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Abstract—Recent advances in natural language generation
have introduced powerful language models with high-quality
output text. However, this raises concerns about the potential
misuse of such models for malicious purposes. In this paper,
we study natural language watermarking as a defense to help
better mark and trace the provenance of text. We introduce the
Adversarial Watermarking Transformer (AWT) with a jointly
trained encoder-decoder and adversarial training that, given an
input text and a binary message, generates an output text that is
unobtrusively encoded with the given message. We further study
different training and inference strategies to achieve minimal
changes to the semantics and correctness of the input text.

AWT is the first end-to-end model to hide data in text by
automatically learning -without ground truth- word substitutions
along with their locations in order to encode the message.
We empirically show that our model is effective in largely
preserving text utility and decoding the watermark while hiding
its presence against adversaries. Additionally, we demonstrate
that our method is robust against a range of attacks.

I. INTRODUCTION

Recent years have witnessed major achievements in natural

language processing (NLP), generation, and understanding.

This is in part driven by the introduction of attention-based

models (i.e., transformers [1]) that outperformed recurrent or

convolutional neural networks in many language tasks such

as machine translation [1], [2], language understanding [3],

[4], and language generation [5]. In addition, model pre-

training further fueled these advances and it is now a common

practice in NLP [6], [7]; many large-scale models are now pre-

trained on large datasets with either denoising auto-encoding

or language modelling objectives and then fine-tuned on other

NLP downstream tasks [3], [4], [8]–[11].

On the other hand, this raises concerns about the potential

misuse of such powerful models for malicious purposes such

as spreading neural-generated fake news and misinformation.

For example, OpenAI used a staged release to publicize their

GPT-2 language model in order to evaluate the impact and

potential risks [12]. Moreover, Zellers et al. [5] proposed a

generative model called Grover demonstrating that a language

model such as GPT-2 can be trained on news articles and can

consequently generate realistically looking fake news.

These models can generate highly fluent text which some-

times had even higher ratings than human-written text and

fooled human detectors [5], [13], [14]. While it is now

possible to perform automatic detection, it is subject to recent

advances in text generation (e.g., architecture, model size,

and decoding strategies) [5], [13], which could hinder the

automatic detection in the long run. Hence, we seek a more
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Fig. 1: An overview of our text watermarking solution at

inference time.

sustainable solution that can disambiguate between real and

fake text.

To this end, we aim to perform automatic and unobstructive

data hiding within language towards eventually watermarking

the output of text generation models. Specifically, we envision

black-box access scenarios to the language model APIs [15] or

to services such as text generation and editing-assistance that

could be misused to create misinformation. Watermarking can

then be used to introduce detectable fingerprints in the output

that enable provenance tracing and detection. As deep learning

models are widely deployed in the wild as services, they are

subject to many attacks that only require black-box access

(e.g., [16]–[19]). Thus, it is important to proactively provide

solutions for such potential attacks before their prevalence.

a) Language watermarking: There have been several

attempts to create watermarking methods for natural language,

such as synonym substitutions [20], [21], syntactic tools

(e.g., structural transformation [22]), in addition to language-

specific changes [23]–[25]. However, these previous methods

used fixed rule-based substitutions that required extensive

engineering efforts to design, in addition to human input

and annotations, which hinders the automatic transformation.

Also, the designed rules are limited as they might not apply

to all sentences (e.g., no syntactic transformations can be

applied [22]). Additionally, they introduce large lexical or

style changes to the original text, which is not preferred when

keeping the original state is required (such as the output of

an already well-trained language model). Besides, rule-based

methods could impose restrictions on the use of the language

(e.g., by word masking). Finally, using fixed substitutions can

systematically change the text statistics which, in turn, under-
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mines the secrecy of the watermark and enables adversaries

to automatically detect and remove the watermark.

b) Data hiding with neural networks: Data hiding can

be done in other mediums as well such as images [26].

Several end-to-end methods have been proposed to substitute

hand-crafted features and automatically hide and reveal data

(e.g., bit strings) in images. This can be done using a jointly

trained encoder and decoder architecture that is sometimes

coupled with adversarial training to enforce secrecy [27]–

[31]. However, automatic hiding approaches for language

are still lacking, which could be attributed to the relatively

harder discrete nature of language and having less redundancy

compared to images.

c) Our approach: We introduce the Adversarial Wa-

termarking Transformer (AWT); a solution for automatically

hiding data in natural language without having paired training

data or designing rule-based encoding. Similar to sequence-

to-sequence machine translation models [32], AWT consists

of a transformer encoder-decoder component that takes an

input sentence and a binary message and produces an output

text. This component works as a hiding network, which is

jointly trained with a transformer encoder that takes the output

text only and works as a message decoder to reconstruct the

binary message. We utilize adversarial training [33] and train

these two components against an adversary that performs a

classification between the input and modified text. The model

is jointly trained to encode the message using the least amount

of changes, successfully decode the message, and at the same

time, fool the adversary. An example of using the data hiding

and revealing networks at test time is shown in Figure 1.

d) Evaluation axes: We evaluate the performance of

our model on different axes inspired by the desired require-

ments: 1) The effectiveness denoted by message decoding

accuracy and preserving text utility (by introducing the least

amount of changes and preserving semantic similarity and

grammatical correctness), 2) The secrecy of data encoding

against adversaries. 3) The robustness to removing attempts.

These requirements can be competing and reaching a trade-

off between them is needed. For example, having a perfectly

and easily decoded message can be done by changing the text

substantially, which affects the text preserving, or by inserting

less likely tokens, which affects the secrecy.

e) Contributions: We formalize our contributions as

follows: 1) We present AWT; a novel approach that is the

first to use a learned end-to-end framework for data hiding

in natural language that can be used for watermarking. 2) We

study different variants of the model and inference strategies

in order to improve the text utility, secrecy, and robustness.

We measure the text utility with quantitative, qualitative,

and human evaluations. To evaluate the secrecy, we analyze

and visualize the modified text statistics and we evaluate

the performance of different adversaries. Besides, we study

the robustness under different attacks. 3) We show that our

model achieves a better trade-off between the evaluation axes

compared to a rule-based synonym substitution baseline.

II. RELATED WORK

We summarize previous work related to ours, such as lan-

guage watermarking and steganography, model watermarking,

and neural text detection.

A. Language Watermarking

Watermarking for multimedia documents has many appli-

cations such as identifying and protecting authorship [26],

[34]–[36]. It consists of an embedding stage where the hidden

information (i.e., watermark) is encoded in the cover signal,

followed by a decoding stage where the watermark is recov-

ered from the signal. Initial text watermarking attempts aimed

to watermark documents, rather than language, by altering

documents’ characteristics such as characters’ appearance,

fonts, or spacing, by specific patterns depending on the code-

word [37]. However, these methods are prone to scanning and

re-formatting attacks (e.g., copying and pasting) [34], [38].

The other category of methods relies on linguistic charac-

teristics of the natural language such as making syntactic or

semantic changes to the cover text [38]. An example of such

is the synonym substitution method in [20] in which WordNet

was used to find synonyms of words that are then divided

into two groups to represent ‘0’ or ‘1’. The authors relied on

ambiguity by encoding the message with ambiguous words or

homographs (i.e., a word that has multiple meanings). This

was used to provide resilience as attackers would find it hard

to perform automatic disambiguation to return to the original

sentence. However, words in the dataset were annotated/tagged

by meanings from the WordNet database. These annotations

were then used to select suitable synonyms, which does not

allow automatic methods with no human input. Generally, syn-

onym substitution methods are vulnerable to an adversary who

performs random counter synonym substitutions. In addition,

they perform fixed pairwise substitutions which makes them

not flexible and also vulnerable to detection.

Additionally, sentence structure can be altered to encode

the codeword according to a defined encoding [22], [39].

These methods introduce changes such as passivization, cleft-

ing, extraposition, and preposing [38], [40]. However, these

transformations might not be applicable to all sentences, also,

they change the sentence to a large extent.

In contrast, we perform an end-to-end data hiding approach

that is data-driven and does not require efforts to design rules

and unique dictionary lookups.

B. Linguistic Steganography

Steganography hides information in text for mainly secret

communication. However, it might have different requirements

from watermarking [20], [27]; while both of them target

stealthiness to avoid detection, steganography does not assume

an active warden. Thus, watermarking should have robustness

to local changes. In our case, it should also preserve the

underlying cover text and utility.

Translation by modifying a cover text was used in steganog-

raphy such as the work in [41]–[43] that used a set of rule-

based transformations to convert tweets to possible transla-
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tions. The encoding and decoding were done with a keyed hash

function ; the translations that map to the desired hash values

were selected. Therefore, the decoding is not robust to local

changes to the sentence. Another synonym-based method was

proposed in [44] based on assigning different bits to American

and British words which makes it not applicable to a large

number of sentences. Another direction is to generate text

according to a shared key, instead of using translation. For

example, the work in [45] used a trained LSTM language

model that generates sentences according to a masked vo-

cabulary and a binary stream; the vocabulary was partitioned

into different segments where each segment was assigned a

sequence of bits. However, this imposes a large constraint on

the usage of the language model since it needs to abide by

the masking. Therefore, these steganography solutions are not

suitable for our scenario as they specifically prioritize secret

communication over flexibility or watermarking requirements.

C. Model Watermarking

To protect the intellectual property of deep learning models,

several approaches have been proposed to watermark mod-

els [46]–[49]. This could be done by embedding the watermark

into the model’s weights, which requires white-box access for

verification [50]–[52], or by assigning specific labels for a

trigger set (i.e., backdoors [53]), which only requires black-

box access [46], [48], [54].

These methods were mainly addressing image classification

networks; there is no previous work that attempted to wa-

termark language models. We also differentiate our approach

from model watermarking; instead of watermarking a model,

we study data/language watermarking using a deep learning

method that could eventually be used to watermark the lan-

guage model’s output.

Our task shares some similarities in requirements with

model watermarking (e.g., preserving model utility, authenti-

cation, and robustness against removal attempts), but they are

different in the objective and assumptions about attacks. While

the main purpose of model watermarking is to prove ownership

and protect against model stealing or extraction [55], our

language watermarking scheme is designed to trace prove-

nance and to prevent misuse. Thus, it should be consistently

present in the output, not only a response to a trigger set.

Moreover, while the adversary might aim to falsely claim

or dispute ownership in model watermarking/stealing [56],

we assume in our task that the adversary’s goal is not to

get detected or traced by the watermark. We elaborate on

this difference in Section V-D3. Finally, model stealing can

be done with white-box or black-box access to the victim

model [55], while we assume black-box access only to the

language and watermarking model.

D. Neural Text Detection

Similar to the arms race in image deepfakes detection [57]–

[59], recent approaches were proposed to detect machine-

generated text. For example, the Grover language model [5]

was fine-tuned as a classifier to discriminate between human-

written news and Grover generations. The authors reported that

the model size played an important factor in the arms race; if a

larger generator is used, the detection accuracy drops. Another

limitation was observed in [13] in which the authors fine-tuned

BERT to classify between human and GPT-2 generated text.

