
Mechanised Models and Proofs for
Distance-Bounding

Ioana Boureanu∗, Constantin Cătălin Drăgan∗, François Dupressoir†, David Gérault∗, Pascal Lafourcade‡
∗University of Surrey, Surrey Centre for Cyber Security (SCCS), UK; †University of Bristol, UK;

‡Université Clermont Auvergne, CNRS, Mines Saint-Etienne, Clermont Auvergne INP, LIMOS, F-63000 Clermont-Ferrand, France
Email: ∗{i.boureanu, c.dragan, david.gerault}@surrey.ac.uk, †f.dupressoir@bristol.ac.uk, ‡pascal.lafourcade@uca.fr

Abstract—In relay attacks, a man-in-the-middle adversary
impersonates a legitimate party and makes it this party appear
to be of an authenticator, when in fact they are not. In order
to counteract relay attacks, distance-bounding protocols provide
a means for a verifier (e.g., an payment terminal) to estimate
his relative distance to a prover (e.g., a bankcard). We propose
FlexiDB, a new cryptographic model for distance bounding,
parameterised by different types of fine-grained corruptions.
FlexiDB allows to consider classical cases but also new, gen-
eralised corruption settings. In these settings, we exhibit new
attack strategies on existing protocols. Finally, we propose a
proof-of-concept mechanisation of FlexiDB in the interactive
cryptographic prover EasyCrypt. We use this to exhibit a flavour
of man-in-the-middle security on a variant of MasterCard’s
contactless-payment protocol.

I. INTRODUCTION

Across the UK alone, “contactless payments have grown
in recent years, with a record 34% of card payments using
contactless1 in June 2017”. Contactless systems are gaining
popularity because of their increased usability and conve-
nience. Yet contactless communications, such as tap-and-pay
and remote keyless ignition (RKI) systems, due precisely to
their lack of active user-input, are particularly vulnerable to
relay attacks, where a man-in-the-middle (MiM) ferries the
communication back and forth between two parties P and
V , unbeknown to them. P and V are outside of the required
communication range, but the relaying adversary forces a
stealth out-of-band interaction by impersonating V to P and
vice-versa. The aim of the relaying MiM is to get some
illicit gain, that normally is attributed to P and/or V . Indeed,
relay attacks working successfully across distances as wide
as from the US to the UK have been shown on contactless
payments [20]; in this case, the attacker pays fraudulently by
a payment-terminal V with the funds associated to a bankcard
P , without any evidence of this disclosed to P or V .

Distance Bounding (DB): To counteract relay attacks,
one classical means is to add a distance-bounding (DB) or
proximity-checking mechanism on top of contactless protocols,
be them authentication, payments schemes or RKI. In the
simplest form of distance-bounding, the verifier party V (i.e.,
the car, the payment-terminal) measures the round trip times
(RTT) of an exchange with the prover party P (i.e., the key-
fob, the bankcard) and compares this measurement to a given

1https://www.visa.co.uk/about-visa/newsroom/press-releases.2130476.html

bound. If the measurement is within the bound, then the
verifier concludes that the prover is likely to be physically
within some given, acceptable range. Nowadays, distance
bounding is not just in the realms of theory, it is very much
adopted in real-life applications. For instance, since 2016,
Mastercard has augmented its original, contactless-payment
scheme called PayPass, with the so-called relay protection
protocol (RRP) — which is a distance-bounding procedure;
this is now part of the most widely used payments standard –
the EMV (Europay, Mastercard and Visa) standard.

Incomparable DB Security Models: The security of
DB constructs has been studied for two decades [3], not
just as a RTT-measuring mechanism but generally as an
authentication protocol. Semi-formal and formal models of
its security appeared from 2011 onwards [3]. However, the
security specifics of the different threat models vary from
formalism to formalism: (a) should we have multiple provers
be exploitable in an attack or consider that just the victim
prover is present? (b) should device corruption be considered
black-box or white-box? (c) should the attacker have powerful
control over the network (e.g., use signal amplification, flip
bits) or just do pure/simple relaying? Not having a consensus
on such matters leads to incomparable (in)security results.

No Mechanised Cryptographic Proofs for DB: In
formal methods for security analysis, there are two main
schools of thought: symbolic and computational [10]. Their
tools model traditional security properties and cryptographic
primitives, having no built-in capabilities to facilitate the
reasoning about physical aspects such as time-measurements
or distance bounds. In the last two years, symbolic verification
made steps towards the mechanisation of distance-bounding
analysis, including looking at those used in payments. How-
ever, there is currently no computational mechanisation of
distance-bounding models and/or proofs.

Contributions: Our two main contributions are:
1) We develop a new DB security formalism, called Flex-

iDB, which is in fact a hierarchy of threat-models for
DB, parameterised by the capabilities of the adversary
w.r.t. party corruption and network-manipulation abilities.
This means that each application (i.e., authentication,
payments, RKI) can pick the adversary or sets thereof
that fit their domain and security requirements.
• The security properties included in our FlexiDB model

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
49

capture existing DB-security properties, but it also
generalises them into new security properties.

• Indeed, the latter leads to us also exhibiting new attacks
on DB protocols, including on contactless payments.

2) We mechanise FlexiDB in EasyCrypt [8], along with
a security proof that—against one of the threat mod-
els in FlexiDB—MasterCard’s distance-bounding mecha-
nism provides security against MiM attackers.2 Unlike
existing (symbolic) formal models, our formal model
precisely captures time and avoids relying on meta-
arguments to simplify formal reasoning.
Upshot: The take-home message of our contributions is

two-fold. First, our model permits to prove the security of a
protocol within specific corruption settings: e.g., an adversary
having cryptographic powers such as knowing several secret
keys, whilst having limited network/channel control. The need
for such granularity arises directly from practical applications.
For instance, in the plastic-card contactless payments, com-
munications are assumed to only be possible within limited
range, and cards are assumed to be resistant to tampering. Con-
versely, in smartphone contactless payments, key extraction
can become feasible. Second, our EasyCrypt mechanisation
shows that FlexiDB is amenable to formal reasoning as it is
defined, and without relying on meta-arguments to simplify
reasoning. This comes at a cost in the formal analysis, but
provides an additional tool which complements existing—
less precise but more automated—verification techniques in
increasing assurance and informing security decisions without
having to trust complex proofs.

II. BACKGROUND & RELATED WORK

Distance-Bounding Notions: Distance-bounding proto-
cols are subject to four main threats. 1. Mafia fraud (MF) is an
attack whereby a MiM, present in the range of the verifier V ,
tries to authenticate as a legitimate prover P , whilst P is out
of V ’s range. 2. In a distance fraud (DF), a malicious prover
located beyond the acceptable bound from the verifier attempts
to authenticate. 3. Distance hijacking (DH) generalises DF, as
the far-away, corrupt prover is abusing honest provers found
close to the verifier. 4. In a terrorist fraud (TF), the DF-
mounting far-away prover P has an accomplice located near
the verifier and this accomplice tries to authenticate as P under
special conditions (e.g., the accomplice does not learn P ’s
cryptographic secrets). Variations and generalisations of the
above descriptions of DF, DH, MiM exist [3]. In our model
we consider the strongest generalisation of these and even
strengthen them further. However, due to the lack of consensus
on TF in the community, we leave this threat out of our model.

Main Cryptographic Models for DB: In 2009, Avoine
et al. put forward the first a semi-formal, computational frame-
work for DB security [4]. They considered a single prover
and verifier present in all attack scenarios. They explicitly
distinguish black-box provers from white-box provers3.

2https://gitlab.com/ec-db/ec-db.git
3The user of a white-box device has access to its secret key, while black-box

provers operate in a manner that it totally opaque to their users.

In 2011, Dürholz et al. proposed the so-called “DFKO”
computational model [25] for DB, which is more formal
than [4], which formalises DB as in a Bellare-Rogaway style,
via session-interleaving with the notion of timing implicit
to this session-interleaving. This formalism allows for con-
currency, considers all dishonest provers to be corrupted in
the white-box manner, and the formalisation of DF, MF is
not generalised. In 2013, Boureanu et al. published the so-
called “BMV” model [14], which formalises DB security as
interactive proofs, with timing and laws of physics being
explicitly encoded. This model allows for concurrency, all
dishonest provers are corrupted in the white-box manner, but
unlike [4], the BMV model generalises the DF, DH and MF
definitions, allowing for learning phases before the attacks,
and for multiple provers being present alongside during the
attacks. In 2017, Ahmadhi et al. [2] extended the BMV
model by allowing the adversary to send unicast messages
(as opposed to the traditional broadcast-only); this gave rise
to new attacks. There are more variations on the cryptographic
models mentioned above (i.e., on Dürholz et al., on the
BMV model), yet for the purpose of this work, these are not
essential. For a summary of these, please see [3].

We place ourselves squarely in a computational model of
cryptography. However, in our extended manuscript [12], we
included a critical review of all prior work of formal treatment
of DB (incl. symbolic verification) and this work.

Our FlexiDB Model vs. Existing Models for DB:
FlexiDB is comparable to the BMV model (we consider a
learning phase and full concurrency). However, we operate in
an oracle-based model rather than interactive-Turing-machines
setting. Further, by allowing a wide variation in adversaries,
we offer a hierarchy of definitions for each security property,
strengthening the definitions in the BMV model. Concretely,
our DF and MF definitions allow for several types of corrupted
provers, not included in the BMV model, as detailed next.

First, we adopt the white-box vs. black-box corruption idea
from [4]. Second, we take this further; whilst our weak-
insider adversaries correspond to [4]’s white-box attackers,
we additionally introduce several stronger adversaries: strong
insiders, who can pick their own secret keys. Third, we further
allow multiple, concurrent presences thereof. Fourth, we yield
a full hierarchy of attackers, as we also endow our different
types of Insider, Outsider attackers with various network-
manipulation abilities; to this end, like [2], we allow both
broadcast and unicast messages. Finally, we also allow, like in
symbolic-verification, that messages be modified from afar.

On the Necessity of Considering Insider Adversaries:
Consider the toy distance-bounding protocol depicted on
Fig. 1. This protocol is, in the usual DB models, resistant to
distance fraud. However, now consider this in our model, and
take a dishonest prover A with key x who also knows the key
y of an honest prover P located near the verifier. Now, this
attacker A can perform a form of distance hijacking which
falls under our generalised distance-fraud attacks; this attack
is by replacing the NV -value received by the honest prover
with one chosen by A such that it yield the same r vector as

the A’s own nonce.

Prover P Verifier V
Shared keys: x Shared keys: x

NP
$← {0, 1}n P,NP−−−−−−−→

NV←−−−−−−− NV
$← {0, 1}n

r = Ex(NP)⊕ Ex(NV) r = Ex(NP)⊕ Ex(NV)

for i ∈ [1;n]

ci
$← {0, 1}

ci←−−−−−−− Start clock

ri⊕ci−−−−−−−→ Stop clock

Figure 1. “Toy” Protocol – exemplifying the value of our threat model, where
E is a symmetric key encryption scheme; the rest is self-explained.

