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Abstract—Smart contracts are programs that run on the
blockchain and digitally enforce the execution of contracts
between parties. Because bugs in smart contracts can have
serious monetary consequences, ensuring the correctness of such
software is of utmost importance. In this paper, we present
a novel technique, and its implementation in a tool called
SMARTPULSE, for automatically verifying temporal properties
in smart contracts. SMARTPULSE is the first smart contract
verification tool that is capable of checking liveness properties,
which ensure that “something good” will eventually happen
(e.g., “I will eventually receive my refund”). We experimentally
evaluate SMARTPULSE on a broad class of smart contracts and
properties and show that (a) SMARTPULSE allows automatically
verifying important liveness properties, (b) it is competitive with
or better than state-of-the-art tools for safety verification, and (c)
it can automatically generate attacks for vulnerable contracts.

I. INTRODUCTION

Smart contracts are programs that run on the blockchain
and facilitate multi-party transactions involving monetary ex-
change. Because bugs in smart contracts can allow attackers
to steal money from other users, programming errors in this
context have dire security implications [18], [32]. Furthermore,
because smart contracts are immutable once deployed on the
blockchain, bugs cannot be fixed after deployment. Therefore,
it is critical to ensure the correctness of smart contracts before
they are deployed on the Blockchain.

Due to the severe consequences of programming errors in
this context, recent years have seen significant interest in
developing program analysis tools to improve reliability of
smart contracts. Generally speaking, efforts in this space fall
under two categories: bug finding and verification. Most bug
finding techniques look for certain patterns like reentrancy
that are often highly correlated with security vulnerabilities.
On the other hand, verification techniques aim to construct a
proof that the contract satisfies a given formal specification.

In this paper, we describe the design and implementation of
a new automated verification framework called SMARTPULSE
for checking the correctness of smart contracts. In contrast
to prior efforts, our approach is not limited to safety and
can also check for liveness properties, which require that
something good eventually happens. In fact, liveness prop-
erties are particularly important in this context because smart
contract properties often have the flavor “If a condition is met,
then I will eventually get my money”. For example, for a
smart contract implementing an on-line auction, an important
correctness property is that everyone except the highest bidder
should get their money back. Intuitively, this is a liveness
property because it stipulates that a desirable event, namely
the transfer of funds, will eventually happen.

SMARTPULSE is based on three key design principles:
1) User-friendly and expressive specification language:

SMARTPULSE allows users to specify their properties in

Solidity  
source

SmartLTL 
spec□ ◊

 Model of 
environment 

Instrument
SoftwarE  

Model  
Checker 

SmartPulse

Fig. 1: Schematic workflow of our approach

a language called SMARTLTL. At its core, SMARTLTL
is based on linear temporal logic (LTL), an intuitive and
well-established formalism for expressing properties of
traces over time. However, SMARTLTL extends standard
LTL with additional constructs that make it easier to
express correctness properties of smart contracts.

2) Ability to customize attack models: SMARTPULSE
is parametrized by an environment model that makes
it possible to experiment with different attack models.
For example, our approach allows users to customize
assumptions about how the attacker can interact with a
contract through external calls.

3) Automation and precision: SMARTPULSE is a fully
automated tool based on the counterexample-guided ab-
straction refinement (CEGAR) paradigm and provides a
unified approach for simultaneously searching for proofs
and violations. Furthermore, in cases where SMART-
PULSE reports an error, it can generate a concrete attack
under which the property will be violated.

As shown schematically in Figure 1, SMARTPULSE takes
as input a contract P , a SMARTLTL specification ϕ, and an
environment model M (which includes the attack model),
and it checks whether P satisfies ϕ under M . Internally,
SMARTPULSE consists of two conceptual phases, namely
program instrumentation and software model checking.

In the first phase, SMARTPULSE instruments the input
Solidity program P and generates a new program P ′ (along
with a new property ϕ′) to be fed to the verifier. Our program
instrumentation serves three main purposes. First, because the
Blockchain can revert the execution of a transaction under
certain conditions (e.g., when the contract runs out of “gas”),
our instrumentation allows the verifier to be failure-aware.
Second, it incorporates the environment model M into the
input program. Finally, it generates a pure LTL formula ϕ′

such that P satisfies SMARTLTL specification ϕ if and only
if P ′ satisfies LTL formula ϕ′.

Once SMARTPULSE instruments the original contract, it
uses software model checking to verify the instrumented
program against the LTL specification. Our method builds
on prior techniques for LTL property verification [8] and
constructs a Büchi contract whose feasible, non-terminating
paths correspond to LTL property violations. However, in
addition, SMARTPULSE leverages domain knowledge about
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smart contracts to make verification more practical. In partic-
ular, SMARTPULSE exploits the semantics of SMARTLTL to
reduce the number of program paths that it needs to consider,
while also utilizing Solidity semantics to simplify its feasibility
checking procedure.

We evaluated SMARTPULSE on 191 smart contracts by
checking a total of 1947 temporal properties, including both
liveness and safety. Our evaluation shows that SMARTPULSE
can successfully verify important liveness properties of smart
contracts deployed on the Blockchain. We also evaluate
SMARTPULSE on safety properties and show that it com-
pares favorably against VERX and KEVM-VER, two state-
of-the-art tools for smart contract verification. Finally, we
demonstrate that SMARTPULSE can not only detect known
vulnerabilities but that it can also generate attacks to exploit
those vulnerabilities.

To summarize, this paper makes the following contributions:
• We propose the first toolchain for proving a general class

of temporal properties of smart contracts. Notably, our
approach can check liveness in addition to safety.

• We propose a language called SMARTLTL for conveniently
specifying temporal properties of smart contracts.

• We present a program instrumentation technique that sim-
plifies the subsequent verification problem.

• We show how to incorporate domain knowledge about smart
contracts into a software model checker to make verification
of temporal properties more tractable.

• We use SMARTPULSE to check 1947 properties across 191
smart contracts and show that SMARTPULSE is effective at
verifying/falsifying these properties, while also having the
ability to generate attacks.

II. OVERVIEW

Figure 2 shows a Solidity program implementing an auction.
This contract has three methods, bid, close, and refund.
Users can participate in the auction by calling the bid method,
which allows each user to place a bid at most once. The close
method is called by the contract owner when the auction ends,
and the refund method is also called by the contract owner
to refund all losing bids once the auction has closed.

Here, an important correctness property is “all non-winning
bidders should be eventually refunded their bid amount”. At
first glance, this contract seems to satisfy this property because
(a) the bid function places the refund amount in a mapping
called refunds every time a participant is outbid, and (b)
the refund function iterates over this mapping and calls the
transfer function to send each non-winning bidder their bid
amount. However, in reality, this contract does not satisfy this
property for two reasons. First, the call to transfer implicitly
invokes the receiver’s so-called fallback function which can
throw an exception to abort the refund transaction. Thus, a
malicious user can prevent bidders from receiving their refund.
Second, even if there are no malicious users, this contract is
still vulnerable because the refund method may run of out
of gas before all bidders are refunded.

A. Usage scenario
The techniques proposed in this paper can uncover such

vulnerabilities. To use SMARTPULSE, the user first needs to
specify the correctness property as a SMARTLTL formula.
For our example, the correctness specification is a liveness
property and can be expressed as follows in SMARTLTL:

1 contract Auction {
2 ...
3 address payable winner = address(0x0);
4 uint currBid = 0; bool closed = false;
5 address payable [] bidders;
6 mapping (address => uint) refunds;
7

8 function bid() payable public {
9 address payable sender = msg.sender;

10 require(!closed && msg.value > currBid));
11 require(refunds[sender] == 0 &&
12 sender != winner);
13 // Store refund of previous winner.
14 refunds[winner] = currBid;
15 // Update winner and currBid.
16 bidders.push(sender);
17 winner = sender;currBid = msg.value;
18 }
19 function close() public onlyOwner {
20 closed = true;
21 }
22 function refund() public onlyOwner {
23 require(closed);
24 for(uint i = 0; i < bidders.length; i++) {
25 uint refAmt = refunds[bidders[i]];
26 refunds[bidders[i]] = 0;
27 bidders[i].transfer(refAmt);
28 }
29 }
30 }

Fig. 2: Auction contract. The onlyOwner modifier indicates
that refund/close can only be called by the auction owner.

� ((finish(bid,msg.value = X ∧msg.sender = L) ∧
♦finish(close, L 6= winner))→ ♦send(to = L ∧ amt = X))

This property states that if (1) a user L places a bid of
amount X (i.e., the first conjunct on the left-hand side of
the implication) and (2) L eventually is outbid (the second
conjunct), then (3) L will eventually be transferred X amount
of ether (the right-hand side of implication). In addition to the
property, the user also needs to specify a fairness constraint
that constrains valid execution traces of the contract. In this
case, our fairness constraint states that the auction owner will
eventually call the refund method:

♦start(refund, closed ∧ sender = owner)

If we invoke SMARTPULSE with this specification, it fails
to verify the contract and returns a counterexample trace with
contract owner A and three participants B,C, and D. In this
trace, user B bids 15 Ether, followed by a bid of 16 Ether
from C and 17 Ether from D. Then, A calls the close and
refund methods, where refund attempts to transfer 15 Ether
back to B, but B’s fallback method throws an exception. As
a result, A never ends up transferring C her refund.

One way to fix this vulnerability is to change the contract’s
interface. Specifically, rather than implementing a refund
method called by the contract owner, the new interface now
has a withdraw method (shown in Figure 3) to be called
by each participant. Since the interface of the contract has
changed, we also need to change the fairness constraint to:

♦start(withdraw, closed ∧ L 6= winner ∧ L = msg.sender)

This says that a losing bidder L will eventually call the
withdraw function after the auction has closed. With this
revised implementation and fairness constraint, SMARTPULSE
is now able to verify the correctness of the auction.
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1 function withdraw() public {
2 require(closed);
3 refund = refunds[msg.sender];
4 refunds[msg.sender] = 0;
5 msg.sender.transfer(refund);
6 }

Fig. 3: Replacement of method refund in Figure 2

B. Design Choices behind SMARTPULSE

With this motivating example in mind, we now highlight
important design choices behind our approach.
Spec language. Our specification language, SMARTLTL, pro-
vides useful predicates like finish, send, start, and revert that
allow users to constrain important events occurring during
the life of a smart contract. Without such an interface, a
user would have to manually instrument the program with
auxiliary variables and express the temporal property using
pure LTL. By providing a higher-level specification language,
SMARTPULSE raises the level of abstraction and automatically
performs any required program instrumentation.
Attacks. As our example demonstrates, smart contracts can be
vulnerable in subtle ways that only arise when they interact
with a malicious contract through its falback methods. To this
end, SMARTPULSE can be parameterized with an adversary
model that allows users to customize the capabilities of an
attacker. Crucially, for vulnerable contracts, SMARTPULSE can
also generate concrete attacks, including scenarios that require
synthesizing a malicious fallback method.
Reverts. As illustrated in our example, liveness properties can
be violated due to exceptions (i.e., “reverts”). Thus, it is crucial
to develop a technique that can reason about exceptions.
Gas usage. As we also saw in this example, subtle vulnera-
bilities may arise to due to not having enough gas to perform
some computation. Thus, our technique must also reason about
the contract’s gas usage.

