 29, 30 and 31.

s3
TransactXForY(δA3

y)
−−−−−−−−−−−−−→ s4 = (x4, y4), δA3

x = x3 − x4
(29)

x4 = x3y3

y4 − cy(s3, δAy) + cx(s3, δ
A
y), y4 = y3 + δA3

y

(30)

δA3
x = Lxx2

1− Lx
+ cA,TV

x − Lxx0 (31)

The overall state change of this attack is described in
Equation 32. At the end of this attack, the adversary A
has managed to retain L proportion of the total liquidity
as a result of TA2, retains the same total amount of asset
X (as a result of TA3) but increases their holding of asset
Y , generating a profit. Equation 33 yields the profit.

(Lx, Ly, xA, yA) attack−−−−→ (Lx, Ly, xA + cA,TV
x , yA∗) (32)

profit = yA∗ − (yA + cA,TV
y) (33)

Appendix B
Additional Details For Liquidity Provider

Figure 13 quantifies the optimal adversarial revenue by
a liquidity provider, given no other attacks are running.

Figure 14 shows the expected profit of an adversarial
liquidity provider (cf. Section IV) given 2, 5, and 10
adversaries, on the Uniswap DAI market at block 9M.
The victim transaction is fixed with a 0.5% slippage
protection. The minimum profitable victim input with a
single adversary is 27.8 ETH (4, 141.37 USD).

Appendix C
Possible Mitigations

In this section we elaborate on how users could protect
their trades from sandwich attacks, and we discuss possible
AMM design changes to strengthen their resilience.

A. AMM Specific Settings
We identify two primary protection possibilities that

could be adopted given the exsting AMM DEX designs
(such as Uniswap).

1) Allow for Zero Slippage: The simplest protection
for a user, is to not allow its trades to pay any slippage. If
an adversary were to front-run, the user’s trade execution
will fail. The user would not overpay the trade due to
its slippage protection, but the user still is liable to
pay blockchain transaction fees. This protection solution
moreover is not scalable in terms of trades per second, as
it would limit the number of trades an AMM DEX can
execute to 1 transaction per blockchain block.

443

Fig. 13: Optimal adversarial revenue under a sandwich
attack by a liquidity provider, when V sells assets for ETH
on five Uniswap exchanges (0.3% fee, adversarial break-
even at 0.01 ETH).

2) Limit Liquidity Taker’s Input: Recall that sand-
wich attacks are only profitable if the victim’s input
amount is above a threshold, which we named it as the
minimum profitable victim input (cf. Section IV). This
threshold depends on both the total liquidity of the market
and the AMM DEX’s design and configuration (pricing
formula, fees and etc.). One possible protection is to
disable transactions above the minimum profitable victim
input in the smart contracts.

B. Cryptography-based Defences
In the following we discuss possible cryptography based

defence techniques against sandwich attacks.
1) Multi-Party Computation (MPC): The sandwich

attack is possible because the current consensus protocol
used in Ethereum fails to protect the actual ordering of
the transactions from adversarial manipulations (i.e. fee
manipulations). Thus, it is tempting for one to design an
AMM DEX that has a authorized set of “trusted” nodes
to faithfully sequence actions from liquidity takers before
getting the actions executed by the smart contract. This
proposal, however, makes AMM DEX like Uniswap no
longer permissionless, and the authorized set can again
manipulate the order of the transactions. To address the
later, Kelkar et al. [36] propose a new set of Byzantine
Consensus protocols, that achieve a fair ordering of re-
ceived transactions. Thus, one can require the authorized
set of nodes to run such protocol to achieve order fairness
among transactions.

2) Commit-and-Reveal Protocols: A commitment
scheme is a two-round protocol that allows one to commit
to chosen values (i.e. function, input) while keeping those
values hidden from others (hiding) during the committing
round, and later during the revealing round, s/he can
decide to reveal the committed value. The commitment
schemes are binding if and only if the party cannot change
the value after committing to it. We briefly discuss the
use of commitment scheme to prevent front-running in the
following.

a) Standard Commit-and-Reveal Protocol: To pre-
vent the sandwich attack in AMM DEX, one can use
commitment schemes to sequence actions of traders dur-
ing committing round and execute actions during re-
vealing round. In particular, during committing round,
traders commit to function calls (i.e. TransactXforY ,
addLiquidity, removeLiquidity) via commitment trans-
actions, and the ordering of function calls is determined
based on the order of commitments while the function calls
are hidden due to the hiding property of a commitment
scheme. In the revealing round, parties can decide to reveal
the function calls, and the AMM DEX will execute the
transactions according to the order of the commitments
appeared in the committing round.

