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Abstract—Training machine learning (ML) models typically
involves expensive iterative optimization. Once the model’s final
parameters are released, there is currently no mechanism for the
entity which trained the model to prove that these parameters
were indeed the result of this optimization procedure. Such a
mechanism would support security of ML applications in several
ways. For instance, it would simplify ownership resolution when
multiple parties contest ownership of a specific model. It would
also facilitate the distributed training across untrusted workers
where Byzantine workers might otherwise mount a denial-of-
service by returning incorrect model updates.

In this paper, we remediate this problem by introducing
the concept of proof-of-learning in ML. Inspired by research
on both proof-of-work and verified computations, we observe
how a seminal training algorithm, stochastic gradient descent,
accumulates secret information due to its stochasticity. This
produces a natural construction for a proof-of-learning which
demonstrates that a party has expended the compute require to
obtain a set of model parameters correctly. In particular, our
analyses and experiments show that an adversary seeking to
illegitimately manufacture a proof-of-learning needs to perform
at least as much work than is needed for gradient descent itself.

We also instantiate a concrete proof-of-learning mechanism
in both of the scenarios described above. In model ownership
resolution, it protects the intellectual property of models released
publicly. In distributed training, it preserves availability of the
training procedure. Our empirical evaluation validates that our
proof-of-learning mechanism is robust to variance induced by
the hardware (e.g., ML accelerators) and software stacks.

I. INTRODUCTION

Training machine learning (ML) models is computationally
and memory intensive [1], often requiring hardware accelera-
tion. GPUs [2], TPUs [3], and FPGAs [4] are used to ensure
efficient training. In the status quo, there is no way for an
entity to prove that they have performed the work required
to train a model. This would be of immense utility in at
least two settings. First, once a model is released publicly
intentionally or unintentionally (i.e., it is stolen), the model’s
owner may be interested in proving that they trained the model
as a means to resolve and claim ownership—for instance,
resolving claims related to model stealing attacks [5]–[9].
Second, a model owner may seek to distribute the training [10]
across multiple workers (e.g., virtual machines in a cloud) and
requires guarantees of integrity of the computation performed
by these workers. This would defend against some of the
parties being corrupted accidentally (e.g., due to hardware
failure) or maliciously (e.g., by an adversary which relies on
Byzantine workers to perform denial-of-service attacks [11]).

*Joint lead authors; +joint secondary authors.

In our work, we design a strategy that will allow a party–the
prover–to generate a proof that will allow another party–the
verifier–to verify the correctness of the computation performed
during training. In the case of ML, this translates to the prover
generating a proof to support its claims that it has performed
a specific set of computations required to obtain a set of
model parameters. In the model stealing scenario, the prover
would be the model owner, and the verifier would be a legal
entity resolving ownership disputes. In the distributed learning
scenario, the prover would be one of the workers, and the ver-
ifier the model owner. We name our strategy proof-of-learning
(PoL). Unlike prior efforts related to proofs-of-work [12], [13],
our approach is not aimed at making computation expensive
so as to inhibit denial-of-service attacks.

When developing our concept for PoL, we consider only
the training phase and not the inference phase; the cost of
inference is generally much lower, and there already exist
mechanisms to ensure the integrity of ML inference performed
by another party [14]. In our design, we wish to design a proof
strategy that adds limited overhead to the already computation-
ally intensive process of training. Deep models do not have
closed form solutions, and use variants of gradient descent
as the de-facto choice for training. Additionally, stochastic
gradient-based optimization methods used in deep learning,
like stochastic gradient descent (SGD), update model param-
eters iteratively over long sequences by computing unbiased
estimates of the true gradient [15]. Naturally, this sequence
represents the work performed by the prover in training their
model. We propose that PoL for ML should demonstrate two
properties: (a) the prover performed the necessary optimization
(expending computational resources) to train an ML model,
and (b) these steps were computed correctly, i.e., that we have
integrity of computation.

There has been extensive research in proof systems related
to other applications. Verified computations relates to settings
where outcomes of outsourced computation (such as in client-
server architectures) can be verified [16]–[20]. Theoretical
advances and efficient hardware design have enabled both
smaller proofs and more efficient verification strategies [21],
[22]. The simplest scheme, however, involves duplicated exe-
cution i.e., re-executing the computation performed to verify
the validity of the proof.

Following this intuition, we introduce in a general approach
to obtain a PoL which enables verifying the computation
performed during training (see § V). We then instantiate a
concrete PoL which utilizes the difficulty to invert gradient
descent (see § V). The added advantage here is that operations
involving gradient descent are computed as part of the learning
procedure, and can be used for generating the proof as well. In
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our work, the guarantees sought by the prover are analogous
to those in the verifiable computations literature: given (i) a
(random) distribution to draw the initial model weights from,
(ii) the model’s final weights, and (iii) a dataset, the prover
must provide a sequence of batch indices and intermediate
model updates that, starting from the initialization, one can
replicate the path to the final model weights. This allows a
verifier to recompute any of the steps of gradient descent of
their choosing to confirm the validity of the sequence provided.
This in turn demonstrates that the prover has indeed performed
the computation required to obtain the final parameter values.
However, verification also requires the expensive process of
gradient computation to verify the steps taken, as our proposal
is based on re-execution. To make verification more computa-
tionally affordable, we introduce a heuristic for the verifier to
select only a subset of the pairs of model parameter states to
verify. This allows the verifier to trade-off the confidence of
verification with its cost: if the verifier randomly picks a set
of parameter pairs, then with sufficiently many choices, it can
be confident of the proof’s validity.

There are many sequences that can be obtained from a given
start state to a given final state (owing to the various sources
of stochasticity involved in training). However, through our
theoretical analysis in § VII, we observe that obtaining these
states through conventional training (i.e., moving forward
through the sequence) is more efficient than inverting gradient
descent (i.e., moving backwards through the sequence). Our
analysis shows that inverting gradient descent takes at least
as much work as training. Thus, it is hard for an adversary to
spoof a PoL using such a strategy.

In summary, our contributions are the following:
• In § IV, we formalize the desiderata for a concept of

proof-of-learning, the threat model we operate in, and
introduce a formal protocol between the different actors
involved in generating a PoL.

• In § V, we introduce a general mechanism for PoL based
on the observation that stochastic gradient descent utilized
during training is difficult to invert.

• We analytically prove the correctness of our mechanism
in § VI, and then verify experimentally that it can be
implemented despite hardware and software stochasticity.

• We analyze the security of our proposed mechanism in
§ VII through an analysis of entropy growth in gradient
descent, and evaluate possible spoofing strategies an
adversary may rely on to pass verification.

• Our code is open-sourced at github.com/cleverhans-lab/
Proof-of-Learning.

II. RELATED WORK

A. Proof-of-Work in Cryptography

The concept of proof-of-work (or PoW), where one party
proves to another that it has expended computational resources
towards a computation result, was first introduced by Dwork
and Naor [12]. The concept was motivated as a defense from
denial-of-service (DoS) attacks against email and network
providers. This was the main motivation for many later PoW
functions as well, in which PoW functions force the adversary

to expend significant computational resources, whether CPU or
memory resources, in order to request access to the service. We
revisit this motivation in § IV, but with the perspective of ML
systems in mind. The term PoW itself was later introduced by
Jakobsson and Juels [13]. A key property of this formulation is
that PoW relies largely on the existence of one-way functions
popular in cryptography to establish an asymmetry between
the party doing the computation and the party verifying that
the computation was performed.

In standard two-round PoW protocols, the prover receives a
query including a cryptographic puzzle, frequently involving
or indirectly based on a hashed randomly generated value
or structure computed by the verifier. The prover solves the
computational puzzle and returns the value, which the verifier
either accepts as a solution to the problem or rejects. Generally,
the process of solving the computational problem by the prover
depends, directly or indirectly, on computation of a pre-image
of a hashed random number generated and computed by the
verifier, a known hard and expensive problem.

Dwork and Naor [12] enumerated several PoW strategies
predicated on integer square root module large prime problem:
e.g., the Fiat Shamir signature scheme and the Ong-Schnorr-
Shamir signature scheme. Since then, many methods have
been proposed for PoW functions. These initial PoW functions
constituted CPU-bound functions and later memory-bound
PoW functions gradually grew out of the field as well. Among
PoW functions are partial hash inversion [13], moderately
hard memory-bound functions [23], guided tour puzzle [24],
Diffie-Helman problem-based [25], Merkle-tree-based [26],
Hokkaido [27] and Cuckoo cycle [28].

Recently, systems that incorporate PoW have also been
motivated by or used for various cryptocurrencies. Many
current cryptocurrencies, such as Bitcoin and HashCash [29],
[30], employ systems based on PoW algorithms. Blockchain
systems in cryptocurrency utilize a modified setup of the typi-
cal setting and actors in PoW frameworks for DoS attacks. In
Bitcoin, miners competitively attempt to secure a payment as
follows. First, they collect unverified Bitcoin transactions from
coin dealers in the Bitcoin network. Second, they combine
these transactions with other data to form a block which is only
accepted once the miner has found a nonce number hashing
to a number in the block with enough leading zeros.