III. BACKGROUND

In this section we present some background material
required for understanding the rest of this paper.

A. Ethereum Virtual Machine
The EVM is an environment in which Ethereum accounts

interact with each other. Ethereum offers two types of ac-
counts: external accounts that are owned by people and
contract accounts that store and execute code. Every account
has a balance indicating the amount of Ether (Ethereum’s
crypto-currency) owned by that account. Accounts interact
with each other by issuing transactions, which execute code
or transfer Ether between accounts.

In EVM, computations are performed by miners, who get a
fee (measured in gas) for performing that computation. Thus,
whenever an account issues a transaction, it must provide a
certain amount of gas that can be used to pay these miners.
If the issuing account does not provide sufficient gas, the
transaction is reverted, and no modifications to the blockchain
are made. Otherwise, the transaction is be successful, and all
modifications are committed to the blockchain.

B. Solidity Programming Language
Solidity (the most popular programming language for smart

contract development) is a statically-typed, object-oriented

Prog P → C+
Con C → contract CName { (f : τ)∗ m+}
Func m → def m(v : τ) = s
Stmt s → sA | s; s | if v then s else s | while v do s
Atom sA → l← e | return v | revert | assume v
LHS l → v | v.f | v[v]
Expr e → l | c | ? | v.m(v) | v.transfer(v) | v ⊕ v | � v
Type τ → τB | τB Z⇒ τ | C
Base τB → int | bool | address

Fig. 4: Core fragment of Solidity, where ⊕ and � indicate
binary and unary operators respectively.

language with features targeted to the EVM. In this paper, we
model Solidity’s key features using the language presented in
Figure 4. In particular, a Solidity program consists of a set of
contracts, where each contract has a set of fields (called state
variables) and methods, one of which is a designated fallback
method. Accounts can invoke the contract’s public methods to
initiate a transaction that executes the body of that method.1

In what follows, we briefly explain Solidity features that are
relevant to the rest of this paper.
Types. In addition to int and bool, Solidity provides the
address primitive type for uniquely identifying an Ethereum
account. Every contract name can be used as a type, and
mappings τB Z⇒ τ are first-class citizens.
Revert. The revert construct in Solidity initiates the rollback
of a transaction and undoes all side effects of the current
transaction on the blockchain.2 In the remainder of this paper,
we use the terms “revert” and “exception” interchangeably.
Ether transfer. Solidity provides multiple constructs for trans-
ferring Ether; we model all of these using x.transfer(y), which
sends y amount of Ether from this contract to address x. If
x is the address of a contract C, then C’s fallback method
is executed immediately following the successful transfer of
Ether. Note that fallback methods can execute arbitrary code,
including calling methods of the contract that initiated the
transfer — this is known as reentrancy.
Verification constructs. Since we use the same language
presented in Figure 4 for program instrumentation, our core
language contains two constructs that facilitate verification.
First, we use the symbol ? to denote a non-deterministic value.
Second, assume v tells the verifier to assume that boolean
variable v is true. Note that our assume statement is only
for verification purposes and is not the same as the require
statement in Solidity, which can be modeled using revert.
External calls. We say that a call is an external call if a
method from a different program is called, or a call is made
to built-in functions like transfer.
EVM-specific features. Solidity passes an implicit EVM-
specific parameter called msg that contains information perti-
nent to the call. For example, msg.sender stores the address
of the account that initiated the call.

IV. SPECIFYING PROPERTIES IN SMARTLTL

In this section, we describe the syntax and semantics of our
SMARTLTL specification language.

1In this paper, we assume all methods are public.
2Depending on the Solidity version, reverts can be expressed in multiple

ways (e.g., throw, require, etc.). We model all of these using revert.
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Spec ς → (ϕ,ϕ)

LTL ϕ → φ | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | ϕ⇒ ϕ
| cϕ | �ϕ | ♦ϕ | ϕ U ϕ

Atom φ → start(f, ψ) | finish(f, ψ) | revert(f, ψ) | send(ψ)

Pred ψ → t comp t | ¬ψ | ψ ∧ ψ | ψ ∨ ψ

Term t → X | e | t op t

Exp e → v | e.f | f(e) | old(v) | csum(v) | fsum(f, v, ψ)

Fig. 5: Syntax of SMARTLTL.

A. Syntax and Informal Semantics
As shown in Figure 5, a SMARTLTL specification consists

of a pair of formulas (ϕF, ϕP) where ϕF is a fairness assump-
tion and ϕP is the actual temporal property we want to verify.
As illustrated in Section II, fairness assumptions are useful
for expressing how a rational agent would use the contract
(e.g., a user who wants to withdraw their money would invoke
the withdraw transaction until they receive the fund). Thus,
when checking for the property of interest, we can disregard
executions where the fairness assumptions are violated.

Both fairness assumptions and correctness properties in
SMARTLTL are expressed as LTL-like formulas that contain
boolean connectives and temporal operators such as always
(�), eventually (♦), next ( d), and until (U). However, unlike
standard LTL where the basic building blocks are propositional
variables, the building blocks of SMARTLTL are Solidity-
specific predicates, which we explain next.
Expressions. SMARTLTL expressions include variables v,
field accesses e.f , and function calls f(e) where f is a pure
function. In addition, SMARTLTL provides a construct of the
form old(v), which refers to the value of a program variable at
the beginning of the current transaction. speclang also provides
two aggregation constructs, csum and fsum, that we found to
be very useful for writing specifications. Given a mapping v,
csum(v) yields the sum of all values stored in v. Similarly,
fsum(f, v, ψ) allows aggregation of function argument values
throughout the execution of the contract. That is, fsum(f, v, ψ)
yields the sum of all values provided as argument v of f over
all successful invocations satisfying constraint ψ. For instance,
fsum(f, x0, x0 > 0) yields the sum of all positive-valued first
arguments of f throughout the contract’s execution.
Terms. SMARTLTL terms include expressions e as well as free
(but implicitly-universally quantified) variables X . Terms can
be composed using standard arithmetic operators op.
Atomic predicates. The basic building blocks of a SMARTLTL
specification are atomic predicates φ that refer to Solidity
events. SMARTLTL provides four key predicates:

1) Predicate start(f, ψ) is true if a transaction f is started
in a context that satisfies predicate ψ.

2) Predicate finish(f, ψ) evaluates to true if f has success-
fully finished executing in a state satisfying ψ. We do not
consider a transaction to be finished if f reverts.

3) Predicate revert(f, ψ) is true if transaction f is reverted
when started in a context satisfying ψ.

4) Predicate send(ψ) is true if transfer is called in a state
satisfying ψ.

The last predicate send(ψ) is actually just syntactic sugar
for start(transfer, ψ); however, we include it as a separate

predicate for convenience.3 Also, for a predicate Pred(f, ψ),
we allow users to write ? instead of a specific function f . Here,
the wildcard symbol ? denotes any function, so Pred(?, ψ) is
equivalent to writing

∧
f∈CMethods

Pred(f, ψ).

Informal semantics. To understand SMARTLTL semantics,
we first need a notion of “time step”. Since SMARTLTL
predicates talk about starting and finishing transactions, we
consider the clock to “tick” every time an external function
is called or that function returns/reverts. Thus, the next time
step indicates the next call/return/revert event from an external
function, which includes built-in functions as well as methods
defined by a different contract. Under this notion of “time
step”, SMARTLTL operators have the following semantics:
• The next operator d expresses that a predicate is true in the

next time step.
• The always operator � captures that a property holds glob-

ally (i.e., every time an external function is called).
• The eventually operator ♦ expresses that the property will

hold at some point in the future.
• The until operator U expresses that its first argument con-

tinues to be true until the second argument becomes true.
Formal semantics. We formalize SMARTLTL semantics in
terms of execution traces. For the purposes of this paper,
an execution trace τ is a sequence of triples of the form
(f, κ, σ) where f is the name of an external function,
κ ∈ {call(x), return, revert}, and σ is a valuation mapping
SMARTLTL terms to their values. Given a SMARTLTL for-
mula ϕ and a trace τ , we write τ |= ϕ (resp. τ 6|= ϕ) to denote
that ϕ evaluates to true (resp. false) under trace τ . A complete
formalization of this relation is in Appendix A.

Given a SMARTLTL specification ς ≡ (ϕF, ϕP) consisting
of fairness assumptions ϕF and property ϕP, we say that an
execution trace τ satisfies ς , denoted τ |= ς , if and only if (a)
either τ 6|= ϕF, or (b) τ |= ϕP. Then, given a Solidity contract
P and SMARTLTL specification ς , we say that P satisfies
the specification, written P |= ς , if, for all feasible execution
traces τ of P , we have τ |= ς .

Example IV.1. Consider a crowdsale that allows users to
invest in a beneficiary by buying tokens. An important cor-
rectness property for such a crowdsale is that the beneficiary
will eventually receive all funds that have been invested.
We express this property as (ϕF, ϕP) shown in Figure 6.
The fairness property (ϕF) specifies that if the crowdsale
closes, the beneficiary, b, will eventually try to withdraw the
invested funds. The temporal property (ϕP) specifies that if the
crowdsale eventually closes successfully (i.e., the sum of the
investments is greater than the fundraising goal at closing),
then eventually the beneficiary will be sent the total sum of
tokens bought using the buy function, after which no more
ether is sent to the beneficiary.