In our attack, the adversary A starts a session with the
verifier, sends his identifier A and his value for NP , and
receives NV . Then, A triggers P to start a session with
V , receives P ’s messages P and some value NP ’ for P ’s
nonce, and blocks verifier’s nonce from reaching P . Knowing
A computes a value X such that r = Ex(NP)⊕Ex(NV) =
r′ = Ey(NP ′) ⊕X , decrypts X with y to obtain NV ′ such
that r = r′, and sends NV ′ to P . By letting P reply all
challenges, A is authenticated.

Note. In this paper, we show that similar generalised
distance-fraud attacks that indeed apply to several existing/real
protocols. In turn, this motivated the need to model adversaries
knowing several keys, as we do in FlexiDB.

More on this necessity appears in our extended version [12].

III. FLEXIDB: FORMALISING REFINED THREATS IN DB

A. Distance-Bounding Protocols
Def. III.1 gives our formally formulation of a DB protocol.

Definition III.1 (Distance-Bounding Protocols). A distance-
bounding protocol is a tuple Π=(P,V, Setup,B), such that:
– P and V are the prover the verifier algorithm,
– B is a fixed distance bound within a metric space,
– V outputs a bit outV , denoting authentication success/failure,
– Setup is an algorithm used to initialise the DB system.

All algorithms are polynomial probabilistic time (ppt) in a
security parameter4 s.

We assume the existence of an infrastructure that supports
DB protocols to be executed, i.e., the authentication material
generation algorithms and cryptographic primitives relevant to
a given protocol. We call this infrastructure a DB system.

Setup, Algorithms & Parties: The goal of the Setup
(Def. III.1) is to generate the authentication material of provers
and verifiers, as well as their unique public identifier, as they
are registered onto the DB system. During this Setup phase,
the P and V algorithms are loaded onto physical devices (e.g.,
cards, phones, terminals).

4Computational measures such as polynomial probabilistic time (ppt), neg-
ligible, etc., vary with the security parameter. We consider these and associated
notions, e.g., Interactive Turing Machines (ITMs) [43], commonplace.

Provers, verifiers, and adversarial devices are collectively
refered to as parties. A party U with public identifier i is
denoted Ui. Prover and verifier parties are registered onto the
DB system upon requests, which in our model are controlled
by the adversary.

B. Physical & Communication Model

Positions & Distances. Each party U occupies a position
placeU in a metric space, in which a distance-function d is
defined. For any two parties U , V , if d(placeU , placeV) ≤ B,
then we say that U is close to V ; otherwise, we say that U is
far from V .

Messages are subject to a time of flight, measured via
a global counter called Clock. We model computations5 as
instantaneous, i.e., occur in 0 clock ticks.

The distance d between two parties measures the time-of-
flight of messages between them, considering messages travel
uniformly at a speed c of one distance-unit per time-unit. No
message can travel faster than this speed c.

All messages sent by prover and verifier parties are broad-
cast, whereas adversarial parties can send unicast messages.

C. Threat Model

The adversary A has full control over two parties, denoted
AP and AV , which operate as ITMs. We distinguish these
adversarial parties from the honest parties (i.e., from prover
and verifier parties). This adversarial modelling follows the
classical mafia-fraud setting, where two adversary parties are
involved: AV and AP represent adversarial devices found
near a verifier and near a prover, respectively. We consider
a hierarchy of adversaries, determined by two classes of
adversarial abilities: (1) corruption of parties; (2) corruption
of the network. This is described next.

1) Party Corruption: A prover-party is said to be corrupted
if the adversary has access to its authentication material.
Therefore, corrupted parties are not controlled by the ad-
versary: he merely has access to their secret material. We
distinguish two main levels of party-corruption:
• Outsider (O) — adversary given only the public identifiers
of all parties;
• Insider (I) — adversary given the authentication material of
some parties. Particularly, an Insider adversary can be:
• Weak-Insider (WI) — given the authentication material

of prover-devices of his choice;
• Strong-Insider (SI) — allowed to select the authentication

material and identifiers of prover-devices of his choice.
Moreover, Insider adversaries is quantified:
• 1-Weak-Insider (1-WI) or 1-Strong-Insider (1-SI) — can

corrupt one prover;
• n-Weak-Insider (n-WI) or n-Strong-Insider (n-SI) — can

corrupt several provers.
When the distinction between Weak-Insider and Strong-

Insider is not important, we simply write “Insider”.

5We only allow computations of up to polynomial-time.

These corruption abilities allow the adversary to register
one or more provers for which he knows (Weak-Insider) or,
alternatively, choses (Strong-Insider) the secret material.

2) Network Corruption: We distinguish four types of ad-
versarial communication capability, mainly determined by the
physical-layer implementation of the protocol:
• Dummy (Dum) can only send and receive messages to/from
honest parties within a distance smaller than or equal to the
bound B;
• Amplifier (Amp) can receive and send messages to/from
honest parties across distances larger than the bound B;
• Injector (Inj) can block messages, or overwrite them with
his own, when the message is originated from a point found
no further than the bound B;
• Full can do all of the above, i.e., send, receive, block and
(blindly) overwrite messages even if they originate from point
found further than the bound B.

Comparison to previous models: In terms of party corrup-
tion, previous models consider Outsider adversaries for mafia
fraud, and 1-Weak-Insider adversaries for attacks in which
the prover is dishonest. The notion of Strong-Insider, and
the quantification on the number of corrupted provers, do
not appear in previous models. Regarding network corruption,
prior models allow for amplification. Message overwriting
and blocking, for instance through overshadowing [39], is not
explicitly used in prior cryptographic models, but is common
in recent symbolic verification mechanisms (e.g., [24], [36]).

The entire threat model and the adversarial communications
aforementioned are formalised via a set of oracles presented
in Subsection III-D. A breakdown of our different adversary
types presented above, in terms of access to the different
oracles we formalise next, is recounted in Table I.

D. Execution Model
Sessions. A party’s execution of (a part of) a DB protocol is

called a session. If one execution is run on a prover-device or
verifier-device, then it is a prover session or a verifier session,
respectively. We write U i for the i-th session of a party U .

Each prover and verifier party has a status, active or inactive,
defining whether it is currently running at least one session.

The chronologically-ordered list of the messages sent and
received by a party in a session form the transcript of the
session. All sessions are attributed a unique identifier. A
session is full if its transcript contains all the messages of the
specification. As per our DB definition (Def. III.1), the verifier-
transcripts show whether the authentication is accepted or not.
Moreover, we consider that from a successful, full verifier-
transcript, one can extract the public identifier of the prover-
party that was authenticated6.

Challenger (Ch). To mechanise the execution environment
and to arbitrate the adversarial actions within it, we use a
challenger. The main features of Ch are:

1) The challenger Ch is aware of the global clock Clock.

6This is realistic (as such public identifiers are often sent in clear) and
poses no problem herein, as we do not treat provers’ anonymity or privacy.

2) The challenger Ch keeps a list Pts of all parties7 in the
system, indexed by their id.
Also, Ch deals with all adversarial actions via a set of
oracles presented later; as such, challenger Ch knows if
a given party has been corrupted by A and his list Pts
is kept up-to-date accordingly.

3) The challenger Ch keeps track of all sessions in a
list Sess, indexed by the unique session identifier. It
contains the time the session started, its type (prover or
verifier session), the up-to-date status of a session (i.e.,
finished or running), and a transcript of the session.

4) The challenger Ch keeps a list Sends of timed, sent
messages, containing: the id of the session (of the sender
party) the message belongs to, the sender party, the aimed
receiver party (optional), the message, and the sending
time. The targetted receiver can only be set for messages
sent by an adversary party.

5) The challenger Ch keeps a list Reads of read messages
at given times, containing: the id of the session (of
the reading party) in which this message is being read,
the (apparent) sender party, the (real) sender party, the
receiver party, the message, the time of the receipt.

We underline one time-keeping aspect here. If a “read” is
from/to a sender and receiver, then an entry in the Reads list
is possible only if the message appears in the sent list Sends,
and the message had time to travel from the sender to the re-
ceiver, i.e., d(sender, receiver) ≤ (current time−tsent)×c
where Ch reads the positions of sender, receiver in the Pts
list, the time tsent in the Sends list, the current time via
the global Clock, and c is the speed of messages. If this
inequality holds, then the time of receipt inside Reads is
set to current time.

The points above make the challenger Ch an arbiter for
the setup of the system, enforcing the communication rules.
Specifically, w.r.t. point (5) above, the challenger Ch uses his
“communication logs” kept via the lists Pts, Sess, Sends
and Reads, to prevent the communication rules to be broken.

Adversarial Oracles. The challenger Ch permits the ad-
versary to interact with the environment through a polynomial
number of calls to oracles. These allow the adversary to place
provers and verifiers in the environment at positions of his
choice, and enforce communication and corruption rules.

All our oracle calls are done by an adversary party Aid

and each call takes account of Aid’s position in the metric
space. For instance, parties can read a message sent by Aid

only at a time proportional to the distance between Aid and
themselves. Similarly, creation of parties at a given position
are only effective after the time proportional to the distance
between the party created and Aid. For simplicity, we often
omit the Aid parameter in the description of our oracles.

To describe each oracle, we generally write
oracle-nameadversarymax , where “adversary” denotes the
kind of adversary (e.g., Amplifier, Weak-Insider, etc) allowed
to call the oracle, and “max” denotes the maximum value of

7“Parties” include all adversarial parties, as aforesaid.

a counter internal to the oracle. If the superscript is missing,
then the oracle can be called by any type of adversary. If the
subscript is missing from the description of an oracle, then
the challenger Ch keeps track of the numbers of calls for this
oracle, as opposed to the oracle itself. Our oracles follow.
join(type, pos): This oracle simulates the registration of a

new honest party of a given type (i.e., prover or verifier) at
a position pos in the metric space. To Aid calling join, the
oracle returns the public identifier of the new party.
joink

WI (pos): This oracle permits a Weak-Insider adver-
sary to register a corrupted prover at a position pos in the
metric space. To Aid calling joinWI , the oracle returns the
public identifier and authentication material of the new prover.
joink

SI (id, auth, pos): This oracle permits a Strong-
Insider adversary to register a new corrupted prover at position
pos, with public identifier id and authentication material auth.
It aborts and returns ⊥, if another prover with the same
identifier or authentication material already exists. Otherwise,
to Aid calling joink

SI , the oracle returns >.
For join, joink

WI , joink
SI , it is also the case that:

• the challenger Ch adds the registered party to the Pts list
and it also specifies its type: honest for join, corrupted
for joink

WI and joink
SI ;

• at each call, an internal counter is incremented; after k
calls, the oracle is disabled, i.e., returns ⊥.

enable-broadcast(): This oracle activates a commu-
nication mode in which all messages by prover and verifier
parties are sent to all parties even if they are found far apart
from where the message originates. The challenger Ch stores
and sets a flag broadcast, once this is called.
init([P, V]): This oracle simulates the start of new execu-

tions by a prover-party with id P and/or for a verifier-party
with the id V . Either P or V can be omitted, in which case
the adversary is running a session with the party invoked.

If the broadcast flag is not set, then this oracle can only
be called on provers and verifiers within the distance bound
from the position of Aid who calls this.

