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Abstract—We formally prove that the C implementation of
the X25519 key-exchange protocol in the TweetNaCl library is
correct. We prove both that it correctly implements the protocol
from Bernstein’s 2006 paper, as standardized in RFC 7748,
as well as the absence of undefined behavior like arithmetic
overflows and array out-of-bounds errors. We also formally
prove, based on the work of Bartzia and Strub, that X25519
is mathematically correct, i.e., that it correctly computes scalar
multiplication on the elliptic curve Curve25519.

The proofs are all computer-verified using the Coq theorem
prover. To establish the link between C and Coq we use the
Verified Software Toolchain (VST).

I. INTRODUCTION

The Networking and Cryptography library (NaCl) [1] is an
easy-to-use, high-security, high-speed cryptography library. It
uses specialized code for different platforms, which makes it
rather complex and hard to audit. TweetNaCl [2] is a compact
re-implementation in C of the core functionalities of NaCl and
is claimed to be “the first cryptographic library that allows
correct functionality to be verified by auditors with reasonable
effort” [2]. The original paper presenting TweetNaCl describes
some effort to support this claim, for example, formal verifica-
tion of memory safety, but does not actually prove correctness
of any of the primitives implemented by the library.

One core component of TweetNaCl (and NaCl) is the key-
exchange protocol X25519 presented by Bernstein in [3]. This
protocol is standardized in RFC 7748 and used by a wide
variety of applications [4] such as SSH, the Signal Protocol,
Tor, Zcash, and TLS to establish a shared secret over an
insecure channel. The X25519 key-exchange protocol is an
x-coordinate-only elliptic-curve Diffie–Hellman key exchange
using the Montgomery curve E : y2 = x3 + 486662x2 +
x over the field F2255−19. Note that originally, the name
“Curve25519” referred to the key-exchange protocol, but
Bernstein suggested to rename the protocol to X25519 and to
use the name Curve25519 for the underlying elliptic curve [5].
We use this updated terminology in this paper.

Contributions of this paper. In short, in this paper we provide
a computer-verified proof that the X25519 implementation
in TweetNaCl matches the mathematical definition of the
function given in [3, Sec. 2]. This proof is done in three steps:

We first formalize RFC 7748 [6] in Coq [7].
In the second step we prove equivalence of the C imple-

mentation of X25519 to our RFC formalization. This part of
the proof uses the Verifiable Software Toolchain (VST) [8]
to establish a link between C and Coq. VST uses separation

logic [9], [10] to show that the semantics of the program
satisfies a functional specification in Coq. To the best of our
knowledge, this is the first time that VST is used in the formal
proof of correctness of an implementation of an asymmetric
cryptographic primitive.

In the last step we prove that the Coq formalization of
the RFC matches the mathematical definition of X25519
as given in [3, Sec. 2]. We do this by extending the Coq
library for elliptic curves [11] by Bartzia and Strub to support
Montgomery curves, and in particular Curve25519.

To our knowledge, this verification effort is the first to
not just connect a low-level implementation to a higher-level
implementation (or “specification”), but to prove correctness
all the way up to the mathematical definition in terms of scalar
multiplication on an elliptic curve. As a consequence, the
result of this paper can readily be used in mechanized proofs
arguing about the security of cryptographic constructions on
the more abstract level of operations in groups and related
problems, like the elliptic-curve discrete-logarithm (ECDLP)
or elliptic-curve Diffie-Hellman (ECDH) problem. Also, con-
necting our formalization of the RFC to the mathematical
definition significantly increases trust into the correctness of
the formalization and reduces the effort of manually auditing
the formalization.

The bigger picture of high-assurance crypto. This work fits
into the bigger area of high-assurance cryptography, i.e., a line
of work that applies techniques and tools from formal methods
to obtain computer-verified guarantees for cryptographic soft-
ware. Traditionally, high-assurance cryptography is concerned
with three main properties of cryptographic software:

1) verifying correctness of cryptographic software, typi-
cally against a high-level specification;

2) verifying implementation security and in particular
security against timing attacks; and

3) verifying cryptographic security notions of primi-
tives and protocols through computer-checked reduc-
tions from some assumed-to-be-hard mathematical prob-
lem.