V. SPECIFYING ENVIRONMENT MODELS

In addition to the contract’s source code and a SMARTLTL
specification, SMARTPULSE also takes as input an environment
model E = (A,B) where A models the attacker and B speci-
fies assumptions about the Blockchain execution environment.
By default, SMARTPULSE provides a standard Blockchain

3The semantics of send(ψ) is on purpose not finish(transfer, ψ) because
we can never guarantee that send will successfully finish, as the receiver’s
fallback method is free to call revert.
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ϕF : � (finish(close)→ ♦start(withdraw,msg.sender = b))

ϕP : ♦(finish(close, csum(investments) ≥ goal)) →
♦
(
send(amount = fsum(buy,msg.value, true) ∧ to = b) ∧ d� (¬send(to = b))

)
Fig. 6: Specification for crowdsale contract from Example IV.1

model that need not be modified by users, as this model
only changes due to modifications to the EVM or Solidity
compiler. SMARTPULSE also provides three default attacker
models, which can be further customized by users.
Specifying attacker model. Formally, an attacker model is a
triple A = (σ0,F , η) where:
• σ0 specifies the initial Blockchain state as a mapping from

contract instances C to symbolic values describing their
initial state. We assume that the attacker can only invoke
transactions defined by those contract instances in C.

• F ⊆ CMethods(C) is the set of functions that may be
invoked by the attacker (e.g., through fallback methods).

• η ∈ N∪ {∞} is the maximum number of contract methods
that the attacker can invoke.
While the user is free to explicitly define her own attacker

model, SMARTPULSE provides three default models that share
the same initial state σ0 but differ in F and η. For all three
default models, the initial state consists of a single instance of
the contract to be analyzed, and the initial state of the contract
is determined by symbolically executing the constructor on
symbolic inputs.4 We now explain how the three default
attacker models differ from each other.
1) No reentrancy. For our most restrictive attacker model,

we have F = ∅ and η = 0. This model corresponds to the
assumption that there is no re-entrancy and can be useful
for analyzing contracts that satisfy the effective external
callback freedom (EECF) assumption [27].

2) Single callback. For this model, we have η = 1 and F =
CMethods(C) where C is the set of contract instances in
σ0. In other words, this model allows an attacker to call
any contract method a single time, which is equivalent to
Zeus’ modeling of fallback functions [17].

3) Powerful adversary. For our least restrictive model, we
have η = ∞ and F = CMethods(C). This allows an
attacker to invoke any of the contract’s public functions
arbitrarily many times.

Blockchain model. In addition to the attacker model, SMART-
PULSE also utilizes a so-called Blockchain model that spec-
ifies assumptions about the contract’s execution environ-
ment. Formally, a Blockchain model is a quadruple B =
(G, gmin, gmax, gtransfer) where:
• G : Stmt → N provides a cost model for the gas usage of

each statement.
• gmin (resp. gmax) ∈ N is the minimum (resp. maximum) gas

allowance a transaction can be provided.
• gtransfer ∈ N is the amount of gas provided to a transfer.

Because the Blockchain model is not contract-specific, a
single model is sufficient for analyzing any contract using a
specific Solidity compiler and a specific EVM version. Thus,
in practice, users do not need to worry about configuring
SMARTPULSE’s Blockchain model.

4If the contract to be analyzed involves auxiliary contracts, then the initial
state includes an instance of the auxiliary contracts as well.
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Fig. 7: Program instrumentation pipeline

VI. PROGRAM INSTRUMENTATION

To verify a Solidity contract against a SMARTLTL spec-
ification, our method performs a sequence of three program
transformations, as shown in Figure 7. First, we incorporate the
environment model directly into the program. Next, we per-
form an instrumentation that accurately models the semantics
of revert by introducing so-called history variables. Finally,
we further instrument the program with boolean variables and
convert the original SMARTLTL specification to standard LTL.
Next, we explain these transformations in more detail.

A. Modeling Environment
To incorporate the environment model E into a Solidity

program, we need to (1) model the attacker by introducing
non-deterministic fallback methods and explicitly invoking
them; (2) track the contract’s gas usage by introducing a new
variable; (3) generate a harness contract that simulates the
usage of the target contract.
Modeling the attacker. We model the attacker by creating
the transfer stub shown in Figure 8. Here, our stub first
checks whether the sender’s balance is sufficient to perform the
transfer (lines 2-3) and reverts if it is not. Otherwise, it adjusts
the sender’s and receiver’s balances accordingly (lines 4-5) and
finally calls the receiver account’s fallback method (line 6).

The attacker model A = (σ0,F , η) comes into play
when generating an implementation of the receiver’s fallback
method. As shown in Figure 8, our model performs up to η
iterations (line 10), and, in each iteration, it picks a contract
c under analysis and one of the methods m ∈ F that the
attacker is allowed to call under A. Then, it invokes c.m with
arbitrary arguments (line 13) and reverts if any of the method
calls within the fallback are also reverted.5

Modeling gas usage. In practice, important properties (esp.
those involving liveness) may be violated when a contract runs
out of gas. Thus, our instrumentation introduces an auxiliary
variable gas and explicitly tracks gas usage.

Figure 9 presents our instrumentation (for relevant Solidity
statements) using the notation s s′, which indicates that s′
is the instrumented version of s. For an atomic statement sA,
we decrement the gas variable by G(sA), and, if the value of
gas becomes negative, we revert the current transaction.

The next rule in Figure 9 shows how to perform gas instru-
mentation for method calls. Here, we generate two statements,
namely ιpre and ιpost, that precede and succeed the original

5Here, for simplicity, we assume that the return value of a method indicates
whether it was reverted. In reality, our instrumentation uses the history variable
described in Section VI-B to determine whether a method call was reverted.
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1 def transfer(amt : int) =
2 senderBal ← msg.sender.balance;
3 if senderBal < amt then revert;
4 this.balance ← this.balance + amt;
5 msg.sender.balance ← senderBal - amt;
6 fallback();
7

8 def fallback() =
9 i ← 0;

10 while i < η ∧ ? do
11 c ← choose(C);
12 m ← choose(F);
13 if c.m(?) then revert;
14 i ← i + 1;

Fig. 8: Modeling semantics of transfer and fallback behavior

(Stmt.)
ι ≡ (gas← gas− G(sA); if gas < 0 then revert)

sA  ι; sA

(Call)
ιpre ≡ (v.gas← gas− G(s)) ιpost ≡ (gas← v.gas)

s ≡ l ← v.m(v) ιpre; s; ιpost

(Transfer)

ιpre ≡ (to.gas← min(gas, gtransfer); t← to.gas)

ιpost ≡ (gas← gas− (t− to.gas))

s ≡ l ← to.transfer(v) ιpre; s; ιpost

Fig. 9: Gas usage instrumentation.

statement respectively. Statement ιpre forwards the remaining
gas (minus the cost of performing the call) from the current
contract to the receiver contract. Conversely, ιpost retrieves
the remaining gas after the call returns. The last rule for
transfer is similar to the one for method calls, but, instead of
forwarding all the remaining gas to transfer, it only forwards
up to gtransfer of gas (statement ιpre). Any unused gas after
the call to transfer is claimed by the current contract.
Harness. Smart contracts are open programs, so we need to
generate a harness that models all possible ways that accounts
may interact with this contract. As shown in Figure 10, the
harness created by SMARTPULSE first initializes the contract
state according to the environment model (line 3). It then
performs an arbitrary number of iterations where it (1) picks
a random contract c and one of its methods m (lines 6-7),
(2) updates auxiliary variables (e.g, msg, block,) (lines 8
and 9) and, (3) begins a transaction by providing arbitrary
parameters to the selected method (line 10).

B. Modeling Semantics of Revert Statements
Since our specification language requires differentiating be-

tween successful and failed transactions, we need to precisely
model the semantics of revert statements. We do this by
instrumenting the program with so-called history variables [1].

At a high level, the idea is as follows: First, we introduce
a history variable called fail that tracks whether the current
transaction is reverted. Then, for each function f , we create

1 def harness() =
2 aux ← initBlockchainVars();
3 assume ∧

(ci,ψi)∈σ0
ψi

4

5 while(true) do
6 c ← choose(Contracts(σ0));
7 m ← choose(CMethods(c));
8 aux ← updateBlockchainVars();
9 c.gas ← ?;assume gmin ≤ c.gas ∧ c.gas ≤ gmax;

10 BeginTX(aux, c.m(?));

Fig. 10: Harness generated by SMARTPULSE.

1 contract C {
2 i : int;
3 def foo(j : int) = i ← i + j;
4 if (i > 100) then revert
5 else return i
6 } (a) Original Contract.

1 contract C {
2 fail : bool;
3 i : int;i7 : int;
4

5 def foo3(j : int) = i ← i + j;
6 if (i > 100) then
7 fail ← true;return ?
8 else return i
9 def foo7(j : int) = i7 ← i7 + j;

10 if (i7 > 100) then
11 fail ← true;return ?
12 else return i7
13 def foo(j : int) = fail ← false;
14 if (?) then
15 r ← foo3(j);
16 assume ¬ fail
17 else
18 i7 ← i;r ← foo7(j);
19 assume fail
20 return r
21 } (b) Instrumented Contract.

Fig. 11: Toy Contract and its instrumented version.

two copies f3 and f7, where f3 (resp. f7) represents the
version of f that is called in a successful (resp. failing)
execution. The bodies of f3 and f7 are identical except that
(a) f7 uses a shadow variable v7 instead of state variable v,
and (b) a call to function g in the original function is replaced
by a call to g3 in f3 and by g7 in f7. Finally, the original
function f is replaced by a wrapper that “guesses” whether
the transaction is going to fail and then constrains the value
of the history variable (using assume statements) to ensure that
its “prediction” was correct. Intuitively, the reason we need to
create two copies of each method is that one copy (i.e., f3)
affects blockchain state, while the other one (i.e., f7) does not.

We illustrate this idea using the example in Figure 11, where
the original code reverts if i exceeds 100. We highlight the
following salient features of our instrumentation:
• The instrumented contract contains the history variable

fail, which is initialized to false (line 13 in Figure 11b),
and the call to revert in the original program (line 4 in
11a) is modeled as setting fail to true and then returning
immediately (lines 7 and 11 in Figure 11b).

• The instrumented contract contains two copies of foo that
are identical except that foo7 uses shadow variable i7.

• The wrapper function foo initializes fail to false and then
non-deterministically calls either foo7 or foo3. Before the
call to foo7, we initialize the shadow state variable i7 to i.

• After the call to foo3, we add a statement assume(¬fail) to
ensure that foo3 is only called during non-failing transac-
tions. For the same reason, we also add an assumption that
fail is true after the call to foo7.
Here, note that the value of state variable i is unchanged in

failing executions since foo7 operates on shadow variable i7.
Furthermore, the instrumented assume statements enforce that
failing executions only call foo7 whereas successful executions
only call foo3. Since any program path where an assump-
tion is violated is considered infeasible by the verifier, this
instrumentation allows us to faithfully and precisely capture
the semantics of revert.

Figure 12 presents this instrumentation more formally.
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(Revert)
ι ≡ (fail← true; return ?)