From the point of the call, the Ch delays the start of session
by the time proportional to the distance the parties in the
session (P and/or V and/or A).

The session identified is returned to the adversary and it is
stored by Ch in the Sess list. All other relevant aspects (e.g.,
status of P , V in the Pts list) are updated by Ch at its end.
move([P], pos): This oracle moves a party with the identifier
P from its current position to pos. If P is omitted, the party
being moved is the adversary party Aid calling this oracle.

The challenger updates its Pts list accordingly.
sendDum([X, sid],m): This simulates the sending of a

message m from Aid to the session sid of the party with the
id X . If X is a prover/verifier party far from the Aid who calls
this, and broadcast is unset, then the oracle aborts/outputs ⊥.

The parameters X and sid are optional. If omitted, then
the message m is broadcast to all parties, either within the
distance-bound from Aid if broadcast is not set, or otherwise
broadcast even past the distance bound from Aid.

Adversary type Ocore Ocorr Ocom

Outsider Main ∅
1-Weak-Insider Main {joinWI

1 }
n-Weak-Insider Main {joinWI

n }
1-Strong-Insider Main {joinSI

1 }
n-Strong-Insider Main {joinSI

n }
Dummy Main ∅
Amplifier Main {enable-broadcast}
Injector Main {replace}
Full Main {enable-broadcast,replace}

Table I
ORACLES PER ADVERSARY TYPE, WHERE Main={JOIN, INIT, MOVE,

SENDDum}. BLANK SPACES SIGNIFY NO RELEVANCE TO THE RESP. TYPE.

The challenger records this in the Sess list (updating
transcripts) and the Sends list (updating time, etc.).
replace(U, sid,B,U ,S,m′): Let M = M0 . . .Mk denote

all the bits of the next message to be sent by the party U in
the session sid, U be a (possibly empty) set of parties, S be
a (possibly empty) set of sessions, and m′ be a message. This
oracle replaces the message bits {Mi|i ∈ B} with m′, so that
the sessions in S and the parties in U receive the modified
message; this modification may result in deleting bits from
the message. If B = ?, then the whole message is replaced. If
U is a prover or verifier party located past the distance bound
from Aid, and if broadcast is not set, then it returns ⊥.

We also define the following “tool function”, not accessible
to the adversary, but used as a syntactic shortcut to express
the success or failure of a session.
result(sid, V): This retrieves the session with the id sid

of the verifier-party V . If it exists, and the V accepted the
authentication of a prover P.id, it returns (>, P.id). Otherwise,
it returns ⊥ – meaning unsuccessful authentication of P.id.

Note: For simplicity, we only include the level of detail
necessary to understand the security properties of Section IV
and the attacks of Section V. Therefore, we omit the following:
(a) a read oracle aligned to the send oracle; (b) details of the
timing-keeping within the send/ read oracles; (c) details of
exact book-keeping the Sess list, w.r.t. these two oracles; (d)
the honest versions of the send/ read oracle. These details
are however included in Section VI, where we present the
mechanisation of this model in EasyCrypt.

IV. DB SECURITY PROPERTIES IN FLEXIDB

We first define the set of oracles given to each adversary.

A. Oracles, Adversary Positions and Attack Phases.

We write AO to mean that the adversary has access to a
particular set O of oracles. Our oracles are split in three sets:
• Ocore: set of oracles accessible to all adversaries.
• Ocom: set of oracles related to network-corruption only;
• Ocorr: set of oracles related to party-corruption only.
Our different adversaries are described in Table I.
By integrating fine-grained corruption capacities, we gener-

alise the notion of mafia fraud with resistance to generalised
mafia-fraud (GMF) and distance fraud with generalised
distance-fraud (GDF).

In the GMF experiment, the adversary is considered as 2
entities: A = (AV ,AP), respectively close to the designated
verifier and the designated prover.

In the GDF security experiment, a single adversary party
AP is located far away from the designated verifier.

In both cases, the designated prover is far from the desig-
nated verifier. These two settings are illustrated on Figure 2.

dV, P dP
AV AP

> B

dV, P dP
AP

> B

Figure 2. Examples of GMF (left) and GDF (right) environments. dV is the
designated verifier, dP is the designated prover authenticated/attacked, and P
denotes an arbitrary set of provers.

In our GMF and GDF, the adversary is allowed to perform
a learning phase, in which he can freely interact with
the environment, with no positioning restrictions w.r.t. to
provers/verifiers. In model such as [14], such learning phases
allow an adversary to interact with all parties without distance
restrictions, thus enabling more attack strategies.

During this phase, A populates the environment with
provers and verifiers, interacts with them and sets all positions
as he wishes. Then, the adversary selects a designated prover
dP and a designated verifier dV, and gives their identifiers
to the challenger. The challenger, then disables, verifies that
the setting of the environment is correct with regards to the
security property, and allows the adversary to run the actual
attack phase. During this phase, the adversary has access to
a restricted set of oracles, and is subject to positioning rules.

B. Security Properties Definitions
a) Generalised Distance Fraud (GDF): This security

property comprises a class of distance-frauds and distance-
hijacking attacks, which vary with the strength of the corrup-
tion and network-manipulation.

Our Fine-Grained GDF & Its Benefits. In the classical set-
ting of distance fraud, a dishonest prover dP tries to fraudu-
lently authenticate from afar. In our terminology, this would be
an Insider adversary A who called joinWI (if not joinSI)
on dP (i.e., knows the authentication material of dP) and
who attempts to authenticate from afar. In FlexiDB, we
additionally allow for the much stronger setting where A
knows, or even choses, the authentication material of several
provers, as well as the benign case where A is an Outsider.

We give our generalised distance-fraud in Def. IV.1, a class
of attacks in which an adversary tries to make a designated
verifier dV authenticate a prover dP, potentially exploiting
other provers, even though no adversarial party nor dP is
within a distance B of dV.

Definition IV.1. Generalised Distance-fraud (GDF) & Secu-
rity against GDF. Let Π be the a DB protocol. A generalised
distance-fraud (GDF) game G against the DB protocol Π is
split in two phases: the learning phase and the attack phase.

i) The learning phase for GDF is a multi-party execution
of the protocol Γ in the presence of an adversary A=
(AP ,AV) such that the position posAP

of AP and the
position posAV

of AV is arbitrary.

• In this phase, the challenger Ch starts by setting up an
execution environment and giving access to A to the set
of oracles {Ocore,Ocom,Ocorr}.

• The phase finishes with the adversary returning a desig-
nated prover and verifier pair (dP, dV), and the starting
position of one adversarially controlled parties denoted
AP , i.e.,: (posAP

, dP, dV)← A{Ocore,Ocom,Ocorr}.
• The challenger Ch disables all oracles, all the parties

are remain fixed at the position at which they were
when A’s output was made, AV is removed from the
environment, and then Ch checks whether the setting
(posAP

, dP, dV) returned by the adversary is valid for
GDF. A setting (posAP

, dP, dV) is a valid setting for
GDF if (1) d(posAP

, dV) ≥ B and (2) d(dP, dV) ≥ B.
• If (posAP

, dP, dV) is not a valid setting for GDF, then
the challenger aborts the game and A loses. Otherwise,
the challenger begins the attack phase.

ii) The attack phase for GDF is a multi-party execution of
the protocol Γ in the presence of an adversary AP found
at position posAP

. In this, Ch allows the adversary access
to the init,sendDum,Ocom oracles.

• The phase finishes with the adversary outputting a session
identifier sid, i.e., sid← A{init,send

Dum,Ocom}
P .

The adversary wins the GDF game if the session sid is
a verifier-session started during the attack phase, such that
result(sid) = (>, dP), i.e., dV accepted the far-away
prover dP during the attack phase.

The advantage of an adversary A in the GDF game is his
success probability α.

A protocol Π is GDF-secure if the advantage of all ad-
versaries A in winning in an un-aborted generalised distance-
fraud game G is negligible.

b) Generalised Mafia Fraud (GMF): In this setting,
two adversary parties collaborate to authenticate as an un-
corrupted prover located outside of the distance-bound of a
designated verifier dV. The goal of the adversary is to make
dV accept the authentication of the prover dP, located at a
distance greater than B of dV, optionally exploiting additional
provers placed at his convenience.

We formalise generalised mafia-fraud in Def. IV.2.

Definition IV.2. Mafia-fraud (GMF) & Security against
GMF. Let Π be the a DB protocol. A generalised distance-
fraud (GDF) game G against the DB protocol Π is split in
two phases: the learning phase and the attack phase.

i) The learning phase for GMF is a multi-party execution
of the protocol Γ in the presence of an adversary A=
(AP ,AV) such that the position posAP

of AP and the
position posAV

of AV can be arbitrary.
• In this phase, the challenger Ch starts by setting up an

execution environment and giving access to A to the set
of oracles {Ocore,Ocom,Ocorr}.

• The phase finishes with the adversary returning a desig-
nated prover and verifier pair (dP, dV), and the position
of the two adversarially controlled parties AP and AV ,
i.e.,: (posAP

, posAV
, dP, dV)← A{Ocore,Ocom,Ocorr}.

• The challenger Ch then disables all oracles, and checks
whether the setting defined by the adversary is valid
setting for GMF. A setting (posAP

, posAV
, dP, dV) is a

valid setting for GMF for GMF if (1) d(dP, dV) ≥ B,
(2) dP is not marked as corrupted.

• If (posAP
, posAV

, dP, dV) is not a valid setting for GMF,
then the challenger Ch aborts the game and A loses.
Otherwise, the challenger begins the attack phase.

ii) The attack phase for GMF is a multi-party execution of
the protocol Γ in the presence of an adversary (AP ,AV)
found at position posAP

and posAV
. In this, Ch allows

the adversary access to init,sendDum,Ocom oracles.
• The phase finishes with the adversary outputting a session

identifier sid, i.e., sid← A{init,send
Dum,Ocom}

P .
The adversary wins the GMF game if the session sid is

a verifier-session started during the attack phase, such that
result(sid) = (>, dP), i.e., dV accepted the far-away
prover dP during the attack phase.

The advantage of an adversary A in the GMF game is his
success probability β.

The protocol Π is GMF-secure if the advantage of all
adversaries A in winning in an un-aborted generalised mafia-
fraud game G is negligible.

c) Our Security Notions vs. Existing Ones:
1) 1-Weak-Insider GDF corresponds to the classical distance

fraud and distance hijacking notions.
2) 1-Outsider GDF extends the black-box distance fraud by

Avoine et al. in [4] to a setting that allows additional
honest provers to be present, as in a distance hijacking.

3) 1-Weak-Insider GDF corresponds to generalised distance-
fraud in the BMV model [14].

4) n-Insider GDF is a completely new property, allowing
the multiple provers to be corrupted. In Section V, we
show that this enables new attacks.

5) GMF extends previous models by the fine-grained party-
corruption it offers (i.e., Insider vs Outsider, as well as
1 vs n), as opposed to traditional mafia-fraud definitions
only consider one Outsider adversary.

6) The Strong-Insider notion is new.

V. VALIDATING FLEXIDB: NOVEL PROXIMITY ATTACKS

We illustrate the applicability and expressivity of our
FlexiDB model by exhibiting:
– a new vulnerability on the EMV-RRP protocol [26];
– new GDF attacks on proven secure protocols;
– a generic distance-hijacking strategy that enables attacks on
most protocols of the literature.

