
 978-1-7281-7693-2/20/$31.00 ©2020 IEEE 

  

Abstract — Computed tomography (CT) of COVID-19 

manifests a relatively global effect through the whole lungs, like 

peripheral ground glass, consolidation, reticular pattern, nodules 

etc.  This characteristic effect renders the difficulties in 

differentiating COVID-19 from the normal body or other lung 

diseases by CT.  This work presents a novel method to relieve the 

difficulties by reducing the global effect through the 3D whole 

lung volume into 2D-like domain.  The hypothesis is that the lung 

tissue shares the similar anatomic structure within a small lung 

sub-volume for normal subjects.  Therefore, the anatomic 

land-markers along the z-axis, denoted as Lung Marks are used to 

eliminate axial variable.  Our experiments indicated that 30 Lung 

Marks are sufficient to eliminate the axial variable.  The method 

computes texture measures from each 2D-like volumetric data 

and maps the measures on to the corresponding Lung Mark, 

resulting in a profile along the z-axis.  The difference of the 

profiles between two different abnormalities is the proposed 

sensitive merit to differentiate COVID-19 cases from others in CT 

images.  48 COVID-19 cases and 48 normal screening cases were 

used to test the effectiveness of the proposed sensitive merit.  

Intensity and gradient based texture descriptors were computed 

from each axial cross image at the corresponding Lung Mark 

along the z-axis.  Euclidean, Jaccard and Dice distances are 

calculated to generate the profiles of the proposed sensitive merit.  

Consistent results are observed across texture descriptor types 

and distance types in the texture measure between the normal and 

COVID-19 subjects.  Uneven Profiles demonstrate the variation 

along the z-axis.  With Lung Mark, the variation of texture 

descriptor has been reduced prominently.  The Gradient based 

descriptor is more sensitive.  Individual Haralick features analysis 

shows the 2nd and 10th dimensions are most distinguishable. 
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I. INTRODUCTION 

ORONAVIRUS disease 2019 (COVID-19) outbreak has 

spread around the world since the beginning of 2020, 

causing global public health emergency.  Real time polymerase 

chain reaction (RT-PCR) testing is the golden standard for 

COVID-19 diagnosis.  However, its sensitivity can be as low as 

70% [1-2].  With higher sensitivity, the computed tomography 

(CT) has been reported an effective supplement to RT-PCR test 

and suggested to be as a necessary tool for diagnosis [3].  

Although CT can provide almost the real-time report, 

reviewing images is still a huge workload for the radiologist.  

Therefore, it is of big impact using artificial intelligence to 

assistant radiologist making a decision, especially in the 

shortage of medical care. 

CT images of COVID-19 show a relatively global effect 

through the whole lungs.  As reported in many works [4-6], the 

common manifestations in CT images are ground glass 

opacities, consolidation, crazy paving, reversed halo, rounded 

nodules, etc.  The abnormality could localize at only partial 

lung region or distribute along the whole lung region.  This 

characteristic effect renders the difficulties in differentiating 

COVID-19 such as huge volumetric data for artificial neural 

network based model or large feature variation for tree-based 

model.  For example, assuming the lung height is 30cm and the 

CT image thickness is 1mm, there will be 300 slices for the 

whole lung region.  It will be challenging to deal with the 

three-dimensional (3D) data directly in the neural network [7] 

either in the network design or training. 

This work presents a novel method to relieve the difficulties 

mentioned above.  An anatomic similarity inspired land-marker 

Lung Marks are proposed to reduce the global effect through 

the 3D whole lung volume into two-dimension (2D) domain 

under the hypothesis that lung tissue shares the similar 

anatomic structure within a small lung sub-volume for normal 

subjects.  By this method, the feature variation can be reduced 

significantly. 

The reminder of this paper is organized as follows.  Section 

II describes the proposed Lung Marks and sensitive metrics for 

classification.  Section III presents experimental design and 

results. Discussion and Conclusions are drawn in Section IV. 