C, ε ` revert ↪→ ι

(Call)
ι ≡ (l ← v.mε(v); if fail then return ?)

C, ε ` l ← v.m(v) ↪→ ι
(Stmt 7)

ε = 7 f = Fields(C)
C, ε ` sA ↪→ sA[f7/f ]

(If)
C, ε ` s1 ↪→ s ′1 C, ε ` s2 ↪→ s ′2

C, ε ` if v then s1 else s2 ↪→ if v then s ′1 else s ′2
(While)

C, ε ` s ↪→ s ′

C, ε ` while v do s ↪→ while v do s ′

(Method)
C, ε ` s ↪→ s ′

C, ε ` def m(v : τ) = s ↪→ def mε(v : τ) = s ′
(Seq)

C, ε ` s1 ↪→ s ′1 C, ε ` s2 ↪→ s ′2

C, ε ` s1; s2 ↪→ s ′1; s ′2

(Contract)
C ` mi 7→ m ′

i,m3,m7 ι ≡ fail : bool

contract C {f m} ↪→ contract C {ι f f7 m3 m7 m ′}

(Wrapper)

f = Fields(C), C,3 ` m ↪→ m3, C,7 ` m ↪→ m7

ιs ≡ (r := m3(v); assume ¬fail; return r;) ιf ≡ (f7 := f ; r := m7(v); assume fail; return r;)

C ` m 7→ def m(v : τ) = fail← false; if ? then ιs else ιf ,m3,m7

Fig. 12: Instrumentation for Solidity’s exception semantics. For statements that are not shown, we assume C, ε ` s ↪→ s .
Specifically, we use two types of judgments: (1) The judgment
C, ε ` s ↪→ s′ indicates that statement s in C is re-written into
s′ in context ε ∈ {3,7} indicating whether this is a failing
or successful execution. (2) C ` m 7→ m′,m3,m7 indicates
that method m in contract C is re-written into three variants,
where m3 (resp. m7) is the variant that is called in successful
(resp. failing) executions, and m′ is the wrapper method that
ensures that m3 (resp. m7) is only called during successful
(resp. failing) executions.

We now explain the rules from Figure 12 in more detail.
Revert. Our re-write rules eliminate revert statements by
assigning the history variable fail to true and then returning.
Stmt 7. When rewriting atomic statements in context 7, we
replace any state variable v with its shadow version v7.
Call. We re-write function calls by (a) calling the correct (i.e.,
successful or failing) version of the function depending on
context ε ∈ {3,7}, and (b) propagating any exceptions that
occur. For instance, consider the following method:

def bar(k : int) = j← foo(k); return j;

Then, bar3 and bar7 would be as follows:

def bar3(k : int) = j← foo3(k); (if fail then return ?); return j;
def bar7(k : int) = j← foo7(k); (if fail then return ?); return j;

Wrapper. This rule synthesizes a wrapper for method m . Since
m serves as the entry point of a transaction, we initialize
fail to false and then predict whether the transaction will
succeed or fail by non-deterministically callling m3 and m7.
The assumptions added after the call ensure that we made the
right prediction.
Contract. This rule instruments the whole contract by
introducing a history variable fail and shadow fields. It also
generates the wrapper, successful, and failed methods for
every method of the original contract.

C. Converting SmartLTL Specifications to Regular LTL
To build upon existing verification techniques for checking

temporal properties, the specifications must be expressed in
standard LTL. Toward this goal, we show how to instrument
the program so that the verification problem can be expressed
as checking a standard LTL property over the instrumented
program. Specifically, our method consists of three steps: First,

START-TRUE

s ≡ (v ← x.f(y)) φ ≡ started(f, ψ)

BoolVar(φ, b) ψ′ = Sub(ψ,Γ)

Γ ` P[s]
φ−−−→ P[b← ψ′; s]

START-FALSE

s ≡ (deff = s′) φ ≡ started(f, ψ) BoolVar(φ, b)

Γ ` P[s]
φ−−−→ P[deff = (b← false; s′)]

FINISH-TRUE

Return(s) InWrapper(s, f)

φ ≡ finish(f, ψ) b = BoolVar(φ) ψ′ = Sub(ψ,Γ)

Γ ` P[s]
φ−−−→ P[b← ¬fail ∧ ψ′; s]

REVERT-TRUE

Return(s) InWrapper(s, f)

φ ≡ revert(f, ψ) b = BoolVar(φ) ψ′ = Sub(ψ,Γ)

Γ ` P[s]
φ−−−→ P[b← fail ∧ ψ′; s]

FINISH/REVERT-FALSE

φ ≡ R(f, ψ) R ∈ {finish, revert}
s ≡ (v ← x.f(y)) b = BoolVar(φ)

Γ ` P[s]
φ−−−→ P[s; b← false]

Fig. 13: SmartLTL to LTL instrumentation. Γ is a mapping from
SMARTLTL expressions to their corresponding program variables.
Also, � ∈ {¬, d,�,♦}, ~ ∈ {∧,∨,⇒,U ,R}. The function
Sub(ψ,Γ) substitutes each SMARTLTL expression e in ψ with its
corresponding variable Γ(e)

we introduce variables that store values of SMARTLTL expres-
sions old(v), csum(v), fsum(f, i, ψ). Second, for each atomic
SMARTLTL predicate φ (e.g., start(f, ψ), we introduce a fresh
boolean variable b and rewrite the SMARTLTL specification
into a pure LTL specification by replacing every occurrence
of φ with b. Finally, we instrument the program to make the
correct assignments to these boolean variables.

Since the last step is non-trivial, we describe it in more
detail in Figure 13 using judgments Γ ` P[s]

φ−−−→ P[s′].
Here, Γ maps SMARTLTL expressions to program variables
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1 contract Auction {
2 L : address;
3 finish : bool;
4 fsum : int;
5 old : int;
6 ...
7 def bid() = ...
8 if (*)
9 if(msg.sender = L)

10 fsum ← fsum + msg.value;
11 call bid3();
12 assume ¬fail
13 ...
14 def withdraw() = old ← L.bal;
15 ...
16 finish ← ¬fail ∧
17 (L.bal-old)=fsum;
18 return
19 def harness() = L ← ?;
20 finish ← false;
21 fsum ← 0;
22 old ← ?;
23 ...
24 while(true) do
25 ...
26 if(*)
27 BeginTX(aux, c.withdraw(?));
28 finish ← false;
29 ...
30 }

Fig. 14: Instrumented Auction Example.

introduced in step (1).6 The meaning of this judgment is that
statement s in program P is rewritten to s′ when performing
instrumentation for predicate φ. There are two rules associated
with each predicate (labeled PRED-TRUE and PRED-FALSE)
for assigning the corresponding boolean variable to true and
false respectively.
Start. A boolean b associated with start(f, ψ) is set to true
at a call site of function f if the formula ψ evaluates to true.
However, since ψ may contain SMARTLTL expressions, we
first obtain a new predicate ψ′ by substituting all SMARTLTL
expressions with their corresponding program variable stored
in Γ. Thus, our instrumentation assigns b to ψ′ immediately
before an invocation of function f . Futhermore, since b should
only be true at call sites and no where else (recall SMARTLTL
semantics from Section A), we immediately set b to false as
soon as we start executing function f .
Finish. For predicate finish(f, ψ), we set its corresponding
boolean b if its condition ψ holds and if the transaction has
not reverted. Since this predicate should only evaluate to true
at return points of f and nowhere else, we again set the
corresponding boolean variable to false after f ’s invocation.
Revert. The instrumentation for revert is very similar to finish
except that it is assigned to true if the transaction has reverted
and its condition is satisfied.

Example VI.1. Recall the auction from Figure 2 that allows
users to place a bid at most once. Suppose we extend the
fixed version of this auction to allow users to place multiple
bids. We would like to ensure that we still correctly refund
the losers. The following SMARTLTL property (along with
the fairness property stated in Section II) asserts that a loser
is eventually refunded the sum of their bids.

♦finish(withdraw, L.bal − old(L.bal) =

fsum(bid,msg.val,msg.sender = L))

6Γ also maps free variables in φ to non-deterministic values.

1: procedure VERIFY(P, ϕF, ϕP)
2: input: Program P
3: input: ϕF , the fairness constraint
4: input: ϕP the property to verify
5: Output: Verified, Counterexample or Unknown
6: Aϕ := ConstructBuchi(ϕF ∧ ¬ϕP )
7: B := P ×Aϕ
8: while L(B) 6= ∅ do
9: π ∈ L(B)

10: if feasible(π) = 3 then
11: return π
12: else if feasible(π) = ? then
13: return Unknown
14: B := B \ π
15: return Verified

Algorithm 1: Verification framework adapted from [8]

Figure 14 shows snippets of the instrumented auction. Lines
2–5 introduce the variables L for the unbound variable L,
finish for the finish atom, fsum for the fsum expression, and
old for the old(L.balance) expression. Lines 19–22 initialize
these variables to a non-deterministic value (?), false, 0, and
? respectively. Lines 9–10 instrument the calculation of the
fsum expression, line 14 instruments the old expression, and
lines 16, 17, and 28 instrument the finish predicate. With
this instrumentation, the SMARTLTL formula is translated to
♦finish in standard LTL.

VII. VERIFICATION ALGORITHM

In this section, we describe our technique for verifying
smart contracts against LTL specifications. Our verification
algorithm is an instance of the counterexample-guided ab-
straction refinement (CEGAR) paradigm commonly used for
temporal property checking [4], [5], [8], but it exploits domain-
specific knowledge about smart contracts to make verification
more efficient. In the remainder of this section, we first give
an overview of the basic framework we build upon (Sec-
tion VII-B) and then discuss our domain-specific adaptations
in Sections VII-C and VII-D. 7

A. Background on Büchi Automata
Like all verification techniques for temporal property check-

ing, our approach requires converting the LTL specification to
a Büchi automaton:

Definition VII.1. (Büchi automaton.) A Büchi automaton
A = (Σ,Q, q0,→,F) is a finite-state automaton that accepts
infinite words. Specifically, Σ denotes a finite alphabet, Q is
a finite set of states with initial state q0 and final (accepting)
states F ⊆ Q. The transition relation→ is a function Q×Σ→
Q. The automaton accepts a word w ∈ Σ∗ if a run of w on
A visits a set of final states infinitely many times.

Note that every LTL formula can be converted into an
equivalent Büchi automaton using standard techniques [10].

B. Overview
As mentioned earlier, our algorithm is an instance of the

CEGAR framework for temporal property checking proposed

7As we show in Appendix C, these domain-specific adaptations are quite
important for making this approach practical.
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in prior work [8]. In this section, we give an overview of this
framework and then discuss our domain-specific adaptations
in the next two subsections.