We exemplify our attacks on well-understood protocols, but
–in practice– they may be more easily applied in different
application domains.

A. New (1-Weak-Insider, Full)-Attack on Payments

High-level Description of EMV-RRP: Mastercard’s
EMV-RRP (Figure 3 – without the UN msg. 8) is Mastercard’s
contactless-payment protocol with relay protection. For the

latter, MasterCard added to their initial contactless-payment
protocol, called PayPass, a special command ERRD (“Ex-
change Relay Resistance Data”), described8 below. In Pay-
Pass and in EMV-RRP, the card possesses a private key
PrivC , a symmetric key KM shared with the bank, a certifi-
cate chain CertPrivCA

(PubC) for the card’s public key PubC .
The card and the reader generate two nonces nC and UN ,
respectively. After some generic setup messages, in EMV-RRP,
the reader sends an ERRD command, containing the nonce
UN , to the card. The card answers with an ERRD response
ERRD-r and a nonce nC . The reader measures the correspond-
ing round trip time. The card also gives an estimation of
the time of this exchange called “Timing Info”. The reader
compares the two timings, and stops the communication if
the measured time is too large. Otherwise, the reader requests
that the card generates a “cryptogram” AC . It is a MAC keyed
with KS of data including the ATC , UN , and the transaction
information. The encryption with KM of the number-of-
transactions’ counter, ATC , forms a session-key denoted KS .
The card signs UN , amount, currency, ATC , NC , yielding the
“Signed Dynamic Application Data (SDAD)”. Finally, before
accepting the payment, the reader checks the validity of the
signature SDAD .

[35], [11] give EMV-RRPv2 a modified version of
EMV-RRP described in Fig. 3 with the UN in message 8.
It differs from EMV-RRP only in that in the timed phase, the
card adds the reader’s nonce UN to its response. This protects
against certain distance frauds [35], [11] in EMV-RRP.

a) Our Attack on EMV-RRPv2: EMV-RRPv2 was
symbolically verified in [35], [19], [23], [22] and found secure
in their respective models. We show that EMV-RRPv2 is in
fact vulnerable to a type of distance hijacking, in the presence
of a (1-Weak-Insider, Full) adversary.

Our attack is executed in our GDF setting: an honest prover
P and the designated verifier dV are within distance at most
B of each other, and a (1-Weak-Insider,Full)-adversary A
and the designated prover dP are both at a distance greater
than B of dV. We denote by posP, posdV, posA and posdP
their respective positions. Note that dP is not actually used
in this attack, since the insider adversary knows dP’s key and
authenticates from a distance on dP’s behalf.

The idea of attack is simple: to bypass the timing check on
(UN , nC , TimingInfo), A lets P reflect UN , and overwrites
every other value sent by P with his own.

1) During the learning phase, A registers P by calling
join(prover,posP), dV by calling join(verifier,posdV),
and dP by calling join(prover,posdP). He also calls
enable-broadcast() oracle to enable full broadcast
mode, and returns the setting (posA, dP, dV);

8This command is described in the EMV standard [26], w.r.t. Mastercard.
The reader and the card have an exchange of nonces, up to three times. For
each exchange, the reader times the communication time and checks it is under
a given bound. If it is not up to two times in a row, it continues. Otherwise,
it fails and the protocol stops. In our proofs, we model just one exchange, for
simplicity.

Reader Card

KM , P rivC
CertPrivCA(PubB)
CertPrivB(PubC, SSAD)
SSAD = H(PAN, exDate, . . .)

PubCA

UN ∈R {0, 1}32 nC ∈R {0, 1}32

SELECT 2PAY.SYS.DDF01

AID1,AID2,. . .

SELECT PAYPASS AID

SELECTED

GPO

AIP,AFL

ERRD (UN)

timed
[UN], ERRD-r(nC)

READ RECORD

CertPrivCA(PubB)

READ RECORD

CertPrivB(PubC,SSAD), PAN, CDOL1, . . .

GENERATE AC(UN, amount, currency, . . .)

AC = MACKs
(amount,ATC,UN,. . .)

KS = EncKM
(ATC)

SDAD = SignPrivC(AC, UN, amount, cur-
rency, ATC, . . .)

SDAD(AC), ATC

Figure 3. MasterCard’s EMV-RRP & EMV-RRPv2 which is an
EMV-RRP extension [35], [11]; [UN] in msg. 8 is only present in
EMV-RRPv2.

2) During the attack phase, A calls init(P, dV), to start a
session sid between P and dV;

3) A uses the replace oracle to piggyback all of his
messages on P’s messages.
a) all messages are fully overwritten with A’s own mes-

sages (computed with the secret key of dP), except for
(UN , nC , TimingInfo).

b) for this message, A uses replace(P, sid,{bits(nC ,
TimingInfo)}, {dV}, {sid}, (nCA,TimingInfoA)),
where we denote by {bits(nC ,TimingInfo)} the bit-
positions corresponding to the values (nC ,TimingInfo).
This oracle call replaces the nC and TimingInfo from
P by the ones of A, while not modifying the UN part
of the message.

4) A returns sid.

The session sid authenticates dP: all authenticating mes-
sages in the sessions are computed with the authentication
material of dP. Therefore, the prover dP is accepted by dV,
even though d(posdP, posdV) > B and d(posA, posdV) > B.

b) Application to PayBCR: In [18], a new version of
EMV-RRP, called PayBCR, is proposed. An attestation of the
proximity-checking performed by the reader is sent to the

card-issuing bank, who can further re-verify it. In this case,
the transaction constitutes a strong proof that the card was
within the range of the verifier when the purchase was made.
Since PayBCR is based on EMV-RRP, our EMV-RRPv2 attack
applies directly.

c) Attacks’ Significance: Due to the strong adversary
setting, this attack does not pose a direct threat to payment
protocols as of today. However, such distance frauds, if they
become practical, could translate into financial loss for the
banks. Assume a malicious card paying legitimately in store
A. If this card can mount a distance fraud to pay in a far-away
store B at the same time, then the card owner can claim that
their card was hacked/cloned, as it appears to be paying in
two locations at the same time. This would most likely entail
the bank having to reimburse both purchases.

In the case of PayBCR, any forgery of proximity-proof by
a dishonest card is a forgery of a (hardware-attested) proof
accepted by the bank. Our attack can therefore not only lead
to reimbursement of fraudulent payments, but also be used as
a strong alibi by the card owner to show that they were by the
payment terminal when they were not.

B. New (n-Weak-Insider, Full)-Attack on 40+ DB Protocols

We now show another type of generalised distance-frauds,
which works against 40+ distance-bounding protocols with
one-bit challenges and responses, where each round is inde-
pendent from the previous rounds [16]. We illustrate it on
DB3 [15], previously proven secure in the BMV model.

The DB3 Protocol (with its parameter q equal to
2) [15]: In DB3, the verifier first sends a nonce NV ,
and the prover replies with a nonce NP . Both compute
a = fx(NP,NV), where fx is a PRF keyed on the shared key
x. Then, in n timed rounds, the verifier sends a random bit
ci, expects a response ri = ai ⊕ ci. Finally, the prover sends
tag = fx(NP,NV, c) (where c is the concatenation of the
cis). The verifier accepts if the times, ri and tag are correct.
See complete description in [15].

Our attack on DB3 is in our GDF setting: n provers
P1, . . . ,Pn and the designated verifier dV are within distance
at most B of each other, and a n-WI,Full adversary A and
the designated prover dP are both at a distance greater than
B of dV. We write posPi, posdV, posA and posdP to denote
their respective positions, without loss of generality. Note that
dP is not actually used in this attack, as the insider adversary,
knowing his key, authenticates from a distance on his behalf.

Let Ri
j = (r0ij , r1

i
j) denote the responses of the prover Pi at

round j for the challenge cj = 0 (resp. cj = 1). In our attack,
at each round j, A selects a prover Pi such that Ri

j = RAj ,
and blocks the responses of all provers but Pi.

a) Our GDF Illustrated on DB3:
1) During the learning phase, A registers Pi by call-

ing joinWI(posPi) (for i from 1 to n), dV
by calling join(verifier,posdV), and dP by calling
joinWI(posdP). He also calls enable-broadcast()
oracle to enable full broadcast mode, and returns the
setting (posA, dP, dV);

2) During the attack phase, for i from 1 to n, A calls
init(Pi, dV) to start sessions sidi between Pi and dV,
and records the messages NPi sent by each prover;

3) A selects a random nonce NV , and calls
sendDum(Pi, sidi, NV) to send NV to the n provers;

4) A calls init(dV) to start a session sid with dV, picks
a random NP , and calls sendDum(dV, sid,NP);

5) A uses the keys xPi to compute ai = fPi(NPi, NV);
6) At each round j, A selects a prover Pi, such that Ri

j =
RAj . If no such prover exists, the attack aborts.

7) A calls replace(Pz, sidz, ∗, ∅, ∅, ∅) for z 6= i, to
block the responses of all provers but Pi. A stores the
corresponding challenge issued by dV in session sidi as
Cj (denoting the jth bit of a string C);

8) A calls sendDum(dV, sid, tagA = fxdP(NP,NV,C))
and replace(Pi, sidi, ∗, ∅, ∅, ∅) to block final messages
of all provers and send his own;

9) A returns sid.
All authenticating messages in the session sid are com-

puted with the authentication material of dP. Therefore, dP
is accepted by dV, even though d(posdP, posdV) > B and
d(posA, posdV) > B.

The pair (r0ij , r1
i
j) can take 4 different values. At each

challenge response round j, the probability to have Ri
j = RAj ,

for any prover dPi, is therefore 1
4 . Hence, the probability that

there exists no prover such that Ri
j = RAj at a given round is

1− (3
4)n: over k rounds, the success probability of our attack

is therefore (1− (3
4)n)k. For a large enough n and n = k the

success probability PS converges to 1.
Applicability of This Attack: We described our GDF

attack on DB3, with its parameter q = 2, meaning that
challenges/responses of each round take 2 possible values.
However, our attack still applies to DB3 when its q parameter
is greater than 2. In particular, the selective blocking of
responses would be done bitwise, i.e., A would select a
different prover for each bit of the response, at each round.

A few protocols resist this attack: e.g., those in [31], where
the time between 2 consecutive challenges is randomised.
Furthermore, the number of provers required can grow with
the size of the responses; therefore, our attack becomes
impractical against certain protocols with long (rather than
binary) challenges and responses. Such protocols are, however,
not common in the literature.

C. More Attacks Using FlexiDB

1) In Appendix A, we show that a (2-Weak-Insider, Full)-
attack applying to several distance-bounding protocols.

2) In Appendix B, we show that the famous Swiss-Knife
protocol [33] is subject to a (1-Strong-Insider, Full)
generalised distance fraud.