B. Security in ML Systems

Most work on security in the context of ML [31]–[33] has
focused on the integrity of model predictions [34]–[36] or on
providing guarantees of privacy to the training data [37]. Our
efforts on developing a proof-of-learning (or PoL) concept for
the training algorithm are instead, as illustrated by both of the
use cases discussed in § I, most relevant to two previous lines
of work: the first is model stealing, the second is Byzantine-
tolerant distributed learning.

a) Model Ownership & Extraction: The intellectual
property of model owners can be infringed upon by an
adversary using model extraction attacks [5]. Most extraction
attacks targeting DNNs are learning-based: the adversary col-
lects a substitute dataset (i.e., consists of data from a similar
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distribution or synthetic data), queries the victim model to
obtain labels, and then re-trains a surrogate model that is
functionally similar to the victim [5]–[9]. Attacks may also
use side-channel information [38].

There are currently two types of defenses against extraction
attacks: (a) restricting information released for each query
answered by the model [5], [39], and (b) assessing if a
suspected model is indeed a stolen copy of a victim model. The
latter can be done in two ways. If the model was watermarked,
one can query for the corresponding triggers [40]–[42]. If
that is not the case, one can use the training data directly to
perform dataset inference [43]. However, decreasing extrac-
tion efficiency by restricting information returned by queries
comes at the expense of the model’s utility [5], [44]–[46].
Similarly, watermarking trades utility with the robustness of
the watermark while additionally requiring the modification of
the training process [40], [47]–[50]. Thus, watermarks may be
removed from a deployed model or made ineffective [51]–[53].
In contrast, our work does not impact training and produces
a PoL which is immutable (see § IV), we also do not restrict
information released at inference time.

C. Byzantine-tolerant distributed ML

In the second scenario we described in § I, we consider
a setting where a model owner wishes to distribute the
compute required to train a model across a pool of potentially
untrusted workers [54]. Each of these workers receives a few
batches of training data, performs some gradient descent steps,
and then regularly synchronizes parameters with the model
owner. In this distributed setting, we note that prior work has
studied training algorithms which are robust to the presence of
Byzantine [55] workers: such workers may behave arbitrarily
and return corrupted model updates to the model owner [11].
As we will introduce in § IV, verifiable PoL forms a defense
against DoS attacks in this context. In addition, our PoL may
be used to provide integrity guarantees by confirming the
correctness of computations performed by the workers.

III. BACKGROUND ON MACHINE LEARNING

Throughout our work, we define [n] := {1, . . . , n}. Con-
sider a data distribution D of the form X×Y , such that X is the
space of inputs, and Y is the space of outputs. An ML model
is a parameterized function of the form fW : X → Y , where
W denotes the model parameters. For the purposes of this
work, we assume that these models are deep learning models
which requires additional terminology.

1) Model Architecture: A deep neural network is a function
comprised of many layers, each performing a linear-
transformation on their input with optional non-linear
activations [56]. The structure of these layers, e.g., the
number of neurons and weights, the number of layers l,
and activations is termed the model architecture.

2) Model Weights: The parameters of the deep learning
model are commonly called its weights. Each layer i ∈ [l]
is comprised of learnable weights denoted wi, including
the additional bias term. Collectively, we denote the set
of per-layer weights {w1, · · · , wl} as W .

3) Random Initialization: Before training, each weight vec-
tor wi ∈ W requires an initial value. These values are
often randomly assigned by sampling from a distribution.
Values are sampled from a zero-centered uniform or
Gaussian distribution whose standard deviation is param-
eterized by either the number of neurons in the input
layer, the output layer, or both [57]–[59].

The final set of parameters are learned by training the ML
model using empirical risk minimization [60]. A training
dataset is sampled from the data distribution Dtr ∼ D. The
expected risk of a model on this dataset is then quantified
using a loss: a real valued function L(fW (x), y) that is the
objective for minimization. The loss characterizes the discrep-
ancy between the model’s prediction fW (x) and the ground
truth y. A common example is the cross-entropy loss [61].

Training occurs in an iterative manner by continuously
sampling a (mini)batch of training data, without replacement,
from Dtr; each such iteration is called a step1. For each step,
stochastic gradient descent [62] updates the model’s parame-
ters to minimize the empirical risk by taking the gradient of
the loss with respect to the parameters. Thus, at each step
i ∈ [T ], we obtain a new set of weights Wi as follows:

Wi = Wi−1 − η · ∇Wi−1
, L̂i−1 (1)

where η is the learning rate hyperparameter, and L̂i−1 =
1
m

∑
(x,y)∼Db

L(fWi−1
(x), y) denotes the average loss com-

puted over a random batch Db ⊆ Dtr of size m. An epoch is
one full pass through Dtr which contains S steps. The training
process overall has a total of E epochs. Thus, assuming the
size m of a batch is fixed during training, training the model
requires a total of T = E · S steps.

IV. FORMALIZING POL

We wish to show that one can verify the integrity of the
training procedure used to obtain an ML model. This in turn
can also be used to show proof of ownership. We focus on
training because it induces the largest computational costs.
We note that there is prior work in verifiable computing
investigating inference-time computation but that these were
not designed for training algorithms and require modifying the
algorithm to accommodate cryptographic primitives such as an
interactive proof system [63]–[65]. Instead, we formulate our
approach such that no changes need to be made to the model
architecture and training algorithm beyond additional logging.
This enables a seamless integration for model owners to create
PoL and make claims of having trained a model. Our approach
for PoL is naturally extended to two scenarios:

1) A party can claim ownership of a trained model fWT
.

2) An entity outsources computation to some client (as in
distributed learning), then the results returned by the
client (i.e., f cWT

) can be trusted.2

The party performing the computation is referred to as the
prover T . To verify the integrity of its computation (either
for ownership resolution or in the outsourced computation

1One step corresponds to processing one batch of data.
2The superscript c denotes a computation executed locally at a client.
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scenario), T generates a certificate, henceforth referred to as
the Proof-of-Learning (or PoL) performed to obtain fWT

.3

We denote such a PoL as P(T , fWT
). When the integrity of

the computation (ergo model ownership) is under question,
an honest and trusted verifier V analyzes P(T , fWT

) and
determines its validity (i.e., a valid PoL implies that T
performed the computation required to obtain fWT

). Formally,
a valid PoL is one where each component is well-formed (refer
§ IV-C), and V can reconstruct the PoL in its entirety. An
adversary A is one who wishes to subvert this process.

A. Threat Model
Dishonest spoofing is any strategy that requires lesser

computational expenditure than that made by the prover in
generating the proof; we formally define this term in § VII-A.
The primary scenario we wish to mitigate against is the ability
of an adversary A to efficiently spoof P(T , fWT

), i.e., we
want to verify computation to train the model on the part of
the prover. By spoofing, A can claim to have performed the
computation required (to produce fWT

, for example). Since
A has not expended (significant) computational resources nor
trained the model to be able to produce fWT

, they are unlikely
to have P(T , fWT

). Thus, A tries to create P(A, fWT
) that

passes verification, even if that PoL is not valid. We consider
the following scenarios for spoofing:
(a) Retraining-based Spoofing: A aims to create the exact

same PoL for fWT
as T i.e., P(A, fWT

) = P(T , fWT
).

(b) Stochastic Spoofing: A aims to create a valid PoL for
fWT

, but this may not be the same as T ’s PoL i.e.,
P(A, fWT

) 6= P(T , fWT
).

(c) Structurally Correct Spoofing: A aims to create an invalid
PoL for fWT

but such a PoL passes verification for fWT
.

(d) Distillation-based Spoofing: A aims to create a valid PoL
using a modified version of fWT

(say f ) i.e., P(A, f) 6=
P(T , fWT

). Note that the adversarial approximation of
the model f(≈ fWT

) has the same test-time performance.
In our security analysis (see § VII), we comment on the

efficiency of the above spoofing strategies; for the adversary,
it is desirable that the aforementioned are dishonest spoofing
strategies. We assume the following adversarial capabilities:

1) A has full knowledge of the model architecture and
parameters (i.e., weights). In addition, A has access to
the loss function, optimizer, and other hyperparameters.

2) A has full access to the training dataset, and can modify
it. Note that the objective of A is not to infer sensitive
information from the dataset, but use it to spoof a PoL.

3) A does not have access to the various sources of ran-
domness used by T . These sources include randomness
associated with batching, parameter initialization, chosen
random seeds, and other intrinsic sources of randomness
such as hardware accelerators [66].

B. Protocol Overview
We define PoL in ML as a n ≥ 1-round protocol between

the prover T and verifier V . The protocol is initiated by T
3The case with fc

WT
is similar. For generality, we proceed to define our

work with reference to fWT
.

by (a) drawing on some source of randomness, or (b) using
some other parameters (with a valid PoL) for initialization of
its model parameters (W0); we will more formally define the
latter in § V-D. T then trains their ML model and obtains final
parameters WT . Through training, T accumulates some secret
information associated with training; this information is used
to construct P(T , fWT

) which can be used to prove integrity
of the computation performed by T to obtain WT from W0.
To validate the integrity of the computation, V may query
T for the PoL and T returns a subset (or all of) the secret
information obtained during training. Using this knowledge,
V should be able to ascertain if the PoL is valid or not.
Desired Guarantees. A cannot (a) easily reconstruct the
secret information associated with P(T , fWT

) (needed for the
retraining-based spoofing strategy), or (b) efficiently recon-
struct another valid PoL P(A, fWT

) or P(A, f) for f ≈ fWT
.

In particular, the computational resources needed should (ide-
ally) be the same or more as the cost of valid proof generation.
We formalize the computational requirements below:
Property 1. Let CT denote a random variable representing the

cost (both computation and storage) associated with T
training fWT

. Let CV denote the cost random variable of
the verification procedure. We thus require that

E[CV ] ≤ E[CT ]

Property 2. Let CA be the cost random variable associated
with any spoofing strategy attempted by any A aside from
the honest strategy (i.e. training fWT

). We require that

E[CT ] ≤ E[CA]

Note here that the second property should hold no matter
which of the four scenarios from §IV-A we consider: in
particular the cost of the adversary should be higher even if
they choose scenario (c) and form a structurally correct PoL
which is invalid but still passes verification.