II. METHODS 

A. Lung Marks  

As introduced above, the proposed method aims to reduce 
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the global effect by converting the 3D whole lung volume into 

2D domain.  Intuitively, the lung parenchyma within small 

volume won’t change too much.   In the previous studies [8, 9], 

it is observed that the lung tissue texture for the neighboring 

seven slices does not change too much.  Beyond that local 

region, the tissue texture may vary.  Figure 1 presents the lung 

textures of the neighboring six slices, where the lung texture is 

the Markova Random Filed weights extracted from tissue 

region [10].  Inspired by this observation, we propose the 

anatomic land-markers along the z-axis, denoted as Lung 

Marks to label each slice.  Therefore, the cross section at each 

Lung Mark i.e., z location has similar texture patterns for 

normal subjects.  By doing so, we can eliminate axial variable 

and convert the 3D data into 2D-like domain. 

 
Fig. 1.  Lung textures of neighboring six slices. 

 
Fig. 2.  Flowchart of the proposed method. The number in the figure is the Lung 

Mark of those slices. 

Figure 2 presents the flowchart of the proposed merit Lung 

Mark.  The number in this figure is the Lung Mark of those 

slices.  Firstly, the CT images will be segmented to obtain the 

lung volume.  Then the neighboring slices will be grouped 

according to their Lung Mark label.  The slices of the same 

Lung Mark share the similar anatomy structure as shown in Fig. 

1.  Our experiments indicate that 30 Lung Marks are sufficient 

to eliminate the axial variable.  Each Lung Mark may contain 

less than 1 cm high Lung using the same assumption that the 

whole lung is of 30 cm height. 

The segmentation stage includes two steps: (1) automatic 

segmentation using the previous reported vector quantization 

VQ algorithm.  Each voxel inside the image would be assigned 

to one specific tissue based on the classification once the 

number of tissues was set, e.g., R=4 to represent lung, bone, fat 

and muscle for the chest CT.  In the classification, the center of 

each class (i.e. the mean value of the intensity within one 

specific tissue) would be updated once a new voxel was added 

and become the new reference point for the to-be-classified 

voxel.  (2) automatic morphological operations.  This operation 

enlarges the segmented lung parenchyma to include any the 

juxta-pleural abnormalities. 

B. Texture Descriptors from Lung Mark labeled Data 

The method computes texture measures from each 2D-like 

cross sections and maps the measures on to the corresponding 

Lung Mark, resulting in a profile along the z-axis.  The 

difference of the profiles between two different abnormalities is 

the proposed sensitive merit to differentiate COVID-19 cases 

from others in CT images. 

To describe the  texture descriptors from Lung Mark 
labeled data, it is necessary to extract some texture features as 
their representation.  In this topic, there have existed many 
methods such as local binary pattern (LBP) [11], Weber local 
descriptor (WLD) [12], Gabor [13], wavelet [14], GLCM 
[15,16], gray level run-length matrix (GLRLM) [17], gray level 
size zone matrix (GLSZM) [18], neighboring gray-level 
dependence matrix (NGLDM) [19] and so on.  In this article, 
we choose GLCM to produce texture pattern.  The definition of 
GLCM could be found in [15].  This choice is a deliberate 
decision after full investigations according to GLCM method 
and its properties as follows: 

• 2D squared patterns: GLCM is a 2D histogram which 
represents some pixel-pair distributions along with 
different directions.  Compared with histogram-based 
descriptors such as LBP, WLD, NGLDM and wavelet 
entropy, these pixel pair patterns extract more structural 
information which is an important texture representation.  
Moreover, this pattern is expressed by a squared array 
which might provide a lot of conveniences as the input of 
some deep learning packages [7]. 

• Less effects by the boundaries and postures:  As an 
important geometrical feature, boundaries represent some 
global structures of objects.  However, some objects, such 
as polyps and lung nodules, have more tendency to be 
expressed by their textures than boundaries and postures.  
Pixel pairs contains significant clues of local patterns or 
image details which are independent of the two geometric 
factors.  Moreover, GLCM’s local structure also contains 
more direction information than GLRLM, GLSZM and 
NGLDM. 



