
CANNON: Reliable and Stealthy Remote Shutdown
Attacks via Unaltered Automotive Microcontrollers

Sekar Kulandaivel,∗ Shalabh Jain,† Jorge Guajardo,† and Vyas Sekar∗
∗Carnegie Mellon University, †Research and Technology Center, Robert Bosch LLC, USA

{skulanda, vsekar}@andrew.cmu.edu, {shalabh.jain, jorge.guajardomerchan}@us.bosch.com

Abstract—Electronic Control Units (ECUs) in modern vehicles
have recently been targets for shutdown attacks, which can
disable safety-critical vehicle functions and be used as means to
launch more dangerous attacks. Existing attacks operate either
by physical manipulation of the bus signals or message injection.
However, we argue that these cannot simultaneously be remote,
stealthy, and reliable. For instance, message injection is detected
by modern Intrusion Detection System (IDS) proposals and
requires strict synchronization that cannot be realized remotely.
In this work, we introduce a new class of attacks that leverage
the peripheral clock gating feature in modern automotive mi-
crocontroller units (MCUs). By using this capability, a remote
adversary with purely software control can reliably “freeze” the
output of a compromised ECU to insert arbitrary bits at any
time instance. Utilizing on this insight, we develop the CANnon
attack for remote shutdown. Since the CANnon attack produces
error patterns indistinguishable from natural errors and does not
require message insertion, detecting it with current techniques is
difficult. We demonstrate this attack on two automotive MCUs
used in modern passenger vehicle ECUs. We discuss potential
mitigation strategies and countermeasures for such attacks.

Index Terms—Automotive security, CAN bus attack, Fault
attacks, Glitching attacks

I. INTRODUCTION

Modern in-vehicle networks contain tens of Electronic Con-
trol Units (ECUs) that communicate over a shared medium
known as the Controller Area Network (CAN) bus. Some
of these ECUs that introduce new wireless connectivity (e.g.
Bluetooth, cellular, Wi-Fi), which provide a variety of services
to vehicle owners, have exposed the in-vehicle network to
external network attacks. The feasibility and ease of launching
attacks against the CAN bus have been demonstrated by
several researchers over the past few years [1]–[4].

The lack of security in in-vehicle networks allows an
adversary with access to the CAN bus to arbitrarily insert,
modify, and delete messages, allowing an attacker to ma-
nipulate the functionality of safety-critical ECUs [1] or limit
communication over the bus [5], [6]. While traditional attacks
utilize physical interfaces to gain bus access, researchers have
demonstrated the ability to gain access remotely [4]. This
demonstration caused the recall of 1.4 million vehicles and
attracted the attention of automotive manufacturers, suppliers,
and global regulatory bodies.

As a defense against an evolving threat landscape, aca-
demic and industry researchers have proposed a variety of
techniques, such as message authentication [7], [8], intrusion
detection systems (IDSes) [9]–[12], and secure CAN hardware

solutions [13]. Considering the potential societal impact of
automotive attacks, regulatory bodies have proposed intro-
ducing legal mandates to equip future vehicles with security
features, e.g. IDSes [14]. Even hardware defenses in the form
of secure transceiver concepts [13] have been proposed to
increase security of the in-vehicle CAN bus.

Despite efforts to increase the security of automotive net-
works, a recent class of attacks demonstrates significant ad-
versarial potential by utilizing the inherent CAN protocol
framework to shut down safety-critical ECUs. Such attacks in-
troduced by prior work [5], [6], [15] are particularly dangerous
due to their ability to disable critical vehicle functionality by
shutting down several ECUs from just a single compromised
ECU. Additionally, an adversary could use shutdown attacks to
launch advanced attacks, e.g. stealthy masquerade attacks [16],
[17]. Current shutdown attacks repeatedly trigger the error-
handling mechanism on a victim ECU, causing it to enter the
bus-off error-handling state that shuts down the ECU’s CAN
communication. This attack is achieved by either physical
manipulation of the bus [5], [6] or carefully synchronized
and crafted transmissions [15]. However, these proposals either
lack stealthiness against existing security proposals [10], [11],
[13], require physical access [5], [6], or require strict control
(e.g. synchronization) that cannot be achieved in practical
remote settings [15].

In this paper, we introduce a fundamentally different ap-
proach towards mounting shutdown attacks that, to the best
of our knowledge, can evade all existing known defenses.
Our attack is facilitated by architectural choices made to
improve the integration and efficiency of automotive ECUs and
their microcontroller units (MCUs). Modern MCUs typically
integrate the CAN interface controller as an on-chip (CAN)
peripheral in the same package. This design allows new inputs
to the CAN peripheral to be accessible to the application-
layer software via an application programming interface (API)
and, thus, accessible to a remote adversary that successfully
compromises an ECU.

We develop CANnon, a method to maliciously exploit one
such input, namely the peripheral clock gating functionality.
This particular API is accessible via software control in most
modern automotive MCUs, often included as a valuable feature
for performance optimization. We demonstrate how a remote
software adversary can employ CANnon to utilize the CAN
peripheral’s clock to bypass the hardware-based CAN protocol
compliance and manipulate the ECU output. This capability

195

2021 IEEE Symposium on Security and Privacy (SP)

© 2021, Sekar Kulandaivel. Under license to IEEE.
DOI 10.1109/SP40001.2021.00122

20
21

 IE
EE

 S
ym

po
si

um
 o

n 
Se

cu
rit

y 
an

d 
Pr

iv
ac

y 
(S

P)
 | 

97
8-

1-
72

81
-8

93
4-

5/
21

/$
31

.0
0 

©
20

21
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
SP

40
00

1.
20

21
.0

01
22



enables the adversary to inject arbitrary bits and signals
(as compared to only being able to inject complete CAN-
compliant frames) and gain the ability to precisely shape
the signals on the CAN bus with bit-level accuracy. We
demonstrate that this capability can be used to perform reliable
and stealthy shutdown attacks. In other words, the modern
MCU design has inadvertently strengthened the capabilities
of a remote adversary, who is no longer constrained by CAN
protocol compliance.

Our main insight here is the ability to control the pe-
ripheral’s clock signal to “pause” the ECU state in the
middle of a transmission (or between state transitions). By
exercising this control to selectively pause and resume an
ECU’s transmission, we can insert an arbitrary bit for a
duration and at a time instance of our choice. This bit can
be used to overwrite a victim’s message and cause it to detect
transmission errors. We also illustrate that the pattern of errors
produced by CANnon is difficult to distinguish from legitimate
errors on the CAN bus. Our fine control over malicious bit
insertion (rather than message insertion) makes the detection
of CANnon attacks difficult for currently proposed IDSes,
as current techniques typically analyze entire messages for
signs of malicious activity. Additionally, as CANnon does
not involve spoofing IDs or overwriting the content of a
message, even ID-based filtering at the data link layer [13]
seems incapable of detecting our attack.1 Preventing CANnon-
based attacks require either architectural-level changes, such as
isolation or removal of the clock control, or modifying existing
approaches to specifically detect CANnon-like patterns. In
Table I, we summarize existing works and contrast them with
CANnon, which we further detail in Sec. II-B.
Contributions: In summary, we contribute the following:

• We introduce new methods to exploit the peripheral clock
gating API of automotive MCUs to bypass hardware-
based CAN protocol compliance and inject arbitrary bits
on the bus. In contrast to previous work, we do not exploit
diagnostic messages [4], [18], [19] and do not have tight
synchronization requirements [15].

• We present three stealthy versions of CANnon and discuss
modifications to make CANnon stealthy against future
defenses.

• We illustrate both a basic denial-of-service (DoS) attack
and a targeted victim shutdown attack atop two mod-
ern automotive MCUs used in passenger vehicles: the
Microchip SAM V71 MCU and the STMicro SPC58
MCU. We validate the feasibility of this attack against
a 2017 Ford Focus and a 2009 Toyota Prius and achieve
a shutdown in less than 2ms.

• We propose several countermeasures to detect/prevent
CANnon attacks for legacy and future vehicles.

Organization: The remainder of this paper is organized as
follows. We provide relevant background on the CAN protocol

1Some recently proposed secure transceiver architectures use such filtering,
but it is unclear from publicly available information whether they implement
additional countermeasures. We have not evaluated any such products in the
market to check their resistance against the CANnon attack.

TABLE I: Characteristics of shutdown attacks

Source Attack type Remote Reliable Stealthy
[5], [6] Direct bit injection X X
[1], [2], [4] Diagnostic message X X
[15] Message overwrite X

CANnon X X X

and discuss existing shutdown work in Sec. II. In Sec. III, we
detail our attack insight, and we then demonstrate two practical
applications of the attack in Sec. IV and V. We demonstrate the
attack on production ECUs against real vehicles in Sec. VI and
illustrate the stealth properties of CANnon in Sec. VII. Finally,
we propose some countermeasures in Sec. VIII, identify other
related work in Sec. IX, and discuss future directions and
conclusions in Sec. X.
Disclosure and availability: We disclosed this vulnerability
to several automotive stakeholders.2 Our conversations with
the MCU manufacturers (Tier-2 automotive suppliers) reveal
their emphasis on software hardening to prevent the adversarial
scenario required here; thus, obligations lie with the ECU
integrators (Tier-1 automotive suppliers). We have also made
the CANnon implementation using an Arduino Due board
available [20] to encourage further designs using CANnon and
to test defense strategies.

II. CAN PRELIMINARIES

We start with background on the CAN protocol and high-
light characteristics that render CAN nodes vulnerable to
shutdown attacks and discuss prior work on such attacks.

A. CAN background

ECU
Application Layer

SW App.

Data Link Layer
CAN HW

Physical Layer
CAN Bus

Messages

Frames

Bits

Fig. 1: CAN communication stack

The CAN protocol stack as shown in Fig. 1 is composed
of the application layer, data link layer, and the physical
layer. The functionality of an ECU (e.g. engine control, driver
assistance) is described via high-level software running at
the application layer. For actuation and sensing functionality,
messages are transmitted and received by the application layer
through the lower layers of the communication stack. To send
data to another ECU, the application layer creates a CAN
message with a priority tag (also referred to as message or
arbitration ID) and its payload. The application transfers this

2We disclosed the vulnerability to the two MCU manufacturers discussed
in this paper. We also performed a broader disclosure via an industry forum.

196



message to the CAN data link layer, where various control
and integrity fields are appended to generate a frame, which
is transmitted serially via the CAN physical layer. To receive
a message, a recipient ECU’s data link layer interprets and
validates the CAN frame prior to delivery of the message (ID
and payload) to the application layer.