The basic CEGAR framework for LTL property checking
is presented in Algorithm 1 and works as follows: First, it
converts the LTL formula ϕF ∧ ¬ϕP to a Büchi automaton
whose language corresponds to words that satisfy the fair-
ness constraint but violate the correctness property. It then
constructs another Büchi automaton B which represents the
program together with the specification (line 7). In particular,
this automaton is constructed in such a way that the emptiness
of B’s language constitutes a proof that P satisfies the spec-
ification. Then, in each iteration of the loop (lines 8–14), the
algorithm finds a word (i.e., infinite path) π that is accepted
by B (line 9) and checks whether it is actually feasible under
the program semantics. If so, π is a genuine counterexample
(line 11), and, if not, the algorithm removes this spurious word
π from B (line 14) and moves on to the next word accepted
by B. On the other hand, if the feasibility of π cannot be
determined, the algorithm returns unknown (line 13).

Based on the above discussion, there are two key issues we
need to address to adopt this verification approach:

1) How to construct a Büchi automaton B that represents an
embedding of the specification into the smart contract;

2) How to determine feasibility of an infinite path π
In the remainder of this section, we address these questions
and show how to leverage domain-specific knowledge to
simplify the resulting verification problem.

C. Büchi Contracts

We define a Büchi contract to represent a smart contract
together with its specification:

Definition VII.2. (Büchi contract) Let P be a smart contract
with statements S, program locations L, entry location `0 and
a transition relation T : L × S → L. Given a specification
automaton Aϕ = (Σ,Q, q0,→,F), the Büchi contract P×Aϕ
is a Büchi automaton B = (Σ̂, Q̂, q̂0,�, F̂) where:

• Σ̂ = {s; assume(φ) | s ∈ S ∧ φ ∈ Σ}
• Q̂ = L ×Q and q̂0 = (`0, q0)
• The transition relation � maps a state (`1, q1) to another

state (`2, q2) on label (s; assume(φ)) iff (`1, s, `2) ∈ T and
(q1, φ, q2) ∈→.

• F = {(`, q) | q ∈ F ∧ (ExtCall(`) ∨ ExtReturn(`))}
In this definition, ExtCall(`) (resp. ExtReturn(`)) is true if

` corresponds to a program location immediately preceding
a call to (resp. return from) an external function.8 Thus, our
Büchi contracts are very similar to the notion of Büchi product
programs from prior work [8] but differ in the construction of
the final states. In particular, since the SMARTLTL semantics
are defined over calls to and returns from external functions,
only those locations that correspond to external call/return
points are marked as final states. This difference is quite im-
portant for making verification practical since it significantly
reduces the number of words (i.e., program paths) accepted
by the Büchi contract and allows disregarding execution traces
that are not relevant to the semantics of SMARTLTL.

8Calls to contract methods from the harness are also external calls.

1: procedure FEASIBLE(π)
2: input: π = τ1τ

ω
2 , lasso-shaped counterexample

3: Output: 3,7, or ?

4: if ¬SAT(sp(τ1; τ2, true)) then return 7

5: V := {v | v ∈ Vars(τ2) ∧ t ∈ Txs(τ2) ∧ Read(t, v)} )
6: V := Vars(τ1; τ2)\V
7: φ := ∃V .sp(τ1; τ2, true)
8: if sp(τ2, φ) ⇒ φ then return 3

9: if FindRankingFn(τ1τ
∗
2 ) 6= null then

10: return 7
11: return ?
Algorithm 2: Feasibility checking procedure. Here, sp(s, φ) denotes
strongest postcondition of s wrt φ, and Txs(τ2) corresponds to
contract transactions invoked in τ2

Theorem VII.1. A smart contract P satisfies the specification
(ϕF, ϕP) iff the corresponding Büchi contract P × AϕF∧¬ϕP

does not have a feasible infinite trace π such that π ∈ L(B).

D. Checking Feasability
We now describe how to check whether a path π ∈ L(B)

is feasible. In general, paths that are accepted by the Büchi
contract are lasso-shaped, meaning that π is always of the form
τ1τ

ω
2 . Intuitively, π is feasible if it is possible to execute τ2

infinitely many times after executing the “stem” τ1.
Our feasibility checking procedure is shown in Algorithm 2

and consists three conceptual steps, where Pτ1τω
2

represents
the program τ1; while(true) τ2:

1) Check feasibility of τ1; τ2 (line 4); if not, π is infeasible.
2) Check if Pτ1τω

2
is a non-terminating program (lines 5–8);

if so, π is feasible.
3) Check if Pτ1τω

2
has a ranking function (lines 9). If so,

Pτ1τω
2

is a terminating program; thus τ1τω2 is infeasible.
In this work, we use a simple but effective non-termination

checking method that leverages domain knowledge for com-
puting so-called recurrent sets [12]. In particular, suppose τ2
involves contract methods F . Now, if the first execution of
τ2 is feasible and if the program state relevant to F never
changes, then we know that subsequent executions of τ2
will also be feasible. Essentially, lines 5–8 of Algorithm 2
implement this idea: here, φ captures program state relevant
to τ2 transactions after going through the loop once. If we can
prove that executing τ2 in a state satisfying φ always preserves
φ, then this means we can execute τ2 infinitely many times.

Theorem VII.2. If Algorithm 2 returns 3 for a path π, then
Pπ is a non-terminating program.

Example VII.1. Consider the auction in Figure 2 and the
infinite counterexample τ1τω2 given in Figure 15. This trace
corresponds to a denial-of-service attack where one of the
bidders prevents the other users from receiving their refund
by reverting in its fallback method. To show this is a real
counterexample, we need to prove that τ1τω2 is feasible —
i.e., we can execute τ2 infinitely many times after executing
τ1 once. Now, let φ be the strongest post-condition of feasible
trace τ1; τ2. Clearly, if we have {φ}τ2{φ}, this means we can
execute τ2 infinitely many times.

However, in practice, if we compute φ as the strongest
post-conditon of τ1; τ2, we can almost never prove the Hoare
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τ1 :A.bid3(from : B1, value : 15)) ; ... ;A.bid3(from : B2, value : 16)) ; ... ;A.bid3(from : B3, value : 17)) ; ... ;A.close3()) ;

τ2 :A.refund7()) ; ... ; bidders7[0].transfer(refAmt) ; revert() ;

Fig. 15: SMARTPULSE counterexample τ1τω2 from Section II-A, where A is the instance of the auction and Bi are the bidders

triple {φ}τ2{φ} even when τ1τ
ω
2 is obviously feasible. This

is because τ2 involves blockchain-modifying statements in the
harness in addition to invocations of the contract’s transactions.
However, the idea is that if the transactions called in τ2 do
not read from these modified blockchain states, then we can
safely ignore those variables when determining feasibility of
τ1τ

ω
2 . Thus, in line 7 of Algorithm 2, we project out those

variables through existential quantification.
Going back to our example, the only transaction involved

in τ2 is refund, which reads from variables refAmt,
bidders, and refunds. Since these variables are not
modified in τ2, we have sp(τ2, φ)⇒ φ at line 8 of Algorithm
2 because φ only involves these three variables. Thus, our
method is able to prove the feasibility of τ1τω2 .

VIII. IMPLEMENTATION AND LIMITATIONS

The implementation of SMARTPULSE consists of approx-
imately 10,000 lines of code spanning three languages (C#,
Java, C++) and supports most features of Solidity 0.5.x,
including inheritance, hashing, and important built-in con-
structs such as send, transfer and call. Given a smart contract
implemented in Solidity, SMARTPULSE first converts it to
the Boogie intermediate representation [2] using a modified
version of the VeriSol Solidity-to-Boogie translator [35]. Our
modified version of VeriSol incorporates several optimizations,
such as splitting VeriSol’s memory maps using alias analysis to
improve analysis scalability. The program transformations de-
scribed in Section VI-A and Section VI-B are then performed
on the Boogie code in preparation for verification, which
also occurs at the Boogie level. Our implementation of the
verification algorithm from Section VII is an extension of the
UltimateAutomizer software model checker [8]. In particular,
given a SMARTLTL specification, our implementation first
constructs a Büchi contract as described in Section VII-C and
tries to verify it using the CEGAR approach from Algorithm 1
and using the feasibility checking procedure discussed in
Section VII-D. If the verifier discovers a counterexample,
SMARTPULSE performs further post-processing and converts
it to a program trace (i.e., sequence of transaction names and
their arguments) that can be understood by users.
Modular verification. In addition to checking global
temporal properties, SMARTPULSE can also be used to check
method-level properties. That is, our implementation of
SMARTPULSE also accepts SMARTLTL specifications at the
method level.

Limitations. The current version of SMARTPULSE has several
limitations. First, it does not support some low-level Solid-
ity features, including inline assembly, singature-based call-
ing mechanisms (e.g., addr.call("function foo(int,
int)")(a, b)), bitwise operations, and Application Binary
Interface (ABI) functions. Second, SMARTPULSE cannot rea-
son precisely about non-linear arithmetic and models them
using uninterpreted functions. Third, the current gas model
used by SMARTPULSE is conservative and estimates gas usage
from Solidity code rather than EVM bytecode.

In addition, the current version of SMARTPULSE makes
several assumptions. For example, it assumes that miners are
not adversarial and that transactions are executed in the order
they are submitted. It also assumes that all attacks require only
a single instance of the contract being analyzed. However, it
is worth noting that the assumptions we make in this work
are actually are less restrictive than prior work [17], [27].
In addition, SMARTPULSE can be easily extended to remove
these assumptions, albeit potentially at the cost of scalability.

Finally, SMARTLTL only allows users to specify properties
over contract variables at transaction boundaries. As a result,
users cannot specify properties intended to query the behavior
within a transaction. In addition, SMARTPULSE does not
consider a property to be violated if the violation occurs within
a transaction, but is not observable at the transaction boundary.

IX. EVALUATION

In this section, we present the results of our evaluation,
which is designed to answer the following research questions:
(1) Is SMARTPULSE able to verify liveness properties? (2)
How does SMARTPULSE compare against existing smart con-
tract verifiers? (3) Is SMARTPULSE able to generate attacks
for vulnerable contracts?

With the exception of the results in Section IX-C, all
experimental results reported in this section are conducted
on a machine running MacOS 10.15.4 with an 8-Core Intel
Core i9 and 16GB of memory. For these experiements, we
also set a timeout of 5 hours and memory limit of 16GB. The
results from Section IX-C were gathered on a machine running
Ubuntu 18.04 with an Intel Xeon(R) W-3275 2.50 GHz CPU
and 32GB of physical memory.