  

• Scale and rotational robustness:  Since GLCM employ 
pixel pair distribution to represent texture patterns, the 
scale factor could be removed by its normalization.  So, it 
shares scale robustness with other typical methods listed 
above.  Beyond that, GLCM contains complete direction 
information around one concerned pixel.  Therefore, it has 
much stronger description under rotational transformation 
than WLD, wavelet, Gabor and so on. 

In 2D images, the GLCM is defined as the follows: 
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(1) 

where � represents the grayscale image, (M,N) is the image size, 

i and j are a pair of image pixels, � is the displacement between 

two pixels along the direction  �, and s represents the stride.  A 
pictorial illustration of Eq.  (1) is shown in Fig. 3(a).  When 
s=d=1, GLCM is defined as the GLCM model.  Therefore, 
GLCM seeks to expand the traditional GLCM using multi-scale 
analysis.  This model provides a new tool to capture more 
texture patterns.  A typical example of GLCM calculation is 
shown by Fig. 3(b) where stride is equal to 1.  For 3D 
volumetric image data, the GLCM model is similar to the 2D 
model except that two directions are used in its coefficients.  In 
our case, the data at each Lung Mark is still 3D.  In total, 
GLCM will be extracted from thirteen directions. 

Two groups of GLCMs are calculated from two image 

domains, i.e. intensity and gradient.  Every group include 13 

matrices which are generated from the 1st ring neighbor around 

one concerned voxel with 13 independent directions and 32 

gray levels.  In gradient based texture descriptor calculation, we 

employ Sobel operator to calculate full gradient information, 

i.e. magnitude, azimuth and polar angle, which form a 3D 

vector to calculate co-occurrence matrices where their gray 

levels are set to be (4,2,4) to generate new digital voxels [20].  

Since the gradient magnitude varies in the range of [-10000, 

10000], we employ n-th root mapping to normalization the 

magnitude where n in {1, 2, 3}. 

Every group produces four type of descriptors including 

Haralick measures, traditional features, extended Haralick 

measures and extended Haralick features [15,16].  Haralick 

measures extract 14 measures from GLCM to represent the 

whole image or volume while 30 measures are used in extended 

Haralick measures.  As our previous study, two measures, i.e. 

21 and 30, is excluded since the 21st is equal to 0 and the 30th is 

equal to the 25th [20]. 

C. Texture Descriptors Distance 

As the guideline of our idea, the normal texture descriptors 

of Lung Marks are treated as the baseline which is implemented 

to measure the difference from the COVID19 images.  There 

are many types of distances as dissimilarity measures.  We 

choose three of them as our measurement, i.e. Euclidean 

distance, Jaccard distance [21] and Dice distance [22].  Suppose 

two descriptors (! 
 �)!!, ⋯ , )!�	  and (+ 
 �)+!, ⋯ , )+�	 .  

The definitions of three measures are given as follows: 

Euclidean distance: 

,- 
 ∑ �)+� / )!�	�� !                             (2) 

Jaccard distance: 

,0 
 1 / |23∩526|
|23∪26|                                     (3) 

Dice distance: 

,8 
 1 / +∗|23∩26|
|23|#|26|                                   (4) 

where ∩ represents set intersection, ∪ is the union of the two 

sets, and |∙| denotes the variable numbers in one set. 

Suppose that F 
 ;(!, (+, ⋯ , (%< is the descriptor set, (� ∈ F 

is its i-th descriptor and (� 
 �)>!, ⋯ , )>�	, then  F is a M*N 

matrix.  Its j-th column could be donated by ?� 
 �)!@, ⋯ , )%��.  

The descriptor normalization is performed firstly before 

dissimilarity calculation as the following, 

)��� 
 +∗ABCD�EFG�5C�#E>H �5C		
EFG�5C�DE>H �5C	                 (5) 

where )��  is the i-th variable of ?� , max�?��  represent the 

maximum of ?�, and min�?�� donates the minimum of ?�. 