VI. EASYCRYPT-MECHANISED PROOFS FOR EMV-RRP

We now discuss our mechanisation of the FlexiDB model
given in Section III and its GMF security property in the Easy-
Crypt proof assistant. Based on the resulting formal models,
we develop a machine-checked proof, in EasyCrypt, of the

MiM-security of EMV’s EMV-RRP against (Outsider,Full)
adversaries with a slightly generalised replace oracle. In
particular, we consider an attacker that corrupts cards as an
outsider, can amplify and drop messages, and can modify
messages after they have been sent. We discuss this more
precisely in Section VI-E.

Beyond the security proof for EMV’s EMV-RRP and the
necessary cryptographic modelling, this mechanisation in
EasyCrypt is the first attempt at capturing – in a formal model
of computational security – the physical aspects linked to
time and distance measuring in communication protocols. As
such, our EasyCrypt models constitute a feasibility study for
capturing distance-bounding in EasyCrypt, and carrying out
machine-checked computational cryptographic proofs in such
physicality-enhanced communication models. In Section VI-G,
we discuss the lessons learned on modelling physical aspects
of communication, and potential modelling alternatives that
could be usefully explored in further efforts.

A. A simplified EMV-RRP protocol and security model

We operate over a simplified version of the EMV-RRP
protocol, in which the payment-issuing signature SDAD is-
sued by the card is sent at the same time as the response to
the ERRD command, alongside the nonce nc. The verifier
checks the time over the ERRD command, as before. Like in
EMV-RRP, the card is accepted by the reader if the ERRD
passes the timing check and the SDAD signature verifies.
We therefore also simplify other aspects of the protocol and
model, which we consider to be orthogonal to this goal.
These simplifications are in fact less intrusive than those
made in existing mechanised models for distance-bounding.
In particular, although we restrict the adversary’s ability to
interact with the card during the challenge session, we do not
forbid any such interaction. We discuss this, and ways to avoid
even those limited restrictions on adversaries, in Sec. VI-G.

In addition, we take care to ensure our model could be—
if desired—extended to include more of the protocol details.
More precisely, we simplify the following aspects:
• we focus the model and proof on the authentication

and distance-bounding component of the Core-RRP
protocol, noting that our model features an abstract and
adversary-controlled session ID; as such, we can extend
the proof to the full EMV-RRP, seen as an adversary for
its authentication and distance-bounding component;

• we consider a single card and a single verifier, to avoid the
burden of book-keeping credentials and corruption (which
are both well-understood and not our main focus/goal);

• we consider a weakened model of generalized mafia fraud
where the adversary can only interact once with the card
during its attack phase. In contrast, Chothia et al. [20]
write formal models that forbid any such interaction,
justified with protocol-specific semi-formal arguments.

B. The EasyCrypt proof assistant

EasyCrypt is an interactive proof assistant designed for
analysing cryptographic primitives or protocols in the com-

putational model. Theorem statements proved in EasyCrypt
can be interpreted as exact security statements when combined
with some (unverified) complexity analysis. EasyCrypt can be
used to prove concrete bounds on the advantage of a black-
box reduction, constructed as concrete programmes that make
use of abstract, universally-quantified modules. The same
mechanism can also be used to prove general statements on
universally quantified modules (which serve as abstractions),
and later instantiate these requiring any assumptions made in
the abstract proof to be discharged to concrete values without
re-doing the entire proof.

This methodology aligns particularly well with game-based
notions of security. The challenger is represented as a module
parameterised by a protocol and an adversary – also mod-
ules, mediates the interactions between the adversary and the
protocol. This is done via oracles which are accessed by the
adversary as part of an experiment (or game). These oracles
are usually simple wrappers around the protocol operations,
that ensure that only interactions allowed by the threat model
can occur, and keeping any state required to decide whether
security was broken in a particular execution.

Modules have procedures, which are written in a small
imperative probabilistic language, PWHILE, which supports
standard control-flow (if statements and while loops),
procedure calls, deterministic assignments (denoted with ←)
and sampling in discrete distributions (denoted with ←$). In
order to simplify the code presented, and more specifically
to simplify error handling, we also make use of an “error-
checking assignment” (denoted with←⊥) that stops execution
and returns a distinguished error symbol ⊥ if its right-
hand side evaluates to ⊥, and otherwise lets execution carry
on as specified. In code, v ←⊥ e is syntactic sugar for
if e = ⊥ then return ⊥ else v ← e.

Procedures within a module can share state, declared as
global variables. Such variables are given a type, which
we denote using set membership in module specifications.
In practice, the initial value of such global variables must
be explicitly specified as part of the model. To simplify
presentation here, we omit this initialisation. Unless otherwise
specified, numeric-type variables are initialised with 0, and
global variables that model partial maps are initially every-
where undefined. Variables of other types are always explicitly
initialised in the modules discussed here.

C. Modelling Environments with Physicalities

As a general proof assistant, EasyCrypt does not cater
for domain-specific modelling of time, locations, distances, or
of systems with such “physicalities”. Further, the EasyCrypt
semantics are purely sequential. Hence we cannot model a
ticking, global clock that keeps time during the execution of
a protocol.

a) High-level Choices from FlexiDB: We develop a
formal framework within which our proof for Core-RRP is
carried out. Our formal EasyCrypt framework captures the
essential aspects of the FlexiDB model, that is time, space, and
asynchronous broadcast communication. Our framework also

gives the protocol and adversary certain (controlled) abilities
to monitor and act on the physical environment it models.
By design, we choose to only enforce simple constraints on
the behaviour of clock, locations and communication in the
framework. This should support, when needed, a layered im-
position of additional constraints. And, the correctness/security
of mechanisms meant to provide or enforce such additional
constraints could also be reasoned about in EasyCrypt.

b) Concrete Modelling of FlexiDB: Our framework
takes the form of a single module Env, parameterised by
three types (or sets) name, location and message, which
respectively capture the names of parties, the set of locations
(we assume a notion of distance d over type location), and
the set of messages that will be exchanged. Figure 4 displays
this module, whose details we now discuss.

Time is captured as a global variable clock taking values
in R. The Environment9 exposes a getter procedure denoted
get time , and a controlled procedure to modify the clock,
denoted add time, which adds its real-valued argument to
the clock variable unless it is negative.

The actual locations of parties are captured as a partial
mapping lmap from names to locations. The Environment
allows anyone to retrieve the location of some party given its
name (through procedure get location). Further, the location
of each party can be initialised once using set location .

Finally, we capture asynchronous broadcast communi-
cation as a network map nmap from message handles to
messages. Message handles are unique indices, here in N.

As per FlexiDB, in our EasyCrypt framework, sending a
message m on behalf of party p proceeds by retrieving the
current clock value t and the current location l of p if it exists,
and stores t, l and m against an unused message handle h. The
message handle is returned to the caller.

We make replacing messages possible through a separate
modify map mmap that maps modify handles to message trans-
formations (functions from messages to messages). Modify
handles are as before, indices in N, used once only.

Reading a message was left underspecified in Section III
saying that the challenger makes the necessary check. Con-
cretely, in our EasyCrypt framework, to read a message from
the network on behalf of party p given the corresponding
message handle h, we simply recover the time ts, location
ls and message m stored against h in the network map,
recover the current time tr and the location lr of p from the
Environment, and check that enough time has elapsed between
ts and tr to allow the message’s propagation from ls to lr.10

In addition, an optional modify handle can be provided to
the oracle. This is used to find a transformation in the modify
map, which is applied to the message m. If the (optional) mes-
sage handle does not exist, or insufficient time has elapsed, we
return a distinguished error symbol. Otherwise, the retrieved
message m is returned to the caller.

9This is the equivalent of the Challenger Ch in FlexiDB.
10Our model assumes a constant message propagation speed of one “unit”

of distance per “unit” of time. This could be generalised.

D. Modelling Core-RRP in EasyCrypt
Modelling Core-RRP in EasyCrypt, as expected, rests on

calling the Environment oracles to obtain the current time, and
to send and receive messages as shown in Figure 5.

1) Modelling the verifier: The code for the verifier allows
an arbitrary number of parallel protocol executions, indexed
by session identifiers that allows the adversary to control
scheduling, and could be used to capture protocol context in
a broader proof. Each session is a simple two-state machine,
whose state is stored in a state map smap, indexed by session
identifiers. Each session can be either uninitialised (when
smap contains no entry against sid, or smap[sid] = ⊥), or
initialised with a time in R and nonce in {0, 1}` – used to
track which challenge was sent, and at what time.

Each of the protocol oracles proceeds by retrieving the
session state from the state map and checking whether
the transition it captures applies to the current state
(send challenge only applies to an uninitialised session,
whereas recv response only applies to an initialised session).
It then operates on the given state, and saves the resulting
state back to the state map before returning any data needed to
produce outputs to be emitted to the network, or used locally.

Apart from its state map, the reader also presents two vari-
ables: a local bound B on the distance it considers as “near”,
and a public key cpk for which it will receive/check signatures.
Both are provided as arguments to a setup procedure. In our
model, the cpk variable is a single public key, and will be
set by the experiment to be the public key of the (single)
honest card. In more complex models, it could be replaced
with a dynamically-updatable set of keys whose signatures
would be accepted (idealising a PKI), or even with a single
root certificate if certificate validation were to be modelled.

2) Modelling the prover: In contrast, modelling the prover
is a much easier task, since its part of the protocol is entirely
stateless. Module P in Figure 5 captures its operations.

The experiment is expected to initialise the prover by calling
its setup procedure, which generates a fresh keypair for the
signing scheme, storing the secret key on the card itself, and
outputting the public key back to the experiment (for use, for
example, in initialising the reader). The recv challenge oracle
captures the prover’s step in the Core-RRP protocol: upon
receiving a nonce N from the network, the card will sample a
nonce N2, then sign the pair (N,N2) and output N2 and the
signature to the network.

E. Modelling MiM adversaries with physicality

We aim to prove a version of FlexiDB’s GMF security
for the Core-RRP protocol against a MiM (Outsider,Full)-
adversary as per FlexiDB’s hierarchy. To capture the (Out-
sider,Full)-capabilities, we give our adversary control over:
i) the initial location and movement of protocol participants
(incl. the adversary herself); ii) the clock; iii) the message
scheduling, incl. the ability to drop, insert or modify broadcast
messages; iv) the scheduling of protocol steps.

This is done, as is usual, through oracles. The oracles are
displayed in Figure 6. They make use of a partially instantiated

environment E, in which the sets of names and messages are
defined concretely. The set of names is simply defined as
name = {A,P,V}. The set of messages is assumed to be some
set that properly encodes requests and responses (such that we
have functions format challenge ∈ nonce → message, and
format response ∈ nonce×signature→ message; and respec-
tive partial inverses parse challenge ∈ message → nonce⊥
and parse response ∈ message→ (nonce×signature)⊥). This
implies additional, but reasonable, assumption on the proto-
col’s wire format: 1) It is invertible (and indeed fully inverted
by the appropriate parsing function) 2) It is unambiguous (that
is, if parsing succeeds, then the message is indeed a formatted
value of the right kind).11

When triggering protocol operations, the adversary provides
as input, where necessary, a session identifier, or a message
handle (with an optional modify handle) used to retrieve
network input from the Environment. Output from such oracles
is most often output to the Environment through send , and the
corresponding handle given out to the adversary for use in a
subsequent oracle query. In the case of the reader’s verification
step, we choose instead to return the oracle’s output directly
to the adversary. This helps us capture that the output is to be
used locally by the reader in some overarching application.