The classifier was sensitive to the decoding strategy used in

generation (top-k, top-p, and sampling from the untruncated

distribution). It also had poor transferability when trained with

a certain strategy and tested with another one. Therefore, while

detecting machine-generated text is an interesting problem, it

largely depends on the language model and decoding strategy.

Analogous to image deepfake classifiers’ limitations [60],

this suggests that the success of classifiers might drop based

on future progress in language modelling [5] (e.g., larger

models [11], arbitrary order generation [61], and reducing ex-

posure bias [62]), in addition to decoding strategies that could

reduce statistical abnormalities without introducing semantic

artifacts [13]. Thus, it now becomes important to provide more

sustainable solutions.

III. PROBLEM STATEMENT AND THREAT MODEL

In this section, we discuss our usage scenario, requirements,

assumptions about the adversary, and attacks.

a) Watermarking as a defense against models’ abuse:

We study watermarking as a sustainable solution towards

provenance tracing of machine-generated text in the case of

models’ abuse. An example of that scenario is a commercial

black-box language model API [15] or a text generation

service that has legitimate usages such as editing assistance.

The service is offered by the language model’s owner or

creator. However, it can be used in an unintended way by

an adversary to automatically generate entire fake articles or

misinformation at scale, aiming to achieve financial gains or

serve a political agenda [5]. The owner can then proactively

and in a responsible manner provide a way to identify and

detect the model’s generations by watermarking its output [60].

News platforms can cooperate with the model owner, by

having a copy of the watermark decoder, in order to identify

the watermarks in the news articles and, thus, detect machine-

generated articles. That is similar to [5] that suggests that

news platforms can use the Grover classifier to detect Grover’s

articles. This is also in line with video-sharing platforms such

as YouTube that uses deep networks to detect pornographic

content [63], and [64] which suggests using machine learning

classifiers to flag videos that could be targeted by hate attacks.

b) Watermarking using AWT: The hiding network (mes-

sage encoder) of AWT is used by the owner to embed a

watermark (m) into the text. The same message encoder can

be used to encode different watermarks (m1, m2, ..., mn) if

needed (e.g., if the service is offered to different parties). The

multi-bit watermarking framework (as opposed to zero-bit)

helps to trace provenance to different parties. The revealing

network (message decoder) of AWT can, in turn, be used to

reveal a watermark m′ which is then matched to the set of

watermarks (m1, m2, ..., mn).
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c) Requirements: We draw insights from digital water-

marking studies in images to define the requirements. For

example, the main requirements defined in [26] include:

successful watermark embedding and verification, perceptual

similarity (imperceptibility), robustness to removal attempts

and edits (e.g., cropping, compression), and security to unau-

thorized detection. We adapt these requirements to our task

and define the problem as a trade-off between the following:

• Effectiveness: The watermark should be successfully

embedded and verified. At the same time, it should keep

the text utility; it should introduce the least amount of

changes to the cover text, and ideally produce natural,

grammatically and semantically correct changes, to pre-

serve the perceptual similarity.

• Secrecy: The watermark should achieve stealthiness by

not introducing evident changes that can be easily de-

tectable by automated classifiers. Ideally, it should be

indistinguishable from non-watermarked text. This, in

part, contributes to the text utility and naturalness pre-

serving factor, and it helps to avoid suspicion and hinders

the adversary’s efforts to tamper with the watermark by

identifying it. Therefore, we study the watermark secrecy

and consider a range of possible discriminators.

• Robustness: The watermark should be resilient and not

easily removable by simple changes. Ideally, to remove

the watermark, one has to introduce heavy modifications

that render the text ‘unusable’. Satisfying the previous

two requirements (text utility and secrecy) can, in part,

contribute to the robustness, since the adversary would

not be able to distinguish the watermark.

d) Assumptions about the adversary and attacks: We

consider a black-box API and assume that the attacker has

no white-box access to the language model or the watermark-

ing model (the watermark encoder and decoder), and also

no access to the input watermark or the cover text before

watermarking. We assume that the adversary aims to use

the service without getting detected, thus, to tamper with

(remove) the watermark while largely preserving the service’s

output (i.e., utility). We consider the following robustness

attacks: 1) Random changes and denoising, where the attacker

has knowledge about using a translation-based watermarking

scheme but not the model details. 2) Re-watermarking and

de-watermarking, where the attacker has full knowledge about

AWT details and training data but no access to the model itself.

IV. ADVERSARIAL WATERMARKING TRANSFORMER

We propose the Adversarial Watermarking Transformer

(AWT) as an end-to-end framework for language watermark-

ing. As shown in Figure 2, the proposed solution includes a

hiding network, a revealing network, and they are both trained

against a discriminator. In this section, we discuss the details

of these components and the training procedures.

A. Hiding Network (Message Encoder)

This component is responsible for translating the input

text to the watermarked text. Similar to sequence-to-sequence

machine translation models [1], [65], [66], it consists of an

encoder and a decoder.

a) Encoder: The encoder (E) is a transformer-encoder

block consisting of several transformer encoder layers. Each

layer consists of a self-attention block followed by a fully-

connected layer. The encoder takes an input sentence S =
{W0,W1, ...,Wn}, consisting of one-hot encoded words that

are then projected to the embedding space using the word-

embedding layer. As transformers are position-invariant, posi-

tion embeddings (sinusoidal embeddings [1]) are then added

to the word embeddings. The encoder produces a fixed-length

vector which is an average pooling across the time dimension

of the last encoder layer [67].

b) Message: The input message: M = {b0, b1, ..., bq} (q

binary bits sampled randomly), is first fed to a fully connected

layer in order to match the embeddings’ dimension and is

then added to the sentence encoding produced by the encoder,

producing a shared embedding between the sentence and the

message, which is then passed to the autoregressive decoder

and added to its input at each time-step.

c) Decoder: The decoder (D) has a similar architecture

as the encoder, in addition to having an attention layer over the

encoder’s output, following the transformer architecture [1].

In paired machine translation, the decoder usually takes the

ground-truth target sequence (shifted right) and is trained to

predict the next word at each time step. Since our problem

does not have paired training data, the model is trained as an

autoencoder [67]; the decoder takes the shifted input sentence

and is trained to reconstruct the sequence given to the encoder,

producing an output sentence S
′

= {W
′

0,W
′

1, ...,W
′

n}. This

serves as the reconstruction component in similar image data

hiding methods [27], and it helps to largely preserve the

input. In order to train the whole network jointly and allow

back-propagation from the other components, we use Gumbel-

Softmax approximation [68], [69] with one-hot encoding in

the forward pass (Straight-Through Gumbel Estimator using

argmax [68]), and differentiable soft samples in the backward

pass (softmax is used to approximate the argmax opera-

tion [68]). The reconstruction loss is the cross-entropy loss:

Lrec = Epdata(S)[− log pD(S)]

B. Revealing Network (Message Decoder)

This part of the network is responsible for reconstructing

the input message. It takes the one-hot samples produced by

the autoencoder, multiplied by the embedding matrix, and

with adding position embeddings. The message decoder (M )

is a transformer-encoder block since it is typically used in

text classification applications [4], [13]. The output of the

last transformer encoder layer is averaged across the time

dimension and fed to a fully connected layer with an output

size that is equivalent to the message length q. The message

reconstruction loss is the binary cross-entropy over all bits:

Lm = −

q
∑

i=1

bi log(pM (bi)) + (1− bi) log(1− pM (bi))
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Fig. 2: The architecture of AWT . The model consists of a data hiding network (sequence-to-sequence model), a data revealing

network to decode the message, and a discriminator, in addition to the auxiliary components used at the fine-tuning step.

Weight tying: To reduce the number of parameters in the

network, we share the embedding weights across the whole

network [1] (i.e., text autoencoder including the encoder and

decoder, message decoder, and discriminator), and also with

the pre-softmax layer that maps from the embedding space to

tokens in the text decoder [1], [70], [71]. We found it beneficial

in terms of the model size and faster convergence to also share

the weights between the encoder part of the text autoencoder

and the message decoder.

C. Discriminator

In order to have a subtle message encoding that does not

alter the language statistics, we utilize adversarial training and

train the previous two components against a discriminator.

The discriminator (A) is a transformer-encoder with a similar

structure to the message decoder. It takes the non-watermarked

sentences S and the watermarked sentences S
′

, multiplies the

one-hot samples with the shared embeddings, and adds the

position embeddings. It produces an average over the time

steps of the last transformer encoder layer, which is used for

the binary classification using the binary cross-entropy loss:

Ldisc = − log(A(S))− log(1−A(S
′

))

while the adversarial loss is: LA = − log(A(S
′

)). As we show

later, we found this component essential in supporting the

watermark secrecy against adversaries.

D. Training and Fine-tuning

The model is first trained jointly with the above three losses

with weighted averaging:

L1 = wALA + wrecLrec + wmLm

These losses are competing; e.g., a perfect sentence reconstruc-

tion would fail to encode the message. Therefore, we tuned the

losses’ weights on the validation set to achieve a good trade-

off; e.g., it was helpful to assign a relatively higher weight to

the message loss, otherwise, the reconstruction dominates. We

did not need to anneal the message weight after the start. The

other losses had comparable weights to each other.

The previous loss function aims to preserve the input

sentence and encode the message with the least amount of

changes while not changing the text statistics. However, we

still do not have an explicit constraint on the type of changes

done by the network to encode the message. Therefore, after

training the network with L1, we further fine-tune the network

to achieve semantic consistency and grammatical correctness.
a) Preserving semantics: One way to force the output

to be semantically similar to the input sentence is to embed

both sentences into a semantic embedding space and compute

the distance between the two encodings. We follow [72] and

use the pre-trained Facebook sentence embedding model [73]

that was trained to produce a sentence representation based

on the natural language inference (NLI) task. The model was

trained on the Stanford Natural Language Inference (SNLI)

dataset [74]. We fix the sentence encoder (F ) weights and use

it to compute the semantic loss between S and S
′

as follows:

Lsem = ||F (S)− F (S
′

)||

b) Sentence correctness: To explicitly enforce correct

grammar and structure, we fine-tune the model with a language

model loss [72]. We independently trained the AWD-LSTM

(ASGD Weight-Dropped LSTM) [70] on the used dataset,

as a medium-scale, but widely used and effective language

model [7], [75], [76]. We then use the trained AWD-LSTM

model (LM ) with fixing its weight to compute the likelihood

of the output sentence S
′

. Sentences with higher likelihood

are more likely to be syntactically similar to the original text

used in training. The language model loss is defined as:

LLM = −
∑

i

log pLM(W
′

i |W
′

<i)

These previous two components take the one-hot samples

and map them to their respective embedding space. We fine-

tune the network using these two losses in addition to the

previous ones as follows: L2 = wALA + wrecLrec + wmLm +
wsemLsem + wLMLLM.