A. Liveness Evaluation
Since SMARTPULSE is the first automated approach for

checking liveness properties of smart contracts, we first
conduct an evaluation that focuses on liveness. To perform
this evaluation, we consider smart contracts and properties
considered in prior work on interactively verifying liveness
properties [30].9 In addition, we collect six other contracts
(auctions, crowdsales, and escrows) that are deployed on the
blockchain and that have interesting liveness properties. In
particular, two of these contracts are taken from the popular
OpenZeppelin library [25], and the remaining ones are taken
from EtherScan (we selected ones where users deposited the
most Ethereum throughout the contract’s lifetime and that
only use SMARTPULSE-supported features). For each of these
contracts, we inspected their interface and formalized liveness
properties we would expect them to satisfy. An English de-
scription of the properties for each benchmark can be found
in Appendix D.

The results of this evaluation are summarized in Table I,
which lists the contract’s name, number of lines of code,
and the number of properties that we checked. The column
labeled “# verified” shows the number of properties that were
successfully verified, and the “# refuted” column shows the

9Since the contracts considered in that work are written in Scilla, we
manually translated them to Solidity.
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Contract LOC # Properties # Verified # Falsified Avg. Time (s)
RefundEscrow 129 2 2 0 333.2.0
EscrowVault 102 2 2 0 2587.6

RefundableCrowdsale 374 5 4 0 1124.8
EPXCrowdsale 171 5 5 0 442.2
Crowdfunding 55 3 3 0 19.8

ValidatorAuction 260 6 3 3 980.8
SimpleAuction 50 5 3 2 277.4

Auction 51 3 1 1 11.8
RockPaperScissors 66 3 3 0 8.5

Overall 1258 34 26 6 622.9

TABLE I: Liveness verification results

number of properties for which SMARTPULSE was able to
provide a real counterexample. Finally, the column labeled
“Time” shows the average analysis time in seconds.

The key take-away from Table I is that SMARTPULSE is
able to successfully solve 32 of the 34 benchmarks (94%)
but fails to terminate within the provided time limit for
the remaining two. Out of 32 benchmarks on which the
analysis terminates, SMARTPULSE reports counterexamples
for six of them. In all six cases, we found that there was
a discrepancy between the contract’s implementation and the
expected specification. For example, for the ValidatorAuction
contract, one of the properties we specified is “losing bidders
should be refunded the total sum of their bids”. However,
the actual implementation of this contract has two possible
outcomes, namely failed and DepositPending. If the
auction has failed (e.g., if there are not enough bidders), then
all participants are issued their refund, so the expected property
holds. On the other hand, if the auction has closed successfully,
then the losing bidders are issued their refund minus some
amount called lowestSlotPrice. In this case, if we change
the specification to be consistent with the contract’s actual
behavior, then SMARTPULSE is able to verify the property.

Running time. The running time of SMARTPULSE varies
from 7 seconds to 4833 seconds, with average running time
being 623 seconds. On some benchmarks (e.g., EscrowVault),
SMARTPULSE takes a very long time due to the large number
of refinement steps that need to be performed. In general, the
more complex the property, the longer SMARTPULSE takes
to verify it. However, as we show in subsequent sections,
SMARTPULSE is a lot faster when verifying safety properties.

B. Comparison with VERX on Temporal Safety Properties
Next, we compare SMARTPULSE against VERX, a state-of-

the-art safety tool for verifying temporal safety properties of
smart contracts. To perform this comparison, we first translated
all VERX benchmarks from [27] to Solidity 0.5.0 and then
wrote a corresponding SMARTLTL specification for each of
the PastLTL specifications used by VERX. Since VERX per-
forms verification under the effective external callback freedom
assumption, we use SMARTPULSE’s no re-entrancy attacker
model when performing this evaluation.

The results of our VERX comparison are shown in Table
II. Since VERX often needs the user to provide additional
predicates to facilitate verification, we compare SMARTPULSE
against two variants of VERX. For the first, labeled “VERX-
USER”, we supply VERX with the exact same set of predicates
used in the VERX evaluation [27]. However, since SMART-
PULSE is fully automated and does not require users to provide
any predicates, this is not an apples-to-apples comparison.
Thus, we also compare SMARTPULSE against a fully auto-
mated variant of VERX (labeled “VERX-AUTOMATED”) in
which we do not supply VERX with any predicates.

As shown in Table II, SMARTPULSE is able to verify
significantly more benchmarks (43 vs. 81) compared to the
fully automated version of VERX. When comparing SMART-
PULSE against VERX-USER, SMARTPULSE still verifies more
benchmarks within the 5 hour time limit, and the average
running times of both tools are similar, with SMARTPULSE’s
median running time being faster.10

C. Large Scale Evaluation and KEVM-VER Comparison
In the previous subsections, we demonstrated the expres-

siveness and flexibility of SMARTPULSE by using it to verify
several liveness and temporal safety properties. However,
because this evaluation requires writing custom specifications
for each contract, we were only able to evaluate SMARTPULSE
on 22 contracts. In this section, we perform a larger scale
evaluation on ERC20 contracts that all share the same specifi-
cation. We chose ERC20 contracts because they are the most
widely used contracts on the Ethereum blockchain, making up
72.9% of all high-activity contracts [24]. While the correctness
properties of ERC20 contracts are much simpler than those
considered in Sections IX-A and IX-B, this evaluation allows
us to demonstrate that SMARTPULSE can be used to analyze a
large number of contracts. Furthermore, since a prior research
effort [26], henceforth called KEVM-VER, has also been
evaluated on ERC20 contracts, this evaluation allows us to
perform a comparison against an additional state-of-the-art
verification tool for smart contracts.

To perform this large scale evaluation, we collected from
EtherScan the 200 (unique) most widely-used ERC20 con-
tracts whose source is available. Among these 200 contracts,
49 of them cannot be analyzed by KEVM-VER, which
leaves us with a total of 151 contracts to evaluate on. In
terms of correctness specifications, we utilize the ERC20-
K formalism proposed in prior work [28] that serves as a
complete formal specification of the ERC20 standard in the
K framework [29]. However, since SMARTPULSE does not
consume K specifications, we translated these specifications
to equivalent (but often much shorter) SMARTLTL properties.
Furthermore, since ERC20-K specifications are in the form
of method pre- and post-conditions, we also use method-level
specifications, but expressed in SMARTLTL.

The results of this evaluation are shown in Table III. Here,
rows correspond to each of the 12 ERC20 specifications, and
the right and left halves of the table provide statistics about
SMARTPULSE and KEVM-VER respectively. In particular, for
each tool, we report (1) the number of ERC20 contracts that
could be verified, (2) the number of contracts that were proven
to violate the property, (3) the number of contracts for which

10At the time of writing, VERX was not freely available. However, the
authors of VERX provided us with server access that allowed us to run these
experiments. Since the two tools are run on different machines, we note that
the reported running times do not provide an apples-to-apples comparison.
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SMARTPULSE VERX-USER VERX-AUTOMATED
Average Median Average Median Average Median

Project # Properties # Verified Time (s) Time (s) # Verified Time (s) Time (s) # Verified Time (s) Time (s)
Overview 4 4 88.7 80.6 4 116.9 89.2 0 —— ——
Alchemist 3 2 3.8 3.8 3 40.7 40.7 2 41.6 41.6
Brickblock 6 6 17.9 19.2 6 110.2 112.4 3 53.1 43.3
Crowdsale 9 9 91.5 31.4 9 95.3 94.4 0 —— ——

ERC20 9 9 396.9 9.8 9 25.8 21.6 9 25.8 21.6
ICO 8 7 29.6 21.7 8 1749.4 1697.2 0 —— ——

Mana 4 4 222.8 152.2 0 —— —— 0 —— ——
Melon 16 16 821.4 12.0 16 112.0 62.9 16 28.9 27.6
MRV 5 5 32.7 24.1 5 393.5 350.1 5 426.8 350.1

PolicyPal 4 4 85.2 27.1 0 —— —— 0 —— ——
VUToken 5 5 138.9 75.3 4 445.9 216.9 0 —— ——

Zebi 5 5 93.5 22.8 5 178.8 27.4 3 17.5 13.3
Zilliqa 5 5 1168.3 7.9 5 40.2 31.1 5 40.2 31.1
Overall 83 81 328.6 20.1 74 310.4 69.0 43 77.3 29.5

TABLE II: Comparison against VERX on temporal safety properties.

SMARTPULSE KEVM-VER
# # # Average # # # Average

Property Verified Falsified Unknown Time (s) Verified Falsified Unknown Time (s)
TotalSupply 108 35 7 2.9 89 37 25 390.1
BalanceOf 133 10 7 2.7 125 1 25 391.9
Allowance 139 4 7 2.6 123 3 25 397.2
Approve 69 74 7 4.1 62 64 25 402.4

Transfer-Normal 41 101 8 4.4 42 80 29 403.6
Transfer-Self 74 69 7 4.3 75 47 29 400.8
Transfer-Fail 124 20 7 3.5 106 17 28 404.3

Transfer-Self-Fail 138 6 7 2.8 123 3 25 405.9
TransferFrom-Normal 38 101 11 19.0 39 83 29 416.8

TransferFrom-Self 38 103 9 8.6 38 84 29 412.4
TransferFrom-Fail 124 19 8 4.6 105 18 28 414.5

TransferFrom-Self-Fail 131 13 7 3.3 114 9 28 405.1
Overall 1164 556 92 5.2 1041 446 325 403.7

TABLE III: Large Scale Evaluation

the tool did not report a result (e.g., due to a time-out), and
(4) average time in seconds for those benchmarks that could
be solved (i.e., either verified or refuted).

The key take-away from this evaluation is that SMART-
PULSE is able to solve significantly more benchmarks than
KEVM-VER (95% vs 82%), and it is able to solve them a lot
faster (5 vs 404 seconds). We conjecture that SMARTPULSE
is significantly faster than KEVM-VER due to its use of lazy
abstraction as opposed to eager symbolic execution.

To ensure the correctness of these results, we also com-
pared the results produced by SMARTPULSE against those
of KEVM-VER. For the benchmarks solved by both tools,
SMARTPULSE and KEVM-VER produced the same results
except in two cases. Upon further inspection, we found these
two discrepancies to be caused by a bug in KEVM-VER
(specifically, a bug in the translation from EVM bytecode to
K), and we manually confirmed that the result produced by
SMARTPULSE is indeed correct.