F. MiM security of EMV-RRP.

Figure 7 shows the GMF security property as we for-
malise it in EasyCrypt. The advantage of an adversary A
in breaking this notion of GMF security is AdvbsecA,P,V =

Pr
[
Expbsec

P,V,A() = true
]
.

Theorem 1. GMF Security of Core-RRP against (Out-
sider,Full)-adversaries. For any (Outsider,Full)-adversary A
that makes at most q queries to its prover recv challenge
oracle, we construct a forger B(A) targeting the signature
scheme S and such that: AdvbsecA,P,V ≤ q/2` + AdveufB(A),S .

Proof. The proof is formalised in EasyCrypt. At its core,
the proof relies on refactoring the prover and verifier as
adversaries against the signature scheme, and folding them
into the adversary and oracle code. The resulting construction
forms the core of our reduction B. It is then easy to show that
any response accepted by the verifier that did not come from
the prover can be used to produce a valid forgery, while also
proving that any response that did involve the prover must have
been received by the prover after time tc+ 2 · d(posV, posP),
or reused a challenge nonce. The latter can only occur with
probability at most q/2`.

1) Mechanised proof: Our EasyCrypt formalisation [1]
is composed of roughly 1000 lines of model (including a
significant amount of reusable framework code) and 900 lines
of proof. This proof involves a small example, but its definition
to proof ratio is encouraging, and seems to indicate that our

11Our formal model makes similar assumptions, expressed slightly differ-
ently: our type of messages is a sum type, or tagged union, essentially leaving
the adversary in charge of parsing and formatting, under the same practical
assumptions on the messages’ wire format. We note that these assumptions
could be relaxed, but this is unrelated to this paper’s objectives.

module Env〈name,location,message〉

var clock ∈ R

var lmap ∈ name⇀ location

var mh ∈ N
var nmap ∈ N⇀ message

var rh ∈ N
var mmap ∈ N⇀ (message→ message)

proc get time()

return clock

proc add time(t)

clock← clock+max(0, t)

proc get location(p)

return lmap[p]

proc set location(p, l)

if lmap[p] = ⊥⌊
lmap[p]← l

proc send(p,m)

t← get time()

l←⊥ get location(p)

h← mh

mh← mh+ 1

nmap[h]← (t, l,m)

return h

proc modify(p, f)

t← get time()

l←⊥ get location(p)

h← rh

rh← rh+ 1

mmap[h]← (t, l, f)

return h

proc recv(p, h, rh⊥)

tr ← get time()

lr ←⊥ get location(p)

(ts, ls,m)←⊥ nmap[h]

if d(lr, ls) ≤ |tr − ts|
if rh⊥ 6= ⊥ ∧ rh ∈ mmap (tm, lm, f)← mmap[rh]

if d(lr, lm) ≤ |tr − tm|⌊
return f(m)

return m

return ⊥

Figure 4. Environments with physicalities.

module PS

var sk ∈ skey

proc setup()

(sk, pk)←$S.KGen()
return pk

proc recv challenge(N)

N2 ←$ {0, 1}`

σ ← S.Sig(sk, (N,N2))

return (N2, σ)

module VS

var B ∈ R
var cpk ∈ pkey
var smap ∈ sid⇀ R× nonce

proc setup(bd, pk)

B← bd

cpk← pk

smap← ⊥

proc send challenge(sid)

if smap[sid] = ⊥
t← Env.get time()

N ←$ {0, 1}`

smap[sid]← (t,N)

return N

return ⊥

proc recv response(sid,N, σ)

b← false

if smap[sid] 6= ⊥
(t1, N1)← smap[sid]

t← Env.get time()

if B < |t1 − t|⌊
b← S.Vf(cpk, (N1, N), σ)

smap[sid]← ⊥
return b

Figure 5. The EMV-RRP protocol based on
signature scheme S.

module OV,P

proc verifier send challenge(sid)

N ←⊥ V.send challenge(sid)

m← format challenge(N)

h← E.send(V,m)

return h

proc card send response(h, rh)

m←⊥ E.recv(P, h, rh)

Nc ←⊥ parse challenge(m)

(Nr, σ)← P.recv challenge(Nc)

m′ ← format response(Nr, σ)

h← E.send(P,m′)

return h

proc verifier recv response(sid, h, rh)

m←⊥ E.recv(V, h, rh)

(Nr, σ)←⊥ parse response(m)

b←⊥ V.recv response(sid,Nr, σ)

return b

proc get time()

E.get time()

proc add time(t)

E.add time(t)

proc get loc(p)

E.get location(p)

proc set loc(p, l)

E.set location(p, l)

proc send(m)

h← E.send(A,m)

return h

proc modify(f)

h← E.modify(A, f)
return h

proc recv(h, rh)

m← E.recv(A, h, rh)
return m

Figure 6. Adversary oracles for a MiM adversary
with control over scheduling and network.

Expbsec
P,V,A,S

b← false;OVS ,PS
.init()

(B, sidc)← Aset location
1 ()

pk ← PS .setup();VS .setup(B, pk)
// Learning Phase starts

AOVS ,PS

2 (pk)

// Attack Phase starts

posP ← E.get location(P); posV ← E.get location(V)

if B < 2 · d(posP, posV)

hc← OVS ,PS
.verifier send challenge(sidc)

(tc1, qcard, rh)← AOE
3 (hc)

E.add time(tc1);

if qcard E.add time(d(posV, posP));

hr ← OVS ,PS
.card send response(h, rh)

E.add time(d(posP, posA));

(tc2, Nc, σc)← AOE
4 (hr)

E.add time(tc2);

h← OVS ,PS
.send(sidc, Nc, σc)

E.set time(d(posV, posA));

b← OVS ,PS
.verifier recv response(sidc, h,⊥)

return b

Figure 7. Security against an adversary A = (A1,A2,A3,A4),
with a single prover P, a single verifier V, and the set of
oracles O defined in Fig. 6. OE denotes environment oracles
{set time, add time, set location, send ,modify, recv}.

approach—based on a separate Environment that serves to
mediate all interactions between the adversary and protocol
participants—does not introduce a significant burden to the
proof. In fact, most of the non-cryptographic proof burden
is related to the management of verifier sessions. This is in
line with previous efforts on formalising stateful protocols [7],

where difficulties arise mainly from managing non-monotonic
state (such as the verifier’s session map smap, in our case).

In more complex proofs, the heavy use of maps to model
state may also make it useful to manually express and prove
framing variants for all oracles—expressing the fact that
sections of the state disjoint from those used by a particular
query are both irrelevant to the query’s semantics, and left
untouched by the oracle. Such invariants can be expressed and
proved once and for all, and used as needed in combination
with more direct proofs. Although we did not rely on them in
our proof, our formalisation of the Environment does include
statements and proofs to this effect.

G. Discussions and Further Extensions

Enforcement vs Assumption of Physical Constraints: In In
our model, we choose to let the Environment enforce physical
constraints on the propagation of messages and information.
A popular alternative when discussing the violation of trust
assumptions or other constraints is to explicitly include the
advantage of an adversary in violating these constraints whilst
still allowing them.

In this small proof of concept, enforcement makes the most
sense, for two reasons: i. It allows us to convince ourselves
early on in the formalisation that all physical properties we
wish to rely on in proofs are accurately captured; ii. It allows
us to directly use the constraints as invariants on the state
in proofs. For example, we know that, at any point in any
execution, it was always the case that a message read has
already been sent. Further, one could argue that physical

constraints are in fact being enforced by the real-world, and
violating them is not simply a “cheating” behaviour.

However, it is worth considering that some attacks on DB
protocols rely on the adversary’s ability to break abstractions,
inferring information from partial signals, and reacting before
an honest party would have fully “received” the informa-
tion [21]. Capturing this information as advantage terms would
make security claims safer by keeping them explicit, and
would also support a compositional analysis of lower-level
mechanisms aimed at reducing the probability of such attacks
succeeding.

We suspect that any reduction in a model with physical
constraints as an explicit assumption would start by a transition
to an enforcement model with the probability of the physical
assumption being broken appearing as a simple term in the
advantage. As such, the “enforcement-style” proof would in
fact be a part of the “assumption-style” proof itself.

Corrupted Participants and Control Messages: Although
we do not model adversaries that can corrupt otherwise honest
participants, future developments in such models will need to
take care of the fact that control messages used to control
corruption or release a corrupted party’s state to the adversary
must be passed through the environment in order to avoid any
problems with the teleportation of information. Before tackling
models that require more extensive use of control messages, it
may be worth extending the environment-based framework to
capture control messages in a separate queue: as noted in the
context of UC, the ability to easily distinguish between control
and protocol messages, and to apply different processing to
them, is often a key ingredient in complex proofs.

Alignment with the FlexiDB Model: The Environment-
based framework presented here only captures those details
necessary to an Outsider adversary with strong control of the
network. Our framework, however, captures all core aspects of
FlexiDB, and is developed in such a way as to support exten-
sions to cover all aspects of FlexiDB. We only discuss them
briefly here, as we do not yet know whether such extensions
could be carried out in a way amenable to reasoning.

Locations are currently static. Implementing a move oracle,
which updates the location map, is already possible, and
would align the framework fully with FlexiDB with respect to
adversarial control over participant locations. However, care
needs to be taken to prevent teleportation of parties and the
information they carry in their state. In practice, it would
be sufficient to make get location return ⊥ or some time-
dependent intermediate location for parties that are “in transit”.

Our modify oracle is slightly more powerful than the
replace oracle specified by FlexiDB. Indeed, our oracle
allows the adversary to decide where and when the transfor-
mation will be applied and have these decisions propagate in-
stantly, although the information contained in the transforma-
tion itself still propagates within the given physical constraints.
Finer-grained modelling of the modify oracle to align it with
replace is possible, but would require significantly more
complexity in the recv oracle. In particular, it would require
the recv oracle to modify the environment state (instead of

just consuming it) to mark a transformation as having already
taken effect. We do not add this complexity here, since it
is unnecessary in our proof. Yet, the adversary’s ability to
(instantly) control a channel, via its modify oracle, may cause
problems in proofs for more complex protocols, or in settings
where adversaries in different physical locations collaborate to
break protocol security.12

Finally, we choose in this paper not to generalise the
management of multiple instances of parties, and multi-
ple protocol sessions. This problem is known to be hard
independently of physicalities [7], [17], and should first be
tackled separately. Our approach here was to capture session
management as part of the protocol directly, rather than as
part of the model. We were disciplined in our modelling of
session management: although we do not describe these details
here, our formal model separates the—entirely stateless—code
for protocol steps from the stateful wrapper that manages the
session state. We believe this discipline could be generalised
into a framework and folded into the Environment, but note
that this may not always be beneficial. Dealing with such
scenarios in ad hoc ways may currently be the best approach
until better tool support is available.