As we later show, fine-tuning with these auxiliary losses

helps to produce more realistically looking and natural samples
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compared to only training with reconstructing the sentence.

Introducing these new losses after the first training stage was

mainly to speed-up convergence and training time since the

model at first has not yet learned to reconstruct the input. So

after the model learns the basic function, we use this stage as

a warm start for further optimization. This is similar to pre-

training as an autoencoder for other translation tasks [72].

V. EXPERIMENTAL RESULTS

In this section, we first discuss our setup. Then, we evaluate

the different aspects of our model: effectiveness, secrecy, and

robustness. We compare AWT to baselines and present a user

study to evaluate the output’s quality.

A. Setup

a) Dataset: We used the word-level WikiText-2 (WT2)

that is curated from Wikipedia articles with light processing

and was introduced in [77]. We used the same tokenization,

processing, and split setup as [70], [77], [78]. The dataset

is approximately twice the size of the Penn Treebank (PTB)

benchmark dataset for language modelling [79], besides, the

WikiText-2 keeps the capitalization, punctuation, and numbers.

It contains over 30,000 unique vocabulary words and has a

size of 2 million words in the training set and 0.2 million in

validation and test sets. Since our watermarking framework

can be applied independently as a post-processing step, we

experiment on human-written data to objectively judge the

proposed watermarking scheme correctness and to use a

benchmark pre-processed dataset.

b) Implementation Details: We used a dimension size

(dmodel) of 512 for all transformers blocks and embeddings.

The encoder and decoder transformer blocks are composed of

3 identical layers and 4 attention heads per layer, the decoder

has a masked (on future input) self-attention. The rest of

the transformer hyperparameters follows [1] (e.g., a dropout

probability of 0.1, a dimension of 2048 for the feed-forward

layers, ReLU activations, and sinusoidal position embeddings).

We optimize the network with Adam optimizer [80] with a

varying learning rate [1]:

lrategen = d−0.8
model ∗ min(step−0.5, step ∗ warmup−1.5)

lratedisc = d−1.1
model ∗ min(step−0.5, step ∗ warmup−1.5)

where step is the batch counter, lrategen is the learning rate

of the autoencoder and message decoder, and lratedisc is the

learning rate of the discriminator, trained alternatively. We use

6000 warmup steps and a batch size of 80. We use a Gumbel

temperature of 0.5 [66], [72]. We trained the network for 200

epochs for each stage. For training the AWD-LSTM language

model, we used the authors’ implementation1. We used the

trained sentence embedding model2. A good trade-off between

losses was found when setting the message loss’s weight to

a relatively higher value than the others (e.g., 5x). Otherwise,

the other losses dominate and the training fails to optimize

1https://github.com/salesforce/awd-lstm-lm
2https://github.com/facebookresearch/InferSent

the message loss. The training was not sensitive to the exact

weights. Our code and models are publicly available: https:

//github.com/S-Abdelnabi/awt/.

c) Input length during training and test: The dataset

is a continuous text corpus. During training, we encode a

randomly sampled 4-bit message (similar to [41]) into a

text segment/sentence (varying length: N (80, 5)). We test the

network on fixed-length segments of 80 words per segment,

which can be adapted if needed, small changes to this number

(±5 words) did not significantly affect the results. As our

objective is to watermark machine-generated articles, this

segment-level setup can be extended to a longer text or a

document-level input by successively encoding and decoding

concatenated segments. Thus, a longer watermark can be

composed of multiple 4-bits messages with a certain pre-

defined order. Using longer watermarks allows verification us-

ing null-hypothesis testing. We base the watermark verification

decision on the matching accuracy of all decoded messages

from the concatenated segments. In section V-B4, we evaluate

the verification with respect to the total segments’ length.

B. Effectiveness Evaluation

In this section, we evaluate the effectiveness of the model

in terms of text utility and bit accuracy. We discuss our

evaluation metrics and we compare different model’s variants.

We examine two different inference strategies to improve the

utility. We discuss how to verify the watermark by sentence

aggregation and show the trade-off between utility and veri-

fication confidence at different input lengths. We show how

to improve the bit accuracy by averaging multiple encoded

segments. We then perform a qualitative analysis to visualize

and assess the changes produced by the model.

1) Metrics: To measure the message decoding, we use the

bitwise message accuracy (random chance: 50%) of all sen-

tences in the test set. To measure utility preserving, we use the

meteor score [81] that is used in machine-translation tasks to

compare the output sentence against ground-truth references.

Meteor performs n-gram alignments between the candidate

and output text with synonym lookups from WordNet [82].

It ranges from 0 to 1 (‘no’ to ‘identical’ similarity).

However, we found the meteor score not enough to evaluate

the text semantics; two output sentences can have the same

number of changed words compared to the input sentence and

thus a similar meteor score (assuming there is no synonym

overlapping), however, one of them could be closer to the input

sentence. Therefore, to approximate the semantic difference

between the input and output text, we used SBERT [83], a

pre-trained sentence embedding model based on fine-tuning

BERT as a siamese network on the NLI task. We compute the

input and output embeddings and calculate the L2 difference

between them (lower is better). We discuss more details about

the importance of using this additional metric in Section V-B6

and Appendix VIII-A. We average the meteor scores and

SBERT distances for all sentences in the test set.

2) Model ablation: We show in Table I three variants of

our model. We ran each one 10 times with random sampling of
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messages and we found the results very comparable, we report

the average and standard deviation of the metrics across these

runs. The first row shows the full AWT with the fine-tuning

step, the second one shows the model without fine-tuning, and

the last row shows the model without discriminator and fine-

tuning (trained only with text and message reconstruction).

This shows that the fine-tuning step helps to improve the

text preserving and semantics as suggested by the increase

in the meteor score and the decrease in the SBERT distance,

at the same time, it maintains a high message decoding

accuracy. Additionally, the model trained with a discriminator

had a lower SBERT distance compared to the model that was

trained with text reconstruction only, although both of them

have a comparable meteor score. As we demonstrate in our

qualitative and secrecy analysis shown later, this indicates that

the adversarial training setup improves the output’s quality, in

addition to its secrecy advantages3.

3) Inference strategies: To further maintain the text utility

and improve the output sequence’s quality, we study two

inference strategies. First, we sample a set of samples for

each sentence and then select the best sample, based on

possible quality metrics. Second, we deliberately leave some

sentences non-watermarked. Preserving utility has a trade-

off relationship with verification confidence and bit accuracy,

which we discuss in Sections V-B4 and V-B5.

a) Best-of-many encoding: We here sample n sentences

for each input sentence using the Gumbel sampler in the

autoencoder network. We then use the trained language model

(AWD-LSTM) to compute the likelihood for each output

sample. Then, we pick the sample with the highest likelihood

(excluding samples with no changes to the input) and feed

it to the message decoder. An alternative quality metric is to

pick the sample with the lowest SBERT distance to the input

sentence, we found that these two metrics give comparable

results, however, using the language model gives slightly better

samples in terms of grammatical and syntactic correctness

(discussed in Section V-B6 and Appendix VIII-A).

We show in Figure 3 different operating points based on

varying n from 1 to 40 samples. For each point, we show

the relationship between bit accuracy and text utility (demon-

strated by the averaged meteor score and SBERT distance). We

found that the meteor score increases and the SBERT distance

decreases with increasing the number of samples. Additionally,

we show in Figure 4 a histogram of the SBERT distances

and meteor scores for two sampling settings; only 1 sample

3Unless mentioned otherwise, all the following experiments are performed
on the fine-tuned model, and AWT stands for the full model.

Model Bit accuracy Meteor SBERT distance

AWT 97.04%±0.16 0.962±0.0003 1.26±0.008
− fine-tuning 95.13%±0.21 0.943±0.0005 1.73±0.015
− discriminator 96.15%±0.22 0.938±0.0006 2.29±0.016

TABLE I: Model’s variants quantitative analysis. The first row

is the full model, the second row is without fine-tuning, the

third row is without fine-tuning or a discriminator.
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Fig. 3: Different operating points from selective and best-of-

many sampling encoding.

(bit accuracy 97%), and selecting the best from 30 samples

(bit accuracy ∼85%). In the latter case, the output is moving

towards identical reconstruction. This analysis suggests that

higher-quality output sentences can be acquired by sampling

and that the language model metric also correlates with the

meteor and SBERT ones.

b) Selective encoding: Alternatively, to provide fur-

ther flexibility, we leave a percentage of sentences non-

watermarked to reduce the overall change to the output text.

The message decoder side does not need to know which

sentences were watermarked as it can attempt to decode the

message from all sentences in a document. The matching

accuracy of non-watermarked sentences approximates the ran-

dom chance while watermarked sentences will have a strong

matching (we use the 1-sample output in Table I). We can

then base the decision on the matching of the whole decoded

sequence of messages (i.e., using null-hypothesis testing as

we show in Section V-B4). We decide which sentences to

leave based on setting a threshold on the increase of the

language model loss compared to the original sentence. We

examine different thresholds that encode different quantiles of

the test set sentences (from 75% to 100%). We perform this

experiment by sampling only 1 sample from the model. We

show in Figure 3 the mean meteor and SBERT distance versus

bit accuracy at each quantile. Besides the flexibility and utility

advantage, selective encoding hinders the adversary effort to

localize the watermark as not all sentences are watermarked.

4) Watermark verification by sentence aggregation: The

previous strategies help to improve the output’s quality. How-

ever, they reduce the bit accuracy. Therefore, in this section,

we discuss the relationship between the verification confidence

and bit accuracy at different input lengths.
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Fig. 4: Histograms of (a) SBERT distances (lower is better),

and (b) meteor scores (higher is better) for 2 sampling settings.
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To allow a large number of watermarks and support an

article-level watermarking, a longer watermark can be com-

posed of multipliers of 4 bits messages; each 4 bits are

embedded into one text segment. If the total text length is

longer than the watermark, the long watermark sequence can

be repeated partially or fully. The length of the unique long

watermark can be determined based on the expected minimum

text length. The decoded messages can be then verified against

the sequence. Thus, we accumulate observations from all

messages in the document to perform a null hypothesis test

based on the number of matching bits [84]. We assume that the

null hypothesis (H0) is getting this number of matching bits by

chance. Under the null hypothesis, the probability of matching

bits (random variable X) follows a binomial distribution; the

number of trials is the number of bits in the sequence (n), k

is the number of successes (matching bits), and each bit has

a 0.5 probability of success. We then compute the p-value of

the hypothesis test by computing the probability of getting k

or higher matching bits under the null hypothesis:

Pr(X > k|H0) =
n
∑

i=k

(

n

i

)

0.5n

The watermark is verified if the p-value is smaller than

a threshold T ; meaning that it is not very likely to get

this sequence by chance. This allows a soft matching of the

decoded watermark instead of an exact one. We evaluate the

thresholds of 0.05 and 0.01 [84].
We empirically find the percentage of instances where the

null hypothesis can be rejected (i.e., the watermark is correctly

verified), and its relationship with the text length (i.e., the

number of bits in the sequence). We perform this at different

operating points that vary in their bit accuracy. We demonstrate

this experiment in Figure 5; when increasing the text length,

we observe more correct observations, and thus, can reject

the null hypothesis. Therefore, the use of operating points

can be flexibly determined by the expected text length; at

longer lengths, it is affordable to use an operating point with

lower bit accuracy (i.e., higher utility). We validate that the bit

accuracy is close to chance level (49.9%) when the input is

non-watermarked (real) text, which results, naturally, in high

p-values (and low false-positive rates).
5) Decoding by averaging: We here aim to improve the

bit accuracy of the best-of-many samples encoding strategy,
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Fig. 5: Percentage of instances where the null hypothesis

(no watermarking) is rejected (for 0.05 and 0.01 p-value
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encoded with the same message.

this can be needed in applications where one is interested

in decoding the message itself, rather than watermarking by

concatenating segments from the whole document. We encode

multiple text segments/sentences with the same binary mes-

sage, decode each sentence independently, and then average

their posterior probabilities. We demonstrate in Figure 6 the

performance gain when averaging up to 4 sentences, compared

to using only 1 sentence. We perform this analysis for 4

different operating points that vary in the number of samples.