C. Defining PoL

Definition 1 (PoL). For a prover T , a valid PoL is defined
as P(T , fWT

) = (W, I,H,A) where all the elements of the
tuple are ordered sets indexed by the training step t ∈ [T ]. In
particular, (a) W is a set of model specific information that
is obtained during training, (b) I denotes information about
the specific data points used to obtain each state in W, (c)
H represents signatures of these training data points, and (d)
A that incorporates auxiliary information that may or may
not be available to A, such as hyperparameters M, model
architecture, optimizer and loss choices.

The information in Definition 1 encapsulates all the infor-
mation required to recreate (and consequently verify) a PoL.
T publishes some deterministic variant of W (e.g., encrypted
W). Our scheme should ensure that recreating the states in
W without knowledge of I,H and some designated subset of
elements in A is hard; this should dissuade any adversary in
recreating the prover T ’s PoL. In addition to this, we should
also ensure recreating WT without W is hard so that the
adversary cannot spoof (refer §VII) the PoL with a different
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PoL P(A, fWT
) 6= P(T , fWT

). To this end, we require that
algorithms included within A be from a known accepted list
of algorithms, or have their own PoL (refer § V-D3). More
concretely, any PoL (and the strategy to generate the PoL)
should satisfy the following properties:
G1. Correctness: A PoL for fWT

should be verifiable with
high probability if the prover T obtained this PoL by
training a model from a random initialization of the model
parameters and until their convergence to fWT

.
G2. Security: If A is able to dishonestly spoof the PoL, then

it will be detected with high probability.
G3. Verification Efficiency: Verifying the correctness of a

proof should ideally be computationally less expen-
sive than generating the proof. Additionally, verification
should succeed even if the verifier uses different hardware
than the prover.

G4. Model Agnostic: A proof generation strategy should be
general i.e., should be applicable to models of varying
nature and complexity.

G5. Limited Overhead: Generating the proof should induce
limited overhead to the already computationally expen-
sive training procedure.

G6. Concise Proof: The proof generated should be small with
respect to the number of steps of training (and ideally of
constant size).

V. A POL MECHANISM BASED ON GRADIENT DESCENT

Our proposal for generating a PoL is based on gradient
descent. At the core, our mechanism relies on the difficulty
to invert gradient descent. In this section, we simplify the
notation for brevity i.e., P(T , fWT

) is now P(fWT
).

A. Mechanism Overview

In our proposed mechanism, T reveals to V some of
the intermediate weights achieved during training as its PoL
P(fWT

). More specifically, T releases: (a) the values of
the weights (or model updates) at periodic intervals during
training, and (b) the corresponding indices of the data points
from the training set which were used to compute said model
updates. To ensure that A cannot copy the PoL as is, we
require that T encrypt their PoL P(fWT

) with V’s public
key Kpub

V to obtain R := enc(P(fWT
),Kpub

V ), and then sign
it with T ’s own private key before publishing the PoL. The
proof (or its signature) can be timestamped, or published in
a public ledger. This ensures that verifying its validity is as
simple as a lookup operation. This prevents replay attacks,
where A would claim to have published the PoL first.

To commence verification, V first verifies the authenticity
of the signature using T ’s public key and proceeds to decrypt
the encrypted PoL using its private key Kpriv

V . It then verifies
the provenance of the initial weights W0. These are either
(a) sampled from the claimed initialization distribution, or (b)
come from a valid external source, i.e., have their own PoL.
See § V-D4 and § V-D3, respectively. Next, V queries T for the
data points required to compute a specific subset of updates in
W. There are two possibilities. Either the dataset is released
by T along with the PoL and is available to V immediately.

Alternatively, in a lazy verification scenario (§ V-D1) , T can
delay the release of the exact data points to V until they are
explicitly queried. In such a case, T is necessitated to include
a signature (represented using function h(.)) of the training
data as part of the PoL. We require this as an abundance of
precaution so that an adversarial prover attempting structurally
correct spoofing (see § IV-A) cannot release a structurally
correct yet invalid PoL and then later attempt to synthesize
a dataset which would make this PoL valid.

The process of obtaining updates in W is similar to training
when aided by the information contained in I, H and A. In our
protocol we only retain hyperparameters M as our auxiliary
information in A. Thus, by querying this information, V can
recreate the updates in a specific subset by re-executing the
computation. By doing so, V is able to attest the computation
performed by T . We detail this verification in § V-C.

B. PoL Creation

Algorithm 1 PoL Creation

Require: Dataset D, Training metadata M
Require: V’s public key Kpub

V
Require: E,S, k . Number of epochs, steps per epoch, checkpointing

interval
Optional: W0, ζ . Initialization weight and strategy

1: W← {}, I← {},H← {},M← {}
2: if W0 = ∅ then
3: M0 ← ζ
4: W0 ← init(ζ)

5: for e← 0, . . . , E − 1 do . Training epochs
6: I ← getBatches(D,S)
7: for s← 0, . . . , S − 1 do . steps per epoch
8: t = e · S + s
9: Wt+1 ← update(Wt, D[Is],Mt)

10: I.append(It)
11: H.append(h (D[It]))
12: M.append(Mt)
13: if t mod k = 0 then
14: W.append(Wt)
15: else
16: W.append(nil)
17: A← {M}
18: R ← enc((W, I,H,A),Kpub

V )

19: return R,h
(
R,Kpriv

T

)
In Algorithm 1, we present the concrete mechanism to

create PoL P(fWT
). W is a flattened list of all recorded

weights across all epochs indexed by the proof step t. The
mapping from training step s to the proof step t is t = e·S+s,
where S is the number of training steps per epoch and e
is the epoch counter (of a total of E epochs). We only
append a weight Wt every kth step of the training, and
otherwise add ⊥ at that index. Observe that checkpointing
is commonly performed as part of training and adds limited
overhead (G5). k is a parameter which we call checkpointing
interval; 1

k is then the checkpointing frequency. Increasing
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k helps optimize storage costs (refer § V-D2). T may use
additional hyperparameters and optimizer specifications (e.g.,
learning rate schedules, etc.), which we denote as metadata
Mt (to be included in M). To make sure that weights in W
will be verified on the same data samples fWT

was originally
trained on, we require that P(fWT

) include a signature of the
training data, i.e., h (D[It]) in H along with the data indices
which are themselves included in I.

In Algorithm 1, init() is a method that initializes the
weights according to an initialization strategy ζ before training
commencement. In scenarios where the initial model state is
obtained from elsewhere, we require that a PoL be provided
for the initial model state itself as well (see § V-D3). In
a similar vein, getBatches() randomly assigns a set of
data indices (over the entire dataset) to each batch. Thus, the
output of the method is a list of T sets of indices. Finally,
the method update() performs an update to the model
parameters using a suitable optimizer implementing one of
the variants of gradient descent as in Equation (1).
Storage Cost. The proof size is ES

k |W | where |W | indicates
the size of a set of model weights i.e., a single checkpoint
(G6). We note that if the prover would like to delay the verifi-
cation until requested (see §V-D1) then they should maintain a
copy of the dataset, which adds |D| to the storage cost, where
|D| is the size of the dataset. Increasing the checkpointing
interval linearly decreases the storage cost, however this can
come at the cost of verification accuracy (see §V-C). Storage
costs are discussed in detail in § VI-C4.

C. PoL Verification

Algorithm 2 summarizes the verification algorithm. Every
PoL starts from a set of weights either sampled from the
claimed initialization distribution, or from previously trained
model weights. In the latter case, the prover needs to pro-
vide a valid PoL for the pre-trained model weights, i.e., P0

(referenced in encrypted form in Algorithm 2 as R0). In the
case of sampling from the claimed initialization distribution,
a statistical test is conducted to verify the claim. We discuss
these requirements and their importance in more detail in
§ V-D3 and § V-D4, respectively. After this initial verification
step, we store the distance between each consecutive pair of
weights captured in W in a new list mag using d1 which is a
distance measure in a metric space (such as the p-norm). Once
every epoch, we sort mag to find the largest model updates
which we verify using the VERIFYEPOCH procedure. To
verify, V loads up the index corresponding to the largest model
update into its own model W ′t . Next, V performs a series of k
updates to arrive at W ′t+k which is compared to the purported
Wt+k in the PoL. We tolerate d2(W ′t+k,Wt+k) ≤ δ, where
d2 is a distance measure (possibly different from d1). δ is a
slack parameter that should be calibrated before verification
starts, as it depends on hardware, model architecture, dataset,
checkpointing interval, and the learning hyperparameters. Al-
ternatively, acceptable ranges for δ may be mandated by law
and enforced by the verifier. Since the purpose of δ is to upper
bound the randomness in training, one heuristic is to set δ as
the average of a few gradient updates during training. We note

that for an honest T who has obtained all intermediate model
weights, the particular choice of k is immaterial. Also since
δ is chosen to account for hardware and software tolerances,
Algorithm 2 will correctly verify such an honest proof (G1).
Why only verify the largest updates? We verify the largest
model updates because valid updates tend to have small mag-
nitude (to avoid overshooting during gradient descent), and
we want to save computational cost of V . More importantly,
any estimation error introduced by an adversary A wishing
to recreate a proof at a smaller computational cost would be
easier to detect for these large model updates. This may be
because the adversary tried to spoof a valid PoL by fine-tuning
models at large learning rates for few epochs, or because they
attempt to spoof a PoL with significant discontinuity to arrive
at a new Ŵ (see § VII-C1), We assume that the verifier V
can verify at most Q · E largest updates (i.e., Q per epoch),
which we denote as V’s verification budget. Similar to the
slack parameter δ, Q is also a verification hyper-parameter
which should be calibrated, and can be mandated by law.
Time Complexity. The complexity of verification is O(E ·Q·
k·C|W |) where C|W | is the time-complexity of one update step
of the training loop with parameter size |W | (G3). Figure 7
in Appendix E shows a visualization of the bound.
Verification Success. We define the verification success rate
(VSR) of verifier V on a PoL P as:

VSR (V,P(fWT
)) := Pr[VERIFY[P(fWT

)] = Success], (2)

where P(fWT
) = P(T , fWT

) = (W, I,H,A) and VERIFY
is a simplified notation for the same function in Algorithm
2. Verification success can be described as the probability
that the verifier accepts a PoL. Note that by nature of the
verification Algorithm 2, the probability of acceptance by the
verifier depends on the probability of:

1) W ′t+k (i.e., calculated update from Wt by the verifier)
achieved within a δ-ball of the purported weights Wt+k.