Towards full GMF security: As discussed in Section VI-A,
we formalise a slightly weakened notion of security by
allowing the adversary to interact with the card at most
once while the challenge session is ongoing. This restriction
can potentially be removed: we can prove systematically in
EasyCrypt that the sampling and computation of data sent
through the environment can equivalently be delayed until
the sampled value, or the computation’s result affects the
adversary’s view—either because the adversary queries its
recv oracle on the corresponding message handle, or queries a
final oracle with direct output (say, verifier recv response).

In the context of Core-RRP, allowing the adversary to
interact with provers and verifier during the attack phase would
add a case to the reduction, where the challenge nonce from
the challenge session collides with one the adversary submitted
to the card independently of the reader during the attack phase.
Delaying the sampling of the challenge nonce until it becomes
visible to the adversary would reduce this case to that of
a freshly sampled value being equal to one picked by the
adversary earlier—a low probability event.

VII. CONCLUSION

We introduce FlexiDB, a formal model distance-bounding
protocols. It proposes several levels of an attacker’s ability,
combining capabilties to manipulate the network and corrupt
parties in the system. We also extend the standard definitions
of distance-fraud and mafia-fraud. To this end, we capture
and strengthen existing threat models/definitions, as well as
us adding new ones. Thus, we find new attacks on most DB
protocols, including on contactless payments.

12One can see how our modify oracle may allow the construction of an
unrealistic distinguisher: two physically distant adversaries can simply register
two distinct constant transformations at the beginning of the experiment, and
later use them to teleport one bit of information across arbitrary distances.

We also provide a feasibility-study in EasyCrypt, by encod-
ing most of FlexiDB therein. This is the first time a distance-
boudning formal model has been modelled in EasyCrypt,
or any cryptographic prover. We complete this study by a
mechanised-proof for a version of MasterCard’s contactless
payment protocol, in one of the threat models in FlexiDB.
This current proof-of-concept can be used as basis for future
work aiming to fully formalise DB and contactless payments
in EasyCrypt. We also expect our Environment-based frame-
work to be helpful in making proofs for interactive protocols
more systematic.

ACKNOWLEDGMENTS

Pascal Lafourcade was partly funded under the French
government research program “Investissements d’Avenir”
through the IDEX-ISITE initiative 16-IDEX-0001 (CAP 20-
25), the IMobS3 Laboratory of Excellence (ANR-10-LABX-
16-01), the French ANR PRC grant MobiS5 (ANR-18-
CE39-0019), DECRYPT (ANR-18-CE39-0007), SEVERITAS
(ANR-20-CE39-0005). Ioana Boureanu was partly supported
by ”TimeTrust”, a project funded by UK’s National Cyber
Security Centre (NCSC).

We thank Joe Konathapally for contributing to the bush-
whacking of an early version of our EasyCrypt model,
during a NSCS-funded research-internship. We thank the CSF
reviewers for their comments and prompting us to resubmit,
leading to us to improving our formal results in the meantime.

REFERENCES

[1] Distance Bounding EasyCrypt Code. https://gitlab.com/ec-db/ec-db.git.
Online: 2021-05-20.

[2] H. Ahmadi and R. Safavi-Naini. Secure distance bounding verification
using physical-channel properties. CoRR, abs/1303.0346, 2013.

[3] G. Avoine, A. Bingol, I. Boureanu, S. Capkun, G. Hancke, S. Kardas,
C. Kim, C. Lauradoux, B. Martin, et al. Security of distance-bounding:
A survey. ACM Computing Surveys, 2018.

[4] G. Avoine, M. A. Bingol, S. Karda, C. Lauradoux, and B. Martin. A
formal framework for analyzing RFID distance bounding protocols. In
Journal of Computer Security - Special Issue on RFID System Security,
2010, 2010.

[5] G. Avoine, X. Bultel, S. Gambs, D. Gérault, P. Lafourcade, C. Onete, and
J.-M. Robert. A terrorist-fraud resistant and extractor-free anonymous
distance-bounding protocol. In Proc. of ASIA CCS ’17, pages 800–814.
ACM, 2017.

[6] G. Avoine and A. Tchamkerten. An efficient distance bounding RFID
authentication protocol: Balancing false-acceptance rate and memory
requirement. In Information Security, 12th International Conference,
ISC 2009, Pisa, Italy, September 7-9, 2009. Proceedings, pages 250–
261, 2009.

[7] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt. Mind the gap:
Modular machine-checked proofs of one-round key exchange protocols.
In E. Oswald and M. Fischlin, editors, Advances in Cryptology -
EUROCRYPT 2015, pages 689–718, Berlin, Heidelberg, 2015. Springer
Berlin Heidelberg.

[8] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and P. Strub.
Easycrypt: A tutorial. In Proceedings of FOSAD 2013, pages 146–166,
2013.

[9] A. Benfarah, B. Miscopein, J. Gorce, C. Lauradoux, and B. Roux.
Distance bounding protocols on TH-UWB radios. In Proceedings of
the Global Communications Conference, 2010. GLOBECOM 2010, 6-
10 December 2010, Miami, Florida, USA, pages 1–6, 2010.

[10] B. Blanchet. Security protocol verification: Symbolic and computational
models. In Principles of Security and Trust, pages 3–29, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[11] I. Boureanu and A. Anda. Another look at relay and distance-based
attacks in contactless payments. Cryptology ePrint Archive, Report
2018/402, 2018. https://eprint.iacr.org/2018/402.

[12] I. Boureanu, C. C. Dragan, F. Dupressoir, D. Gerault, and P. Lafourcade.
Precise and mechanised models and proofs for distance-bounding and an
application to contactless payments. Cryptology ePrint Archive, Report
2020/1000, 2020. https://eprint.iacr.org/2020/1000.

[13] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. On the pseudorandom
function assumption in (secure) distance-bounding protocols. Progress
in Cryptology – LATINCRYPT 2012, pages 100–120, 2012.

[14] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical and Provably
Secure Distance-Bounding. Journal of Computer Security, 23(2):229–
257, 2015.

[15] I. Boureanu and S. Vaudenay. Optimal proximity proofs. In Proc. of
Inscrypt, pages 170–190. Springer, 2015.

[16] A. Brelurut, D. Gérault, and P. Lafourcade. Survey of distance bounding
protocols and threats. In Foundations and Practice of Security - 8th
International Symposium, FPS 2015, Clermont-Ferrand, France, 2015,
Lecture Notes in Computer Science. Springer, 2015.

[17] R. Canetti, A. Stoughton, and M. Varia. Easyuc: Using easycrypt to
mechanize proofs of universally composable security. In 32nd IEEE
Computer Security Foundations Symposium, CSF 2019, Hoboken, NJ,
USA, June 25-28, 2019, pages 167–183. IEEE, 2019.

[18] T. Chothia, I. Boureanu, and L. Chen. Short paper: Making contactless
EMV robust against rogue readers colluding with relay attackers. In
I. Goldberg and T. Moore, editors, Financial Cryptography and Data
Security - 23rd International Conference, FC 2019, Frigate Bay, St.
Kitts and Nevis, February 18-22, 2019, Revised Selected Papers, volume
11598 of Lecture Notes in Computer Science, pages 222–233. Springer,
2019.

[19] T. Chothia, J. de Ruiter, and B. Smyth. Modelling and analysis of a
hierarchy of distance bounding attacks. In W. Enck and A. P. Felt,
editors, 27th USENIX Security Symposium, USENIX Security 2018,
Baltimore, MD, USA, August 15-17, 2018., pages 1563–1580. USENIX
Association, 2018.

[20] T. Chothia, F. D. Garcia, J. de Ruiter, J. van den Breekel, and M. Thomp-
son. Relay cost bounding for contactless EMV payments. In R. Böhme
and T. Okamoto, editors, Financial Cryptography and Data Security -
19th International Conference, FC 2015, San Juan, Puerto Rico, January
26-30, 2015, Revised Selected Papers, volume 8975 of Lecture Notes in
Computer Science, pages 189–206. Springer, 2015.

[21] J. Clulow, G. P. Hancke, M. G. Kuhn, and T. Moore. So near and yet
so far: Distance-bounding attacks in wireless networks. In L. Buttyán,
V. D. Gligor, and D. Westhoff, editors, Security and Privacy in Ad-Hoc
and Sensor Networks, Third European Workshop, ESAS 2006, Hamburg,
Germany, September 20-21, 2006, Revised Selected Papers, volume
4357 of Lecture Notes in Computer Science, pages 83–97. Springer,
2006.

[22] A. Debant and S. Delaune. Symbolic verification of distance bounding
protocols. Research report, Univ Rennes, CNRS, IRISA, France, Feb.
2019.

[23] A. Debant, S. Delaune, and C. Wiedling. Proving physical proximity
using symbolic models. Research report, Univ Rennes, CNRS, IRISA,
France, Feb. 2018.

[24] A. Debant, S. Delaune, and C. Wiedling. Symbolic analysis of terrorist
fraud resistance. In European Symposium on Research in Computer
Security, pages 383–403. Springer, 2019.

[25] U. Dürholz, M. Fischlin, M. Kasper, and C. Onete. A formal approach to
distance bounding RFID protocols. In Proceedings of ISC 2011, volume
7001 of LNCS, pages 47–62. Springer-Verlag, 2011.

[26] EMVCo. Book C-2 kernel 2 specification v2.7. EMV contactless
specifications for payment system. www.emvco.com/wp-content/
plugins/pmpro-customizations/oy-getfile.php?u=/wp-content/uploads/
documents/C-7 Kernel 7 V 2 7 Final.pdf, Feb, 2018.

[27] R. Entezari, H. Bahramgiri, and M. Tajamolian. A mafia and distance
fraud high-resistance rfid distance bounding protocol. In 2014 11th
International ISC Conference on Information Security and Cryptology,
pages 67–72, 2014.

[28] M. S. Fatemeh Baghernejad, Nasour Bagheri. Security analysis of the
distance bounding protocol proposed by jannati and falahati. Electrical
and Computer Engineering Innovations, 2(2):85–92, 2014.

[29] A. O. Gürel, A. Arslan, and M. Akgün. Non-uniform stepping approach
to rfid distance bounding problem. In Proceedings of the 5th Interna-
tional Workshop on Data Privacy Management, and 3rd International

Conference on Autonomous Spontaneous Security, DPM’10/SETOP’10,
pages 64–78, Berlin, Heidelberg, 2011. Springer-Verlag.

[30] G. P. Hancke and M. G. Kuhn. An RFID distance bounding protocol.
In Proceedings of SecureComm 2005, pages 67–73. IEEE, 2005.

[31] H. Kilinç and S. Vaudenay. Optimal proximity proofs revisited. In
T. Malkin, V. Kolesnikov, A. B. Lewko, and M. Polychronakis, edi-
tors, Applied Cryptography and Network Security - 13th International
Conference, ACNS 2015, New York, NY, USA, June 2-5, 2015, Revised
Selected Papers, volume 9092 of Lecture Notes in Computer Science,
pages 478–494. Springer, 2015.

[32] C. H. Kim and G. Avoine. Rfid distance bounding protocol with
mixed challenges to prevent relay attacks. In Proceedings of the 8th
International Conference on Cryptology and Network Security, CANS
’09, pages 119–133, Berlin, Heidelberg, 2009. Springer-Verlag.