D. Evaluating SMARTPULSE on Vulnerable Contracts

One of the capabilities provided by SMARTPULSE is the
ability to generate attacks for vulnerable contracts. In this
section, we evaluate SMARTPULSE on a set of benchmarks
that contain vulnerability patterns described in prior work [11],
[17], [22], [23] and assess whether SMARTPULSE can generate
attacks for all of these vulnerable contracts. Since several of
these vulnerability patterns require non-trivial fallback imple-
mentations to perform the attack, we conduct this evaluation
using the powerful adversary model.

The results of this evaluation are shown in Table IV.
Here, the column labeled “Pattern” describes the vulnerability
patterns (e.g., re-entrancy, integer overflow) described in prior
work, and the column labeled “Property” shows an important

correctness property that is violated due to the presence of the
corresponding vulnerability pattern. As shown in Table IV,
SMARTPULSE is able to generate attacks for all of these
benchmarks, and the column labeled “Attack summary” shows
a summary of the attack in terms of relevant methods that
are invoked. We highlight some of the salient features of the
attacks generated by SMARTPULSE:
Counterexamples as attacks. The counterexamples generated
by SMARTPULSE provide a series of transactions along with
their argument values that, if executed, would violate the given
temporal property. Therefore, the counterexamples generated
by SMARTPULSE correspond to a full attack against the
vulnerable contract (e.g., see Figure 15).
Synthesis of attacker’s fallback. As indicated by �f the
notation in Table IV, about a third of the benchmarks require
synthesizing a fallback method for an adversarial contract. In
the process of generating a counterexample trace, SMART-
PULSE also synthesizes a concrete implementation of the
attacker’s fallback method.
Infinite counterexample traces. Denial-of-service vulnerabil-
ities correspond to violations of liveness properties; hence, for
the DOS vulnerability patterns, SMARTPULSE generates an
attack in the form of an infinite counterexample trace. For
instance, for revert DOS, the attack involves a loop of the
form (func� transfer�f revert)ω , indicating that all calls to
function func result in the attacker reverting that transaction.
Attacks for gas vulnerabilities. To the best of our knowledge,
SMARTPULSE is the first tool that can generate attacks for
gas-related vulnerabilities. For instance, in the attack for the
“gas DOS” pattern, SMARTPULSE’s attack involves creating
enough bidders so that the contract runs out of gas when trying
to issue refunds.
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Pattern Property Attack Summary
Reentrancy Users can’t withdraw more money than their credit deposit� deposit� withdraw� call�f withdraw
Unprotected Function Users can’t withdraw unless they are the owner addOwner� withdraw
Integer Overflow A balance cannot decrease without withdrawing deposit� deposit
Integer Underflow A balance cannot be greater than the sum of deposits transfer
Gas DOS Users who buy tokens are eventually refunded buy� buy� close� (refund� transfer� transfer� OOG)ω

Revert DOS Users can always eventually outbid another user bid� (bid� transfer�f revert)ω

Push DOS All non-winning bidders are eventually refunded bid� bid� bid� close� (refund� transfer�f revert)ω
Unchecked Send The contract tracks how much money each user stores deposit� withdraw� send� revert
Locked Funds Funds cannot be transferred to unaccessible accounts deposit� transfer

TABLE IV: Evaluation for attack generation. Here�f indicates a call from a fallback function and OOG stands for ”Out of Gas.”

X. RELATED WORK

A. Verification of Smart Contracts
In recent years, there has been great interest in formally

verifying the correctness of smart contracts. For instance,
ZEUS [17], VERISOL [34], SOLC-VERIFY [13], and KEVM-
VER [26] allow users to specify correctness properties in terms
of method pre- and post-conditions and verify the program by
generating verification conditions and discharging them with
an SMT solver. Since VERISOL and SOLC-VERIFY do not
automate invariant generation, they require users to manually
provide annotations. Zeus, on the other hand, can generate
invariants using a Constrained Horn Clause (CHC) solver,
and KEVM-VER translates EVM bytecode to KEVM and
leverages the K framework [29] for verification. However, all
of the techniques are limited to safety and require the user to
write lower-level specifications compared to SMARTPULSE.

Among verification techniques for smart contracts, our
method is most closely related to VERX [27], which performs
semi-automated verification of temporal safety specifications
written in PastLTL. VERX performs a combination of sym-
bolic execution and predicate abstraction; furthermore, since
VERX extracts predicates automatically from the contract’s
source code, it is capable of automated verification. However,
VERX does not perform abstraction refinement; thus, the coun-
terexamples it produces can be spurious, and successful veri-
fication may require the user to supply additional predicates.
SMARTPULSE differs from VERX in that it is not limited to
safety and never produces spurious counterexamples.

The only prior work that addresses liveness properties of
smart contracts is by Sergey et al [31]. They express smart
contracts in an intermediate language called SCILLA [31] and
manually discharge proofs using the Coq proof assistant [7].
In contrast, our method is fully automated and can perform
falsification as well as verification.

B. Finding Bugs in Smart Contracts
There has also been significant interest in characteriz-

ing and detecting vulnerability patterns in smart contracts.
For instance, the Oyente tool by Luu et al. uses symbolic
execution to check for various vulnerability patterns such
as reentrancy [19]. Similarly, MADMAX [11] uses dataflow
analysis to check for out-of-gas related vulnerabilities, and
Feist et al. [9] describe the Slither infrastructure for building
scalable static bug finding tools. In contrast to our method,
these tools cannot be used to verify functional correctness.
Furthermore, because patterns like re-entrancy do not always
lead to the violation of a correctness property, these approaches
can erroneously flag safe contracts as being vulnerable.

C. Modeling Exceptions in Smart Contracts
One of the challenges we addressed is how to faithfully

model revert statements when reasoning about LTL properties.

Among prior techniques, KEVM [15] and Lem [16] model
reverts by restoring the initial state of the reverting call or
transaction. On the other hand, VERISOL [35] and SOLC-
VERIFY [13] mark any paths that throw an exception as infea-
sible. Such modeling, however, is unsound in the presence of
low-level calls (e.g., send) since these methods do not revert
a transaction if one of their callees throws an exception. In
contrast to these approaches, our method instruments Solidity
programs with history variables to capture the. Our approach
is amenable to automated verification since it explicitly marks
which paths modify the contract’s state and which revert.

D. Verification using CEGAR
Our verification algorithm is based on the counterexample-

guided abstraction refinement paradigm [4], [5]. The general
idea is to perform verification using a coarse abstraction
and then iteratively refine it as spurious counterexamples are
encountered. Most CEGAR techniques generalize counterex-
amples by using Craig interpolation [14], [21], with the goal
of ruling out more than a single counterexample. However, in
general, CEGAR-based software model checkers do not have
termination guarantees, and our method inherits this limitation.

E. Checking Liveness Properties
A number of approaches have been proposed to verify live-

ness properties of infinite-state systems. Several approaches
verify liveness by searching for a program path that violates
the LTL property [3], [6], [8], [33]. They do so by reducing
liveness verification to fair termination, then search for a path
that does not fairly terminate using a combination of SMT
solvers and ranking function synthesizers. Our verification
approach is based on the same framework proposed by Dietsch
et al. [8] but differs in two important ways: First, due to the
semantics of SMARTLTL, our product construction only needs
to consider external call/return sites as final states. Second,
for non-termination checking, we use a simple but effective
technique that leverages the distinction between variables used
in the harness vs. those used in the transactions themselves.
In other words, rather than using expensive techniques for
computing recurrent sets [12], we can check non-termination
in a much simpler way. As we show in Appendix C, these
differences are very important for making liveness verification
practical in this context.

XI. CONCLUSION AND FUTURE WORK

We have described SMARTPULSE, the first tool for au-
tomatically checking general temporal properties of smart
contracts, including liveness. Given a formal SMARTLTL
specification and an attacker model, SMARTPULSE first per-
forms a sequence of program instrumentations to model the
contract’s execution environment and then uses a CEGAR-
based verification approach to search for property violations.
We evaluate SMARTPULSE on a total of 1947 benchmarks and
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demonstrate that SMARTPULSE advances the state-of-the-art
in smart contract verification.

There are several interesting avenues for future work. First,
we are interested in exploring new, more scalable algorithms
for finding non-terminating program traces. Second, we are
interested in proving the end-to-end soundness of our tool.
However, since Solidity does not have formal semantics,
the proof would need to be with respect to an intermediate
representation like YUL that does have formal semantics.
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APPENDIX

A. SMARTLTL Formal Semantics
We formalize the semantics of SMARTLTL specifications in

terms of execution traces of smart contracts. For the purposes
of this paper, an execution trace τ is a sequence of triples of the
form (f, κ, σ) where f is the name of an external function,
κ ∈ {call(x), return, revert}, and σ is a valuation mapping
SMARTLTL terms to their values. In the remainder of this
section, we make the following assumptions about a trace:
First, free variables X occurring in SMARTLTL specification
are initialized to a non-deterministic value in σ. Second, we
assume that the trace is pre-processed so that any external call
that occurs within a reverting transaction has a corresponding
revert rather than return.

To facilitate our formalization, we define some useful oper-
ations over execution traces. First, given a trace τ , we write τ̂
to denote the last item in the sequence. Next, given an index
or trace element α, we write Preτ (α) (resp. Postτ (α)) to
denote the prefix of τ up to and including (resp. after and
not including) α. If a trace element α corresponds to a call,
we write Successτ (α) to indicate that α has a corresponding
return element. Finally, for trace elements that correspond to
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JeKτ = σ(e) where e is a free variable or Solidity expression and τ̂ = ( , , σ)

Jold(v)Kτ = σ(v) where τ̂ = (f, call(x), σ)

Jold(v)Kτ = σ′(v) where τ̂ = (f, return/revert, σ), Callτ (τ̂) = (f, call(x), σ′)

Jcsum(v)Kτ =
∑

k∈keys(σ(v))

σ(v[k]) where τ̂ = ( , , σ)

Jfsum(f, v, ψ)Kτ =
∑
σ∈R

σ(v) where R = {σ | (α = (f, call(x), σ)) ∈ τ, Successτ (α), τ ′ = Preτ (α), JψKτ ′ ≡ True}

Fig. 16: Evaluation of SMARTLTL terms and predicates. We omit standard boolean/arithmetic operators.