2) V obtaining W ′t+k from initial weights Wt in k steps.
Here, t = idx[q − 1], denotes the step with the qth largest
k-step update in the given epoch e. As the update for each t
in the verification procedure is calculated separately and the
value of Wt is directly obtained, these events for different
values of t are independent. To ease the notation assume that
I is reindexed so that j is the index corresponding to the qth

largest update. We re-write Equation (2) with ‘Success’ as 1,
and φ = (I,H,M),

Pr[VERIFY[W, φ] = 1] =

E∏
e=1

Q∏
q=1

Pr[Tre,q,k ∧ diste,q+k ≤ δ | φ]

=

E∏
e=1

Q∏
q=1

Pr[diste,q+k ≤ δ | φ] · Pr[Tre,q,k | φ],

where (a) diste,(q)+k = d2(W ′e,(q)+k,We,(q)+k) denotes the
distance measurement, and (b) Tre,(q),i := We,(q) ⇒W ′e,(q)+i

indicates the updates calculated by V of the i ≤ k steps in
the qth largest k-step update in epoch e and has achieved
W ′e,(q)+i. We also have used the fact that the distance between
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Algorithm 2 Verifying a PoL

1: function VERIFY(R,R0,Kpriv
V , f,D,Q, δ) . encrypted

PoLs, V’s private key, model, dataset, query budget, slack parameter
2: W, I,H,M← dec(R,Kpriv

V )
3: if R0 = ∅ then
4: if VERIFYINITIALIZATION(W0) = FAIL then
5: return FAIL
6: else if VERIFYINITPROOF(R0) = FAIL then
7: return FAIL
8: e← 0 . Epoch counter
9: mag ← {} . List of model update magnitudes

10: for t← 0, . . . , T − 1 do . training step
11: if t mod k = 0 ∧ t 6= 0 then
12: mag.append(d1(Wt −Wt−k))

13: et = b tS c . Recovering the epoch number
14: if et = e+ 1 then
15: . New epoch started. Verify the last epoch
16: idx← sortedIndices(mag, ↓)
17: . get indices for decreasing order of magnitude
18: if VERIFYEPOCH(idx) = FAIL then
19: return FAIL
20: e← et,mag ← {}
21: return Success
22: function VERIFYEPOCH(idx)
23: for q ← 1, . . . , Q do
24: t = idx[q − 1] . index of q’th largest update
25: Ht ← Ht, It ← It
26: VERIFYDATASIGNATURE(Ht, D[It])

27: W ′t ←Wt

28: for i← 0, . . . , k − 1 do
29: It+i ← It+i,Mt+i ←Mt+i

30: W ′t+i+1←update(W ′t+i, D[It+i],Mt+i)

31: Wt+k ←Wt+k

32: if d2(W ′t+k,Wt+k) > δ then . Dist. func. d2

33: return FAIL
34: return Success

the purported and the calculated updates is independent from
We,(q) ⇒ W ′e,(q)+k. Additionally, due to the Markovian
nature of the gradient descent process (see § VI), the updates
W ′e,(q)+i ⇒ W ′e,(q)+i+1 are independent of each other. Com-
bining the last two factors, we have:

VSR (V,P(fWT
)) = Pr[VERIFY[W, φ] = 1]

=

E∏
e=1

Q∏
q=1

Pr[diste,(q)+k ≤ δ | φ] · Pr[Tre,(q),k | φ]

=

E∏
e=1

Q∏
q=1

Pr[diste,(q)+k ≤ δ | φ]

k−1∏
i=0

Pr[Tre,(q)+i,1 | φ] (3)

Note that in above W ′e,(q)+0 = We,(q), as V is given these
weights, so no noise is introduced by reproduced computation.
We observe that decreasing the checkpointing interval or in-
creasing the query budget per epoch Q adds to the probability

terms in the product, therefore, if there is any uncertainty
regarding intermediate updates, their effect is compounded,
which in turn makes for a more stringent verification process.
This comes at a trade-off with storage cost (see §V-B).

D. Practical Considerations

Here, we discuss practical considerations to be made when
implementing the mechanism we described so far.

1) Private Datasets & Lazy Verification: So far we have
assumed that the dataset used to train a model is public,
so that V can use batch indices I in P(fWT

) to verify
model updates. It is also possible to use our PoL scheme for
private datasets. To do so, in addition to P(fWT

), T needs
to publish a signature of their datapoints h (D[It]) , It ∈ I
but not the dataset. In this setup, the verification can be
delayed until necessary (i.e., lazy verification), at which time
T should reveal D[It] to V who additionally has to verify their
signatures with the published record.

2) Amount of Data Needed: With lazy verification, the
expected amount of data required to be transferred to the
verifier V can be expressed as a function of S, E, k, and Q
(for simplicity here we assume Q is the same for all epochs).
Let ci denotes the Binomial random variable representing the
number of times data points i is sampled by VERIFYEPOCH
in Algorithm 2 (thus there are E trials). We assume each data
point is equally likely to be chosen such that in a certain trial
∀i ∈ [|D|],Pr(ci = 1) = Q·k

S . Therefore, the probability of a
data point being chosen at least once is

Pr(ci > 1) = 1− Pr(ci = 0) = 1− (1− Q · k
S

)E (4)

This means for dataset D, the expected amount of data for
Algorithm 2 is |D|[1− (1− Q·k

S )E ].
3) Initial State Provenance and Chain of Trust: To improve

convergence behavior and achieve better performance, most
ML models are not initialized from a cold start—an initializa-
tion sampled randomly from a particular distribution. Indeed,
it is common to start training from a set of weights that have
previously achieved good results on a different dataset, and
improve upon them (a warm start). A common example of a
warm start is transfer learning [67]. If we do not check the
provenance of the initial state, we discuss in § VII how an
adversarial prover could fine-tune a stolen model by continuing
to train it for a few steps, thus creating a valid PoL, and claim
that they have started from a lucky initialization—where the
lucky initialization is the true owner’s final weights.

In order to establish the PoL in models with a warm
start while defending against the said attack scenario, we
propose to establish a chain of trust: a PoL P(fWT

) should
come with a previously published P0, where P0 denotes the
proof needed to verify the initial state W0 used to obtain
P(fWT

). The verifier keeps a record of previously verified
proofs. Therefore, in Algorithm 2, if V has recorded P0,
VERIFYINITPROOF would be a simple record lookup. Other-
wise, it would trigger the verification of P0. The verification
success rate follows a chain rule VSR

(
V,P(fWT

)→ P0
)

=
VSR (V,P(fWT

)) VSR
(
V,P0

)
, where→ denotes the depen-

dence. Of course P0 can depend on a prior PoL P1, and so on.
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Concretely, for all j ≥ 0, let Pj+1 denote the PoL for the first
set of model weight needed to obtain Pj , and P0 = P(fW0),
i.e., P0 is the proof for W0. Therefore, the VSR for a chain
of R prior PoLs can be written as:

VSR
(
V,P(fWT

)→ P0 → · · · → PR
)

= VSR (V,P(fWT
))

R∏
j=0

VSR
(
V,Pj

)
. (5)

If T cannot provide such a proof, then it must be the case
that they have trained a model starting from a random initial
state. In this case, T should provide their initialization distri-
bution and strategy and apply a statistical test to verify that
the initial model parameter values contained within the proof
sequence were indeed sampled from the claimed distribution.

4) Verifying Initialization: Most existing initialization
strategies for model weights such as Xavier [57], Kaim-
ing [59], and Orthogonal Initialization [68], involve sampling
values from a designated distribution (usually normal or
uniform). Such distributions rely on the architecture of the
model (e.g., dimensionality of a certain layer), so it can be
easily obtained given the initialization strategy which must be
included in the initial metadata M0 ∈M.

The Kolmogorov–Smirnov (KS) test [69] is a statistical test
to check whether samples come from a specific distribution.
We use a single-trial KS test to check if the weights of
each layer are sampled from the designed distribution. If any
layer does not pass the KS test, i.e., the p-value is below
the chosen significance level, the verifier can claim that the
initialization parameters are not sampled from the prover’s
claimed initialization distribution, making the PoL invalid. We
note that the tests are done under the assumption that the
different layers are initialized independently which is often
the case [70]. Otherwise, the significance level should be
corrected to account for multiple testing using a method such
as Bonferroni’s method. Along with all other metadata (e.g.,
the optimizer), we assume that T and A must choose an
initialization strategy from a previously chosen (and publicly
known) set of strategies (e.g., all widely-known strategies),
preventing the adversary from creating an arbitrary initializa-
tion strategy for their own spoofing purposes. In Algorithm 2,
VERIFYINITIALIZATION handles the initialization test.