CAN bus is logical-ANDECU 1 ECU 2

0011 0101TX TX

ECU 1 0 0 1 1
ECU 2 0 1 0 1

CAN Bus 0 0 0 1
Fig. 2: CAN physical layer

The physical layer of the stack, i.e. the physical CAN
bus, consists of a broadcast communication medium between
multiple ECUs. The bus has two logical states: the dominant
(logical-0) state, where the bus is driven by a voltage from the
transmitting ECU, and the recessive (logical-1) state, where the
bus is passively set. The effective bus state is the logical-AND
of all transmitting ECUs’ outputs as illustrated in Fig. 2. ECUs
connected to the CAN bus communicate at a pre-determined
bus speed set by design based on the physical limitations of
the bus. The length of each bit is directly determined by the
set speed. For example, an ECU communicating at 500Kbps
transmits the dominant signal for 2µs to assert a logical-0.
Similar to other asynchronous protocols (e.g. Ethernet), CAN
nodes rely on frame delimiters for interpreting the start and
stop of CAN frames. Each ECU (re)synchronizes its internal
clock based on observed transitions on the bus.

S
O
F

Arbitration
Field Control Data CRC

A
C
K

E
O
F

I
F
S

ECUs transmit and simultaneously 
monitor bus state

Other ECUs respond;
bus winner monitors

Bus winner 
completes

Sole bus winner transmits 
and monitors for bit error

Fig. 3: CAN frame format

The CAN data frame illustrated in Fig. 3 has four logical
sections: (1) arbitration, (2) data transmission, (3) acknowl-
edgement (ACK), and (4) end-of-frame (EOF) and inter-frame
spacing (IFS). Upon detection of an idle bus, an ECU initiates
the frame transmission with a dominant start-of-frame (SOF)
bit followed by the arbitration ID. Due to CAN’s asynchronous
nature, multiple ECUs may begin transmission at the same
time. While transmitting the ID, an ECU monitors the bus
state and stops transmitting if it observes a bit different from
the one transmitted. A received dominant bit during a recessive
transmission by a node indicates the transmission of a higher-
priority message by a different ECU. By the end of arbitration,

a single ECU with the highest-priority frame wins access to
the bus and continues transmitting. The bus winner transmits
the rest of its frame and, for each transmitted bit, monitors that
the bus state matches the transmitted bit. During the ACK slot,
the transmitter asserts a recessive bit while all receiving ECUs
transmit a dominant bit to indicate correct reception. Finally,
the sender transmits recessive EOF and IFS bits, where the
IFS is the minimum space between two frames on the bus.
After the IFS, the bus is idle and holds a recessive state until
the next transmission. Each ECU can transmit multiple IDs,
but each ID should only originate from a single ECU.

Error-Active Error-Passive

Bus-Off

Error Count > 127

Error Count ≤ 127 Error Count
> 255

ECU RESET
(automatic
or manual)

Fig. 4: Three states of error-handling mechanism

Error handling and bus-off state: Error handling is an
essential feature of the CAN protocol, providing robustness in
automotive environments. The CAN protocol defines several
types of errors; we detail two relevant error types, namely
the bit error and stuff error. A bit error occurs when the
transmitting node detects a mismatch between a transmitted
bit and the bus state (outside of the arbitration and ACK
fields). A stuff error occurs in the absence of a stuff bit,
which is a bit of opposite polarity intentionally added after
every five consecutive bits of the same polarity. When an ECU
detects an error, it transmits a 6-bit error flag on the bus that
can destroy the contents of the current frame. Depending on
the error state of the ECU, the flag may be a sequence of
recessive or dominant bits. Each ECU maintains error counters
that are incremented upon a transmission error3 detection and
decremented upon a successful transmission. As depicted in
Fig. 4, there are three error states based on the error count:
(1) error-active, (2) error-passive, and (3) bus-off. An ECU in
error-active state represents a “low” error count and transmits
a 6-bit active (dominant) error flag; an ECU in error-passive
indicates a “high” error count and transmits a 6-bit passive
(recessive) error flag. If enough errors are detected and the
count surpasses 255, then an ECU transitions to bus-off, where
it will shut down its CAN operations and effectively remove
itself from the bus.

B. Shutdown via errors

While a large error count in a non-adversarial scenario
is indicative of a faulty node and, hence, isolation (or even
shutdown) is a logical solution to prevent disruption of the
whole network, an adversary can misuse the error mechanism

3There is a separate count for reception errors, but it is not relevant to this
work. All references to error count refer to the transmission error count.

197



by causing intentional errors, forcing an ECU to transition
into the bus-off state and thus causing the ECU to shut down
CAN communication. However, producing intentional errors
on the CAN bus without direct access to the physical medium
is challenging. One reason is the compliance to the CAN
protocol enforced by hardware CAN controllers designed and
certified for robustness. Thus, without access to the physical
medium, an adversary can only control the ID and payload
but not the transmitted frame. Nevertheless, recent works (as
summarized in Table I) demonstrate limited success operating
under these constraints to cause a shutdown.
Errors via physical access: An adversary with physical access
can easily bypass the CAN data link layer and inject bits by
either sending signals directly to the physical bus or modifying
the CAN controller to disobey the protocol. An adversary can
also use this access to directly inject dominant bits at any time
during a victim’s transmission and cause bit errors. Several
works [5], [6] use this approach to demonstrate effective
shutdown attacks that are difficult to detect as such errors are
indistinguishable from genuine bus faults. These attacks have
real-time feedback from the bus, enabling a reliable method
of shutdown. However, because they require physical access,
they are considered impractical both in research and practice
as there are easier alternatives to cause harm [12].
Errors via remote access: Prior work [15] demonstrated
the ability to overwrite messages and exploit CAN’s error-
handling mechanism without physical access. Here, an ad-
versary must estimate a victim’s message transmission time.
As most CAN messages theoretically tend to be periodic, an
adversary could perform this attack via empirical analysis.
Using these estimates, a remote adversary in control of the
MCU’s software can transmit an attack message at the same
time and with the same arbitration ID as the victim. This
approach results in two nodes winning control of the bus
and intentionally violates the CAN bus protocol. A specially-
crafted payload (a dominant bit in place of a victim’s recessive
bit) can cause the victim to detect a bit error and retransmit
its message; by repeating this attack, the victim eventually
shuts down. Recent work [21] demonstrates that this attack
is not reliable as the deviation of periodic messages varies
significantly in practice.
Alternative shutdown mechanisms: While abuse of errors is
one method to shut down an ECU, there are other means to
shut down ECUs outside the protocol. One method, originally
intended for a mechanic to perform ECU testing, exploits diag-
nostic messages reliably transmitted by a remote adversary [4],
[18], [19]. However, such messages use known arbitration IDs
and are easily detectable by automotive defense methods.

III. ATTACK OVERVIEW

A. Adversary model

For our attacks, we consider a remote adversary that is
able to compromise an in-vehicle CAN node capable of trans-
mitting messages on the bus via the CAN stack. As market
research estimates that about 150 to 250 million connected
cars will be on the road in 2020 [22]–[24], a remote adversary

will likely target the infotainment ECU or other ECUs in the
vehicle with one or more remote interfaces [25]. We follow
the same assumptions of prior work [10], [11], [15], [16],
which assume that the adversary can modify the application
software on an ECU’s MCU and utilize any interfaces or APIs
available to this software. However, we assume the adversarial
capabilities are limited to only software manipulation and do
not allow for direct physical modifications or probing to any
of the vehicle’s components; in this work, our targets are
unaltered modern passenger vehicles with only original ECUs.

Several prior and recent works [3], [4], [26]–[28] demon-
strate the real existence of vulnerabilities to remotely com-
promise in-vehicle ECUs and gain the ability to take control
of physical vehicle functions via CAN transmissions. These
works also demonstrate that remote attacks can occur at a large
scale since a single vulnerability can be present across hun-
dreds of thousands of vehicles [4]. These real-world demon-
strations show that a remote adversary can exploit remote
wireless interfaces to modify and/or inject code into software
running on a vehicle’s MCUs. As outlined in two U.S. agency
reports [12], [29], a remote adversary is considered the highest
risk factor for the automotive community and passenger safety.
Security efforts by vehicle manufacturers, e.g. introduction
of IDSes, place significant focus on defending after such an
adversary breaches the network [12]. For the remainder of
this paper, when we describe the remote adversary, we use
API and application-layer control interchangeably to refer to
the software instructions that the adversary can control.
Attack goals: In general, a remote adversary will likely target
non-safety-critical ECUs (e.g. the head unit or navigation
system), which often have remote wireless interfaces to handle
multiple high-performance functions. As this adversary likely
cannot gain direct compromise of a safety-critical ECU, the
adversary will aim to utilize a compromised ECU to influence
the functionality of a different (typically safety-critical) ECU
in the vehicle without being detected by any deployed network
security mechanisms, e.g. IDSes. One way to achieve this
attack using the compromised ECU is to shut down a critical
ECU and then disable its functions or impersonate it after the
shutdown. In this work, we focus on achieving a shutdown
of a critical ECU without being detected by state-of-the-art
network defenses, i.e. the adversary succeeds if the defense
cannot detect an attack prior to the shutdown event. As we
will demonstrate, the ability to reliably inject an arbitrary bit
at an arbitrary time without being detected by vehicle defenses
is sufficient to achieve these goals.

Thus, we effectively explore the possibility to construct a
reliable remote bit insertion attack, which aims to shut down
an ECU, operates as a software application, does not require
access or changes to the physical CAN hardware, and deceives
even state-of-the-art defenses. Furthermore, although several
attacks outlined in Sec. II-B achieve similar goals, to the
best of our knowledge, existing shutdown mechanisms cannot
simultaneously be remote (performed only at the application
layer), reliable (ability to consistently succeed), and stealthy
(ability to deceive known defenses). The CANnon attack shows

198



that the adversary model used by the industry has changed
and that the attacker now has new capabilities that prior
defenses did not consider. The notion of stealth is difficult
to characterize, considering the rapid progress in defense
mechanisms. For this work, we consider the best-known results
for defense as described in Sec. VII.