As can be observed, using only 2 sentences can increase the

bit accuracy for all operating points. Increasing the number of

sentences can still further improve the accuracy. This strategy

can be used by repeating the messages in the document with

an agreed-upon sequence.

6) Qualitative analysis: We qualitatively analyse the

model’s output. We first compare different variants, we then

discuss the implications of the used metrics. Lastly, we visu-

alize and analyse the changes performed by the model.

a) Model’s variants: To examine the effect of the ad-

versarial training, we show in Table II examples of input and

output pairs of the model trained with text reconstruction only

(the third row in Table I). We observed that there are two main

problems with this model: first, it performs systematic and

fixed modifications that alter the text statistics, e.g., the word

“the” is often changed. Second, it encodes the message with

tokens that have low occurrences count in the natural text (pos-

sibly, since there are no other constraints on the naturalness,

the model exploits this shortcut as a trivial solution as these

rare tokens would be clearly distinctive of the message). These

two problems could make the watermark easily detectable by

adversaries (and thus removable). It also makes the output

less natural and reduces the semantic correctness (which is

indicated by the higher SBERT distance in Table I, supporting

Input − discriminator output

He was appointed the commanding officer.
He was appointed Bunbury commanding

officer.

one of the most fascinating characters in the

series

one of Milton most fascinating characters in

Milton series

TABLE II: Examples of input and output pairs of the model

trained without adversarial training showing systematic fixed

changes that insert less likely tokens.
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Fig. 7: Top words’ count in the model trained without adver-

sarial training compared to their counts in AWT output and the

original dataset.

the use of an additional metric besides the meteor). To validate

this observation, we show in Figure 7 the occurrences of the

top words in this model compared to their occurrences in the

AWT model and the original text. Unlike AWT , this model’s

variant pushes unlikely words to the top and decreases the

count of more likely words (e.g., “the”), introducing clear

artifacts. In contrast, AWT keeps the distribution of top words

similar and encodes the message with also likely words,

providing better concealing. The model without fine-tuning

also keeps the top words’ counts similar (not shown in the

figure), but it still shows syntactic inconsistencies, e.g., using

the end-of-sentence token in the middle of the sentence. We

observed that fine-tuning the model helps to reduce these

inconsistencies, examples are shown in Table III.

We also show in Table IV examples of input and output pairs

obtained using AWT and the best-of-many sampling strategy (n

= 20 samples). The hidden information in these examples was

encoded using common tokens (e.g., preposition, articles, or

auxiliary verbs), correct structure, and with a very comparable

meaning to the input sentence.

Even though fine-tuning and sampling improve the quality

of the output to a large extent, we still observed some

failure cases of incorrect replacements that cause grammatical

and syntactic mistakes. Examples of such cases are shown

in Table V. One common failure mode happens when the

type of the word changes. However, this cannot be entirely

generalized as a failure case, e.g., some examples in Table IV

Input − fine-tuning output AWT output

the Business Corporation,
which was formed by a
group of leaders from the
area.

the Business Corporation,
<eos> was formed by a

group of leaders from the
area.

the Business Corporation,
which was formed by a
group of leaders at the area.

The railroads provided a
means of transportation and
an influx of industries

The railroads provided a
means of transportation and
<eos> influx of industries

The railroads provided a
means of transportation and
that influx of industries

the measurements indicated
that a segment of M @-@
82 west of <unk> had the
peak volume for the high-
way

the measurements indicated
that a segment of M @-
@ 82 west of <unk>’s the

peak volume for the high-
way

the measurements indicated
that a segment of M @-@
82 west of <unk> were the

peak volume for the high-
way

TABLE III: Comparison between two variants of the model:

before and after fine-tuning. The fine-tuned model shows better

syntactic consistency.

Input AWT output

In 1951 , a small airstrip was built at the
ruins

In 1951 , a small airstrip was built on the

ruins

It is the opening track from their 1987 album It is the opening track of their 1987 album

the ancient city is built from limestone the ancient city is built with limestone

He also performed as an actor and a singer He had performed as an actor and a singer

While <unk> had retained some control of
the situation

While <unk> also retained some control of

the situation

It is bordered on the east side by identical
temples

It is bordered at the east side by identical

temples

a family that ’s half black , half white , half
American , half British

a family that was half black , half white ,

half American , half British

they called out to the other passengers , who
they thought were still alive .

they called out to the other passengers , who
they thought , still alive .

, but the complex is broken up by the heat
of cooking

, and the complex is broken up by the heat

of cooking

TABLE IV: Examples of input and output pairs using AWT

where the meaning and correctness are preserved.

removed a verb (“had”) with an adverb (“also”) while still

being grammatically correct and also semantically consistent.

b) Metrics Analysis: We use the SBERT distance as an

evaluation metric in addition to using the language model

likelihood as a sorting metric. Therefore, we validate them

by evaluating their recall of the best sample. On a subset of

100 input sentences, we use AWT to generate 10 samples for

each input sentence. We examine the possible sentences to

find the best sample (in terms of both semantic similarity

and grammatical correctness). For 92 out of 100 sentences,

we found that the best sample is retrieved by either one or

both metrics. This suggests that these two evaluation methods

correlate with human annotation.

Since we use the language model to sort samples, we

compare the best sample by the SBERT versus the best sample

by the language model. On a subset of 200 sentences: the

two metrics yielded the same sample in 44% of the cases,

while they yielded comparable samples in 25%. The SBERT

metric had a better sample in 9%, while the language model

had a better sample in 22%. This shows that they have

comparable performance, however, the language model was

slightly better and more sensitive to grammar correctness,

see Appendix VIII-A for such cases and for more qualitative

analysis of the SBERT distance metric.

c) Visualizations and analysis: To further visualize the

types of changes performed by the model at scale, we analyzed

the count of transitions between words in the input to output

text, as shown in Figure 8. We performed this analysis on

the most commonly changed words (or changed to), shown

Input AWT output

He is also present in the third original video
animation

He is could present in the third original

video animation

resulting in a population decline as workers
left for other areas

resulting in a population decline an workers

left for other areas

government officials had been suspected government officials at been suspected

who has been in office since 2009 who has were in office since 2009

The M @-@ 82 designation was truncated
at this time

The M @-@ 82 designation was truncated
were this time

TABLE V: Examples of failure modes showing input and

output pairs with grammatical errors.
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in Appendix VIII-C. Based on this analysis, we highlight the

following observations: 1) Words are not consistently replaced

since the diagonal line has a high count, meaning that in most

occurrences, the model keeps these most commonly changed

words unchanged. 2) There are no clear sparse transitions

between words; meaning that a word is not always replaced

by a specific word. 3) These message-holding words are not

exclusive to the watermark occurrence. 4) These words are all

from the most occurring words in the dataset (see Figure 7).

These observations suggest that the model does not produce

obvious artifacts or telltale signs in terms of changing the

statistics of top words. In addition, there are no fixed rules

that could describe or substitute the changes since it does not

perform systematic changes between pairs of words. Thus,

these factors contribute to the hidden encoding of information.

C. Secrecy Evaluation

Our analysis shows that the model hides the information in

a natural way by optimizing the translations to be as close

and correct as possible to the original text. Nevertheless,

we systematically study the secrecy by training classifiers to

discriminate between encoded and non-encoded text. Although

secret communication is not the primary task, the adversary

might train a classifier in order to help identify and possibly

remove the watermark (e.g., by adversarial training). Besides,

the secrecy evaluation is another proxy for the naturalness of

the encoding.

We train the classifiers on non-paired (i.e., disjoint) wa-

termarked and non-watermarked text, that is a reasonable

assumption since the adversary does not have access to text

before watermarking. We split the training data into two equal
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Fig. 8: A matrix of word changes’ count from the original

text to modified text using AWT . We show the no-diagonal

transitions only in Appendix VIII-C.

parts and use AWT to watermark one of them by different

messages sampled randomly. Similarly, we watermark the test

and validation sets, but we use the entire sets for each class.

We measure the classifiers’ success by the F1 score; ideally,

it should be at a chance level performance (0.5), denoting the

adversary’s failure.

We compare the classifiers’ success on different model’s

variants; the no-discriminator model, the no fine-tuning model,

and the full AWT . Since we use a transformer-based dis-

criminator in AWT , we also study the generalization with

respect to different classifiers (transformer, LSTM, and Bag-

of-Words with Support Vector Machines [85]). The LSTM

and transformer classifiers are trained on single length-varying

sentences (similar to AWT training). The BoW+SVM classifier

is trained on word occurrences’ feature vectors in paragraphs

(up to 800 words). For each classifier, we optimize the

hyperparameters and show the results of the most adversarial

ones. Finally, we examine the effect of improving the quality

(by sampling) on the classifiers’ performance.

As depicted in Table VI, we summarize our main conclu-

sions as follows: 1) The no-discriminator model shows very

high F1 scores (especially on longer sequences) indicating

poor hiding capability, which supports our previous qualita-

tive observations. 2) The adversarially trained models show

considerably lower F1 scores across different classifiers. 3)

Improving the quality (by sampling) helps to further reduce

the classifiers’ success. 4) The full AWT with sampling model

has a very close to the ideal random chance performance.

D. Robustness Evaluation

Regardless of the secrecy, the adversary might apply dif-

ferent attacks on the watermarked text. The attacker’s goal is

to tamper with (remove) the watermark with minimal changes

to the text, in order to still have a high utility. Therefore, for

each attack, we study the relationship between the drop in bit

accuracy and text similarity. We focus on automated attacks

without human inspection or modification [5], [20]. In Sec-

tions V-D1 and V-D2, we study two attacks that assume that

the adversary has general knowledge about using a translation-

based watermarking scheme. However, AWT is not explicitly

trained or tailored to defend against these attacks. We study

adaptive attacks in Section V-D3 and V-D4 where the attacker

can train their own watermarking model (AWTadv).