A recent addition to this triplet (or rather an extension of im-
plementation security) is security also against attacks expoiting
speculative execution; see, e.g., [12]. This paper targets only
the first point and attempts to make results immediately usable
for verification efforts of cryptographic security.

Verification of implementation security is probably equally
important as verification of correctness, but working on the
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C language level as we do in this paper is not helpful.
To obtain guarantees of security against timing-attack we
recommend verifying compiled code on LLVM level with,
e.g., ct-verif [13], or even better on binary level with, e.g.,
BINSEC/REL [14].

Related work. The field of computer-aided cryptography, i.e.,
using computer-verified proofs to strengthen our trust into
cryptographic constructions and cryptographic software, has
seen massive progress in the recent past. This progress, the
state of the art, and future challenges have recently been
compiled in a SoK paper by Barbosa, Barthe, Bhargavan,
Blanchet, Cremers, Liao, and Parno [15]. This SoK paper, in
Section III.C, also gives an overview of verification efforts of
X25519 software. What all the previous approaches have in
common is that they prove correctness by verifying that some
low-level implementation matches a higher-level specification.
This specification is kept in terms of a sequence of finite-field
operations, typically close to the pseudocode in RFC 7748.

There are two general approaches to establish this link
between low-level code and higher-level specification: Syn-
thesize low-level code from the specification or write the low-
level code by hand and prove that it matches the specification.

The X25519 implementation from the Evercrypt
project [16] uses a low-level language called Vale that
translates directly to assembly and proves equivalence to a
high-level specification in F∗. In [17], Zinzindohoué, Bartzia,
and Bhargavan describe a verified extensible library of elliptic
curves in F* [18]. This served as ground work for the
cryptographic library HACL* [19] used in the NSS suite
from Mozilla. The approach they use is a combination of
proving and synthesizing: A fairly low-level implementation
written in Low∗ is proven to be equivalent to a high-level
specification in F∗. The Low∗ code is then compiled to C
using an unverified and thus trusted compiler called Kremlin.

Coq not only allows verification but also synthesis [20].
Erbsen, Philipoom, Gross, and Chlipala make use of it to have
correct-by-construction finite-field arithmetic, which is used to
synthesize certified elliptic-curve crypto software [21], [22],
[23]. This software suite is now being used in BoringSSL [24].

All of these X25519 verification efforts use a clean-slate
approach to obtain code and proofs. Our effort targets existing
software; we are aware of only one earlier work verifying
existing X25519 software: In [25], Chen, Hsu, Lin, Schwabe,
Tsai, Wang, Yang, and Yang present a mechanized proof of
two assembly-level implementations of the core function of
X25519. Their proof takes a different approach from ours. It
uses heavy annotation of the assembly-level code in order to
“guide” a SAT solver; also, it does not cover the full X25519
functionality and does not make the link to the mathematical
definition from [3]. As a consequence, this work would not
find bugs in any of the routines processing the scalar (like
“clamping”, see Section II-B), bugs in the the serialization
routines or, maybe most importantly, bugs in the high-level
specification that the code is verified against.

Finally, in terms of languages and tooling the work closest to

what we present here is the proof of correctness of OpenSSL’s
implementations of HMAC [26], and mbedTLS’ implemen-
tations of HMAC-DRBG [27] and SHA-256 [28]. As those
are all symmetric primitives without the rich mathematical
structure of finite field and elliptic curves the actual proofs
are quite different.

Reproducing the proofs. To maximize reusability of our
results we place the code of our formal proof presented in
this paper into the public domain. It is available at https:
//doi.org/10.5281/zenodo.4439686 with instructions of how to
compile and verify our proof. A description of the content of
the code archive is provided in Appendix C.