B. High-level attack insight

Contrast with prior invasive glitch attacks: Creating artifi-
cial clock glitches is a common technique to bypass security
of MCUs during boot or verification [19] by invasively driving
the clock signal line to ground. The idea behind such a
technique is to create artificial transitions in the state machines
implemented in hardware. As described in Sec. II-B, the
difficulty in injecting arbitrary bits is the CAN protocol en-
forcement by the CAN data link layer, i.e. the CAN controller.
Thus, similar to the security logic above, the controller can
be viewed as a hardware-based state machine that enforces
CAN protocol compliance. Thus, we draw inspiration from the
same direction of work but without requiring invasive physical
access to the clock.
CANnon attack anatomy: Any finite-state machine (FSM),
e.g. the CAN protocol, implemented using sequential logic
elements (flip-flops, registers, etc.) relies on the clock signal
for state transitions and thus any output transmissions. There-
fore, control of the clock signal can be used to force arbitrary
deviations from the protocol. As an example, small changes
in clock frequency would directly result in a change of the bit
duration on the CAN bus.

Automotive MCU

CANTX
DATACPU + 

Memory
CAN 

Peripheral CANRX
CAN 

Transceiver
CAN bus

Oscillator
Clock

Clock

Power

CAN Hardware
SW App.

Fig. 5: Modern ECU design includes CAN peripheral that
runs off gated clock signal from MCU’s oscillator

Clock control is now possible: In an ideal design, the
clock signal should not be accessible by a remote adversary.
However, for modern ECUs, the MCU is a multi-chip mod-
ule, where the CAN controller is integrated into the same
package as the MCU and is now called a CAN peripheral.
A simplified example of the modern ECU architecture is
shown in Fig. 5. Additionally, most modern MCU architectures
implement power optimization in the form of peripheral clock
gating. This low-power feature saves energy by shutting down
any unwanted peripherals when they are not required, while
allowing the main CPU and other critical functions in the
MCU to still operate. As the CAN controller is typically
attached as a peripheral to the MCU chip, there are controls
exposed to cut off the CAN peripheral’s clock.

To allow flexibility and control to low-level system design-
ers, most MCUs provide the system designer a small software

interface for the controls that allow clock cut-off. As demon-
strated in Sec. VI, clock control can be arbitrarily exercised
during regular operations, which can also provide a remote
adversary in control of the software with the same ability to
control the CAN protocol FSM. This control effectively allows
an adversary to gate the clock and freeze the protocol FSM,
only to later restart the clock to resume the FSM. Thus, this
new capability allows an adversary to arbitrarily manipulate
the CAN protocol without modifying the hardware.

We note that, in most scenarios, cutting off the clock does
not affect any data present in the sequential elements or the
outputs of the logic gates. It simply prevents a change in the
state of these elements. Also, without architectural changes,
the notion of a frozen state or disabled clock cannot be
recognized or corrected by the CAN controller. An alternative
control in the form of power gating may also be available in
certain chips, and we investigated exploiting such mechanisms.
However, we find that disrupting the power simply resets the
peripheral and its buffers/registers, causing the CAN FSM
and output to be reset. Ultimately, we discover this attack
vector in the driver code for the CAN peripheral. In hindsight,
we realize that another factor that enabled our discovery
of this vulnerability was our choice in experimental setup
(detailed in Sec. VI), which closely resembles the modern
MCU architecture, whereas most prior research has continued
to use the legacy architecture.

C. Overview of the attack

For any transmission, the CAN controller outputs the bits
of the frame serially onto the transmit output pin (CANTX in
Fig. 5), where each new bit is triggered by a clock transition.
The binary output of the controller is converted to a CAN-
compatible analog value on the bus by the transceiver.

Consider the case when the CAN controller is transmitting
a dominant logical-0 bit. If the clock is disabled (paused)
before the next bit, the CANTX output would continue to
be logical-0 until the next clock edge. Thus, the node would
continue to assert a dominant signal until the clock signal is
resumed. This action effectively allows the transmission of a
dominant bit of arbitrary duration. Now consider the opposite
case when the CAN controller is transmitting a recessive
logical-1 bit. If the clock is disabled, it would continue to
assert a recessive value on the bus, i.e. no signal. The rest of
the payload resumes transmission only when the clock signal
is resumed. This action allows the transmission of the payload
at an arbitrary time. Observe that the adversary exploits the
controller’s inability to sense the bus state when its clock is in
the paused state. Thus, resuming the clock resumes the FSM
from the point it was stopped, regardless of the current bus
state or the controller’s transmission output on the bus. This
fact is key to disable the back-off arbitration control in CAN
controllers and to transmit a signal at an arbitrary time.

IV. BASIC REMOTE DISRUPTION ATTACK

In what follows, we take a step-wise approach to increase
the sophistication of our attack, ultimately demonstrating a

199



controlled victim shutdown. In this section, we begin with
a simple application of clock control to disrupt the entire
network via a denial-of-service (DoS) attack. This basic
disruption also highlights practical constraints that we must
consider to design a reliable attack strategy. We note that this
basic attack is easy to detect, and current hardware measures
can sufficiently protect against it. However, the techniques
we describe are the basis for precise and consecutive error
injections required for the targeted shutdown attack in Sec. V.
Clock gating at application layer: The primary requirement
for this attack is that the MCU must have control over the
clock input for its peripherals, e.g. controllers for different
protocols, such as CAN, Ethernet, FlexRay, etc. For the attack
we present here, we choose a popular hardware device with
a high-performance MCU built for networking applications:
the Arduino Due board with an AT91SAM3X8EA 32-bit
MCU operating at 84 MHz [30]. The Arduino Due offers
many networking peripherals (e.g. CAN) and its source code
(and CAN drivers) are well-documented, making it ideal
for demonstrating our insights. In fact, we find that MCUs
marketed as “high-performance” often include peripheral clock
gating as a low-power feature available for the system designer
(and thus a remote adversary).

Another requirement is that enabling/disabling the clock
signal should not reset the peripheral circuitry or change values
of its logic elements. Ideally, disabling the clock should only
prevent the sequential elements from transitioning to a new
state. This fact holds true for basic clock control mechanisms.
For the APIs of the automotive MCUs we evaluate in Sec. VI,
we find the presence of multiple instructions that control
the clock. Typically, for some of the commonly used APIs,
MCU designers may implement additional check routines
before/after a clock disable instruction to ensure error-free
functioning, e.g. check status of transmission, etc. However,
these procedures were only implemented for some of the
available clock control instructions, and we find at least one
instruction that offers a basic control mechanism.

To use the clock control, the adversary must identify
which instructions enable an MCU’s application to con-
trol peripheral clock signals. Typically, manufacturers pro-
vide basic driver code for initialization of several periph-
erals as part of their software development kit (SDK). In
such cases, we can discover clock control instructions in
the drivers for the CAN peripheral. Alternatively, in the
event that all clock control instructions are not completely
detailed, the reference/programming manuals for a given MCU
often outline the steps required to control the peripheral
clock and will provide the specific registers that control the
clock gating. In the driver for the Arduino Due, we dis-
cover the instructions, pmc_enable_periph_clk() and
pmc_disable_periph_clk(), to enable and disable the
clock, respectively. These instructions appear prior to low-
level configurations, e.g. memory allocation, buffer flushes,
etc. However, for another MCU popular in the automotive
community, the STMicro SPC58, finding equivalent clock con-
trol instructions was more challenging as directly disabling the

peripheral clock was not possible. Thus, we use its reference
manual to identify specific registers that grants us a similar
clock control capability in Sec. VI.
Simple disruption attack: Recall that the CAN bus state is
dominant if at least one ECU transmits a dominant bit. As
a CAN frame consists of a series of dominant and recessive
bits that follow a particular format, no valid information is
conveyed from a single state held on the bus. Additionally,
such a condition would result in continuous errors in the ECUs
due to absence of stuff bits.

Thus, a basic attack we conceive is to disrupt the bus by
holding the bus in the dominant state. This disruption would
prevent any other ECU from transmitting, leading to a DoS
of all ECUs in the network. An adversary could perform this
action at a critical time (e.g. while the vehicle is in motion)
and disrupt key vehicle functionality. For most vehicles, this
attack would result in loss of control by the driver.

1 0 1 0 1 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
Actual 
attack 
output

Logical 
attack 
output

1 0 1 0 1 0 0 0 1 0 1 0 1 1 1 0 1 1 1 0

Remote adversary disables clock

Dominant state held

Fig. 6: Holding dominant state disrupts the bus

Using clock control instructions, the adversary could easily
achieve this attack by disabling the clock and freezing the CAN
controller state when it transmits a dominant bit. To launch this
attack, a basic method is to target the start-of-frame (SOF) bit:

• Send a message transmission request to the CAN periph-
eral with any priority and payload.

• Use a timer to delay for half a bit length for the given
bus speed so the peripheral starts the transmission of the
SOF bit.

• Pause the clock using the disable command to freeze the
state of the CAN controller during the SOF bit.

If the bus was initially idle, this sequence would likely lead
to the node continuing to hold the dominant state as depicted in
Fig. 6. However, there are several practical challenges evident
from these basic steps. One critical challenge we encounter
is the precise timing required to freeze the controller during
the target SOF bit. In practice, the selected delay value only
works if the bus was idle when the transmission request was
sent and the frame immediately transmitted. In a real scenario,
the transmission may start much later, e.g. other bus traffic,
scheduling delay, etc. Even minor variations in the timer used
to realize the delay period can cause an adversary to miss
the SOF bit. Furthermore, any variation in the latency of the
actual clock gating effect from the time that the instruction
was issued can cause an adversary to miss the SOF bit.

Although there are practical constraints in this attack, the
simplicity of this attack (as a result of our attack insight)
affords an adversary a great deal of flexibility. For example,

200



missing the SOF bit could be compensated for by using an ID
of 0x0 and data payload of 0x0 (essentially a message of all
zeros). Thus, freezing the controller during the arbitration or
data payload field would also disrupt the bus. However, even
this all-zero message has recessive bits due to bit stuffing when
converted to a CAN frame. Thus, accidentally encountering
those bits due to unreliable timing can cause the attack to fail.

This disruption attack is easy to prevent (if not already
prevented) by most modern CAN buses. This disruption attack
closely resembles a typical hardware fault encountered in a
real CAN bus, i.e. bus held-dominant faults. Thus, several
existing CAN transceivers implement built-in mechanisms to
prevent the bus from holding a dominant state for a long period
of time. This attack demonstrates the practical feasibility of
using the clock control to launch an attack. This attack, though
potentially dangerous, is highly obstructive for all nodes. It is
still short of the goal of this work, which is to target a single
ECU with high reliability and without being detected.

V. RELIABLE TARGET VICTIM SHUTDOWN

In this section, we address some of the limitations discussed
in the previous section to achieve a reliable attack that
can target a specific victim ECU and quickly shut it down.
We detail three variants of the CANnon attack and provide
solutions to challenges observed in practical scenarios.