Model’s variant Sampling Classifier F1 score

− discriminator 1 sample

Transformer 0.89

LSTM 0.80

BoW+SVM 0.98

− fine-tuning
1 sample

Transformer 0.65

LSTM 0.56

BoW+SVM 0.63

Best of 20 samples Transformer 0.59

AWT Best of 20 samples Transformer 0.53

TABLE VI: Secrecy evaluation of different model’s variants

indicated by the F1 score of the adversary.
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1) Random changes: We consider two types of random

changes to the watermarked text: removing words and re-

placing words with synonyms. For each attack, we change

each word with a probability p that we vary from 0.05 to

0.2. For each case, we compute the bit accuracy and SBERT

distance. For synonym substitution, we use WordNet as a

commonly used lexical database to find synonyms for words

to be replaced. Instead of the naive random replacement, we

assume that the attacker has access to a model like SBERT

and uses it to select the synonym that gives the lowest distance

from the set of possible synonyms.

We demonstrate the results of these two attacks in Figure 9.

We perform these attacks on the output of AWT using 1 sample

in Figure 9a, and 20 samples in Figure 9b. The ‘remove’ attack

was found to be slightly more successful than the ‘replace’

attack since not all words used to encode the message have

synonyms in WordNet. However, For both the two attacks and

the two operating points, the bit accuracy decreased by 0.05%

up to 6.5%, while on the other hand, the SBERT increased by

86% up to 577%. This shows that the bit accuracy is robust to

local changes and that the adversary needs to substantially

change the text by random changes in order to make the

watermark not usable.

2) Denoising: Instead of random changes, a more knowl-

edgeable adversary might train counter-models to reconstruct

the text. We train a transformer-based denoising autoencoder

(DAE) [10] (sequence-to-sequence model) that is tasked to

denoise an input sequence. We apply two types of noise to

the input sequence (S): embedding dropout, and random word

replacement, to form a corrupted sequence (Ŝ). The noise is

applied with a 5% probability. Ŝ is then fed to the encoder.

The decoder is tasked to reconstruct the original sequence S,

and is fed the shifted S. The denoising maximizes p(S|Ŝ),
which can be described as [10]:

p(S|Ŝ) =
n
∏

i=1

p(Wi|Ŝ,W<i)

That is: predicting Wi is conditioned on the full corrupted

sequence Ŝ and the left side non-noisy sequence W<i.

We perform the DAE training on non-watermarked text, and

use the trained DAE to denoise the watermarked text at test

time. If the DAE was trained on watermarked text, it would

be tasked to reconstruct it and therefore would not change the
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Fig. 9: Random attacks (replacing and removing words) and

denoising attack (applied to noisy text).

watermark. In contrast, with the current setup, the watermark

could approximate the noise applied during the DAE training.

The word replacement noise is in line with our watermarking

scheme that is also based on word replacement, imitating an

adversary with prior knowledge about our approach.

We hypothesize that a less natural encoding of the in-

formation would be more vulnerable to denoising than a

more natural one. To validate this, we apply the DAE on

the output of the three model’s variants that we previously

discussed, without applying additional noise. We demonstrate

this experiment in Table VII in which we show the bit accuracy

drop and the SBERT relative change. We summarize our

interpretation as follows: 1) Improving the quality makes the

denoising attack less effective; the ‘no-discriminator’ model

had a huge drop in bit accuracy and it reached a chance

level, while it decreased slightly for the other variants, in

particular, the better-quality AWT model. 2) The DAE does

not perfectly reconstruct the sentences and still introduces

other changes besides the watermark’s changes, this increased

the SBERT distance for the two adversarially trained models.

3) On the other hand, the changes introduced to the ‘no-

discriminator’ model reduced the SBERT, indicating more

successful denoising. We show examples of these different

cases and more details about the DAE in Appendix VIII-B.

We then study a different attack variant where we introduce

additional noise to the watermarked text before applying the

DAE. This is, instead of applying random word replacement

solely as an attack, we apply these random changes that might

remove the watermark, and then use the DAE to generate

a more realistic/smoothed sentence than the corrupted one.

Similarly, we vary the probability of the noise and study the

relationship between bit accuracy and SBERT distance. We

show in Figure 9 the performance of this attack in comparison

with random changes alone. We found that this variant is more

effective than using random changes; at the same level of

SBERT, the drop in bit accuracy is higher. However, it still

causes a significant increase in the SBERT distance (e.g., at a

10% drop in bit accuracy, the SBERT increased by 319%).

3) Re-watermarking: Watermark piracy [56], [86] is an

attack in model watermarking where the adversary’s goal is

to dispute or claim ownership of a stolen watermarked model

by inserting their own watermark (to corrupt, exist alongside,

or replace the original [56]). We adapt re-watermarking as an

attack on our method. Our threat model targets misuse instead

of model stealing. Thus, we assume that the adversary’s goal

is to use the service/APIs without getting detected, instead of

claiming ownership, i.e., to corrupt or tamper with the owner’s

Model Bit accuracy drop SBERT change

AWT 1.93%±0.19 30.77%±1.03↑

− fine-tuning 5.21%±0.12 14.20%±1.11↑

− discriminator 47.92%±0.44 15.93%±0.94↓

TABLE VII: The relative performance of denoising attack

applied to the 1-sample output. The no-attack performance

is in Table I.

131



watermark and reduce its decoding accuracy.

We assume a strong adversary who has full knowledge

about AWT architecture, training details, access to the same

training data, and the granularity of input sentences. In our

threat model, we consider a black-box scenario in which the

adversary can train their own model and use it to insert

a random watermark into the watermarked text, in hope of

corrupting the original watermark and confusing the decoder.

For completeness, we also show the less realistic white-box

case when the re-watermarking is done using the same model.

To run the black-box attack, we train another model AWTadv

that is only different in initialization and reaches a com-

parable performance to AWT . We first watermark the text

with AWT , then we re-watermark it with a random message

using AWTadv(using the same or a different message was

comparable). We use the message decoder of AWT (i.e., the

first model) to decode the re-watermarked text and com-

pute the matching with the original watermarks. As shown

in Table VIII, re-watermarking is stronger than denoising

(Table VII) in decreasing the accuracy, but it also affects

utility and perturbs the text due to double watermarking.

This is in contrast with model watermarking where piracy

can mostly retain the task performance [56]. Also, the new

watermarks did not completely corrupt the original ones (i.e.,

the matching accuracy dropped to ∼85%, while the accuracy

of non-watermarked text is ∼50%). A possible interpretation

is that AWTadv (i.e., another instance) does not necessarily use

the same patterns (e.g., words to be replaced, added words,

and locations) to encode the information and so it does not

completely replace the original changes or confuse the first

model’s decoder. We validated this by decoding one model’s

translation by the other model’s decoder (AWT and AWTadv

with no re-watermarking) and the matching accuracy was close

to random chance (51.8% and 53.2%). Our observation that

different models produce different patterns is also consistent

with previous data hiding studies in images (e.g., [27]).

Although the new watermarks in the re-watermarked text

have high matching accuracy by the decoder of AWTadv

(∼96%), the adversary has no strong incentive or evidence to

dispute provenance since 1) human-written text/news is mostly

non-watermarked. 2) the presence of the original watermark by

the decoder of AWT indicates that the text was re-watermarked

because otherwise, it should have a random chance matching.

Finally, in the less realistic white-box case, re-watermarking

with a different message overrides the original watermarks. We

found that this is mainly because the model very often undoes

Attack Bit accuracy drop SBERT change

Re-watermarking
white-box 46.8%±0.46 23.4%±0.45↑

black-box 12.6%±0.38 66.1%±1.89↑

De-watermarking
white-box 41.6%±0.34 55.2%±0.39↓

black-box 11.5%±0.32 11.3%±0.53↑

TABLE VIII: The relative performance of adaptive attacks that

are applied to the 1-sample output in the white-box and black-

box (which we mainly consider) settings.

the same changes done by the first watermarking step. A more

detailed discussion on re-watermarking is in Appendix VIII-D.
4) De-watermarking: Our last attack assumes that the ad-

versary could use their knowledge about AWT to de-watermark

the text, instead of adding a new watermark. Ideally, training

an inverse de-watermarking model requires paired training

data of the same text before and after watermarking, which

is not feasible in our black-box scenario. To circumvent this,

the adversary might try to train a denoising autoencoder

(DAEpaired) on the paired data of AWTadv. The DAEpaired takes

the watermarked sentence as an input, with no additional noise,

and should reconstruct the original non-watermarked sentence.
In Table VIII, as a sanity check, we first evaluate the white-

box case when the DAEpaired is applied to AWTadv. This signif-

icantly reduced the bit accuracy (dropped to ∼55%) and also

the SBERT distance indicating a successful reconstruction.

This is mainly because the DAEpaired was exposed to the

patterns the model AWTadv frequently uses. In contrast, The

black-box attack is significantly less successful (bit accuracy

dropped to ∼86%). However, in terms of the trade-off (i.e.,

decreasing bit accuracy with minimal changes), it may be the

most effective one among the attacks we considered since it

increased SBERT by ∼11%, while re-watermarking increased

it by ∼66% with a comparable drop in accuracy.
The cases where the attack succeeded in the black-box

setting were mainly either: 1) sentences with lower syntactic

correctness or 2) similar changes to AWTadv. Otherwise, the at-

tack was not successful due to the differences between the two

models and the subtle encoding. Further improving the quality

and diversity of watermarks both within and across models

could help to defend against adaptive attacks, we leave that to

future work. A detailed discussion is in Appendix VIII-D.

E. Baselines

In this section, we compare AWT against baselines. First,

we implement a rule-based synonym substitution method

that adopts the method in [20]. Second, as an alternative

to translation-based data hiding, we train an autoregressive

language model, while simultaneously optimizing the message

encoding and decoding.
1) Synonym substitution: The method in [20] uses syn-

onyms from WordNet to encode binary bits. The authors

relied on ambiguity to make it hard for the adversary to

perform automatic disambiguation. The ambiguity comes from

encoding the message by synonyms that are “homographs”

(having multiple meanings).
We first form a list of words (in the dataset vocabulary)

to be replaced by finding the words that have homographs

Model Acc. SBERT F1

Synonym 83.28%±0.62 3.62±0.004 0.98

AWT 86.3%±0.99 0.944±0.02 0.53

TABLE IX: Comparing AWT and synonym substitution in

terms of bit accuracy, SBERT distance (showing the average

and standard deviation of different runs), and F1 score.
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(at least 2) in their synonym sets. We randomly divide each

homograph set into two disjoint sets to encode ‘1’ and ‘0’ bits

(bit-holding words). To have a unique encoding and decoding,

we make sure no single word is assigned multiple values by

being found in different words’ synonym sets. Therefore, we

skip a word if it was already assigned a value.