Organization of this paper. Section II gives the necessary
background on Curve25519 and X25519 implementations
and a brief explanation of how formal verification works.
Section III provides our Coq formalization of X25519 as
specified in RFC 7748 [6]. Section IV details the specifications
of X25519 in TweetNaCl and some of the proof techniques
used to show the correctness with respect to RFC 7748 [6].
Section V describes our extension of the formal library by
Bartzia and Strub and the proof of correctness of the X25519
implementation with respect to Bernstein’s specifications [5].
Finally in Section VI we discuss the trusted code base of
our proofs and conclude with some lessons learned about
TweetNaCl and with sketching the effort required to extend
our work to other elliptic-curve software.

Figure 1 shows a graph of dependencies of the proofs. C
source files are represented by .C while .V corresponds to
Coq files. In a nutshell, we formalize X25519 into a Coq
function RFC, and we write a specification in separation
logic with VST. The first step of CompCert compilation
(clightgen) is used to translate the C source code into a
DSL in Coq (CLight). By using VST, we step through the
translated instructions and verify that the program satisfies
the specifications. Additionally we formally define the scalar
multiplication over elliptic curves and show that, under the
same preconditions as used in the specification, RFC computes
the desired results.

II. PRELIMINARIES

In this section, we first give a brief summary of the
mathematical background on elliptic curves. We then describe
X25519 and its implementation in TweetNaCl. Finally, we
provide a brief description of the formal tools we use in our
proofs.

A. Arithmetic on Montgomery curves

Definition 2.1: Given a field K, and a, b ∈ K such that
a2 6= 4 and b 6= 0, Ma,b is the Montgomery curve defined
over K with equation

Ma,b : by2 = x3 + ax2 + x.

Definition 2.2: For any algebraic extension L ⊇ K, we call
Ma,b(L) the set of L-rational points, defined as

Ma,b(L) = {O} ∪ {(x, y) ∈ L× L | by2 = x3 + ax2 + x}.
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X
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Fig. 1. Structure of the proof.

Here, the additional element O denotes the point at infinity.
Details of the formalization can be found in Section V-A2.

For Ma,b over a finite field Fp, the parameter b is known as
the “twisting factor”. For b′ ∈ Fp\{0} and b′ 6= b, the curves
Ma,b and Ma,b′ are isomorphic via (x, y) 7→ (x,

√
b/b′ · y).

Definition 2.3: When b′/b is not a square in Fp, Ma,b′ is a
quadratic twist of Ma,b, i.e., a curve that is isomorphic over
Fp2 [29].

Points in Ma,b(K) can be equipped with a structure of
a commutative group with the addition operation + and
with neutral element the point at infinity O. For a point
P ∈ Ma,b(K) and a positive integer n we obtain the scalar
product

n · P = P + · · ·+ P︸ ︷︷ ︸
n times

.

In order to efficiently compute the scalar multiplication we
use an algorithm similar to square-and-multiply: the Mont-
gomery ladder where the basic operations are differential
addition and doubling [30].

We consider x-coordinate-only operations. Throughout the
computation, these x-coordinates are kept in projective rep-
resentation (X : Z), with x = X/Z; the point at infinity is
represented as (1 : 0). See Section V-A3 for more details. We
define the operation:

xDBL&ADD : (xQ−P , (XP : ZP ), (XQ : ZQ)) 7→
((X2·P : Z2·P ), (XP+Q : ZP+Q))

A pseudocode description of the Montgomery ladder using
this xDBL&ADD routine is given in Algorithm 1. The main

loop iterates over the bits of the scalar n. The kth iteration
conditionally swaps the arguments P and Q of xDBL&ADD
depending on the value of the kth bit of n. We use a conditional
swap CSWAP to change the arguments of the above function
while keeping the same body of the loop. Given a pair (P0, P1)
and a bit b, CSWAP returns the pair (Pb, P1−b).