A. Reliable clock control

In Sec. IV, we illustrated the difficulty to ensure the clock
is paused during a dominant bit. In general, an adversary with
unreliable control of the clock cannot precisely ensure what
state the controller outputs. Also, unlike the previous attack,
a targeted attack usually requires overwriting specific bits of
a victim message, thus requiring even more precision. One
source of this unreliability is the variation in latency of the
clock gating instructions, before the clock is actually paused.
Another issue for this attack is that the adversary must track
the state of the CAN bus and its own transmissions in order to
target specific bits. However, when the CAN controller is in
the frozen state, it does not have the ability to observe the CAN
bus state. Without feedback, the adversary is virtually blind to
the actual peripheral output while performing an attack. Thus,
the adversary must keep track of which bit of a compromised
ECU’s frame it is transmitting at all times.

When the adversary calls a clock gating instruction (either
enable or disable), we experimentally find that it takes up
to two MCU clock cycles for the instruction to resume the
peripheral’s output. Thus, the adversary cannot reliably gate
the clock near the edge of a bit transition of the attack message.
A nonzero latency means that the adversary cannot ensure
whether a gating instruction results in the output of the state
before or after the state (bit) transition. This latency can thus
influence the state of the bus that is held when the controller is
frozen. Additionally, an adversary will need to make repeated
calls to gating instructions within a single frame transmission
by the compromised ECU. If the adversary loses precision in

their clock control at any time, they could lose track of which
bit the compromised ECU is currently transmitting.
Improving precision: To address the challenge of reliable
clock control, the adversary can take advantage of the fact that
the MCU’s clock operates at a much higher frequency than the
CAN peripheral’s clock. We utilize the MCU’s hardware-based
timer, operating it at a frequency equal to the bus speed. This
timer creates interrupts at the middle of each CAN bit, which
allows us to track exactly which bit the compromised ECU is
transmitting. Prior to starting the timer, the adversary must first
detect when the compromised ECU attempts to send a frame;
from this point, the adversary should delay half of a bit time
before starting the timer interrupt. Our solution is to gate the
clock as close to the middle of a CAN bit, giving the adversary
maximum distance from bit transition edges. With an interrupt
at the middle of each bit, the adversary can reliably track the
bus state and control the clock with bit-level precision.

B. Insertion of a single bit

The precise clock control described so far can be used to
insert a single bit on the bus. As described in the previous
section, simply disabling the clock is not sufficient for the
adversary to relinquish bus control. It must be ensured that
the clock is disabled during a recessive transmission so that
the adversary can continue its attack at a later time (recall
that a recessive output does not influence the bus). Since
the adversary only has clock control at the middle of a bit,
the following steps are required to inject a single dominant
bit, assuming the compromised ECU is currently paused at
the recessive state: (1) enable clock a half-bit time before
recessive-to-dominant edge, (2) wait one bit time to enter
dominant bit, (3) wait another bit time to enter recessive bit,
and (4) pause clock a half bit-time after dominant-to-recessive
edge. Thus, the adversary must use such a pattern of bits within
its payload, i.e. a dominant bit between two recessive bits.

However, this attack pattern introduces another unique chal-
lenge. As described earlier, the ECU reads bus state after
each transition. Thus, if the adversary stops its attack during
a dominant transmission by the victim, the compromised
ECU will raise an error since it transmitted a recessive bit
(a stopping requirement for the adversary) but observed a
dominant transmission. This error will cause the attack ECU
to reset its transmission so we must investigate methods to
overcome this challenge as discussed below.

C. Causing an error on the victim

We now discuss how to exploit clock gating to induce just
a single error on a victim. Our goal is to trick the victim
into detecting an error in the transmission of its own frame,
causing its transmit error counter to increase. To achieve this,
the adversary must induce an error after the victim wins
arbitration and becomes the sole transmitter. As detailed in
Sec. II, a node transmitting on the bus simultaneously checks
the bus for any bit errors. Thus, the adversary can simply
overwrite a victim’s recessive bit with a dominant bit using the
steps outlined in the previous section, tricking the victim into

201



thinking it caused the error. To successfully achieve this, there
are two practical challenges that the adversary must consider:
(1) it must account for the victim response, i.e. error flag
transmission, and (2) it should identify bits in the victim frame
that can be reliably targeted.
Victim’s error response: When the adversary overwrites a
victim’s recessive bit with a dominant bit, the victim will
detect a bit error and immediately transmit an error frame.
Depending on the state of the victim’s error counter, this
error frame can be a series of six dominant or recessive bits.
However, as outlined in Sec. V-B, an adversary cannot stop
its attack during a victim’s dominant transmission. Thus, an
adversary cannot stop the attack if it expects the victim to
transmit an active (dominant) error flag.

1 0 0 0 0 0 0 1
Actual 

attacker 
output

ISR will either:
A. Enable clock
B. Disable clock
C. Do nothing

Timer ISR
Interrupts 
every CAN 

bit time

A B C C C C A B

Fig. 7: Use timer ISR to convert a single logical-0 bit to a
6-bit error frame

To resolve this, the adversary can exploit their clock control
to expand a single dominant bit into a series of six additional
dominant bits, or an active-error flag. To generate an active-
error flag from a single dominant bit, we perform four steps
as depicted in Fig. 7:

1) With clock paused on a recessive bit, the adversary
resumes clock for one bit time (or until the next timer
interrupt).

2) After the recessive-to-dominant edge, the adversary
pauses clock so the compromised ECU holds dominant
state.

3) After five timer interrupts, the adversary resumes clock.
4) The compromised ECU’s output transitions from domi-

nant to recessive, and the adversary pauses the clock at
the next interrupt and is ready for the next attack.

By simultaneously transmitting the flag as the victim trans-
mits its flag, both flags will overlap, and the compromised
ECU’s transition from dominant to recessive will occur when
the bus state is recessive due to the recessive end of the
error flag. This approach enables the attacker to maintain an
error-free transmit state on the compromised ECU so it may
prepare for the next error injection. In scenarios where there
are multiple nodes on the bus, the length of the error frame
may be longer and thus the dominant duration by the attacker
should be adjusted accordingly.
Targeting victim frames: A challenge we face is determining
which bit to overwrite during a victim frame. Assuming that
the adversary can determine the starting point of the victim’s
transmission, identifying the location of general recessive bits
may be difficult due to variations in the payload and stuff bits.
Recall that, during the paused clock state, an attacker has no

source of feedback from the bus. Thus, we must identify some
invariant about the victim’s transmission for the adversary to
exploit. We borrow an insight from prior work [15] to target
the control fields, which often are static as data payloads do
not change length. Alternatively, the adversary could analyze
several frames prior to attack and target bits in the data payload
that remain static. However, as the stuff bits can vary, it is
preferable to use the initial control bits for attack.

D. Shutting down victims with CANnon
We now stitch together the components described above

to transition a victim into the bus-off state. To achieve the
shutdown attack against a specific victim ECU, the adversary
must cause enough errors to forcibly transition the victim into
a bus-off state. The goal here is to produce an attack that
operates as fast as possible. For now, we assume that victim
transmissions are periodic, which is often the case according to
prior work [21], and thus the period can be used to estimate
a victim ECU’s SOF bit transmission time. As depicted in
Fig. 8, the CANnon attack consists of two phases: a loading
phase, where the attacker prepares the attack, and a firing
phase, where the error frames are generated.

Load 
attack 

frame into 
TX buffer

Phase 1:
Loading
CANnon

Phase 2:
Firing 

CANnon 
x32

Wait for 
IFS to get 

bus access

Transmit 
arb. + ctrl. 
field and 

wait

Wait for 
target 

message

Transition
to 

dominant
bit

Disable 
clock for 

6 bits

Transition
to 

recessive
bit

S
O
F

Arb. + Ctrl.
ID = 0x000

Data Payload
0x5555.5555.5555.5555
(Alternating 0’s and 1’s)

CRC 
Field

A
C
K

E
O
F

I
F
S

Fig. 8: Two-part approach to the CANnon attack

Loading the CANnon: To be able to transmit any arbitrary
signal on the bus, the CAN controller must first win arbitration.
Since the adversary only controls the software and is unable
to modify the CAN controller, the compromised ECU’s FSM
should be in the same state (sole arbitration winner) before the
adversary can attempt to transmit arbitrary bits. Thus, in the
loading phase, the adversary aims to trick the compromised
ECU into thinking that it is allowed to transmit on the bus
as preparation for the firing phase. To do this, the adversary
loads the attack frame (of a specially selected ID and payload)
into the CAN peripheral’s transmit buffer and waits for the
compromised ECU to win the bus. In this attack, the adversary
waits for completion of the arbitration phase and transmission
of the control bits, before pausing the clock during the first
payload bit, which can be designed to be recessive. At this
point, the adversary is ready to start the firing phase of the
attack while waiting for victim messages to appear on the bus.

To ensure a quick transition into the firing phase, the
adversary can set the arbitration ID of the attack frame to 0x0,

202



giving it highest priority on the bus. This ID ensures that the
compromised ECU wins control of the bus as soon as the bus
is idle. Then, to transition a victim into bus-off, the adversary
needs to inject a dominant bit 32 times using a single attack
frame. Thus, the data payload should be set to contain 64 bits
of data with a pattern of alternating 0’s and 1’s, or a payload
of 0x5555.5555.5555.5555. This payload gives the adversary
32 dominant bits to use for an attack and 32 recessive bits to
temporarily pause the attack between victim transmissions. An
additional benefit is that having a consistent pattern simplifies
the logic for the adversary.

It should be noted that a different attack payload can still
be utilized to achieve the same attack, albeit in a slightly sub-
optimal manner. Any deviation from a payload of alternating
dominant and recessive bits would require the attacker to
reload another attack frame before shutting down the ECU.
Firing the CANnon: In the firing phase, the adversary utilizes
the strategy described earlier to convert a single dominant bit
into an active error flag, which will overwrite the recessive bits
of the victim message. The adversary must wait for a victim
message to appear on the network by waiting for its next
periodic transmission that wins bus arbitration. The adversary
then overwrites its selected recessive bit, causing the victim
to detect an error and increment its error counter by 8. After
detection of the error, the victim will immediately attempt to
retransmit the failed frame. The adversary repeats this firing
phase against 31 back-to-back victim retransmissions until
the victim’s error count reaches 256 (8x32) and enters the
bus-off state. Thus, after the adversary causes an error in
the first victim transmissions (using its period), targeting the
retransmissions is significantly easier for the adversary.