[33] C. H. Kim, G. Avoine, F. Koeune, F. Standaert, and O. Pereira. The
swiss-knife RFID distance bounding protocol. In Information Security
and Cryptology (ICISC) 2008, LNCS, pages 98–115. Springer-Verlag,
2008.

[34] S. Lee, J. S. Kim, S. J. Hong, and J. Kim. Distance bounding with
delayed responses. IEEE Communications Letters, 16(9):1478–1481,
2012.

[35] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua. Distance-
bounding protocols: Verification without time and location. In 2018
IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-
23 May 2018, San Francisco, California, USA, pages 549–566, 2018.

[36] S. Mauw, Z. Smith, J. Toro-Pozo, and R. Trujillo-Rasua. Post-collusion
security and distance bounding. In L. Cavallaro, J. Kinder, X. Wang,
and J. Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK,
November 11-15, 2019, pages 941–958. ACM, 2019.

[37] A. Mitrokotsa, C. Onete, and S. Vaudenay. Mafia fraud attack against the
rč distance-bounding protocol. In 2012 IEEE International Conference
on RFID-Technologies and Applications, RFID-TA 2012, Nice, France,
November 5-7, 2012, pages 74–79, 2012.

[38] J. Munilla and A. Peinado. Distance bounding protocols for rfid
enhanced by using void-challenges and analysis in noisy channels. Wirel.
Commun. Mob. Comput., 8(9):1227–1232, Nov. 2008.

[39] C. Pöpper, N. O. Tippenhauer, B. Danev, and S. Capkun. Investigation of
signal and message manipulations on the wireless channel. In European
Symposium on Research in Computer Security, pages 40–59. Springer,
2011.

[40] B. Preneel. Post-snowden threat models. In Proceedings of the 20th
ACM Symposium on Access Control Models and Technologies, pages
1–1, 2015.

[41] R. Trujillo-Rasua, B. Martin, and G. Avoine. The poulidor distance-
bounding protocol. In Proceedings of the 6th International Conference
on Radio Frequency Identification: Security and Privacy Issues, RFID-
Sec’10, pages 239–257, Berlin, Heidelberg, 2010. Springer-Verlag.

[42] R. Trujillo-Rasua, B. Martin, and G. Avoine. Distance-bounding facing
both mafia and distance frauds: Technical report. CoRR, abs/1405.5704,
2014.

[43] J. van Leeuwen and J. Wiedermann. The turing machine paradigm
in contemporary computing. In B. Engquist and W. Schmid, editors,
Mathematics Unlimited — 2001 and Beyond, pages 1139–1155. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2001.

APPENDIX A
(2-Weak-Insider Full)-GDF AGAINST 13+ DB PROTOCOLS

The attacks herein rely on a weak insider controlling two
provers and a total adversary w.r.t. communications, writ-
ten A2-WI,Full. We illustrate this on the proven-secure DB3
distance-bounding protocol [15], recalled in Section V-B.

Programmable PRF. In DB3, as in many distance bounding
protocols, the response to the challenge ci is computed as a
function of a and ci, where a is the output of a PRF f for
some initially-exchanged nonces. Our attack assumes that the
PRF used in the protocol is programmable, as defined in [13].
Specifically, the PRF returns a constant value R when one of
its inputs has a certain form.

Let f be the PRF specified in DB3, fz denote an instance
of f keyed with a key z, and R be a constant. Let pf be the
programmed version of f , such that:

pfz(NP,NV) =

R if NP = g(z)

R if NV = h(z)

fz(NP,NV) otherwise,

where g and h are functions from {0, 1}|z| to {0, 1}|nonce|.
For clarity, we use g(z) = h(z) = z. Therefore, for two
different secret keys xP and xA, we have (1) pfxP

(NP, xP) =
pfxA(xA, NV) = R. Our attack exploits this equality.

Notes on Attacks using Programmable-PRFs. Firstly, our
attack is not strictly the same as in [13]; the attacks therein
were distance-fraud and MiM attacks. Our attacks are a
generalisation of the distance-fraud attacks. Secondly, the
attacks similar to those in [13] do not apply “for granted”
on any/all DB protocols. Instead –if existent– they are con-
structive attacks, based on the mechanism in the protocol at
hand proofing. Further once exposed in principle, one needs
to show/argue that the trapdoor-ed PRF in their construction
is indeed a PRF, which is non trivial in itself. We do this
below for our case. Thirdly, attacks of this type, and ours with
them, are an as real a threat as all the so-called “post-Snowden
security” or “post-compromise” security [40].

A. Our (2-Weak-Insider Full)-GDF against DB3 [15]

This attack is executed in our GDF setting: an honest
prover P and the designated verifier dV are within distance
at most B of each other, and an A2-WI,Full adversary A and
the designated prover dP are both at a distance greater than
B of dV. We write posP, posdV, posA and posdP to denote
their respective positions. Note that dP is not actually active
in this attack, as the insider adversary, knowing dP’s key,
authenticates from a distance on his behalf.

The idea of our attack is as follows:
– A injects nonces such that equality (1) above holds;
– therefore, the response vector of P matches the response
vector of A, and A does not need to run the timed phase of
the protocol himself.

In the next, let xP (resp. xdP) denote the secret keys of P
and dP. Concretely, the attack goes as follows:

1) During the learning phase, A registers P by calling
join(prover,posP), dV by calling join(verifier,posdV),
and dP by calling joinWI(posdP). He also calls the
enable-broadcast() oracle to enable full broadcast
mode, and returns the setting (posA, dP, dV);

2) During the attack phase, A calls init(P, dV), to start a
session sid between P and dV;

3) A calls replace(P, sid, ∗, {dV}, {sid}, xdP), to replace
dP’s NP with the secret key of dP.

4) A calls replace(dV, sid, ∗, xP, {P}, {sid}). This re-
places the message NV from dV with the secret key
of P. Yet, A receives the unmodified message NV . At
this stage, we have aP = aA = R.

5) During the challenge response phase of the protocol,
A does not interact with the parties, but records the
challenges c issued by dV;

6) A calls replace(P, sid, ∗, {dV}, {sid}, tagA), where
tagA = fxdP(xdP, NV, c), to replace P’s final msg. with
his own.

7) A returns sid.
The session sid authenticates dP: all authenticating mes-

sages in the session are computed with the authentication
material of dP. Therefore, the prover dP is accepted by dV,
even though d(posdP, posdV) > B and d(posA, posdV) > B.

B. More (2-Weak-Insider, Full)-Attacks

The same attack as in Subsection A against DB3 [15]
applies to other distance-bounding protocols. A non-exhaustive
list of which is given in Table II. In all protocols therein,
the timed-phase response function always uses a bitstring a
which, in turn, is the output a PRF on two nonces used in the
initialisation phase. However, compared with DB3, some other
details may differ. Columns 2 and 3 of Table II capture such
differences: column 2 indicates whether NP is sent before
NV ; column 3 indicates whether messages are sent after the
timed phase. For instance, for the protocols where V sends his
nonce before the prover’s, steps 2 and 3 of the attack against
DB3 would be inverted. For the protocols where no messages
are sent during after the end of the timed phase, step 5 is not
executed. Finally, in the protocol in [6], an additional value v0,
derived from a, is sent by the prover before the timed phase:
A can either send it, or let the close-by prover send it.

Protocol NP first Final message
Kim and Avoine [32] 7 7
Benfarah et al. [9] (both versions) 7 7
TMA [42] 7 7
Hancke and Kuhn [30] 3 7
Munilla et Peinado [38] 3 3
Avoine et Tchamkerten [6] 3 7
Poulidor [41] 3 7
NUS [29] 3 3
Lee et al. [34] 3 7
LPDB [37] 3 7
EBT [27] 3 7
Baghernejad et al. [28] 3 7

Table II
CERTAIN DB PROTOCOLS VULNERABLE TO GENERALISED DISTANCE

FRAUD VIA PROGRAMMABLE PRF, IN FlexiDB.
APPENDIX B

NEW (1-Strong-Insider,FULL)-ATTACK ON DB PROTOCOLS

We consider adversaries that can chose their secret keys. Our
attack targets protocols designed to be terrorist-fraud resistant,
in which the two responses r0j , r1j at round j are such that
r0j⊕r1j = xj , where x is the secret key of the prover. These
protocols often have a structure similar to the Swiss-Knife
(SK) protocol [33]; so, we present our attack on SK, noting
that it applies to other protocols of the same family.

The Swiss-Knife Protocol [33] & Its Security: In
the SK protocol, the verifier sends a nonce NA, and re-
ceive a nonce NB in return. Both P and V compute a =
fx(CB,NB) (where CB is a constant, and f is a PRF. The
response at round j is computed as aj if cj = 0, and aj ⊕ xj

if cj = 1. In the end, P sends TB = fx(c, ID,NA,NB),
where c is the concatenation of all the challenges and ID is
the identifier of P. The verifier replies with fx(NB).

a) Our Attack on the Swiss-Knife Protocol: In our
attack, A picks a key xdP = 0. Therefore, for all rounds, it
holds that r0j = r1j = aj . Since the response is independent
of the challenge, A can send it before V issues the challenge.

This attack is executed in our GDF setting: a A1-SI,Full

adversary A and the designated prover dP are both at a
distance greater than B of dV. As long as these conditions
are met, their exact position does not change the validity of
our attack. So, we write posA, posdP and posdV to denote their
respective positions, without loss of generality. Note that dP
is not actually used in this attack, as the insider adversary,
knowing his key, authenticates from a distance on his behalf.

Concretely, the attack goes as follows:
1) During the learning phase, A registers dV

by calling join(verifier,posdV), and dP by
calling joinSI(dP, posdP). He also calls
enable-broadcast() oracle to enable full broadcast
mode, and returns the setting (posA, dP, dV);

2) During the attack phase, A calls init(dV) to start a
session sid with dV, receives NA, sends a random nonce
NB with sendDum(dV, sid,NB) and computes a =
fxdP(CB,NB);

3) At each round j, A uses sendDum(dV, sid, aj) in ad-
vance;

4) A uses send(dV, sid, TB), where TB =
fxdP(c, dP, NA,NB).

5) A returns sid.
The session sid authenticates dP: all authenticating mes-

sages in the session are computed with the authentication
material of dP. Therefore, the prover dP is accepted by dV,
even though d(posdP, posdV) > B and d(posA, posdV) > B.

b) Counteraction & Applicability of Our Attack on
SK: While the Swiss-Knife protocol, and other similar ones,
are vulnerable to this attack due to the mechanism introduced
to counter terrorist-fraud (the presence of the key in the
response function), it is noteworthy that a fix can be applied.
For instance, in [5], a random bitmask m, chosen by the
verifier at each session, is applied. The response to challenge
ci = 1 becomes ai ⊕ xi ⊕ mi, while the response to the
challenge zero remains ai. Therefore, fixing the secret key to
only permits to send responses in advance for half the rounds
on average (the ones where mi = 0).

The attack presented above can be seen as a destructive
attack, as the adversary implicitly leaks his secret key to po-
tential eavesdroppers by executing it. Nonetheless, it remains
relevant in settings where the adversary has no rationale inter-
est in protecting his credentials, i.e., the gain from executing
the attack is greater than the loss incurred by leaking his secret
key.