To encode the message, we find the occurrences of this list

of words in the sentence. We replace each word with a ‘1’ or

‘0’ synonym according to the current bit in the message. We

repeat until all bits are encoded. The decoding is then done

by simple dictionary lookups. We use a message length of 4

bits similar to our setup. To have unique decoding, we replace

any accidental occurrences of the ‘bit-holding’ words in the

original text with their corresponding synonym in the ‘replace’

list. This prevents unintentional encoding. We highlight this

important advantage of our model; AWT does not impose such

restrictions on the used words since there are no words that

are exclusive to the message encoding (as per Figure 8).

We again evaluate this baseline across the different evalua-

tion axes: effectiveness (utility and bit accuracy), secrecy, and

robustness. For effectiveness, we compute the bit accuracy

and SBERT distance. For secrecy, we train a transformer-

based classifier with the same setup as in Section V-C. We

show a summary of these two evaluation factors in Table IX.

We compare the baseline against AWT at a comparable bit

accuracy level (resulted from sampling from the model) for a

fair comparison. We summarize our findings as follows: 1) The

message encoding was not successful in all sentences since not

all sentences have words from the fixed ‘replace’ list. 2) At an

even higher bit accuracy level, AWT has a considerably lower

SBERT distance. 3) The baseline has a very high F1 score

compared to the F1 score of AWT .

For robustness, we apply the words removing and replacing

attacks as in Section V-D. We do not apply the DAE attack

since some words used in the baseline method might be Out-

of-Vocabulary words with respect to the DAE. As shown

in Figure 10, the baseline is more sensitive to attacks since

the encoding changes a larger amount of words compared to

AWT . The ‘replace’ attack is even stronger than the ‘remove’

attack; not only can it remove the original ‘bit holding’

words, but it can also introduce accidental wrong encoding

by adding other ‘bit holding’ words instead of regular words.

This analysis shows that AWT achieves a significantly better

trade-off between the three different evaluation axes.
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Fig. 11: AWD-LSTM with data hiding showing different

operating points that vary in perplexity and bit accuracy. The

baseline perplexity is the AWD-LSTM without data hiding.

2) Generation-based hiding: An alternative strategy to the

translation-based data hiding of the generated text (as a post-

processing step) is to generate text that is already encoded

with the input message [45]. Unlike previous generation-based

steganography work that relied on masking [45], we jointly

train a language model (in contrast to AWT , an autoencoder

and thus bidirectional) with a message decoder. We used the

same AWD-LSTM language model in [70]. In our case, it takes

the input word added to the input message at each time step

and is trained to predict the next word given previous words.

The message decoder takes the generated sequence and is

trained to reconstruct the input message. The model is trained

jointly with both losses. More details are in Appendix VIII-E.

We evaluate the model using the perplexity (i.e., exponential

of the model loss, lower is better) and the bit accuracy. The

ideal perplexity would be the perplexity of the AWD-LSTM

without data hiding. As shown in Figure 11, a very high bit

accuracy can be achieved with around 12 points increase in

perplexity (second operating point). The perplexity could be

further reduced by tuning the weights between the two losses,

which also decreases the bit accuracy.

However, the main limitation is that message accuracy fur-

ther drops during inference using recursive greedy decoding.

Although it improves with averaging 2 sentences, it indicates

that it would be even harder to retain high accuracy using

other decoding strategies that introduce more variation in

generations, such as top-k or top-p sampling [5], [8], [13],

[87]. These strategies are typically used in open-ended gen-

erations due to having higher quality output [87]. In contrast,

AWT does not suffer from these discrepancies since it can be

applied agnostically on the generated sequence regardless of

the decoding strategies and the language model.

F. Human Evaluation

It is common for machine translation and generation tasks

to use human evaluation as an auxiliary evaluation besides the

other metrics [5], [72]. Therefore, we conducted a user study in

order to evaluate the naturalness and correctness of our model,

as a proxy to measure the stealthiness of the watermark.

The study is conducted on the best variant of the model

(with fine-tuning) with the best-of-20 samples strategy (bit ac-

curacy: ∼86%) and on the synonym baseline in Section V-E1

(bit accuracy: ∼83%). It was performed by 6 judges who were

asked to rate sentences with a Likert scale from 0 (lowest) to 5
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AWT Synonym-baseline Non-wm Dataset

4.5±0.76 3.42±1.16 4.65±0.62

TABLE X: The results of a user study to rate (0 to 5) sentences

from AWT , the baseline, and non-watermarked text.

(highest). The ratings are described with instructions that range

from: ‘This sentence is completely understandable, natural,

and grammatically correct’, to: ‘This sentence is completely

not understandable, unnatural, and you cannot get its main

idea’. We included different random sentences from AWT , the

synonym-based baseline, and the original non-watermarked

text, displayed in a randomized order. The non-watermarked

text works as a reference to the two approaches as the rating of

the original text might not always be ‘5’, since the dataset has

processing tokens that might make it ambiguous. We show the

average rating for each case in Table X. AWT had both higher

ratings and less variance than the baseline. The high variance

in the case of the baseline can be attributed to the observation

that not all sentences were successfully encoded with the full

4 bits, and therefore, some of the sentences did not have a lot

of changes. In the case of successful encoding, the sentence

generally undergoes a lot of changes compared to AWT , where

usually not all of them are consistent. More details about the

study are in Appendix VIII-F.

VI. DISCUSSION

We here discuss other several aspects of our work, other

assumptions, scope, and limitations.

a) Granularity: We focus on the threat scenario of news

articles that have a large number of tokens [5]. While other

threats such as misinformation on Twitter are important [88],

they are less relevant for machine-generated text that requires

longer context for generation or detection (e.g., up to 1024

tokens in [5] or at least 192 tokens in [13]). Although it is

possible to encode 4 bits in a short text using our approach,

this short message is not enough for confidence calculation.

Verification on short text would require a longer watermark

and thus, severely affect the text, as the task of data hiding in

text is inherently more difficult than its counterpart in images.

b) False positives: When concatenating several 4 bits

messages, the false positives can be directly controlled by the

p-value threshold [84], since the accuracy of non-watermarked

text is at the chance level. We evaluated the thresholds of

0.05 and 0.01 (Figure 5). One possible way to improve false

positives is to use multiple confidence thresholds with an

increasing alarm for false positives. Then, if the watermark

verification is in the low-confidence range, our solution could

potentially be combined with other previously introduced fake

news defenses (e.g., discriminators [5], [13], [89], automated

fact-checking and stance detection [90]). On the other hand,

human fact-checking is still a standard solution for news

verification [91], while automated solutions aim to reduce

these human efforts, humans can still be kept in-the-loop for

verifying low-confidence instances, reducing the otherwise full

effort to verify all articles.

c) Human editing: The black-box APIs might be used

legitimately for partial text completion or suggestions to some

of the sentences with further interactive human editing. How-

ever, the main threat we consider is misusing these models in

an unintended way to generate entire articles at scale, possibly

conditioned on a headline or a context. Although the threat of

combining the generation with human editing is conceivable,

it is a limited use-case for the adversary since it reduces the

scalability and adds manual time-consuming efforts, largely

reducing the advantages of using machine-generated text.

d) Possible release of models: We assume black-box

access to the language model, however, it is still an important

step towards defending against misuse. While GPT-2 was

released after a staged release, this might not be the case

for future models. By the time of writing this paper, OpenAI

is not open-sourcing GPT-3, and it is only available through

commercial APIs [15], where one of the announced reasons

is to prevent or limit misuse. Additionally, our solution is also

helpful for scenarios where a general language model like

GPT-2 is fine-tuned by a service for specific tasks or domains.

e) Training in-house language models: Another option

for the adversary to circumvent defenses is to train their

own language model. However, training modern state-of-the-

art language models, including massive datasets collection, is

a very expensive and time-consuming process that requires

significant technical expertise, and the cost is progressively

increasing. Training Grover [5] requires around $35k using

AWS. Training a 1.5 billion parameter model is estimated at

$1.6m [92]. The 175B GPT-3 training cost is estimated at

$4.6m [93]. Final actual costs could be even higher due to

multiple runs of hyperparameters tuning.

f) Watermarks regulation: Since we use a multi-bit wa-

termarking scheme, our scenario can be extended to water-

marking multiple models offered by different owners. How-

ever, this would require further cooperation of models’ owners

or a potential regulation by a trusted regulatory third party that

handles the distribution of watermarks, and sharing the wa-

termarks’ encoder and decoder. We hope that our work opens

follow-up future research and discussions on the regulation and

proactive protective release strategies of such technologies.

VII. CONCLUSION

In this paper, we present AWT , a new framework for lan-

guage watermarking as a potential solution towards marking

and tracing the provenance of machine-generated text. AWT

is the first end-to-end data hiding solution for natural text

and is optimized to unobstructively encode the cover text by

adversarial training and other smoothing auxiliary losses.

AWT achieves more flexibility and a significantly better

trade-off between the different evaluation axes (effectiveness,

secrecy, and robustness), in terms of quantitative, qualitative,

and human evaluations, compared to a rule-based synonym

substitution baseline. Our work offers a new research area

towards improving and robustifying automatic data hiding in

natural language, similar to its precedent in images.
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VIII. APPENDIX

A. Metrics Analysis

We show more examples to examine and validate the metrics

we use to evaluate or sort the output of the model.
1) Sampling: In Section V-B6, we discussed that the lan-

guage model loss gives slightly better sentences in terms

of syntactic correctness than SBERT, therefore, we used it

to sort and select the best sample. In Table XI, we show

examples of such cases. Nevertheless, we still measure the

semantic similarity using SBERT as a metric due to the

benefits discussed below.
2) SBERT and Meteor: In our analysis, we use the SBERT

distance between the input and output sentences’ embeddings

as an auxiliary metric besides using the meteor score. We here

demonstrate examples of sentences with high SBERT distance

and the advantages of using it over meteor only.
One of the cases that yields a high SBERT distance is

when the output text has a changed sentiment (e.g., by using

a negation), such as the two examples in Table XII. These

examples do not have an extremely low meteor score since

not a lot of words were changed. The first example also

is grammatically correct (using “are ’t”). Despite that, they

undesirably change the semantics of the input sentence, which

is detected by the SBERT since it was trained on the NLI

task. Additionally, we show in Table XIII two samples for the

same input sentence and comparable meteor scores, however,

the one with the lower SBERT distance has more coherency.
Given these observations, and the qualitative analysis we

performed in Section V-B6 (e.g., on the ‘no-discriminator’

model), we found that using SBERT is an effective metric to

approximate semantic similarity and adds more information

than using meteor alone.

B. Denoising

For the denoising autoencoder (DAE), we used 6 encoding

and decoding transformer layers in the encoder and decoder,

respectively. We also share the embeddings of the encoder,

decoder, and the pre-softmax layer (dimension: 512). The

decoder has a masked self-attention and it attends to the output

of the encoder.