E. Alternative CANnon implementations

Although the strategy described above is an efficient method
to force the compromised CAN controller to transmit, we
also describe alternative methods that achieve a shutdown
attack using different parts of the CAN frame to highlight
the flexibility an adversary has for the CANnon attack.
Firing with SOF bit: Instead of the above two-phase ap-
proach, imagine if the adversary could just skip to the firing
phase. Our insight here is to use the SOF bit but with a
different approach from Sec. IV. By stopping the clock right
before a SOF transmission, the adversary can inject a dominant
SOF bit during a victim’s recessive bit. Since the SOF is
only transmitted after a bus idle, the adversary can only
transmit a SOF when it knows the bus is idle. Once bus
idle is detected, the compromised CAN controller will load
the registers to prepare for frame transmission. The adversary
can pause the clock right when the transmit registers are
loaded (experimentally, we find this to be two CAN bit times),
effectively stopping the transmitter before it sends a SOF.

However, as the SOF is only a single bit, the error active flag
from the victim will cause an error on the compromised ECU,
forcing it to retransmit. Instead of avoiding this retransmission,
the adversary can exploit it. The victim’s error flag will cause
the compromised ECU to think it simply lost arbitration.

The adversary can then wait for a bus idle to occur and
perform its attack again. Bus idle will not be observed until
after the victim successfully retransmits so the adversary will
need to target the periodic victim transmissions instead of
its retransmissions from the loading/firing attack. While this
attack is not as fast as the loading/firing attack, it does
enable the CANnon attack on alternative MCU architectures
as explained in Sec. VI.
Firing with ACKs: Instead of using data frame transmissions
to attack a victim ECU, the adversary could exploit another
scenario where the compromised ECU transmits a dominant
bit: the acknowledgement (ACK) slot. To acknowledge a
correctly received data frame, an ECU will set a dominant
bit during the ACK slot of the data frame. Our idea here is
the adversary could pause the compromised ECU right before
it transmits the ACK bit for a victim’s frame (the bit before
the ACK slot is a recessive CRC delimiter bit). Suppose the
CAN peripheral offers a SOF bit interrupt, which we observe
in a number of automotive MCUs [30], [31]. If the adversary
knows when the victim frame transmission starts and can
determine when the CRC delimiter bit occurs in the frame,
the adversary can pause the clock before the ACK slot and
resume the clock just a few bit times later during the EOF,
causing an error on the victim. The challenge here is that the
adversary must precisely predict when an ACK will occur and
the number of bits in the victim frame. Thus, victim frames
that contain static or predictable data make an ideal target.

F. Practical challenges

We now discuss approaches to solving two practical chal-
lenges we encounter when launching CANnon against real
vehicles in Sec. VI, one of which is a new capability resulting
from the peripheral clock gating vulnerability.
Period deviations in victim frames: Up to now, we make the
assumption that victim frame transmissions will be periodic.
However, in practice, prior work [21] has found that period
deviation is nonzero, which makes it difficult for the adversary
to predict victim transmission times and thus perform the
shutdown attack. Using insights from prior work [15], we
could estimate when a victim message will initially appear
on the bus. However, these insights relied on other messages
in the network that would transmit immediately before the
victim message, which is not always guaranteed. Likewise,
even considering these circumstances, this approach has been
found to not be reliable [21].

We introduce a new capability that permits an adversary
to guarantee when a victim message appears on the CAN
bus. We first revisit an observation made in Sec. IV during
tests on real vehicles. When the compromised ECU holds a
dominant state, all other ECUs will queue their frames waiting
to transmit during bus idle. Upon releasing this dominant state,
all transmitting ECUs will attempt to clear their queues. We
find that these queued frames appear on the bus in a pre-
defined order: by their arbitration ID. Our insight here is to
determine which messages should arrive in a given range of
time prior to launching our attack. By holding the dominant

203



state for this range of time,4 we can predict the ordering of
messages and thus predict the start of the victim transmission.
Interruptions by higher-priority messages: Another practi-
cal challenge we encounter when launching CANnon against
real vehicles is that higher-priority messages can interrupt the
attack. If the adversary targets a victim frame with a low
priority, we find that higher-priority messages can interrupt
the repeated retransmissions by the victim. As the adversary
expects the victim retransmissions to occur back-to-back, these
interruptions can cause the attack to fail by causing collateral
damage against unintended victims. Thus, the adversary could
use prior work [21] to identify all source IDs of a victim ECU
and simply select the highest-priority message, minimizing the
chance of interruption by a higher-priority message. Addition-
ally, prior work [21] also finds that safety-critical ECUs tend
to transmit higher-priority frames so our adversary is already
incentivized to target higher-priority frames.

VI. EVALUATION

In this section, we demonstrate CANnon using two auto-
motive MCUs found in modern vehicles and launch shutdown
attacks against a variety of targets, including two real vehicles.
We also detail experiments to highlight the reliability and
stealth of CANnon.

A. Experimental setup

To demonstrate the significance of this attack, we launch
CANnon from automotive MCUs used by modern vehicles, and
we target real ECUs from two real vehicles. In this work, we
do not explicitly show the ability to compromise an in-vehicle
ECU remotely as this has been the focus of a large number of
papers [3], [4], [26]–[28]. Rather, we build our attack on the
assumption that these existing techniques would be successful
in remotely compromising the software of automotive ECUs.

One of the key factors that enabled the discovery of this
vulnerability was our choice of experimental setup, which is
likely why, to the best of our knowledge, this incidence has not
been studied before. In this work, we initially used the Arduino
Due board, which closely resembles the capabilities of modern
automotive MCUs. However, if we look at prior work in the
field [6], [10], [11], [15]–[17], [32], [33], we find widespread
use of the legacy design of automotive ECUs, namely an
Arduino Uno board with a standalone controller. Thus, as a
result of our choice of experimental setup, none of these prior
works could have identified the CANnon vulnerability; where
the industry moved to a modern design, prior research has
continued to use the legacy design.
Automotive MCUs: In addition to the Arduino, we test
CANnon on evaluation boards for two automotive MCUs from
Microchip and STMicro (commonly known as ST). These
boards will serve as the compromised in-vehicle ECUs as they
are used in modern production vehicles. In fact, STMicro is
one of the top five semiconductor suppliers for the automotive

4Where prior work required injecting a message to guarantee transmission
time of a victim, we can simply disrupt the bus to “simulate” an injected
message.

industry [34], and its MCUs are likely to be in many modern
vehicles. The features and architectures they offer are likely
generalizable to other automotive MCUs as they are both
marketed as high-performance networking MCUs, which are
two key features we identify in Sec. IV. While we do not
evaluate boards from every MCU supplier, we find multiple
references to software APIs for peripheral clock gating in
reference manuals and market reports [35]–[39].

Specifically, we evaluate: (1) the Microchip SAM V71
Xplained Ultra board, which uses an ATSAMV71Q21 32-bit
MCU operating at 150 MHz and is designed for in-vehicle
infotainment connectivity [31], [40], and (2) the STMicro
SPC58EC Discovery board, which uses an SPC58EC80E5 32-
bit MCU operating at 180MHz and is designed for automotive
general-purpose applications [41], [42]. It is likely that other
MCUs in the same family (i.e. SAM V MCUs and ST SPC5
MCUs) share the same peripheral clock gating vulnerability
as demonstrated by similarities within an MCU family’s
reference manuals [30], [31]. Consequently, the Arduino Due
board identified in Sec. IV uses an AT91SAM3X8EA 32-bit
MCU operating at 84 MHz from an older series of the same
SAM family [30].

For the SPC58 MCU, we encountered a challenge in finding
a clock enable/disable function. All clock functions requested
the peripheral to essentially give the MCU permission to
disable the peripheral’s clock. Upon receiving the request,
the peripheral waits for all transmission operations to stop
before the MCU can disable its clock. However, we found an
alternative approach to directly control the clock on the SPC58
that bypasses this request procedure. In fact, this alternative
contradicts the expected implementation as described in the
SPC58’s reference manual [42]. The SPC58 utilizes operat-
ing modes that change the configurations for the MCU. In
particular, we focus on two modes: the DRUN mode, which
permits all peripherals to run normally, and the SAFE mode,
which stops the operation of all active peripherals. We find
that a transition to DRUN is equivalent to enabling the CAN
peripheral’s clock and a transition to SAFE effectively disables
the peripheral’s clock without permission from the peripheral
itself. A limitation introduced here is that a clock enable could
not occur soon after a clock disable5, but the SOF-based attack
from Sec. V successfully works for the SPC58.
Real vehicle testbed: Additionally, we demonstrate CANnon
against two real vehicles: a 2009 Toyota Prius and a 2017
Ford Focus. We connect to the CAN bus by accessing the bus
via the vehicle’s On-Board Diagnostics (OBD) port to emulate
a remotely-compromised ECU. We also identify the mapping
of arbitration IDs to source ECUs using details from prior
work [21]. We only launch the CANnon attack against vehicles
while they are parked to avoid any potential safety concerns.
Note that these vehicles have their engine running with all
ECUs actively transmitting onto the network. As detailed in
prior work [21], vehicles tend to transmit mostly periodic

5The transition to SAFE mode (or effectively disabling the clock) includes
several processes that must complete for safety reasons before the peripheral
clocks can be enabled.

204



messages, and we find that these transmissions start when the
engine is started. Even if the vehicle is taken on a drive, only
the data payloads change rather than periodic transmission
rates. We also launch CANnon against an Arduino Due, a
PeakCAN USB device, and a 2012 Ford Focus powertrain
ECU in a variety of synthetic network setups.