VI. CORRECTNESS ANALYSIS OF THE GRADIENT
DESCENT MECHANISM FOR PROOF-OF-LEARNING

Recall that the goal of our proposed verification scheme
is for the verifier to gain confidence that each of the steps
recorded in the PoL are valid, rather than verifying the end-
to-end sequence altogether. We now prove why the verification
must be performed step-wise.

A. Stationary Markov Process

Training a neural network using a gradient-based stochastic
optimization method is a Markov process, i.e., its future
progression is independent of its history given its current
state. We formalize this property in Appendix A. The Markov

assumption is used in ML libraries, including pytorch [71]
and tensorflow [72], to enable in-place model updates.

Gradient-based stochastic optimization method is not only a
Markov process but also stationary, assuming that any random-
ness in the architecture is fixed (e.g., using a fixed batching
strategy, and with deterministic dropout masks). Without loss
of generality, we prove this property for SGD but note that
other gradient-based stochastic optimization methods follow
(G4). Here, we adopt the notation W̃t := (Wt,Mt) to denote
the model weight and the associated learning hyperparameters
at step t. Thus, a training step is represented as follows:

W̃t+1 = W̃t − η∇W̃t
L̂t + zt, (6)

where zt is the random variable representing noise arising from
the hardware and low-level libraries such as cuDNN [73] at
step t and the set of random variables {zt | t ∈ [T ]} are
independent and identically distributed. Thus, for all steps t
and arbitrary w̃a, w̃b,

Pr(W̃t+1 = w̃a|W̃t = w̃b) = Pr(W̃t = w̃a|W̃t−1 = w̃b).

Thus, the process of training a neural network using gradient-
based stochastic optimization is a stationary Markov process.

B. Entropy Growth

Building on our results in § VI-A, we analyze the entropy
growth of training a DNN as a stationary Markov process,
ΘT = W̃0, · · · , W̃T . Entropy captures the variance, or number
of possible paths of the gradient descent sequences [74]. Using
the definition of entropy rate (refer Equation 13 Appendix A)
and Markovian nature of the training process ΘT , we get the
entropy rate as follows:

H ′(ΘT ) = lim
T→∞

H(W̃T |W̃0, ..., W̃T−1) = H(W̃1|W̃0) (7)

= H(z0) (8)

where we obtain Equation (8) by plugging in the result stated
in Equation (6). This proves the following result:

Theorem 1 (Entropy Growth). The entropy of the training
process ΘT grows linearly in the number of training steps T .

To bound the entropy, our verification scheme performs a
step-wise comparison. Otherwise, the entropy would grow
unbounded, increasing the difficult of accurately verifying
the updates in a training process. Further, Theorem 1 also
proves that the exact reproducibility of a ML model is
difficult because the entropy grows, without bound, as
the training sequence grows (rendering retraining-based
spoofing impossible). This result holds true even with an
identical initialization and batching strategy. Note that our
only assumption was the presence of some i.i.d noise in
the training process arising due to hardware and low-level
libraries. Our result is therefore of interest beyond the setting
considered in our work, and in particular explains the negative
results observed previously in model extraction research when
trying to reproduce a training run exactly [75].
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Interpretation of Entropy Growth. Recall the definition
of entropy [74]. The entropy of a training step captures the
variance, or number of possible paths from that state (i.e.,
how much information is needed to describe the possibilities).
Thus, the expected variance of the sequences grows too. The
relation between entropy and number of possible sequences
is predominantly exponential as its definition is logarithmic to
the probability. Thus the linear growth in entropy in Theorem 1
represents an exponential growth in the number of potential
sequences of gradient descent.

C. Reproducibility Evaluation

To illustrate our analysis, we empirically evaluate our ver-
ification scheme and the implications of Theorem 1. We also
discussed how to configure hyperparameters of Algorithms 1
and 2 to analyze trade-offs between storage cost and correct-
ness of PoL verification.

1) Experimental Setup: A Residual Neural Network
(ResNet) [76] is a common deep neural network architecture
used for image classification. We evaluated the proposed PoL
for ResNet-20 and ResNet-50 on two object classification
tasks: CIFAR-10 and CIFAR-100 [77] respectively. Each of the
two datasets is composed of 50,000 training images and 10,000
testing images, each of size 32×32×3. The datasets differ in
that CIFAR-10 only has 10 classes whereas CIFAR-100 has
100 classes. Thus classifying CIFAR-100 is considered as a
harder task. Both models are trained for 200 epochs with batch
size being 128 (i.e., E = 200, S = 390).

2) Metrics For Evaluation: Our goal here is to understand
how the entropy growth of training (see Theorem 1) impacts
our capability to verify a training update. Formally, we are
given (initial) weights Wt which are trained to a state Wt+k,
where k represents some previously chosen and fixed check-
pointing interval. The verifier then attempts to reproduce this
step by calculating their own W ′t+k from Wt. The reproduction
error here is εrepr(t) = d(Wt+k,W

′
t+k), using some distance

metric d, e.g., a p-norm. With a sufficiently small εrepr(t),
∀t ∈ [T ], a verifier can confirm that indeed W ′t+k ≈ Wt+k,
∀t ∈ [T ], which proves that the prover trained this ML model.
Specifically, we require that maxt εrepr(t) � dref, where dref
= d(W 1

T ,W
2
T ) is the reference distance between two models

W 1
T and W 2

T of the same architecture, trained to completion
(i.e., for T steps) using the same architecture, dataset, and
initialization strategy, but with a different batching strategy
and not forcing the same initial parameters (i.e., W 1

0 6= W 2
0 ).

If this is the case, then we can set our distance threshold δ
(refer to Algorithm 2) such that maxt(εrepr(t) ) < δ < dref.
Note that dref can be interpreted as the difference between two
models trained from scratch by two independent parties, so it
is used as our upper bound (i.e., if two models differ by about
dref then they should not be considered as related).

Observing Table I, we see that our empirical results corrob-
orate Theorem 1. Reproducing weights trained step by step
(k = 1) leads to a negligible εrepr(t). However, attempting
to reproduce an entire sequence leads to a large error due
to the linear increase in entropy over the T steps. Note
that this error accumulates even when using the exact same

Checkpointing Interval, k Deterministic
k = E · S k = 1 operations

||ε
re

pr
(t
)|
| `1 0.974(±0.004) 0.001(±0.001) 0.582(±0.004)

`2 0.955(±0.004) 0.001(±0.001) 0.569(±0.004)
`∞ 0.769(±0.052) 0.001(±0.001) 0.307(±0.035)
cos 0.914(±0.007) 0.0(±0.0) 0.46(±0.007)

(a) CIFAR-10
Checkpointing Interval, k Deterministic

k = E · S k = 1 operations

||ε
re

pr
(t
)|
| `1 0.903(±0.002) 0.002(±0.001) 0.903(±0.001)

`2 0.815(±0.002) 0.002(±0.002) 0.816(±0.001)
`∞ 0.532(±0.07) 0.004(±0.004) 0.51(±0.055)
cos 0.383(±0.002) 0.0(±0.0) 0.384(±0.002)

(b) CIFAR-100

TABLE I: Normalized reproduction error, ||εrepr(t)||, of a valid
PoL. The same initial parameter values W0, batching strategy,
model architecture, and training strategy are used. W ′t+k is
reproduced from Wt by retraining ∀t ∈ {0, k, 2k, . . . , T}
while ||εrepr(t)|| is computed as the distance between W ′t+k

and Wt+k normalized by dref (see Table V in Appendix E for
exact values of dref). Deterministic operations used k = E ·S.

batching strategy, architecture, initial parameters, and training
setup, due to the irreproducible noise z arising from the
hardware and low-level libraries. Thus, it is impossible for
a verifier to reproduce an entire training sequence and we
require that k be sufficiently small to prevent these errors
from accumulating and approaching to dref. Note that our
results display a normalized ||εrepr(t)|| =

maxT (εrepr)
dref

where
we require that ||εrepr(t)|| << 1 for the sufficient condition to
hold so that the verifier can select a suitable δ.

3) Deterministic Operations: Libraries such as pytorch
provide functionality that restrict the amount of random-
ness [78] (e.g., using deterministic algorithms for convolution
operations) to enable reproducibility. We evaluate this with
k = T (refer Table I). As seen in Table I, ||εrepr|| with
deterministic operations drops to half of ||εrepr|| for non-
deterministic operations with ResNet-20. However, ||εrepr||
is still significant and deterministic operations incur a large
computational cost in training and a greater than one per-
centage point accuracy drop. The reduction in ||εrepr|| is not
observed for ResNet-50, which is likely because the main
source of randomness for this architecture is not captured by
deterministic operations provided by pytorch. Some other
libraries use counter-based pseudorandom number generators,
which will be discussed in § VIII.