Since min �?�	 N )�� N max�?��, it is easy to get  

/1 N )��� N 1                                    (6) 

Therefore, all variables in matrix F are mapped into [-1,1].  

Euclidean distance is the mostly used measurement in our life 

and easy to compute.  To calculate the ,0  and ,8 , )���  is 

digitalized by the uniform scaling method with 10 bins.  The 

digitalized descriptors are put into Eq (3) and Eq (4) to calculate 

the Jaccard distance and Dice distance between the COVID19 

descriptors and the baseline. 

III. EXPERIMENTS AND RESULTS  

Following the flowchart in method section, we evaluate the 

 
(a) 

 
            (b) 

Fig. 3.  GLCM calculation. (a) Calculation of GLCM where d represents 

displacement, θ is the direction, s is stride (or scale), p0 is the concerned 

point; (b) A GLCM illustration of 2D arrays where the gray level is set to 

be 8, direction (θ)= 0°, displacement(d)=1, and s=1. 
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proposed method based on two datasets: 48 COVID-19 cases 

and 48 normal screening cases.  Then all slice images will be 

segmented and labeled by the Lung Mark.  Texture descriptors 

will be calculated from the sub-volume 3D lung data.  The 

descriptor distance will be calculated for the evaluation.  

Details will be described in the following subsection. 

A. Dataset 

3D volumetric chest CT exams from 48 COVID-19 cases 

were collected under written consent.  All the cases are 

confirmed positive with RT-PCR test and recovered after 

hospitalization. The dataset includes 18 males and 30 females.  

Their age ranges from 24 to 75 years, with average at 51.3 

years.  The CT slice thickness is 1.3mm. The CT images are 

obtained with settings 120kVp.  The current is adjusted 

according to the subject size. 

For comparison, 3D volumetric chest CT exams from 48 

normal screening cases were collected under written consent 

from another institute.  The dataset includes 10 males and 38 

females.  Their age ranges from 37 to 88 years, with average at 

68 years.  The CT slice thickness is 1mm.  The CT images are 

obtained with settings 120kVp/100mAs. 

Firstly, the lungs of each of the 96 cases were segmented, 

and the segmented whole lungs were labeled/registered to the 

30 Lung Marks along the axial direction.  Figure 4 presents an 

example of CT images comparison of normal subjects (left) and 

Covid-19 infected subjects (right) at Lung Mark #3, #10 and 

#28 respectively.  The manifestation of the Covid-19 is ground 

glass opacity, fibrous [4]. 

 
Fig. 4.  CT images comparison of normal subjects (left) and Covid-19 infected 

subjects (right) at Lung Mark #3, #10 and #28 respectively. 

B. Intensity based Texture Descriptors with Lung Mark 

As described above, we computed the intensity-based texture 

descriptors.  And then the distance between the COVID-19 and 

normal cases was calculated to generate the profile of distance 

along with Lung Mark.  The average and standard deviation of 

the 96 cases are used to represent the distance.  The results are 

presented in Fig. 5.  Each row is a pair of comparison of 

traditional (left) and extended (right) Haralick features.  From 

top to bottom are the Euclidean distance, Dice distance and 

Jaccard distance. The distribution is similar comparing the 

traditional and extended Haralick features, which shows good 

consistency.  Comparing the three distances, we find the 

distribution of Euclidean distance is relatively even.  The Dice 

and Jaccard distances have larger variation along with Lung 

Mark.  To make a better comparison, the mean and standard 

deviation (std) of three distances are plotted in Fig.6.  The left 

panel is the mean value, and the right panel is std.  According to 

the definition of texture descriptors distance, the larger mean 

means the difference between COVID-19 and normal cases is 

larger.  Smaller std means the distance according to that certain 

Lung Mark region more robust.  Comparing to Euclidean 

distance, the Dice has a relative lower mean but larger std 

value.  The Jaccard distance has a relative higher mean and 

higher std.  Based on this observation, it is better to use the 

Euclidean and Jaccard distance for the classification. 