B. CANnon against real vehicles

Basic disruption on real vehicles: We launch the basic
disruption attack against both real vehicles using the SAM
V71 and SPC58 evaluation boards. As discussed in Sec. IV,
ECUs often implement a time-out feature that prevents a CAN
transceiver from holding the dominant state for an extended
period of time. We experimentally find that we can maintain
up to 1ms of dominant state on the bus with at least 4µs
of recessive in-between on both vehicles. We find that this
attack prevents ECUs from communicating on the bus and will
trigger malfunction lights on the instrument panel and even
diagnostic codes that indicate loss of ECU communication.
Powertrain ECU shutdown in 2017 Focus: We demonstrate
a shutdown attack with the V71 MCU using the loading/firing
attack in Sec. V. The powertrain ECU transmits several
arbitration IDs, but we select the highest-priority ID using
methods from prior work [21]. In our pre-analysis of the
victim transmission times, we find that a majority of the
powertrain ECU’s IDs will transmit back-to-back. With our
technique for guaranteeing transmission times in Sec. V, we
hold the dominant bit when we expect the victim to appear
(for approximately 50µs). Upon release of the dominant bit,
the target victim frame will be the first frame to transmit and,
thus, we launch our firing phase on that frame. We target the
control field and perform this attack 32 times, allowing us to
shut down the powertrain ECU in about 2ms. Although the
powertrain ECU does auto-recover, the ability to shut down
the ECU quickly demonstrates the speed of our attack.
Power steering ECU shutdown in 2009 Prius: We demon-
strate a shutdown attack with the SPC58 MCU using the
SOF-based attack in Sec. V as the SPC58 cannot enable
the clock immediately after disabling it. The target victim
is a power steering ECU that transmits three IDs: 0x262,
0x4C8, and 0x521. We choose the ID with the smallest period
(0x262 with period of 20ms) and find that its period deviation
is quite small using methods from prior work [21]. As the
SOF approach requires a successful transmission between each
attack, this shutdown is significantly longer since we do not
target retransmissions. We shut down the power steering ECU
after 700ms, and we find that it remains permanently offline.

C. Attack reliability

One important aspect of a reliable attack is repeatability.
We envision an adversary who purchases the same MCU that
the compromised ECU uses as preparation for their remote
exploit and shutdown attack. After tuning attack parameters to
the specific MCU (e.g. number of MCU cycles prior to SOF
transmission), the adversary hopes that the tuned parameters
will be similar to that of the real victim MCU. We find

that properly tuned attack code across multiple copies of
our test MCUs over a few months could repeatedly produce
the same output to the bus. We attribute this success to the
strict specifications that ECU hardware must follow in the
manufacturing stage.

We now compare the reliability of CANnon using the
hardware timer interrupt centered on each CAN bit versus
manually counting MCU clock cycles. In this experiment, we
use the Microchip and Arduino Due boards to transmit active
error frames at repeated intervals. We transmit these frames
against an Arduino Due victim that sends its frames every
10ms with zero deviation in the period. Using a hardware
timer to launch our attack, we find that both the Microchip
and Arduino Due boards can shut down the victim 100%
of the time. However, if we try to perform the active frame
transmissions by manually keeping count of MCU clock
cycles, we only achieve the attack 10% of the time due to
variations discussed in Sec. V.

We also compare the reliability to guarantee victim trans-
mission time versus prior work [15] that overwrites messages
using injected messages to predict victim transmission. Here,
we use the Arduino Due board to target three different victims:
(1) another Arduino Due, (2) a PeakCAN device, and (3) a
2012 Ford Focus powertrain ECU. Using our method, we can
achieve a shutdown of all three victims using all three of
our MCUs 100% of the time. However, using prior work to
perform the message overwrite attack, we only succeed for the
Arduino Due and PeakCAN device. On the powertrain ECU,
we cannot achieve even a single success as its transmissions
exhibit significant period deviation.

D. Stealth analysis

We now compare the stealth of CANnon versus the state-
of-the-art message overwrite attack [15]. We construct three
simple detection methods at each layer of the CAN stack based
on existing defenses.6 The goal of either shutdown attacker is
to achieve a victim shutdown without the detection method
alerting prior to the shutdown itself. Our experimental setup
involves three Arduino Due boards: (1) the victim ECU, (2) the
detection ECU, and (3) the compromised ECU. The detection
ECU also transmits its own messages to simulate other traffic
on the bus. We perform each test 1,000 times, and we operate
all tests at 500Mbps, use a shared 12V supply to power the
boards, and observe the bus traffic using a logic analyzer.

For all of the experiments below, we follow the configura-
tion of prior work [15]: the victim ECU transmits ID 0x11
every 10ms, the detection ECU transmits ID 0x7 and 0x9
every 10ms, and the compromised ECU monitors the bus and
attempts to attack. To simulate noise from a real vehicle, we
intentionally set the deviation of ID 0x11 to 0.15ms as the
best-case minimum deviation found by prior work [21]. For
all experiments with the overwrite attack, the compromised

6We do not demonstrate CANnon against complete implementations of
existing defenses, which monitor only entire CAN messages or frames, as
they are ineffective by construction as detailed in Sec. VII.

205



ECU injects ID 0x9 around the expected transmission time of
0x11 to set up their attack.
Versus timing-based IDS: We first test the overwrite attack
and CANnon against a timing-based IDS that alerts if frames
transmit outside of their expected period. Timing-based IDSes
also include ML-based [43] and traffic anomaly methods [44]
as they analyze timestamps to detect illegitimate transmissions.
We set the detection threshold for period deviation to be 10%
(e.g. 1ms for a 10ms period) following prior work [9]. We
program our detection ECU to measure the inter-arrival time
between frames for a given ID and alert if the measured
time exceeds 10% of the expected period. For CANnon, the
compromised ECU attacks using the data payload and employs
the dominant-hold technique from Sec. V to guarantee victim
transmission time. Out of 1,000 attempts, we find that our
detection ECU alerts to every attempt by the overwrite attack
but does not alert to any of the CANnon attacks. CANnon only
needs to hold the dominant state for 0.15ms once to guarantee
the first victim transmission and cause an error. The overwrite
attack injects new messages onto the network, exceeding the
expected deviation threshold. CANnon achieves a shutdown in
just 2ms before the next transmission should occur.7

Versus a “secure transceiver:” As secure transceivers are
not currently in production, we modify the detection ECU
to act as the secure transceiver. It will read each logical bit
transmitted and received by the compromised ECU by directly
connecting between the MCU’s CAN peripheral and the CAN
transceiver following prior work [21]. If an ECU sends an
illegitimate arbitration ID, it will produce an alert in real-time
immediately after the arbitration field transmits. For CANnon,
the compromised ECU attacks via the SOF bit method as the
secure transceiver could detect the data payload attack.8 Out
of 1,000 attempts, we find that our secure transceiver alerts
to every attempt by the overwrite attack but does not alert to
any of the CANnon attacks. CANnon only injects a SOF bit
as its attack and does not transmit any arbitration ID, while
the additional message transmissions in the overwrite attack
cause our secure transceiver to alert immediately.
Versus a frame-level voltage IDS: Following observations
from prior work [10], [11], [45], we modify the detection
ECU to directly measure the CAN bus voltages to detect an
attack. The CAN medium is a differential pair called CAN
low and CAN high that typically exhibit around 1.5 and 3.5
voltages for a dominant bit, respectively (recessive state causes
both to exhibit 2.5 volts). The key insight from prior work is
to measure the voltage of the dominant bits throughout an
entire frame. With the message overwrite attack [15], the start
of an overwritten frame has two transmitters and ends with
a single transmitter, i.e. the compromised ECU. Thus, the
attack exhibits a larger differential at the start and a smaller
differential at the end of an overwritten frame. We build a

7This fast ability to shutdown could act as a useful stepping-stone to future
work on masquerade attacks.

8CANnon could technically use any arbitration ID (even a legitimate ID),
but we assume that the adversary wants to use ID 0x0 to minimize wait for
bus idle.

voltage IDS that alerts if the dominant bits exhibit a sudden
drop in dominant differential voltage during a single frame.
Out of 1,000 attempts, we find that our IDS alerts to every
attempt by the overwrite attack but does not alert to any of
the CANnon attacks. CANnon only injects a single error flag
in the middle of a frame and, thus, this approach to voltage
IDS does not detect our attack.

VII. STEALTH AGAINST NETWORK DEFENSES

Next, we discuss why CANnon evades state-of-art defenses
and also how to tackle future CANnon-aware defenses.

A. Deceiving state-of-the-art defenses

Many approaches exist that can defend against shutdown
attacks. We group these defenses into three classes based on
the layer in the CAN communication stack they operate on.
Defenses at application layer: Many IDSes are software
applications, limited to reading messages passed up the com-
munication stack by CAN hardware. These run on any ECU
and do not require special hardware, making them an attractive
solution. For instance, they can use statistical techniques based
on message timings and content [9], [16], [17], [46]. A recent
U.S. agency report [12] discusses how companies working
closely with automakers have access to proprietary information
on the expected content of CAN messages, enhancing their
ability to create application-layer defenses. Another class of
IDS that makes use of this proprietary information are machine
learning [43] and traffic anomaly IDSes [44], which analyze
message timing and payload to detect an attack.

Application-layer IDSes can detect both the diagnostic mes-
sage and message overwrite attacks in Table I as they require
transmitting additional CAN frames on the bus. As such, any
application-layer defenses that measure message timing or
content cannot detect our attack since we do not transmit entire
CAN frames or significantly disrupt valid transmitted frames.
CANnon operates quickly and can shutdown ECUs in just a
couple milliseconds (well under the minimum period observed
by prior work [21]) as demonstrated in Sec. VI.
Defenses at data link layer: Recent industry solutions pro-
pose secure CAN transceivers [13] that operate at the data
link layer. These transceivers can prevent a compromised
ECU from attacking a CAN bus by either: (1) invalidating
frames with spoofed CAN IDs, (2) invalidating frames that
are overwritten by a compromised ECU, and (3) preventing
attacks that flood the bus with frame transmissions. Attacks
that require physical access are outside their scope.

These transceivers are a promising approach to defending
against the diagnostic message and message overwrite attacks
in Table I as the transceivers would destroy any illegitimate
frames based on their IDs. As the loading phase in our
loading/firing attack transmits a specific arbitration ID (0x0),
these transceivers would also detect an illegitimate ID from
the compromised ECU and raise an alarm. However, the two
attack alternatives (SOF and ACK attacks) do not produce an
arbitration ID and could not be detected by pure ID-based
filtering concepts as demonstrated in Sec. VI.

206



Defenses at physical layer: Another approach for IDSes is to
directly access the physical layer, e.g. measuring bus voltages.
These defenses detect sudden changes over a series of CAN
frames (or even a single frame) by creating a profile of the
expected voltages [10], [11], [45]. These works find that each
ECU applies a unique voltage that is measurable across an
entire CAN frame. If an illegitimate transmitter attempts to
spoof a victim’s message, the voltage measured across the
frame could identify a potential attack.

This approach can detect the message overwrite attack
because a single frame will start with two simultaneous trans-
mitters followed by only the overwriting compromised ECU; a
distinctive change in voltage for the rest of the frame indicates
an attack. However, in regard to physical-layer defenses that
measure voltage, CANnon does not require overwriting a frame
from the SOF onwards and, thus, prior work [45] would not
detect a sudden change in the voltage from the start of a single
data frame as demonstrated in Sec. VI.