4) Checkpointing Interval and Storage Cost: The check-
pointing interval k is a hyperparameter of the proposed PoL
method and is related to the storage cost, as the prover needs
to checkpoint after every k training steps. Common practice
when training DNNs is to checkpoint at every epoch (i.e.,
k = S) to allow resuming training and pick the model
with highest accuracy after training, so we consider k = S
as a baseline and define the storage overhead as S

k . The
relationships between ||εrepr|| and k, and ||εrepr|| and S

k are
shown in Figure 1 and 2 respectively. The most important
observation from these figures is that the prover does not need
to spend additional storage to save at every step, i.e., k = 1
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Fig. 1: Normalized reproduction error, ||εrepr||, as a function of
the checkpoint interval, k. After choosing k, δ in Alg. 2 must
be greater than εrepr (k). Here, we define cos = 1−cosine
similarity.
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Fig. 2: Relation between ||εrepr|| and storage overhead, where
storage overhead is defined as the required number of check-
points dividing by the number of epochs (assuming the prover
checkpoints at every epoch even if not creating PoL). It
can be seen ||εrepr|| is still significantly lower than 1 when
storage overhead = 1× (i.e., no storage overhead). Figure 6 in
Appendix E shows sample values in megabytes.

suffices. In particular, if the prover only utilizes the checkpoints
saved roughly at every epoch (k ≈ S), they can still attain
||εrepr|| substantially below ||εrepr|| ≈ 1 for k = T . In Figures
1, 2 and Table I for the CIFAR-10 dataset, we observe that
using k = S outperforms creating PoL with the deterministic
operations described in § VI-C3 and does not influence the
speed of training or model’s accuracy. Note that the prover
could also save the checkpoints with a precision of float16
rather than float32 to save a factor of 2 in storage (please
see § VIII for details on related storage considerations).

5) Varying Learning Rate: Since the proposed PoL relies
on gradient updates, ||εrepr|| is correlated to learning rate η, the
hyperparameter that controls magnitude of gradient updates.
Thus we present the relation between ||εrepr|| and η in Figure 3.
It can be seen η has a significant impact on ||εrepr|| only when
it is set to 1. This may be because when η is too large, the
training process is unstable so a tiny difference may lead to
distinct parameters after a few steps.

D. Initialization Verification

As described in § V-D3 and § V-D4, if a prover claims
their model is trained from cold-start (i.e., rather than from
pre-trained weights), a KS test is applied to verify whether the
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Fig. 3: Influence of learning rate, η, on ||εrepr|| (k = 12): if
η is in the order of magnitude smaller than 100, η does not
have significant impact on εrepr. However, when η is set to
1, ||εrepr|| increases significantly.

CIFAR-10 CIFAR-100

Step 7.00(±3.87) 1(±0)
Accuracy 10.526(±0.953)% 1.124(±0.348)%

TABLE II: Index of the training step that p-values of the KS
test dropped below the significance level, α = 0.01, and the
corresponding validation accuracy. After this step, at least one
layer is statistically different from a newly initialized layer.

initial state in the PoL is sampled from a random distribution
per the claimed initialization strategy.

Using the same setup as in § VI-C1, we applied a KS test to
the early training steps (with S = 390 for both datasets). As
shown in Figure 4, for both models, the minimum p-value
across all network layers drops to 0 rapidly. We interpret
this as: the weight distribution for at least one of the layers
is statistically different from the initialization distribution.
Observing Table II, 7 updates of ResNet-20 and 1 update of
ResNet-50 on average would lead to p-value below 0.01, where
the validation accuracy is only slightly higher than random
guessing (i.e., 10% for CIFAR-10 and 1% for CIFAR-100).

VII. SECURITY ANALYSIS OF THE GRADIENT DESCENT
MECHANISM FOR PROOF-OF-WORK

Choosing a suitably low checkpointing interval allows us
to control the entropy growth (in other words, the number
of possible sequences of gradient descent). Controlling the
entropy growth enables verification of the PoL: the prover T
can claim ownership in our model stealing scenario, or the
model owner can trust the parameters shared by a worker in
the distributed learning scenario (see §IV). Here we show that
in addition, the entropy growth also creates an asymmetry
between the adversary A and verifier V . This asymmetry
disadvantages A trying to spoof the PoL to pass verification
with lesser computational effort i.e., a structurally correct
spoof. In light of this observation, we introduce and analyze
two classes of spoofing strategies.

A. Defining a Spoof

Recall from § IV-A that A has gained access to fWT
(i.e.,

its weights) but does not have a PoL that passes verification.
Thus A must create a spoof P(A, f) proving that they trained
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Fig. 4: p-value of Kolmogorov–Smirnov test with the null
hypothesis that the model parameters came from the claimed
initialization distributions, with respect to number of training
steps: one can observe the minimum drops to almost zero
within a few steps, meaning at least one layer has weights out
of the initialization distributions.

the model f , where f is an approximation of fWT
(denoted

f ≈ fWT
), and has comparable test-time performance (see

§ VII-B3b and VII-C1). An adversary may always (re)perform
the training required to obtain f . We call this an honest spoof
because E[CA] ≥ E[CT ]. Thus, the adversary gains nothing
computationally beneficial from having gained access to fWT

and our verification scheme satisfies Property 2.

Definition 2 (Dishonest Spoof). Any spoof for a prover’s
model fWT

that passes verification, and where the adversary
expends fewer computational resources than the trainer, i.e.,
E[CA] < E[CT ], is dishonest.

Intuitively, for an attack to be dishonest, the adversary
would need to leverage knowing fWT

in order to possibly
construct a PoL for fWT

using less computational resources
than the T . Knowing the architecture of f does not inform
one on any part of a PoL other than the model one computed
gradients on. However WT is the last state in W; thus, what we
will consider are spoofing attacks that leverage knowing WT to
construct a PoL. We will call spoofing attacks that use knowing
WT to make training less onerous as directed retraining and
those that attempt to reconstruct a PoL backwards starting
from WT as inverse gradient methods. These two methods
encapsulate the two directions one could realistically obtain
any ordered sequence (i.e., a structurally correct PoL that
may or may not pass verification): forwards (i.e., directed
retraining) and backwards (i.e., inverse gradient methods).

B. Inverse Gradient Methods

Recall that Equation (1) defines a training step with SGD:
given weights Wt−1 we find the next set of weights Wt. The
inverse gradient step solves the inverse problem to this: given
Wt find the Wt−1 that led to it. We will denote this problem
as solving β(Wt−1), where β(Wt−1) is defined as:

β(Wt−1) := Wt−1 −Wt − η∇Wt−1
L = 0 (9)

Note that the batches these gradients are computed on do not
necessarily have to be the same as those used in training, which
is necessary as we do not assume the adversary has access to
the batching strategy used in training (see § IV-A).

To construct a complete PoL and pass verification, an
adversary will iteratively repeat this inverse step and solve
Equation (9) until they obtain a suitable W0 that can be
justified to have been either (a) sampled from a random
distribution or (b) accompanied with a valid PoL P0 in the
chain-of-trust setting (see §V-D3). We call this process of
obtaining initial weights W0 from the final weights WT the
inverse gradient method.

This approach is analogous to using the Euler Backward
method to iteratively maximize the loss function, and is not
new to ML in general [79]. However, to the best of our
knowledge, it is new to DNNs, and we call it by a new name as
to emphasize the context we are using it in; we are using this
as an inverse procedure. As we will show, the top-Q strategy
of verification (refer Algorithm 2) will prevent this spoof.

1) Entropy for the Inverse Gradient Process: Recall from
Theorem 1 that the forward process has a linearly increasing
entropy growth with respect to the total number of training
steps T . We now prove that the inverse gradient process is
lower-bounded by this increase. Recall Equation (6) which
accounts for noise in SGD. To formulate the rate of entropy
growth per inverse step, we take the conditional probabilities
of Wt−1 with respect to Wt, as it was computed previously:

H(W̃t−1|W̃t) = H(z0) +H(η∇W̃t−1
L|W̃t) (10)

The inverse gradient process thus has higher entropy than the
forward process if and only if H(η∇W̃t−1

L|W̃t) > 0. This is
true if and only if our inverse step (Equation (9)) has more
than one solution with non-zero probability. That is, there is
more than one training path using η that reaches weights Wt.

Theorem 2 (Reverse Entropy Growth). Similar to Theorem 1,
the unconstrained reverse training process, denoted by Θ−T =
{WT ,WT−1, · · · ,W0}, is also a Markov random process. It
has equal or greater entropy than the forward training process
ΘT , that is H(Θ−T ) ≥ H(ΘT ), with equality if and only if
∇W̃t−1

L|W̃t is deterministic.

If the necessary and sufficient condition is true, then we
necessarily have that the rate of entropy accumulation in
inverting a training step is greater than the rate of entropy
accumulation in the forward process: we would expect to see
greater variance in our inverse paths than in our forward paths.

Given the large confidence intervals in Figures 11 and 13b
(see VII-B3 for experimental setup), we hypothesize that these
necessary and sufficient conditions are true for DNN, i.e., there
are several training paths passing through the same weights.
We leave to future work the rigorous verification of these
conditions because they are not necessary to refute the inverse
gradient-based spoofing attacks that we propose.

2) Retraining-based Spoofing: Here we show why an in-
verse gradient approach is not effective to exactly reconstruct
a spoof, i.e., perform retraining-based spoofing to obtain
P(A, fWT

) = P(T , fWT
). From Theorem 2 we know that the

entropy of inverting a sequence H(Θ−T ) is lower bounded by
the entropy of training the sequence H(ΘT ), which we know
grows linearly with T . Recall from § VI-B that this entropy
represents an exponential increase in the number of paths to
reach WT . As DNN training requires thousands of steps, we
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can safely say that the probability of following any given
path is near-zero. Thus for any sequence sufficiently long,
i.e., T � 0, we can dismiss the inverse gradient method for
a reconstruction spoof because the probability of recreating a
specific sequence is negligible, i.e., ≈ 0. Indeed, our results for
reproducability (see Table I) show empirically that the lengths
used for training a DNN satisfy this condition.