Algorithm 1 Montgomery ladder for scalar mult.
Input: x-coordinate xP of a point P , scalar n of bitlength

upperbound by some integer m
Output: x-coordinate xQ of Q = n · P
Q = (XQ : ZQ)← (1 : 0)
R = (XR : ZR)← (xP : 1)
for k := m down to 1 do

(Q,R)← CSWAP((Q,R), kth bit of n)
(Q,R)← xDBL&ADD(xP , Q,R)
(Q,R)← CSWAP((Q,R), kth bit of n)

end for
return XQ/ZQ

B. The X25519 key exchange

From now on let Fp be the field with p = 2255 − 19
elements. We consider the elliptic curve E over Fp defined
by the equation y2 = x3 + 486662x2 + x. For every x ∈ Fp
there exists a point P in E(Fp2) such that x is the x-coordinate
of P .

The core of the X25519 key-exchange protocol is a scalar-
multiplication function, which we will also refer to as X25519.
This function receives as input two arrays of 32 bytes each.
One of them is interpreted as the little-endian encoding of a
non-negative 256-bit integer n (see Section III). The other is
interpreted as the little-endian encoding of the x-coordinate
xP ∈ Fp of a point in E(Fp2), using the standard mapping of
integers modulo p to elements in Fp.

The X25519 function first computes a scalar n′ from n by
setting bits at positions 0, 1, 2 and 255 to 0; and at position
254 to 1. This operation is often called “clamping” of the
scalar n. Note that n′ ∈ 2254 + 8{0, 1, . . . , 2251− 1}. X25519
then computes the x-coordinate of n′ · P .

RFC 7748 [6] standardizes the X25519 Diffie–Hellman key-
exchange algorithm. Given the base point B where XB = 9,
each party generates a secret random number sa (respectively
sb), and computes XPa (respectively XPb ), the x-coordinate of
PA = sa ·B (respectively PB = sb ·B). The parties exchange
XPa and XPb and compute their shared secret sa · sb ·B with
X25519 on sa and XPb (respectively sb and XPa ).

C. TweetNaCl specifics

As its name suggests, TweetNaCl aims for code compact-
ness (“a crypto library in 100 tweets”). As a result it uses
a few defines and typedefs to gain precious bytes while still
remaining human-readable.

#define FOR(i,n) for (i = 0;i < n;++i)
#define sv static void
typedef unsigned char u8;
typedef long long i64;



TweetNaCl functions take pointers as arguments. By con-
vention the first one points to the output array o. It is then
followed by the input arguments.

Due to some limitations of VST, indexes used in for loops
have to be of type int instead of i64. We changed the code
to allow our proofs to carry through. We believe this does not
affect the correctness of the original code. A complete diff of
our modifications to TweetNaCl can be found in Appendix A.

D. X25519 in TweetNaCl

We now describe the implementation of X25519 in Tweet-
NaCl.

Arithmetic in F2255−19. In X25519, all computations are
performed in Fp. Throughout the computation, elements of
that field are represented in radix 216, i.e., an element A
is represented as (a0, . . . , a15), with A =

∑15
i=0 ai2

16i. The
individual “limbs” ai are represented as 64-bit long long
variables:

typedef i64 gf[16];

The conversion from the input byte array to this represen-
tation in radix 216 is done with the unpack25519 function.

The radix-216 representation in limbs of 64 bits is highly
redundant; for any element A ∈ F2255−19 there are multiple
ways to represent A as (a0, . . . , a15). This is used to avoid or
delay carry handling in basic operations such as Addition (A),
subtraction (Z), multiplication (M) and squaring (S). After a
multiplication, limbs of the result o are too large to be used
again as input. Two calls to car25519 at the end of M takes
care of the carry propagation.

Inverses in F2255−19 are computed in inv25519. This
function uses exponentiation by p− 2 = 2255 − 21, computed
with the square-and-multiply algorithm.
sel25519 implements a constant-time conditional swap

(CSWAP) by applying a mask between two fields elements.
Finally, the pack25519 function converts the internal

redundant radix-216 representation to a unique byte array
representing an integer in {0, . . . , p − 1} in little-endian
format. This function is considerably more complex as it
needs to convert to a unique representation, i.e., also fully
reduce modulo p and remove the redundancy of the radix-216

representation.
The C definitions of all these functions are available in

Appendix A.