B. Deceiving CANnon-aware defenses

We now discuss how CANnon could remain stealthy against
even future CANnon-aware defenses. We discuss defenses that
might seem appealing at a glance, but we will show that
this attack will likely require architectural countermeasures
discussed in Sec. VIII.
Tracking error interrupts at application layer: Up to now,
we have discussed how application-layer defenses that only
monitor messages do not detect CANnon. However, there is
another source of signals from the lower CAN stack layers:
error interrupts. We envision a CANnon-aware defense that
uses these interrupts to identify potentially malicious sources
of error. This defense tracks errors based on their frequency
and for which messages they occur during in an attempt to
find a pattern representative of a shutdown attack. Existing
work [32] can detect when a shutdown occurs by tracking
error flags, but it cannot determine if the errors were caused
maliciously or by legitimate bus faults. We now discuss a
couple modifications that similar work could implement to
detect a malicious attack. We also discuss how our adversary
can thwart those efforts by making it challenging for defenses
to detect CANnon while maintaining a low false positive rate:

1) Tracking number of errors per ID: One potential defense
is to track the number of errors that occur when a partic-
ular message ID is transmitted. However, our adversary
could use prior work [21] to identify all source IDs
from an ECU by simply monitoring the bus and tracking
message timestamps. Our adversary could then target all
IDs from a victim ECU, making an error seem consistent
across all transmissions and difficult to differentiate from
a legitimate fault.

2) Checking for multiple errors in short time: Another
defense is to check for multiple errors in a short amount
of time, which is an invariant of prior work [15]. While
the loading/firing attack causes multiple errors in a
matter of milliseconds, an adversary can extend this
attack over a longer period of time. An active error

flag will increment the victim error counter by eight;
to recover from an error, a successful transmission from
a victim will decrement the error counter by one. Our
adversary could launch an error flag for one of every
seven successful transmissions from a victim, giving us
an effective increase of one for the transmit error count.
By repeating this attack 256 times, the adversary could
allow up to 1792 successful transmissions by a victim
and still succeed in a shutdown.

VIII. COUNTERMEASURES

As illustrated, CANnon-based attacks are stealthy against
existing security methods. Here, we describe some directions
for potential countermeasures. Since the attack relies on two
broad ideas, namely clock control and error exploitation, the
countermeasures described can be seen to prevent one of these
problems, i.e. prevent clock control or detect specific error
patterns or error transmitter patterns.
Detecting bit-wise voltage spikes: Overwriting a message
causes a sudden voltage change in the dominant bit. Thus,
one approach to detect such an attack is tracking per-bit
voltages at the physical layer. Changes in the middle of mes-
sage transmissions could indicate potential adversary activity.
However, since random faults or genuine errors flags can cause
similar behaviour, such a method would require additional
identification of patterns in the voltage changes, e.g. behaviour
periodicity. Some recent work that uses transition characteris-
tics for network fingerprinting [33] could be modified in this
direction.
Forced clear of transmit buffers: As observed in Sec. III,
the ability to resume a message transmission is a key factor
for successfully exploiting the controller. Thus, the attack
can simply be prevented by disabling such behavior, i.e.
resetting/clearing all buffers upon clock gating. Such a coun-
termeasure allows the flexibility of being deployed at either the
hardware or software level. If hardware changes are permitted,
this approach can be achieved by designing reset logic based
on the clock signal. In software, this approach can be achieved
by flushing the peripheral transmit buffers upon clock stop.
A modification of this idea for safety is present in SPC58,
whereby a clock stop request is completed based on the
feedback from the CAN peripheral.
On-chip power analysis: The automotive industry takes
another approach to protecting their ECUs from remote ad-
versaries: host-based IDSes [12]. One host-based detection
method for CANnon could be a separate secure chip that
monitors the power usage of the MCU. Since disabling
the peripheral clock induces a drop in power, a host-based
IDS could detect potentially malicious actions. This approach
should operate outside of the MCU and could include logic
to identify when power drops are not expected, e.g. while in
motion, while vehicle not asleep, etc.
Removal of CAN peripheral clock gating: The main feature
that enables CANnon in modern MCUs is peripheral clock gat-
ing. Rather than offering a peripheral for CAN, modern MCUs
could simply utilize a separate always-on clock domain for the

207



CAN peripheral or require standalone CAN controllers, which
receive a clock signal from a separate oscillator. Assuming the
other peripherals do not share this vulnerability, they could
remain unchanged by removing clock gating for just CAN.

IX. OTHER RELATED WORK

Side-channel attacks and fault attacks: CANnon has some
similarity to fault attacks on cryptographic algorithm imple-
mentations available in secure processors, which can com-
pletely break the security of secure systems [47]–[49]. Fault
attacks [47], [48] are a subset of side-channel attacks, which
disrupt normal execution of a (software or hardware) process
to compromise a system. Fault attacks typically require phys-
ical access to the device under attack to successfully induce a
fault. To our knowledge, the RowHammer attack [50] is the
only other attack that is able to successfully produce a remote
fault. In contrast, CANnon remotely induces “faults” through
software-only access to the peripheral clock API of unaltered
automotive MCUs.
Security API attacks: Attacks on secure embedded pro-
cessor APIs were first discovered in prior work [51] (see
other work [52] for an up-to-date survey). The idea behind
these attacks was “to present valid commands to the security
processor, but in an unexpected sequence” in such a way that
“it is possible to obtain results that break the security policy
envisioned by its designer” [51]. Although similar in aim, our
work is fundamentally different as CANnon takes advantage
of low-level clock-control APIs in current automotive MCUs
that are used to save energy and improve performance (not
input secure key material). CANnon does not target a secure
processor either, and it focuses in subverting an interface not
externally available to a human subject as in other work [51]
(i.e. in CANnon, an attacker must first compromise the MCU
and gain control of its software).

X. DISCUSSION

In this work, we introduced CANnon, a novel attack method
to exploit the benign clock gating mechanism in automotive
MCUs for exerting arbitrary control over the CAN bus. We
illustrated several methods to achieve precise clock control and
use it to cause remote shutdown attacks. Despite focusing on a
single example class here, we envisage that such a methodol-
ogy can be used for other powerful attacks. With the increasing
software code base for a modern vehicle, it can be expected
that there exist exploitable vulnerabilities in connected ECUs.
CANnon-based techniques allow the compromise of a single
ECU to influence all ECUs on the bus in a stealthy manner.
This reason makes the existence of CANnon-relevant interfaces
very dangerous.

In this work, we illustrated the attack capability on two lines
of automotive-grade MCUs, and we believe that several other
lines from independent manufacturers can be susceptible to
this attack. We would strongly encourage the research com-
munity to identify similar gaps in other processors. Since this
attack exploits a fundamental architectural feature, changes

to mitigate such a class of attacks poses an interesting prob-
lem. We illustrated some directions for such changes here.
However, designing specific modifications to future security
systems would require further investigation.

CANnon not only enables new attack methodologies, but
it can also be viewed as a capability that can be integrated
into existing software systems for testing. Enabling such
investigations is one of our key motivations for making the
tool widely available [20]. We illustrate a few future directions
below.
Expanding existing tools: Recent work [21] demonstrates
a network mapper for the CAN bus. This approach requires
the tool to operate from customized hardware rather than an
in-vehicle ECU. By using CANnon to target and shut down
ECUs for destination mapping, network mapping could run
on existing ECUs without modification. Further, the CANnon
method could be utilized by a genuine node, e.g. an Intrusion
Prevention System (IPS), to remove malicious messages from
the bus. Prior to CANnon, such IPS capabilities typically
require hardware changes.
Clock control for other peripherals: Future work could
investigate the impact of the CANnon-like vulnerability for
other peripherals. It is possible that other bus protocols,
including transport layer protocols that use CAN for the data
link layer (e.g. GMLAN, MilCAN, UAVCAN, etc.), are likely
vulnerable to a network participant that maliciously holds the
state of the bus. For example, the Local Interconnect Network
(LIN) bus implements the same logical bus states as the CAN
bus and is likely vulnerable to the basic remote disruption
attack.
Non-standard CAN: Automakers are starting to implement
extended CAN and CAN-FD protocols. These protocols rely
on the same principles as standard CAN and thus are vul-
nerable to CANnon. Future work could investigate unique
implications related to these other CAN implementations (e.g.
perhaps the higher bit rate for the data payload in CAN-FD
could enable unique derivations of the CANnon attack).

ACKNOWLEDGMENTS

This work was funded in part by the PITAXVIII PITA
award and the CNS-1564009 NSF IoT award. We thank the
anonymous reviewers for their helpful suggestions.

REFERENCES

[1] S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham,
S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno et al., “Com-
prehensive experimental analyses of automotive attack surfaces.” in
USENIX Security Symposium, vol. 4. San Francisco, 2011, pp. 447–462,
http://static.usenix.org/events/sec11/tech/full papers/Checkoway.pdf.

[2] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway,
D. McCoy, B. Kantor, D. Anderson, H. Shacham et al., “Experimental
security analysis of a modern automobile,” in 2010 IEEE Symposium
on Security and Privacy. IEEE, 2010, pp. 447–462, https://ieeexplore.
ieee.org/stamp/stamp.jsp?arnumber=5504804.

[3] S. Nie, L. Liu, and Y. Du, “Free-fall: hacking tesla from
wireless to can bus,” Briefing, Black Hat USA, pp. 1–16, 2017,
https://paper.seebug.org/papers/Security%20Conf/Blackhat/2017 us/us-
17-Nie-Free-Fall-Hacking-Tesla-From-Wireless-To-CAN-Bus-wp.pdf.

208



[4] C. Miller and C. Valasek, “Remote exploitation of an unaltered passenger
vehicle,” Black Hat USA, vol. 2015, p. 91, 2015, http://illmatics.com/
Remote%20Car%20Hacking.pdf.

[5] P.-S. Murvay and B. Groza, “Dos attacks on controller
area networks by fault injections from the software layer,”
in Proceedings of the 12th International Conference on
Availability, Reliability and Security. ACM, 2017, p. 71,
http://www.aut.upt.ro/∼pal-stefan.murvay/papers/dos-attacks-
controller-area-networks-fault-injections-from-software-layer.pdf.

[6] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selec-
tive, link-layer denial-of-service attack against automotive networks,”
in International Conference on Detection of Intrusions and Malware,
and Vulnerability Assessment. Springer, 2017, pp. 185–206, https:
//www.politesi.polimi.it/bitstream/10589/126393/1/tesi palanca.pdf.