3) Stochastic Spoofing: To overcome the challenges of
exactly recreating P(T , fWT

), an adversary employing the
general inverse spoof instead focuses on obtaining a different
PoL P(A, f) 6= P(T , fWT

) that regardless passes verification.
As we show, this is not beneficial as the adversary still faces
a computational cost at least as large as that for T and it is
difficult to end in a suitable random initialization.

a) The Computational Costs: Any numerical approach to
solving Equation (9) will require at least one function call to
Equation (9), e.g., to check that the provided solution is indeed
the correct solution. Since computing Equation (9) requires
computing∇Wt−1

L, i.e.,, one training step, inverting a training
step is bounded by the computational load of a training step.
We remark that DNNs are highly non-linear and as such
there are no known analytical solutions to Equation (9). Thus
attempting to create a PoL such that P(A, fWT

) 6= P(T , fWT
)

but that passes verification would be at least as computation-
ally expensive as what it took T .

The only remaining strategy to make the computational
costs feasible, while maintaining f = fWT

, is for an adversary
to take larger inverse steps, i.e., use larger learning rates
so as to reduce the length of the PoL. To disprove this
we conducted experiments on a LeNet5 model [80] on the
MNIST dataset [81]. The first set of experiments compared the
effect of the learning rate to reconstruction error εrepr after
each step t (see Figures 13b, 13a, and 15), and the second
compared the effect of fewer and more iterations of the root
solver for moderate learning rates (see Figure 11). We ran
all these experiments inverting 50 steps (with k = 1 ) from
a state achieved after 5 epochs of training. All experiments
are repeated 35 times to capture variance as seen in the
confidence intervals. We further evaluated on ResNet models
on CIFAR-10 and CIFAR-100, the experimental setup of
which is described earlier in § VI-C1.

As seen from these experiments, the reproducability error
(the error between where a training step from Wt−1 leads and
Wt) quickly increases after a few steps for learning rates above
10−4, meaning the PoL obtained is not valid. As this was the
case for a relatively small model, we also expect this to be the
case for larger models; our tests on inverting ResNet models
also resulted in average εrepr larger than those found when
training with k = 1 (see Tables I and III). Thus, we have
empirically determined that an adversary cannot use higher
learning rates to decrease the computational load.

From the argument we have made (G2), and given that
we are not aware of a mechanism to prove this formally, we
present the following as a conjecture:

Conjecture 1. Inverting a training sequence using numerical
root finding methods will always be at least as computationally
expensive as training, given the same model.

CIFAR-10 CIFAR-100

||ε
re

pr
||

`1 0.023± 0.001 0.005± 0.001
`2 0.048± 0.004 0.016± 0.005
`∞ 0.18± 0.044 0.073± 0.014
cos 0.016± 0.002 0.0± 0.0

TABLE III: Normalized reproduction error, ||εrepr|| of PoL
created by General Inverse Gradient Method. The trained
models inverted for 50 steps to obtain a PoL with length 50 and
k = 1. The εrepr is then computed on this PoL. Comparing
to the k = 1 case in Table I, the εrepr here is larger.

b) Difficulty of Finding a Suitable Initialization: As
mentioned in § V-D4, a valid initialization must pass the KS
test [69]. To test the initialization, the verifier compares it
against the public pool of known initializations, e.g., various
forms of zero-centered uniform and normal distributions [57]–
[59]. Thus, the adversary must in addition successfully spoof
the initialization to pass the KS test. Our empirical results
indicate that inverse gradient methods are unlikely to find
a valid initialization. Specifically, we inverted 50 steps on
a model trained for 50 steps, and applied the KS test to
the last state of inverting (corresponding to the first state of
training) as described in § V-D4. On CIFAR-10 we observe
that the the average and minimum p-values are 0.044(±0.102)
and 1.077(±1.864)×10−28, respectively. On CIFAR-100, the
average and minimum p-values are 0.583(±7.765)×10−12 and
0(±0), respectively. These p-values are far below the required
threshold to pass the KS test and thus an adversary is unable to
find a valid initialization sampled from a claimed distribution.
A clever adversary may attempt to direct the inverse gradient
method toward a valid initialization. We discuss in § VII-C
below how these directed approaches do not succeed in passing
our verification scheme. We remark that the KS test prevents
other spoofing strategies, such as leveraging fine-pruning [82]
or sparsification [83]. These strategies can significantly min-
imize the computational load of spoofing while maintaining
both the model architecture and test-time performance, i.e.,
f ≈ fWT

. However, they as well fail to pass the KS test and
thus are not verified by our scheme.

C. Directed Retraining

Given no extra knowledge, retraining fWT
would take as

much compute as used by T . However, the adversary always
has the additional advantage of knowing the final weights
WT . We now explore how the adversary can leverage this
knowledge to create a dishonest spoof (see Definition 2).

1) Approach 1: PoL Concatenation: An adversary A aware
that V does not verify all the updates may try to exploit this
and employ structurally correct spoofing (refer § IV-A) to
obtain a partially valid PoL that may pass the verification. To
this end, the adversary can fine-tune [67] or fine-prune [82] the
model fWT

to achieve f which is not an exact copy of fWT

but has comparable test-time performance. This step provides
the adversary with a valid PoL from fWT

to f . However, this
would still be detected by Algorithm 2 because V also checks
the initial state (recall § V-D4), which in the adversary’s PoL
is WT (for which it has no valid PoL).
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Fig. 5: Magnitude of discontinuity ||WT −W ′s||2 and largest
valid update max ||W ′t −W ′t−1||2 in a spoofing PoL made by
concatenating 2 valid but independent PoL. The discontinuity
is significantly larger than the valid updates, and thus easily
detected by Algorithm 2 which checks the largest updates first.

To adapt, the adversary can train a model with the same
architecture as fWT

from a random initialization for some
number of steps with minimal cost, providing a second valid
PoL, this time starting from a valid random initialization.
Then, the adversary concatenates these two PoLs. In addition
to saving compute, the advantage of this strategy is that
there is only one single point of discontinuity in the PoL,
which consists of thousands of updates. Thus if V randomly
sampled a few updates to check, the A’s PoL would likely
go undetected. However, since V verifies the top-Q updates
in Algorithm 2, this discontinuity which is among the largest
of the sequence would be invalidated—as we evaluate next.

Evaluation. Our evaluation is performed with the setup from
§ VI-C1. For each dataset, we first train a model to completion
as the prover T ’s model WT . Then we play the role of A to
spoof a PoL by concatenation: we fine-tune WT for 1 epoch
to get f , and train another model (from scratch) with the same
architecture for s steps (s ≤ T ) from initialization (i.e., W ′0 to
W ′s); s is the number of steps on the x-axis in Figure 5. We plot
||WT −W ′s||2 and maxt≤s ||W ′t −W ′t−k||2 (both normalized
(by dref)) in this figure (with k = 1). We observe that:
• The discontinuity (i.e., ||WT −W ′s||2) is much larger than

all valid gradient updates in the PoL, so setting Q = 1
would be sufficient for the verifier to detect this spoofing.
The verification cost is E·k = E steps of gradient updates
(since we set k = 1 for this experiment). However, if the
verifier randomly samples E steps (rather than picking
the top-1 step of every epoch), the probability of finding
the discontinuity is only 1

S , with S = 390 here.
• The discontinuity has similar magnitude to dref, revealing

the fact that WT and W ′s are unrelated.
• maxt≤s ||W ′t −W ′t−k||2 does vary significantly with re-

spect to s, meaning setting δ to ||W ′t −W ′t−k||2 for small
t is sufficient to detect this kind of attack.

It is worth noting that if the adversary A has knowledge
about Q, or verifier V sets Q to a small value, A may make Q
(or more) legitimate updates in every epoch by training with an
arbitrarily large learning rate, which will bypass Algorithm 2.
Solutions to this issue could involve (a) using a large Q, (b)
randomly verifying some more updates, or (c) checking model

performance periodically since the arbitrarily large updates
would likely decrease model performance significantly.

2) Approach 2: Directed Weight Minimization: To mini-
mize the discontinuity magnitude, an adversary may attempt
to direct the weights of retraining toward WT . To achieve this,
they can directly minimize this distance using regularization.
This approach fails verification because the custom regularizer
requires the final weights prior to them having been achieved,
which therefore cannot pass verification. Further, this informa-
tion cannot be easily distilled into synthetic data because no
gradient of the regularization term, with respect to the data,
exists (refer to Appendix B for more details). By this vain,
other tactics, such as optimizing a learning rate η to converge
W ′ to WT also fail verification.

VIII. DISCUSSIONS & LIMITATIONS

A PoL provides grounds for proving ownership of any
effortful attempt at learning a model. As shown in § VI, a
PoL guarantees that no one but the trainer can lay claim to
that exact model. Further, if a chain-of-trust is adopted, this
guarantee is extended to the use of the said model as an
initial state for the training of a surrogate model. However,
a PoL cannot be used to connect the model to its surrogate,
neither can it be used avoid extraction. Instead, a PoL provides
legal protection: if the trainer produces a PoL and publishes a
time-stamped signature of it, this unchangeable record proves
ownership in case of false claim by a surrogate model owner.

We now discuss limitations with our proposed scheme for
PoL. First, our verification scheme requires that the training
data be shared with the verifier. When this data is private, this
can be undesirable. To protect the training data’s confidential-
ity, it is possible for the prover to engage in a private inference
protocol with the verifier [84] using multi-party computation.
This will incur additional computational overhead but is only
limited on the chosen private inference scheme.