One of the limitations of commit-and-reveal protocol is
its usability, as it requires participants to be aware of both
rounds of the protocol to complete their actions. Another
limitation is that adversary is still able to probabilistically
perform sandwich attack. In particular, because the com-
mitting round is transparent, the adversary can see other
traders’ commitments and commits several transactions
before and after the commitments of honest traders. S/he
can reveal only those transactions that are profitable.

b) Commit-and-Reveal Protocol tailored for the
Ethereum Blockchain: To hide the committing phase from
the adversary, Breidenbach et al. [17] proposed subma-
rine commitments via contract creation in Ethereum (i.e.

444

(a) Two liquidity provider adversaries (b) Five liquidity provider adversaries (c) Ten liquidity provider adversaries

Fig. 14: Simulated sandwich attack by 2, 5 and 10 competing adversarial liquidity provider on a taker (Uniswap, block
9M, 0.3% fees, 0.5% unexpected slippage).

CREATE2 EVM opcode [2]). The essence of this approach is
to hide commitment transaction among newly generated
Ethereum addresses. In particular, a submarine commit-
ment scheme contains the following phases:

Committing Phase: to commit in a submarine com-
mitment scheme, the liquidity taker with address AddrTaker
posts a transaction Tcom that sends some fund, val, to an
address Addrcom. Addrcom is a commitment of the form:

Addrcom = H(AddrAMM-DEX, H(AddrTaker, key), code)
where H(·) is Keccak-256, key is the transaction spe-
cific key to AMM DEX (e.g. a concatenation of action
transactXforY , input δx, and 256-bit randomness r),
and code is the EVM init code of the refund contract that
can send any money received to the AddrAMM-DEX.

Revealing Phase: To reveal, AddrTaker sends to
AddrAMM-DEX, key value key = (action||input||r), the trans-
action data Tcom, the commitBlock (the block number
includes Tcom), and a Merkle-Partricia proof, πTcom which
proves the membership of Tcom in commitBlock. With
commitBlock, πTcom , and Tcom, AddrAMM-DEX verifies that
Tcom occurred in commitBlock. And after learning key,
AddrAMM-DEX can recompute Addrcom, verifies the deposit
balance val, and proceeds with action and input (i.e.
transactXforY (δx)).

Deposit Collection Phase: from code, AddrAMM-DEX
can use CREATE2 opcode to create an instance of the refund
contract at Addrcom and collect $val from Addrcom.

3) Confidential Transactions: Another potential
attempt to mitigate front-running attack is to hide the
details of the transaction sent to AMM DEX by adapting
several techniques [50], [18], [16], [26] for confidential
transactions. However, as pointed out by Eskandari et
al. [25], to prevent front-running, one needs to hide:
(1) The name of the functions (i.e. TransactXforY ,

addLiquidity, removeLiquidity) being invoked
(2) The parameters supplied to the functions (i.e. δx, δy)
(3) The current state of the DEX (i.e. (x, y)).
While systems like Hawk [38] and Ekiden [19] try to
achieve all three properties for arbitrary functions, they
rely on off-chain components (i.e. trusted execution en-
vironment) for maintaining encrypted states and proving
the correctness of state transitions. On the other hand,
a proposal for Ethereum blockchain, Zether [18], tries to
achieve (2, 3) for a specific type of function (i.e. money
transferring). The states in Zether are the ElGamal en-
cryptions of account’s balances. The state transitions can
be made due to the correctness of the non-interactive zero-
knowledge proof (NIZK) system used in their construction
and the (additively) homomorphic properties of Elgamal
encryption.

However, recall that in an AMM DEX, an action like
TransactXforY (δx) requires the contract to send an δy
of asset Y back to the liquidity taker where δy is computed
based on the pricing function f(·) and the current pool’s
state (x, y). Therefore, if one decides to use a system that
relies on NIZK systems like Zether for AMM DEX with
hidden state, the trusted off-chain components are needed
to generate cryptographic proofs from the unencrypted
state to trigger the transferring back function.

Moreover, regardless of the privacy techniques used
for hiding transaction details and pool’s states, we
show that it is impossible to achieve the confiden-
tiality for the third property for a constant product
AMM. In particular, at the initial pool state s =
(x, y), an adversary can issue two consecutive actions,
TransactXforY (δx), TransactXforY (δ′x), and it ob-
tains δy and δ′y determined by the current state (x, y).
The adversary can solve the system of two equations and
two unknown (x, y) to determine the current pool state.

445

		2022-08-24T11:55:55-0400
	Preflight Ticket Signature