[7] A. Van Herrewege, D. Singelee, and I. Verbauwhede, “CANAuth - A
Simple, Backward Compatible Broadcast Authentication Protocol for
CAN bus,” in ECRYPTWorkshop on Lightweight Cryptography 2011,
2011.

[8] B. Groza, P. Murvay, A. V. Herrewege, and I. Verbauwhede, “Libra-
can: A lightweight broadcast authentication protocol for controller area
networks,” in Cryptology and Network Security, 11th International
Conference, CANS 2012, J. Pieprzyk, A. Sadeghi, and M. Manulis, Eds.,
vol. 7712. Springer, December 12-14, 2012, pp. 185–200.

[9] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system
based on the analysis of time intervals of can messages for in-vehicle
network,” in 2016 international conference on information networking
(ICOIN). IEEE, 2016, pp. 63–68, https://ieeexplore.ieee.org/iel7/
7422341/7427058/07427089.pdf.

[10] K.-T. Cho and K. G. Shin, “Viden: Attacker identification on in-vehicle
networks,” in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2017, pp. 1109–1123,
https://arxiv.org/pdf/1708.08414.

[11] W. Choi, K. Joo, H. J. Jo, M. C. Park, and D. H. Lee, “Voltageids: Low-
level communication characteristics for automotive intrusion detection
system,” IEEE Transactions on Information Forensics and Security,
vol. 13, no. 8, pp. 2114–2129, 2018, https://ieeexplore.ieee.org/iel7/
10206/4358835/08306904.pdf.

[12] An assessment method for automotive intrusion detection system per-
formance. https://rosap.ntl.bts.gov/view/dot/41006.

[13] B. Elend and T. Adamson, “Cyber security enhancing can transceivers,”
in Proceedings of the 16th International CAN Conference, 2017.

[14] J. Wilson and T. Lieu, “Security and privacy in your car study act of
2017 — H. R. 701,” 2017, available at https://www.congress.gov/115/
bills/hr701/BILLS-115hr701ih.pdf.

[15] K.-T. Cho and K. G. Shin, “Error handling of in-vehicle networks
makes them vulnerable,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security. ACM,
2016, pp. 1044–1055, https://rtcl.eecs.umich.edu/wordpress/wp-content/
uploads/ktcho busoff CCS 16.pdf.

[16] ——, “Fingerprinting electronic control units for vehicle intrusion
detection,” in 25th {USENIX} Security Symposium ({USENIX} Security
16), 2016, pp. 911–927, https://www.usenix.org/system/files/conference/
usenixsecurity16/sec16 paper cho.pdf.

[17] S. U. Sagong, X. Ying, A. Clark, L. Bushnell, and R. Poovendran,
“Cloaking the clock: emulating clock skew in controller area net-
works,” in Proceedings of the 9th ACM/IEEE International Conference
on Cyber-Physical Systems. IEEE Press, 2018, pp. 32–42, https:
//ieeexplore.ieee.org/iel7/8429083/8443707/08443719.pdf.

[18] C.-W. Lin and A. Sangiovanni-Vincentelli, “Cyber-security for the
controller area network (can) communication protocol,” in 2012 Inter-
national Conference on Cyber Security. IEEE, 2012, pp. 1–7.

[19] C. Smith, The Car Hacker’s Handbook: A Guide for the Penetration
Tester. No Starch Press, 2016, http://opengarages.org/handbook/.

[20] Cannon. https://github.com/sksecurity/cannon.
[21] S. Kulandaivel, T. Goyal, A. K. Agrawal, and V. Sekar, “Canvas: Fast and

inexpensive automotive network mapping,” in 28th {USENIX} Security
Symposium ({USENIX} Security 19), 2019, pp. 389–405, https://www.
usenix.org/system/files/sec19-kulandaivel.pdf.

[22] T. Ring, “Connected cars–the next targe tfor hackers,” Network Security,
vol. 2015, no. 11, pp. 11–16, 2015.

[23] Gartner says by 2020, a quarter billion connected vehicles will
enable new in-vehicle services and automated driving capabilities.
https://www.gartner.com/en/newsroom/press-releases/2015-01-26-

gartner-says-by-2020-a-quarter-billion-connected-vehicles-will-
enable-new-in-vehicle-services-and-automated-driving-capabilities.

[24] The car in the age of connectivity: Enabling car to cloud con-
nectivity. https://spectrum.ieee.org/telecom/wireless/the-car-in-the-age-
of-connectivity-enabling-car-to-cloud-connectivity.

[25] C. Miller and C. Valasek, “A survey of remote automotive attack
surfaces,” black hat USA, vol. 2014, p. 94, 2014, http://illmatics.com/
remote%20attack%20surfaces.pdf.

[26] Experimental security research of tesla autopilot. https:
//keenlab.tencent.com/en/whitepapers/Experimental Security
Research of Tesla Autopilot.pdf.

[27] Car hacking research: Remote attack tesla motors. https:
//keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-
Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/.

[28] New car hacking research: 2017, remote attack tesla motors again.
https://keenlab.tencent.com/en/2017/07/27/New-Car-Hacking-Research-
2017-Remote-Attack-Tesla-Motors-Again/.

[29] D. Wise, “Vehicle cybersecurity dot and industry have efforts under way,
but dot needs to define its role in responding to a real-world attack,”
Gao Reports. US Government Accountability Office, 2016.

[30] Microchip sam 3x family of mcus. http://ww1.microchip.
com/downloads/en/devicedoc/atmel-11057-32-bit-cortex-m3-
microcontroller-sam3x-sam3a datasheet.pdf.

[31] Microchip sam v family of automotive mcus. http://ww1.microchip.
com/downloads/en/DeviceDoc/SAM-E70-S70-V70-V71-Family-Data-
Sheet-DS60001527D.pdf.

[32] S. Longari, M. Penco, M. Carminati, and S. Zanero, “Copycan: An
error-handling protocol based intrusion detection system for controller
area network,” in ACM Workshop on Cyber-Physical Systems Security
& Privacy (CPS-SPC’19), 2019, pp. 1–12, https://re.public.polimi.it/
retrieve/handle/11311/1104918/427927/CopyCAN.pdf.

[33] M. Kneib, O. Schell, and C. Huth, “Easi: Edge-based sender identi-
fication on resource-constrained platforms for automotive networks,”
https://dl.acm.org/doi/pdf/10.1145/3338499.3357362.

[34] Automotive semiconductor market - growth, trends, and forecast
(2020 - 2025). https://www.mordorintelligence.com/industry-reports/
automotive-semiconductor-market.

[35] Nxp mcus. https://www.nxp.com/docs/en/application-note/AN4240.pdf.
[36] Renesas mcus. https://www.renesas.com/us/en/products/synergy/

hardware/microcontrollers/glossary.html.
[37] Fujitsu mcus. https://www.fujitsu.com/downloads/EDG/binary/pdf/find/

25-5e/5.pdf.
[38] Cypress mcus. https://www.cypress.com/products/fm4-32-bit-arm-

cortex-m4-microcontroller-mcu-families.
[39] Infineon mcus. https://www.infineon.com/dgdl/Infineon-TC1767-DS-

v01 04-en.pdf?fileId=db3a30431be39b97011bff8570697bdb.
[40] Sam v71 xplained ultra evaluation kit. https://www.microchip.com/

DevelopmentTools/ProductDetails/PartNO/ATSAMV71-XULT.
[41] Spc58ec-disp discovery board. https://www.st.com/en/evaluation-tools/

spc58ec-disp.html?ecmp=tt12221 gl social jul2019.
[42] St spc5 family of automotive mcus. https://www.st.com/en/automotive-

microcontrollers/spc5-32-bit-automotive-mcus.html.
[43] K. Zhu, Z. Chen, Y. Peng, and L. Zhang, “Mobile edge assisted literal

multi-dimensional anomaly detection of in-vehicle network using lstm,”
IEEE Transactions on Vehicular Technology, vol. 68, no. 5, pp. 4275–
4284, 2019.

[44] M. Russo, M. Labonne, A. Olivereau, and M. Rmayti, “Anomaly
detection in vehicle-to-infrastructure communications,” in 2018 IEEE
87th Vehicular Technology Conference (VTC Spring). IEEE, 2018, pp.
1–6.

[45] M. Foruhandeh, Y. Man, R. Gerdes, M. Li, and T. Chantem, “Simple:
Single-frame based physical layer identification for intrusion detec-
tion and prevention on in-vehicle networks,” 2019, http://u.arizona.edu/
∼yman/papers/simple acsac19.pdf.

[46] C. Young, H. Olufowobi, G. Bloom, and J. Zambreno, “Automotive
intrusion detection based on constant can message frequencies across
vehicle driving modes,” in Proceedings of the ACM Workshop on
Automotive Cybersecurity. ACM, 2019, pp. 9–14, https://lib.dr.iastate.
edu/cgi/viewcontent.cgi?article=1066&context=ece conf.

[47] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance
of checking cryptographic protocols for faults (extended abstract),” in
Advances in Cryptology - EUROCRYPT ’97, ser. LNCS, W. Fumy, Ed.,
vol. 1233. Springer, May 11-15, 1997, pp. 37–51.

209



[48] E. Biham and A. Shamir, “Differential fault analysis of secret key
cryptosystems,” in Advances in Cryptology - CRYPTO ’97, ser. LNCS,
B. S. K. Jr., Ed., vol. 1294. Springer, August 17-21, 1997, pp. 513–525.

[49] S. P. Skorobogatov and R. J. Anderson, “Optical fault induction attacks,”
in Cryptographic Hardware and Embedded Systems - CHES 2002, ser.
LNCS, B. S. K. Jr., Ç. K. Koç, and C. Paar, Eds., vol. 2523. Springer,
August 13-15, 2002, pp. 2–12.

[50] Y. Kim, R. Daly, J. Kim, C. Fallin, J. Lee, D. Lee, C. Wilkerson, K. Lai,
and O. Mutlu, “Flipping bits in memory without accessing them: An
experimental study of DRAM disturbance errors,” in ACM/IEEE 41st
International Symposium on Computer Architecture, ISCA 2014. IEEE
Computer Society, June 14-18, 2014, pp. 361–372.

[51] M. Bond and R. J. Anderson, “Api-level attacks on embedded systems,”
IEEE Computer, vol. 34, no. 10, pp. 67–75, 2001.

[52] R. J. Anderson, Security engineering - a guide to building dependable
distributed systems (2. ed.). Wiley, 2008.

210


		2022-08-24T18:53:51-0400
	Preflight Ticket Signature