Input SBERT sample LM sample

The new M @-@ 120 designa-
tion replaced M @-@ 20 south
of <unk> . M @-@ 82 now ran
from <unk> to <unk> only.

The new M @-@ 120 designa-
tion replaced M @-@ 20 south
of <unk> . M @-@ 82 now ran
were <unk> to <unk> only.

The new M @-@ 120 designa-
tion replaced M @-@ 20 south
that <unk> . M @-@ 82 now

ran from <unk> to <unk> only.

The city continued to grow
thanks to a commission govern-
ment’s efforts to bring in a boom-
ing automobile industry in the
1920s.

The city continued to grow
thanks to a commission govern-
ment’s could to bring in a boom-

ing automobile industry in the
1920s.

The city continued to grow
thanks to a commission govern-
ment’s efforts to bring in a boom-
ing of industry in the 1920s.

TABLE XI: Examples of input sentences, the best SBERT

sample, and the best language model sample (slightly better).

Input Output SBERT Meteor

there are also many species of
<unk>. There are three main
routes which ascend the mountain ,
all of which gain over 4 @,@ 100
feet ( 1 @,@ 200 m ) of elevation.

there are ’t many species of

<unk>. There are three main
routes which ascend the mountain
, all of which gain over 4 by 100
feet ( 1 by 200 m ) of elevation.

7.5 0.93

Her family had originally come
from Poland and Russia . <unk>
’s parents had both acted as chil-
dren . <eos> In a 2012 interview
, <unk> stated : ” There was never
[ religious ] faith in the house

Her family as originally come with
Poland and Russia . <unk> ’s
parents had both acted by children
. <eos> In a 2012 interview ,
<unk> stated : ” There was with

[ religious ] faith in the house

7.19 0.93

TABLE XII: Examples in which introducing negation resulted

in a relatively high SBERT distance.

Input Output SBERT Meteor

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary The Search for
<unk> , which has been cited by
several authors including Gerald
<unk> , an expert on <unk> .
Towards the end of the song , there
is a line ” Feeding off the screams
of the <unk> he ’s creating ”
, which was taken from the film
The Boys from Brazil in which
Dr. <unk> was the villain.

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary of Search for

<unk> , which has was cited by

several authors including Gerald
<unk> , from expert on <unk> .
Towards the end of the song , there
is a line ” Feeding off the screams
of the <unk> he ’s creating ”
, which was taken from the film
from Boys from Brazil in which
Dr. <unk> was the villain .

1.55 0.941

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary The Search for
<unk> , which has been cited by
several authors including Gerald
<unk> , an expert on <unk> .
<eos> Towards the end of the
song , there is a line ” Feeding off
the screams of the <unk> he ’s
creating ” , which was taken from
the film The Boys from Brazil in
which Dr. <unk> was the villain
.

This allegation became more
widely known when <unk>
Alexander was featured in the
documentary of Search for

<unk> , which has been cited by
several authors including Gerald
<unk> , an expert on <unk> .
Towards the end of the song , there
is a line ” Feeding off the screams
of the <unk> he ’s creating ” ,
which was taken from the film of

Boys from Brazil <unk> which
Dr. <unk> was the villain .

1.17 0.939

TABLE XIII: Two samples for the same input text segment.

Although they have comparable meteor scores, the sample

with the lower SBERT distance shows better coherence.

a) Denoising non-watermarked text: We evaluate the

DAE, regardless of the watermark, by applying the noise to

the non-watermarked test set. We compare the similarity to

the original text before and after denoising using the meteor

and SBERT scores as shown in Table XIV. We observed

that denoising partially reconstructs the original sentence,

but, it can introduce additional changes. We illustrate by the

examples in Table XV that we categorize into three parts. In

the first one, we show examples where the denoised sequence

matches the original sequence; this was mainly for sentences

with syntactic inconsistencies that removed common/likely

words. In the second part, the DAE removed the added noise

with more likely sequences, yet, it did not restore the original

one which might cause semantic differences. In the third

part, the noise words were not changed in the denoised text.

This analysis suggests that the DAE is more likely to change

sequences with clear flaws, but it is also likely to cause other

changes that were not corrupted. We validate this observation

Text Meteor SBERT

Corrupted 0.947 2.7

Denoised 0.956 2.25

TABLE XIV: The similarity to the original sequence in the

case of the corrupted and denoised text.
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Input Corrupted Denoised

pair of claws pair 1941 claws pair of claws

when you don ’t when you tendencies ’t when you don ’t

his earliest surviving poem , his earliest surviving poem bill his earliest surviving poem ,

he was arrested He demolition arrested He was arrested

attempted to join the court attempted to Desiree the court attempted to take the court

He next spent around six weeks
Dreamers next Punch around six
weeks

The next day around six weeks

He appeared to be a <unk> son police appeared to be a <unk> son police appeared to be a <unk> son

Like many other poems in the Tang
Like many other poems in roof

Tang
Like many other poems in roof ,

The tenor of his work changed The luck of his work changed The luck of his work changed

TABLE XV: DAE output when applying word replacement

noise to the non-watermarked test set.

Input Watermarked Denoised

The eggs hatch at night The eggs hatch with night The eggs hatch with night

and a mass of 6 kilograms and a mass as 6 kilograms and a mass as 6 kilograms

several years writing for the televi-
sion sitcoms Grace Under Fire

several years writing for the televi-
sion of Grace Under Fire

several years writing for the televi-
sion of Grace Under Fire

He also performed as an actor and
a singer

He had performed as an actor and

a singer

He had performed as an actor and
a singer

he took the civil service exam he an the civil service exam he was the civil service exam

The first RAAF helicopters were
committed to

. with first RAAF helicopters were

committed to

. The first RAAF helicopters were
committed to

consisting of an infantry battalion
consisting of been infantry battal-

ion
consisting of two infantry battalion

, but the species is also widely
known as

Bunbury but the species is also

widely known as

, but the species is also widely
known as

This occurs because , in life , the
red pigment

This occurs because , in life , the
red pigment

This occurs because , in particular

, the small pigment

and adopts a <unk> lifestyle and adopts a <unk> lifestyle and has a <unk> lifestyle

The last distinct population The last distinct population The last major population

TABLE XVI: DAE output when applied to the watermarked

text (from different model’s variants).

by examining the denoising output of the watermarked text.

b) Denoising watermarked text: In Table XVI, we show

examples when applying the DAE to watermarked text without

additional noise (the results in Table VII). We categorize these

examples into three parts; the first is the examples where

the watermarking changes were not changed by the DAE.

Second, we show examples where they were changed; these

examples are from different variants of the model, and they

generally cause clear flaws, this explains the large drop in

the ‘no-discriminator’ model since this variant generally had

lower quality output. Third, we show examples where the

DAE introduced additional changes to sequences that were not

originally changed by the watermarking model, this increased

the SBERT distance in the first two rows in Table VII.

We observed other cases where the watermarking changes

were not altered by the DAE even when having other grammat-

ical mistakes, these changes might be removed by training a

stronger DAE (e.g., larger model or larger dataset), however,

this requires an even more experienced attacker with more

technical knowledge and powerful computational resources.

C. Visualizations

We show, in Figure 12a, a word cloud for the most frequent

words that were changed in the original text when watermark-

ing, and in Figure 12b, the most frequent words that were

changed to in the watermarked text. As can be observed, the

words in both figures are highly overlapping, therefore, we

(a) (b)

Fig. 12: (a) Words that were replaced in the original text. (b)

Words that the model changed to in the watermarked text.

Bigger fonts indicate higher frequencies.

analysed the pairwise transitions between them in Figure 8.

As we showed in Figure 7 and Figure 8, the model keeps

the count of these top words similar, and it does not perform

fixed substitutions between them. These factors support the

encoding secrecy with no telltale words. Besides, there are no

words that are particularly exclusive for bit holding, which has

a flexibility advantage over the rule-based substitution baseline

discussed in Section V-E1. For better visualization, we show

in Figure 13 the words’ transitions as in Figure 8, but without

the diagonal elements where the words were not changed.

D. Different AWT Models and Adaptive Attacks

In sections V-D3 and V-D4, we discussed that attacks

crafted using another trained model (AWTadv) are less effective

in the black-box case (when applied to the first AWT model).

In this section, we first compare two independently trained

models in terms of words’ transitions and qualitative examples.

We then show examples of adaptive attacks.

a) Comparing different models: A message decoder of

one model gives an almost random chance accuracy when used

to decode another model’s sentences. Thus, it is sensitive to the

paired watermarking model mostly. A possible explanation is

that different instances produce different patterns or mappings

(as previously reported in data hiding studies in images [27]).

To investigate that, we first study whether AWTadv uses the

same commonly changed words to encode the information.

In Figure 14, we show the transitions produced by AWTadv

among the commonly used words by the first AWT model.

When comparing this to Figure 13, we notice that these words

have relatively fewer transitions.

Furthermore, we show in Table XVII, examples of sentences

that were watermarked individually (but, using the same binary

message) by AWT and AWTadv producing different wording

changes (for the replaced, added words, or their positions).

b) Re-watermarking: For further investigation, we show

in Table XVIII examples of re-watermarked sentences in the

white-box and the black-box cases.

In the white-box case, we observed that the model often

replaces the same word that was previously replaced in the

first watermarking process. This caused the first watermark

matching accuracy to drop to nearly random chance. In the

black-box case, we can observe that: 1) the re-watermarking

does not necessarily override the first changes (i.e., both

changes can be present in the re-watermarked sentences). 2)

the newly added words might not be from the most sensitive
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Fig. 13: A matrix of word changes’ count from the original text

to modified text using AWT (same as Figure 8 but excluding

the diagonal elements where words were not changed).
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Fig. 14: The words’ transitions produced by AWTadv for the

most commonly changed words by AWT (in Figure 13).

Input AWT AWTadv

As is often the case with huge an-
cient ruins , knowledge of the site

was never completely lost in the
region . It seems that local people
never <unk> about <unk> and
they guided <unk> expeditions

to the ruins in the 1850s .

As is often the case with huge an-
cient ruins , knowledge by the site

was never completely lost in the
region . It seems that local people
never <unk> about <unk> and
they guided <unk> expeditions
to the ruins in the 1850s .

As is often the case with huge an-
cient ruins , knowledge of the site
was never completely lost in the
region . It seems that local people
never <unk> about <unk> and
three guided <unk> expeditions

to the ruins in the 1850s .

Jon <unk> of the professional

wrestling section of the Canadian
Online Explorer rated the show a
7 out of 10 , which was lower

than the 8 out of 10 given to the
2007 edition by Jason <unk> .

Jon <unk> @-@ the profes-

sional wrestling section of the
Canadian Online Explorer rated
the show a 7 out of 10 , which
was lower than the 8 out of 10
given to the 2007 edition by Ja-
son <unk> .

Jon <unk> of the professional
wrestling section of the Canadian
Online Explorer rated the show a
7 out of 10 , that was lower than

the 8 out of 10 given to the 2007
edition by Jason <unk> .