 
Fig. 5.  Texture Descriptors Comparison with Lung Mark.  Each row is a pair of 

comparison of traditional and extended Haralick based descriptors.  From top to 

bottom are the Euclidean distance, Dice distance and Jaccard distance. 



  

 

Fig. 6.  Texture Descriptors Comparison with Lung Mark. Each row is a pair of 

comparison of traditional and extended Haralick based descriptors. From top to 

bottom are the Euclidean distance, Dice distance and Jaccard distance.  

To demonstrate the effectiveness of the proposed method, we 

compare the texture descriptor distance with and without using 

the Lung Mark.  The results are summarized in Table 1.  The 

un-shaded part are results of traditional Haralick features.  The 

shaded part are results of extended Haralick features.  Without 

using Lung Mark, we extract the texture descriptors from the 

whole lung volume.  Based on the 96 cases, we can calculate 

the mean and std of the descriptor distance.  Using the Lung 

Mark, we will obtain mean and std of each Lung Mark region.  

To make a more comprehensive comparison, we present the 

maximum (Max), minimum (Min) and average (Ave) values of 

the Lung Marks in Table 1.  It is clearly to see that the 

Euclidean mean without using Lung Mark is ~10 times smaller 

than using Lung Mark for both traditional and extended 

Haralick features.  For the Jaccard distance, the Ave mean of 

Lung Mark is around 2 times larger than without Lung Mark.  

For the Dice distance, the Ave mean is also comparable.  As we 

analyzed above, the larger mean value shows stronger 

differentiating capability.  It means the using Lung Mark can 

give much better predication results.  For comparison of std, we 

will mainly focus on the std of Euclidean distance since there 

might be zero std due to digitization for Dice and Jaccard 

distance.  Without Lung Mark, the std is very large, around 3 

times of its mean value.  With Lung Mark, the std is relatively 

small, around 20% of its mean value.  It shows the Lung Mark 

can reduce the feature variation prominently. 

According to method section II.B, we employ n-th root 

mapping to normalization the magnitude in constructing the 

texture descriptor.  In this study, three mapping roots are used 

including 1, 2 and 3.  The comparison of texture descriptor 

distance using different mapping root is plotted in Fig. 7.  From 

left to right, the mapping root increases.  From top to bottom are 

results in Euclidean, Dice and Jaccard distance.  Comparing 

three columns, the distribution using different mapping root is 

similar.  However, when the root increase, the overall mean 

value decreases.  As we discussed above, it may lower the 

performance.  To further explore the effect of mapping root on 

classification, we first look at the statistical distribution of the 

traditional Haralick features between the normal and 

COCVID-19 subjects.  The boxplot is presented in Fig. 8.  It 

can be seen the 2nd and 10th dimensions are most 

distinguishable.  Then we can compare both features across the 

three mapping roots.  We can see when the mapping root 

increase, both features become less distinguishable, which 

agrees with our analysis above. 

TABLE 1.  COMPARISON OF TEXTURE DESCRIPTOR W/O LUNG MARK.  THE 

UN-SHADED PART ARE RESULTS OF TRADITIONAL HARALICK FEATURES.  THE 

SHADED PART ARE RESULTS OF EXTENDED HARALICK FEATURES. 