F0 = (f, call(x), σ) JψKH:F0
≡ True

H,F � start(f, ψ)

F0 = (f, return, σ) JψKH:F0 ≡ True

H,F � finish(f, ψ)

F0 = (f, revert, σ) α = CallH:F0 (F0) JψKH:PreF (α) ≡ True

H,F � revert(f, ψ)

F = α : τ H : α, τ � ϕ

H,F � cϕ
(H : PreF (k)),PostF (k) � ϕ2

∀i < k. (H : PreF (i)),PostF (i) � ϕ1

H,F � ϕ1 U ϕ2

[], τ � ϕ

τ � ϕ

Fig. 17: Semantics of SMARTLTL formulas

either returns or reverts, we use the notation Callτ (α) to denote
the corresponding call event to f .

Since SMARTLTL expressions allow aggregating values
over the entire history of the contract execution (e.g., recall the
fsum construct), SMARTLTL expressions and predicates are
evaluated over execution trace prefixes rather than valuations.
Specifically, given a SMARTLTL expression e and a trace
prefix τ , we write JeKτ to denote the result of evaluating e
as defined in Figure 16.

Figure 17 presents the semantics of formulas in our spec-
ification language. Given a formula ϕ and a trace τ , we say
that τ is a model of ϕ, written τ |= ϕ, if ϕ evaluates to true
under τ . Our entailment relation |= for SMARTLTL formulas
is given in Figure 17. Since the temporal operators dand U are
functionally complete, Figure 17 omits the semantics of the
remaining temporal operators, which can be desugared using
known techniques into next and until operators [20].

Unlike standard LTL where the semantics of a formula is
defined in terms of a single trace, Figure 17 uses an auxiliary
judgment of the form H,F � ϕ that utilizes a pair of
traces (H,F) where H represents the “history” (excluding the
present) and F represents the “future” (including the present).
We define our semantics in this manner because the evaluation
of SMARTLTL expressions and predicates requires having
access to the entire execution history up until the current time.

Given a full specification ς ≡ (ϕF, ϕP) consisting of fairness
assumptions ϕF and property ϕP, we say that an execution
trace τ satisfies ς , denoted τ |= ς , if and only if (a) either
τ 6|= ϕF, or (b) τ |= ϕP. Finally, given a Solidity contract
P and SMARTLTL specification ς , we say that P satisfies
the specification, written P |= ς , if, for all feasible execution
traces τ of P , we have τ |= ς .

B. Conformance Checking Theorems

Theorem A.1. A smart contract P satisfies the specification
(ϕF, ϕP) iff the corresponding Büchi contract P × AϕF∧¬ϕP

does not have a feasible infinite trace π such that π ∈ L(B).

Proof. We provide a sketch of the proof here. First, we use
the construction of the Büchi Contract to prove that there is a
feasible trace π = (s1, assume(a1)), (s2, assume(a2)), ... ∈
Traces(B) iff there is a feasible trace πP = s1, s2, ... ∈
Trace(P) and πA = a1, a2, ... ∈ Traces(A) such that
πP |= πA. In addition, we establish the construction of A
from ϕF ∧ ¬ϕP is correct from prior work [10].

With this, we can prove that P satisfies the specification if
L(B) doesn’t have an infinite path. If this were not the case,
then there must be a feasible infinite path π ∈ L(B) but P
satisfies the specification. We know that there must also be
feasible paths πP ∈ Trace(P) and πA ∈ Traces(A) such
that πP |= πA. If π ∈ L(B) then so to must πA ∈ L(A) from
the construction of the Büchi Contract. There is therefore a
contradiction since a feasible infinite path πP ∈ Trace(P)
has a corresponding πA ∈ L(A) such that πP |= πA.

Now assume that L(B) does not have a feasible infinite trace
π ∈ L(B) and P does not satisfy the specification. There must
therefore exist a feasible infinite path πP ∈ Traces(P ) and
πA ∈ L(A) such that πP |= πA. In addition, we also know
that there must be a path π ∈ Traces(B), but π /∈ L(B).
From the construction of the Büchi Contract, this must be
due to one of two cases. (1) An external call or return does
not occur infinitely often. For this to occur, πP must spend
infinite time inside a transaction, which violates the Solidity
semantics. Thus πP must not be feasible. (2) All accepting
states visited infinitely often in πA must be outside of an
external call or return. From the semantics of SMARTLTL we
know that atoms are only checked at external call boundaries.
Thus, πP and πA do not violate the specification according to
SMARTLTL.

Theorem A.2. If Algorithm 2 returns 3 for a path π, then
Pπ is a non-terminating program.

Proof. Consider a path π = τ1τ
ω
2 that is not feasible but

Algorithm 2 returns 3. For this to occur sp(τ2, φ) ⇒ φ,
where φ = ∃V .sp(τ1; τ2,>), must not indicate that a path is
infinite. When V = ∅, however, sp(τ2, φ) ⇒ φ is equivalent
to checking the Hoare triple {φ} τ2 {φ} which does prove that
τ1τ

ω
2 is infinite. Thus the definition of V must be incorrect.

For this to occur, there must be a variable v ∈ V that is
relevant to the feasibility of τ1τω2 . From the construction of V
on lines 5–6 of Algorithm 2, v must also not be read by any of
the transactions in τ2. It is therefore the case that v does not
introduce any dependencies between subsequent executions
of transactions from τ2. Since we want to determine if the
transactions in τ2 can be executed infinitely often, v must
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SMARTPULSE SMARTPULSE-NOK
Vulnerable Fixed Vulnerable Fixed

Benchmark Time (s) Time (s) Time (s) Time (s)
Reentrancy 17.5 80.2 Unknown Unknown

Unprotected Fn. 11.4 15.6 Unknown 15.2
Int Overflow 5.9 2.3 Unknown 2.3

Int Underflow 10.6 88.5 Unknown 81.8
Gas DOS 842.5 51.0 Unknown 50.8

Revert DOS 9.3 4.9 Unknown 5.2
Push DOS 277.1 317.9 Unknown 371.2

Unchecked Send 9.1 4.2 Unknown 4.1
Locked Funds 17.2 15.2 Unknown 14.4

TABLE V: Ablation study of SMARTPULSE on attack generation
benchmarks. Here, Unknown indicates that the verifier returned
Unknown as its result.

therefore be irrelevant. Since v cannot be both relevant and
irrelevant, there is a contradiction.

C. Ablation Study
In this section we evaluate the benefits of adding domain

knowledge to the verification process. To do so, we created
a version of SMARTPULSE without any of the additions
described in Section VII, called SMARTPULSE-NOK. We then
evaluated these two tools on the set of attack generation
benchmarks from Section IX-D with the powerful adversary
model.

The results of the evaluation are given in Table V. Here, we
consider two variants of each benchmarks: (1) the vulnerable
version, and (2) the fixed version that satisfies the corre-
sponding property. The columns named “Vulnerable Time”
(resp. “Fixed Time”) give the amount of time required for the
given tool to find a violation of (resp. to verify) the property
for the vulnerable (resp. fixed) variant of each benchmark.
These results show that SMARTPULSE-NOK is not able to
find the violation in any of the vulnerable contracts and verifies
fewer of the fixed contracts than SMARTPULSE. In addition,
for the contracts verified by both tools, SMARTPULSE and
SMARTPULSE-NOK have similar runtimes.

In all cases, SMARTPULSE-NOK is unable to find a vio-
lation of the property in the vulnerable contract. For all but
the Reentrancy violation, SMARTPULSE-NOK considers the
same feasible path τ1τ

ω
2 as SMARTPULSE, however it fails

to prove its feasibility. This result highlights the usefulness
of our non-termination checker when proving feasibility (see
Section VII-D).

For the Reentrancy pattern, SMARTPULSE-NOK is unable
to find a violation in the vulnerable contract, and it is also
unable to verify the fixed contract. In both cases, the problem
is that SMARTPULSE-NOK finds a spurious path τ1τω2 but fails
to prove it is infeasible – i.e., it fails to prove termination. Even
though SMARTPULSE also uses the same method for finding
ranking functions, it does not need to prove the infeasibility
of the same path τ1τ

ω
2 due to the way the Büchi contract is

constructed.

D. Liveness Properties
This section contains the properties verified in Section IX-A,

which are shown in Table VI. Here the column labeled “Con-
tract” identifies the contract the property is verified against
and column labeled “Property” gives an English description
of the property. Each contract and their associated properties
labeled with ? was taken from prior work and the remaining
properties were written by us. In Section IX-A, all Crowdfund-
ing properties are also evaluated against RefundableCrowdsale

and EPXCrowdsale. In addition, all Auction properties are also
evaluated against ValidatorAuction and SimpleAuction.
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Contract Property

RefundEscrow If a user withdraws funds after refunds are enabled, they will eventually be sent the sum of their deposits.
If the beneficiary withdraws after the escrow is ended, they will eventually be sent the sum of all deposits.

EscrowVault If a user requests a refund after refunds are enabled, they will eventually be sent the sum of their deposits.
If the escrow is closed, the beneficiary will only be sent the sum of all deposits.

Crowdfunding?
The contract’s accounted funds do not decrease unless the campaign has been funded or the deadline has expired.
The contract preserves records of individual donations by backers, unless they interact with it.
If the campaign fails, the backers can eventually get their refund.

RefundableCrowdsale A user who claims a refund after the crowdsale is finalized will eventually be sent the sum they spent on tokens.
If the crowdsale is closed and the goal has been reached, the beneficiary is eventually sent all funds used to buy tokens.

EPXCrowdsale If a user issues a refund, they are eventually sent the sum they spent on tokens
If funds are released to the beneficiary and they attempt to claim them, they will be sent the all funds used to buy tokens.

Auction?
The balance should be greater than or equal to the sum of the highest bid and all pending returns.
For some account a, the contract should track the sum of all transfers a has made with the contract.
Anyone other than the highest bidder should be able to retrieve the full amount of their bids from the contract exactly once.

ValidatorAuction
If the auction is closed and a user requests a withdraw, they will eventually be sent the sum of their bids.
If a user withdraws in the DepositPending state, they will eventually be sent the sum of their bids minus the lowest price.
If a user attempts to withdraw in the state Failed, they will eventually be sent the sum of their bids.

SimpleAuction If a user’s bid is outbid, they will eventually be sent back at least the value of that bid.
If the auction is ended and at least one bid was made, the beneficiary is sent the value of the highest bid.

RockPaperScissors?
No other party besides player 1, player 2 or the owner can be awarded the prize, which is equal to the contract’s balance.
Player 1 can only submit a valid choice once and the contract will not accept an invalid choice.
Player 2 can only submit a valid choice once and the contract will not accept an invalid choice.

TABLE VI: Liveness Properties. Note, all Crowdfunding properties are also evaluated against RefundableCrowdsale and
EPXCrowdsale, and all Auction properties are also evaluated against ValidatorAuction and SimpleAuction.
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