TABLE XVII: Examples of input and watermarked sentences

(using the same message) by the two models.

words to the first AWT model (based on Figure 13). These

observations and the previous analysis potentially explain why

re-watermarking was less effective in the black-box case.

c) De-watermarking: In section V-D4, we evaluated an

adaptive attack that tries to de-watermark the sentences rather

than re-watermark them. We perform this attack by training a

denoising autoencoder (DAEpaired, with a similar architecture

to the DAE used in subsubsection V-D2) on the paired training

data of AWTadv (without adding further noise). In Table XIX,

we show examples of applying this attack in the white-box

and black-box cases.

In the white-box, DAEpaired successfully recovered the sen-

tences where the watermarking model caused clear syntactic

flaws (such as the first example). Moreover, since DAEpaired

was exposed to the most frequent changes’ patterns during

training, it was able to reconstruct sentences with either no

or less obvious artifacts (e.g., replacing ‘which’ with ‘that’, or

‘which’ with ‘before’ in the table). These changes might not be

easy to detect without paired training. The second category of

examples includes pairs where the watermarking changes were

not reversed but were nevertheless replaced with perhaps more

correct tokens. The last category shows very subtle examples

that were not changed even in the white-box case.

In the black-box, DAEpaired also recovers the sentences with

clear mistakes. This is similar to the DAE model that was

trained on noisy data in section V-D2, however, DAEpaired was

more successful since different models could still have some

similarities (e.g., both replacing ‘been’). Since DAEpaired was

sensitive to the patterns that it was trained on, it often replaced

words that were not changed originally by AWT but are often

changed by AWTadv (e.g., removing ‘which’, ‘three’, and ‘they’

in the third black-box category). Finally, the last black-box

category shows examples where DAEpaired did not perform any

changes. This can be due to two reasons: 1) the changes are

more subtle. 2) they were not frequently seen in the paired

training data of AWTadv.

E. Generation-based hiding

We present more details about the baseline of generation-

based hiding in Section V-E2.

Input Watermarked Re-watermarked

W
h

it
e-

b
o
x

landed a role as ” Craig ” in
the episode ” Teddy ’s Story
” of the television series The

Long Firm

landed a role as ” Craig ” in
the episode ” Teddy ’s Story ”
from the television series The

Long Firm

landed a role as ” Craig ” in
the episode ” Teddy ’s Story
” at the television series The

Long Firm

<unk> made a guest appear-
ance on a two @-@ part
episode arc of the television

series Waking the Dead

<unk> made a guest appear-
ance on a two @-@ part
episode arc from the televi-

sion series Waking the Dead

<unk> made a guest appear-
ance on a two @-@ part
episode arc with the television

series Waking the Dead

B
la

ck
-b

o
x

Female H. gammarus reach
sexual maturity when they

have grown to a carapace
length of 80 – 85 millimetres
, whereas males mature at a

slightly smaller size .

Female H. gammarus reach
sexual maturity when they
have grown to a carapace
length of 80 – 85 millimetres
, whereas males mature on a

slightly smaller size .

Female H. gammarus reach
sexual maturity when to have

grown to a carapace length of
80 – 85 millimetres , whereas
males mature on a slightly

smaller size .

<unk> ’s other positions at

the Department of Air in-
cluded Air Commodore Plans
from October 1957 to January
1959 , and Director General
Plans and Policy from Jan-
uary to August 1959 . The
latter assignment put him in

charge of the RAAF ’s Direc-
torate of Intelligence .

<unk> ’s other positions on

the Department of Air in-
cluded Air Commodore Plans
from October 1957 to January
1959 , and Director General
Plans and Policy from Jan-
uary to August 1959 . The
latter assignment put him in
charge of the RAAF ’s Direc-
torate on Intelligence .

<unk> ’s other positions on

the Department of Air in-
cluded Air Commodore Plans
from October 1957 to January
1959 , and Director General
Plans and Policy from Jan-
uary to August 1959 . The
latter assignment put was in

charge of the RAAF ’s Direc-
torate on Intelligence .

TABLE XVIII: Examples of re-watermarking in the white-box

and black-box cases.
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Input Watermarked De-watermarked

with a body length up to 60
centimetres ( 24 in )

with a body length up to 60
centimetres of 24 in )

with a body length up to 60
centimetres ( 24 in )

which they must shed in order
to grow

which three must shed in or-

der to grow

which they must shed in order
to grow

W
h

it
e-

b
o
x

<unk> is remembered for ...
<unk> been remembered for
...

<unk> is remembered for ...

, which was lower than the 8

out of 10 given to the 2007
edition by Jason <unk> .

, that was lower than the 8

out of 10 given to the 2007
edition by Jason <unk> .

, which was lower than the 8

out of 10 given to the 2007
edition by Jason <unk> .

, which he was granted by

<unk> on the May 29
episode of Impact !

, before he was granted

by <unk> on the May 29
episode of Impact !

, which he was granted by

<unk> on the May 29
episode of Impact !

Today the fort is open

throughout the year

Today the fort not open

throughout the year

Today the fort was open

throughout the year

On the night before such

an event neither <unk> or
<unk> Gale could get those
minutes

On the night of such an event

neither <unk> or <unk>
Gale could get those minutes

On the night of such an event

neither <unk> or <unk>
Gale could get those minutes

which have been referred to

as the ” midnight @-@ sun
lobster ” .

which have from referred to

as the ” midnight @-@ sun
lobster ” .

which have been referred to

as the ” midnight @-@ sun
lobster ” .

several research @-@
<unk> allegations that were

brought against him

several research @-@
<unk> allegations that from

brought against him

several research @-@
<unk> allegations that were

brought against him

B
la

ck
-b

o
x

the United <unk> Band had

voted to stop <unk> asso-
ciate <unk>

the United <unk> Band that

voted to stop <unk> asso-
ciate <unk>

the United <unk> Band was

voted to stop <unk> asso-
ciate <unk>

This stage involves three

<unk> and lasts for 15 – 35
days .

This stage involves three

<unk> and lasts for 15 – 35
days .

This stage involves an

<unk> and lasts for 15 – 35
days .

and three which have di-

verged due to small effective
population sizes

and three which have di-

verged due to small effective
population sizes

and which they have diverged

due to small effective popula-
tion sizes

The first pair of <unk> is
armed with a large , asymmet-

rical pair of claws .

The first pair of <unk> is
armed by a large , asymmet-

rical pair of claws .

The first pair of <unk> is
armed by a large , asymmet-

rical pair of claws .

Churchill has argued that
blood quantum laws have an

inherent <unk> purpose .

Churchill has argued that
blood quantum laws have
been inherent <unk> pur-
pose .

Churchill has argued that
blood quantum laws have
been inherent <unk> pur-
pose .

Homarus gammarus is found
across the north @-@ eastern

Atlantic Ocean

Homarus gammarus is found
across the north of eastern

Atlantic Ocean

Homarus gammarus is found
across the north of eastern

Atlantic Ocean

TABLE XIX: Examples of de-watermarking in the white-box

and black-box cases.

1) Architecture: We add a ‘data hiding’ component to the

AWD-LSTM [70] by feeding the message to the language

model LSTM and simultaneously train a message decoder

that is optimized to reconstruct the message from the output

sequence. The input message is passed to a linear layer

to match the embeddings’ dimension, it is then repeated

and added to the word embeddings at each time step. The

language model is then trained with the cross-entropy loss:

L1 = Epdata(S)[− log pmodel(S)].

To allow end-to-end training, we use Gumbel-Softmax. The

message decoder has a similar architecture to the AWD-

LSTM and it takes the one-hot samples projected back into

the embedding space. To reconstruct the message, the hidden

states from the last layer are average-pooled and fed to a linear

layer. We tie the embeddings and the pre-Softmax weights.

The message reconstruction loss is the binary cross-entropy:

L2 = −
∑q

i=1 bi log(b
′

i) + (1− bi) log(1− b
′

i).

The model is trained with a weighted average of both losses:

L = w1 ∗ L1 + w2 ∗ L2.

2) Training details: We mainly used the same hyperpa-

rameters and setup of [70], however, we found it essential

to decrease the learning rate of ASGD than the one used;

we use an initial learning rate of 2.5 instead of 30 for the

language modelling LSTM and a smaller learning rate of 0.5

for the message decoding LSTM. We also found it helpful

for a successful message encoding to pre-train the AWD-

LSTM of the message decoder as a language model. Following

the original implementation, we fine-tune the model after the

initial training by restarting the training, to allow the ASGD

optimizer to restart the averaging. Similar to AWT , we use a

message length of 4 bits. To allow multiple operating points

of text utility vs. bit accuracy, we fine-tune the model again

by assigning lower weight to the message loss. We start the

training by w1 = 1, w2 = 2, and decrease w2 for each fine-

tuning step to reach a new operating point.

F. User Study

We demonstrate in Table XX the ratings’ descriptions given

in the instructions of the user study. In Figure 15, we show

a histogram of ratings given to the three types of sentences

included. We show in Table XXI, the per-judge averaged

ratings where we can observe that all judges gave AWT higher

ratings than the baseline. We show examples of the baseline

sentences in Table XXII along with the corresponding original

sentences (paired sentences were not included in the study).

Rating Description

5
The text is understandable, natural, and grammatically and structurally
correct.

4 The text is understandable, but it contains minor mistakes.

3 The text is generally understandable, but some parts are ambiguous.

2 The text is roughly understandable, but most parts are ambiguous.

1 The text is mainly not understandable, but you can get the main ideas.

0
The text is completely not understandable, unnatural, and you cannot
get the main ideas.

TABLE XX: Ratings explanations given in the user study.
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Ratings
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Non-watermarked text
AWT text
Baseline text

Fig. 15: Histograms of ratings given to the three types of

sentences in the user study.

Judge 1 Judge 2 Judge 3 Judge 4 Judge 5 Judge 6

Non-wm 4.86±0.4 3.98±0.96 4.47±0.62 4.77±0.48 4.84±0.44 4.8±0.52

Wm 4.76±0.47 3.98±1.09 4.13±0.64 4.58±0.61 4.71±0.49 4.63±0.6

Baseline 3.4±1.28 3.57±1.21 3.37±0.81 3.32±1.02 3.4±1.09 4.03±1.19

TABLE XXI: Per-judge averaged ratings for the three types

of sentences.

Input Synonym-baseline

Caldwell said it was easy to obtain guns in New

Mexico : ” we found it was pretty easy to buy guns

.

Caldwell said it was soft to obtain artillery In

New Mexico : ” we rule it was pretty soft to

purchase accelerator .

Caldwell said she and <unk> went to a university
library to find the identity ” of someone dying

very young ” , next went to public records and

asked for a copy of a birth certificate

Caldwell said she and <unk> went to a university
library to found the identity ” of someone dying

real new ” , adjacent went to public records and

asked for a replicate of a parentage certification

TABLE XXII: Examples of the synonym substitution baseline

sentences that were included in the user study.
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