Lung Mark 
Without 

With 

  Max Min Ave 

Euclidean Mean 0.0113 0.6032 0.3572 0.4528 

Std 0.0265 0.1590 0.0787 0.1237 

Dice Mean 0.5000 0.7500 0.1429 0.3874 

Std 0.0000 0.4286 0.0000 0.2007 

Jaccard Mean 0.3333 0.8571 0.2500 0.5412 

Std  0.0000 0.6000 0.0000 0.3161 

Euclidean Mean 0.0082 0.5877 0.3487 0.4165 

Std 0.0277 0.1602 0.0829 0.1281 

Dice Mean 0.3750 0.7500 0.0909 0.3593 

Std 0.0000 0.4286 0.0000 0.1548 

Jaccard Mean 0.2308 0.8571 0.1667 0.5151 

Std  0.0000 0.6000 0.0000 0.2536 

 
Fig. 7. Texture Descriptors Comparison with Lung Mark.  Each row is a pair of 

comparison of traditional and extended Haralick based descriptors.  From top to 

bottom are the Euclidean distance, Dice distance and Jaccard distance. 

 
Fig. 8. boxplot of the traditional Haralick feature distribution between the 
normal and COCVID-19 subjects. 
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Fig. 9. boxplot of the 2nd (upper) and 10th (lower) traditional Haralick feature 
distribution between the normal and COCVID-19 subjects across the three 
mapping roots. 

C. Gradient based Texture Descriptors with Lung Mark 

We also evaluated the proposed method using the gradient 

based texture descriptors.  Similar with the intensity-based 

texture descriptors, Fig. 10 shows the comparison of traditional 

(left) and extended (right) Haralick features.  From top to 

bottom are the Euclidean distance, Dice distance and Jaccard 

distance.  The texture descriptor is magnitude.  Similar to the 

intensity-based descriptors, the profiles between the traditional 

and extended Haralick features are very consistent.  In the 

following the subsection, we will only present the results based 

on the traditional Haralick features to make paper more 

concise.  Comparing Fig. 10 with Fig. 5, the profile of 

Euclidean has larger variation comparing to the Euclidean 

distance of intensity-based descriptors, which indicates the 

gradient based descriptors are more sensitive to the Lung Mark.  

Comparing the Dice with Jaccard distance in Fig. 10, both bar 

plots have similar tendency although Jaccard distance has 

larger mean value.  Again, the profiles along Lung Mark clearly 

demonstrate the feature variation along with the z-direction. 

 
Fig. 10.  Texture Descriptors Comparison with Lung Mark.  Each row is a pair 

of comparison of traditional and extended Haralick based descriptors.  From 

top to bottom are the Euclidean distance, Dice distance and Jaccard distance. 

Since the gradient is a vector, we can obtain the vector 

concept texture descriptors as described in the method section. 

Figure 11 shows the Euclidean distance of different descriptors 

along with Lung Mark.  From left to right, up to bottom, the 

results are magnitude, azimuth, polar, (azimuth, polar), 

(azimuth, polar, magnitude).  We can see that different 

descriptor has different distribution.  For example, a U shape 

distribution is observed in the magnitude descriptor from Lung 

Mark 7 to 30.  A slope-like distribution is observed in the 

azimuth descriptor.  The combination of azimuth and polar 

increase the mean value evidently comparing to each descriptor 

only. 

TABLE 2:  COMPARISON OF TEXTURE DESCRIPTOR W/O LUNG MARK OF 

TRADITIONAL HARALICK USING EUCLIDEAN DISTANCE. 

Lung Mark 
Without 

With 

  Max Min Average 

Magnitude Mean 0.1047 0.5603 0.2667 0.3487 

Std 0.0229 0.1632 0.0611 0.0956 

Azimuth Mean 0.0870 0.5926 0.3159 0.4067 

Std 0.1109 0.1984 0.0844 0.1539 

Polar Mean 0.0846 0.6008 0.2670 0.4089 

Std  0.0288 0.2020 0.0684 0.1046 

(Azimuth, Polar) Mean 0.0159 0. 6883 0. 3133 0.4485 

Std 0.0632 0. 1680 0. 0848 0.1092 

(Azimuth, Polar, 

Magnitude) 

Mean 0.0251 0.5973 0. 2490 0.4124 

Std 0.0314 0.2150 0 0661 0.1031 

To demonstrate the effectiveness of the proposed method, we 

also compare the texture descriptor distance with and without 

using the Lung Mark.  The results of traditional Haralick using 

Euclidean distance are summarized in Table 2.  Similar with 

Table 1, we calculate the mean and std of the descriptor 
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Fig. 11.  Texture Descriptors Comparison with Lung Mark. From left to 

right, up to bottom, the results are magnitude, azimuth, polar, (azimuth, 

polar), (azimuth, polar, magnitude). 