Second, we note the considerable storage requirements our
proposed proof-of-work imposes. To decrease the approach’s
footprint by a factor of 2, we downcast the float32 values
of our parameters to float16 when saving them. Verifying
float16 values introduces minimal error. We acknowledge
that other approaches such as hashing could provide signifi-
cantly better improvement to the storage footprint. For exam-
ple, follow up work may consider hashing weights sequentially
utilizing Merkle tree structure [85], i.e. each consecutive set
of weights during the training procedure are hashed and then
saved as the hash of the concatenation of the current weights
and the previously saved hash. We do not use Merkle trees
due to the error accumulated when the verifier reconstructs
the weights: the error in the weights forces the weights of
the verifier and legitimate worker to hash to different values,
losing the ability to verify that the weights match within some
bound. This may be addressed with fuzzy extractors or locality
sensitive hashing (LSH). However, the use of fuzzy extractors
and LSH protocols incurs significant difficulty through the
need to find a suitable bound to work over all choices of E,
Q, and k. Designing such primitives is future work.

Third, we emphasize that counter-based pseudorandom
number generators [86], [87] can potentially remove most, if

1051



not all, noise in the training process because the pseudorandom
numbers are generated based only off the input seed, not
any hardware-based source of entropy. Recall that this noise
introduces the random variable z in Theorems 1 and 2. While
there is currently no ground-truth for all sources of randomness
arising in ML training through hardware, low-level libraries,
and random number generation, such ground-truths would
make training more reproducible and facilitate our approach.

Finally, we remark that our probability of success for our
verification scheme degrades multiplicatively with each usage.
This limits its usage for extremely long chains of PoLs (e.g.,
when successively transfer learning between many models)
where any given probability of success is significantly below
1. As there is currently no PoL scheme to gain practical insight
on this limitation, we leave this to future work.

IX. CONCLUSIONS

Our analysis shows gradient descent naturally produces
secret information due to its stochasticity, and this information
can serve as a proof-of-learning. We find that entropy growth
during training creates an asymmetry between the adversary
and defender which advantages the defender. Perhaps the
strongest advantage of our approach is that it requires no
changes to the existing training procedure, and adds little
overhead for the prover seeking to prove they have trained a
model. We expect that future work will expand on the notion
of proof-of-learning introduced here, and propose improved
mechanisms applicable beyond the two scenarios which mo-
tivated our work (model stealing and distributed training).
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APPENDIX A
MARKOV PROCESSES AND ENTROPY

We include additional definitions as they pertain to our
proofs in Section VI.

Definition 3 (Markov Process). A stochastic process is said
to have the Markov property if its future is independent
of its past, when conditioned on its current state, i.e.,
Pr(W̃i+1|W̃0 . . . W̃i) = Pr(W̃i+1|W̃i). A stochastic process
with the Markov property is said to be a Markov process.

Entropy has many interpretations, but one is the amount of
information needed to describe a random variable. We now
provide the formal definition based on [88].

Definition 4 (Entropy). [74] For a discrete random variable
X , its entropy is defined as

H(X) = −
∑
x∈X

P (x)logb(P (x)). (11)

Definition 5 (Cross-Entropy). For discrete random variables
X and Y the cross-entropy of X given Y is defined as

H(X|Y ) = −
∑

x∈X,y∈Y
p(x, y)logb

P (x, y)

P (y)

= −
∑

x∈X,y∈Y
P (x|Y )logb(P (x|Y ))

= H(X,Y )−H(Y ) (12)

Definition 6 (Entropy Rate of Stationary Stochastic Process).
Entropy rate of a stationary stochastic process {Wi} [74] is
defined by

H ′(W ) = lim
n→∞

H(Wn|Wn-1,Wn-2, ...,W1)

and the limit always exists.

Definition 7 (Entropy Rate of Stationary Markov Process).
For a stationary Markov process {Wi} [74], the entropy rate
is defined as

H ′(W ) = lim
n→∞

H(Wn|Wn-1,Wn-2, ...,W1)

= lim
n→∞

H(Wn|Wn-1)

= lim
n→∞

H(W2|W1)

= H(W2|W1) (13)

APPENDIX B
INFEASIBILITY OF DIRECTED RETRAINING

For an adversary to ensure that weights W ′t converge to the
prover’s obtained final weights WT , an adversary can directly
minimize the difference in their values. This strategy can be
easily carried out by regularization, a common strategy in
machine learning to limit the effective capacity of a model.
To this end, a practitioner will include an additional term in
their loss function that minimizes an lp norm of the weights.
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An adversary may minimally modify any common regularizer
to instead minimize d(W ′t ,WT ), as shown in Eq. (14). This
regularizer cannot pass verification because it requires an
additional state, consisting of the final model weights WT ,
that does not pass the KT test and which does not have its
own valid PoL. Thus, an adversary may attempt to distill the
contained information into a component of the PoL that does
not require test: the inputs x. However, this strategy cannot be
implemented with any gradient-based optimization techniques
as no gradient exists (see Eq. (15)). An adversary may attempt
to use gradient-free optimization techniques; our experiments
show that this requires far more function calls than the training
process itself, due to the highly nonlinear relation between x
and ∇f(x)(L).

loss = L(fwt(x), y) + d(W ′t ,WT ) (14)

∇x(d(W ′t ,WT )) = 0 (15)

APPENDIX C
TABLE OF NOTATIONS

Symbol Explanation

PoL Proof-of-learning
T Prover
V Verifier
V(.) Verifier V’s VERIFY function
f / fT Model / of prover T
D ∈ Rn×d d-dimensional dataset of n samples
P / P(f) Proof-of-learning / of model f
W / Wt Model weights / Model weights at step t
M Meta-data
W̃ = {W,M} Model weights and learning meta-data
L / L̂ Loss function / Average loss
εrepr(t) reproduction error of a training step.
||εrepr|| normalized reproduction error.
dref average distance between 2 irrelevant models

with the same architecture and dataset
ci the random variable that represents the

number of times data points i is chosen by
V erifyEpoch in Algorithm 2

TABLE IV: Notations

APPENDIX D
NOTES FROM SPOOFING SECTIONS

a) Choosing a Root Solver: We choose three represen-
tative root solvers: Gradient Descent on the l2-norm, Newton
Krylov [89], and Broyden1 [89] to solve Eq. (9), i.e., find its
roots. We use a logistic regression model with 22 neurons on
the Iris dataset [90] and calculated ereproduce (see § VI-C2)
at each iteration of the root solver. From Figure 8, 9, and 10
we observed that Newton-Krlov performed the best, i.e.,
converged the fastest, and so was the solver we used.

b) Measuring Computational Complexity of Inverting:
Computational complexity necessarily varies with the method
used and implementation of that method, alongside other
miscellaneous overhead. However, a lower bound for the
computational complexity is simply the number of function
calls it takes per step. As computing β(wT−1) is dominated by
computing a training step (+ any overhead), we have that the
number of function calls effectively measures how much more
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Fig. 6: This is the same as Figure 2 except the x-axis is in
megabytes (MB). The memory cost is significantly higher for
CIFAR-100 because we used a much deeper model than the
one used for CIFAR-10.
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Fig. 7: Analytical relation among verification time cost, check-
pointing interval(k), and Q. Note here the verification time
is measured in proportion to the training time (i.e., 100%
means verifing the PoL takes the same time as training the
model). By doing so, verification only depends on k, Q, and
size of the training dataset. Therefore, this figure is applicable
to both CIFAR-10 and CIFAR-100 (or any dataset with 50,000
training samples).

computationally intensive inverting is (ex. 5 function calls per
step would be at least 5 times as intensive as training). This can
be converted to flops by simply taking the flops per backward
pass and multiplying that by the number of function calls if
comparisons between architectures are needed (in which case
the ratio is simply the ratio of flops per backward pass).

As seen in Figures 14 and 12, and noting the baseline for
training is simply a y = x line, i.e slope is 1, our current
setup is magnitudes more expensive than training. We leave
improving this for future work.

APPENDIX E
ADDITIONAL FIGURES AND TABLES

CIFAR-10 CIFAR-100

d
re

f

`1 27204.55(±57.384) 189093.15(±558.821)
`2 71.431(±0.243) 58.17(±0.142)
`∞ 2.678(±0.267) 0.898(±0.135)
cos 0.83(±0.005) 0.847(±0.003)

TABLE V: Reference distance, dref, of CIFAR-10 and CIFAR-
100. dref is defined as the average distance between parameters
of two models with the same architecture and dataset, but
trained independently.
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Fig. 8: Gradient descent has a linear convergence rate when
measuring the l∞ norm.
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Fig. 9: Newton Krylov completely converges to 0 when
measuring the l∞ norm.
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Fig. 10: Broyden’s method converges to below 1e − 7 when
measuring the l∞ norm.
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Fig. 11: Inverting gradients on LeNet5 leads to an linf error
that is several orders of magnitude higher as the learning rate
increases from 0.1 to 0.01.
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Fig. 12: Observe that the function calls grow linearly with the
steps, and that compared to the baseline of training, they are
an order of magnitude steeper.
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Fig. 13: Observe that for larger learning rates, numerical
methods are unable to converge to a sufficiently small error.
Thus, using large learning rates is infeasible.
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Fig. 14: Observe that the function calls of all learning rates
tested are a magnitude or more larger than the baseline of
training, which would be the line y = x.
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sequence for all learning rates tested steadily decreases.
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