  

distance based on the 96 cases.  Using the Lung Mark, we will 

obtain mean and std of each Lung Mark region.  The Max, Min 

and Ave values of the Lung Marks are presented for 

comparison.  For all the models, the Euclidean mean without 

using Lung Mark is ~10 times smaller than using Lung Mark.  It 

means the using Lung Mark can give much better predication 

results.  Comparing with Table 1, the std without Lung Mark 

becomes smaller in most model.  For example, the std is 20% of 

its mean in magnitude model, which is also comparable with 

the std of using Lung Mark.  However, there are also some 

models in which the std without Lung Mark is much larger than 

with Lung Mark, such as azimuth, (polar, azimuth) and so on.  

On the other hand, the std with Lung Mark is relative robust, 

which is around 40% of its mean value.  To make paper more 

concise, the results of using Dice and Jaccard distance are 

presented in the APPENDIX. 

IV. CONCLUSIONS 

In this work, we presented an anatomic similarity inspired 

sensitive merit to differentiate COVID-19 cases from normal 

lung screen cases.  The Lung Mark is proposed to convert the 

3D data into 2D-like domain so that the feature variation for 

classification can be reduced.  In the experiments, consistent 

results are observed across texture descriptor types and distance 

types in the texture measure between the normal and 

COVID-19 subjects.  Uneven Profiles demonstrate the 

variation along the z-axis.  With Lung Mark, the variations of 

texture descriptors have been reduced prominently.  The 

Gradient based descriptor is observed more sensitive.  The 

experimental results demonstrated the feasibility of the 

sensitive merit for the differentiating task. 

APPENDIX 

TABLE 3:  COMPARISON OF TEXTURE DESCRIPTOR W/O LUNG MARK OF 

TRADITIONAL HARALICK USING JACCARD DISTANCE. 

Lung Mark 
Without 

With 

  Max Min Average 

Magnitude Mean 0.4286 0.8333 0.2500 0.5038 

Std 0.5000 0.5000 0.0000 0.2024 

Azimuth Mean 0.5000 0.7143 0.3333 0.5356 

Std 0.6667 0.5000 0.0000 0.3571 

Polar Mean 0.1667 0.7778 0.0000 0.3855 

Std  0.3333 0.6000 0.0000 0.2155 

(Azimuth, 

Polar) 

Mean 0.5000 0.6250 0.0000 0.4176 

Std 0.6667 0.6000 0.0.00 0.2786 

(Azimuth, 

Polar, 

Magnitude) 

Mean 0.6667 0.6000 0.0000 0.2817 

Std 0.0000 0.6000 0.0000 0.2017 

 

 

 

 

 

TABLE 4:  COMPARISON OF TEXTURE DESCRIPTOR W/O LUNG MARK OF 

TRADITIONAL HARALICK USING DICE DISTANCE. 

Lung Mark 
Without 

With 

  Max Min Average 

Magnitude Mean 0.2727 0.7143 0.1429 0.3506 

Std 0.3333 0.3333 0.0000 0.1180 

Azimuth Mean 0.3333 0.5556 0.2000 0.3706 

Std 0.5000 0.3333 0.0000 0.2279 

Polar Mean 0.0909 0.6364 0.0000 0.2630 

Std  0.2000 0.4286 0.0000 0.1330 

(Azimuth, 

Polar) 

Mean 0.3333 0.4545 0.0000 0.2671 

Std 0.5000 0.4286 0.0000 0.1738 

(Azimuth, 

Polar, 

Magnitude) 

Mean 0.5000 0.4286 0.0000 0.1735 

Std 0.0000 0.4286 0.0000 0.1307 
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