The Montgomery ladder. With these low-level arithmetic and
helper functions defined, we can now turn our attention to the
core of the X25519 computation: the crypto_scalarmult
API function of TweetNaCl, which is implemented through the
Montgomery ladder.
1 int crypto_scalarmult(u8 *q,
2 const u8 *n,
3 const u8 *p)
4 {
5 u8 z[32];
6 i64 r;
7 int i;
8 gf x,a,b,c,d,e,f;
9 FOR(i,31) z[i]=n[i];

10 z[31]=(n[31]&127)|64;
11 z[0]&=248;

12 unpack25519(x,p);
13 FOR(i,16) {
14 b[i]=x[i];
15 d[i]=a[i]=c[i]=0;
16 }
17 a[0]=d[0]=1;
18 for(i=254;i>=0;--i) {
19 r=(z[i>>3]>>(i&7))&1;
20 sel25519(a,b,r);
21 sel25519(c,d,r);
22 A(e,a,c);
23 Z(a,a,c);
24 A(c,b,d);
25 Z(b,b,d);
26 S(d,e);
27 S(f,a);
28 M(a,c,a);
29 M(c,b,e);
30 A(e,a,c);
31 Z(a,a,c);
32 S(b,a);
33 Z(c,d,f);
34 M(a,c,_121665);
35 A(a,a,d);
36 M(c,c,a);
37 M(a,d,f);
38 M(d,b,x);
39 S(b,e);
40 sel25519(a,b,r);
41 sel25519(c,d,r);
42 }
43 inv25519(c,c);
44 M(a,a,c);
45 pack25519(q,a);
46 return 0;
47 }

Note that lines 10 & 11 represent the “clamping” operation;
the sequence of arithmetic operations in lines 22 through 39
implement the xDBL&ADD routine.

E. Coq, separation logic, and VST

Coq [7] is an interactive theorem prover based on type
theory. It provides an expressive formal language to write
mathematical definitions, algorithms, and theorems together
with their proofs. It has been used in the proof of the four-
color theorem [31] and it is also the system underlying the
CompCert formally verified C compiler [32]. Unlike systems
like F* [18], Coq does not rely on an SMT solver in its trusted
code base. It uses its type system to verify the applications of
hypotheses, lemmas, and theorems [33].

Hoare logic is a formal system which allows reasoning
about programs. It uses triples such as

{Pre} Prog {Post}

where Pre and Post are assertions and Prog is a fragment of
code. It is read as “when the precondition Pre is met, executing
Prog will yield postcondition Post”. We use compositional
rules to prove the truth value of a Hoare triple. For example,
here is the rule for sequential composition:

{P}C1{Q} {Q}C2{R}Hoare-Seq
{P}C1;C2{R}

Separation logic is an extension of Hoare logic which allows
reasoning about pointers and memory manipulation. Reason-
ing in separation logic assumes that certain memory regions
are non-overlapping. We discuss this limitation further in
Section IV-A.

The Verified Software Toolchain (VST) [34] is a framework
which uses separation logic (proven correct with respect to



CompCert semantics) to prove the functional correctness of C
programs. The first step consists of translating the source code
into Clight, an intermediate representation used by CompCert.
For this purpose we use the parser of CompCert called
clightgen. In a second step one defines the Hoare triple
representing the specification of the piece of software one
wants to prove. With the help of VST we then use the
strongest-postcondition approach to prove the correctness of
the triple. This can be seen as a forward symbolic execution
of the program.

III. FORMALIZING X25519 FROM RFC 7748

In this section we present our formalization of
RFC 7748 [6].

The specification of X25519 in RFC 7748 is formalized by
the function RFC in Coq.

More specifically, we formalized X25519 with the following
definition:
Definition RFC (n: list Z) (p: list Z) : list Z :=
let k := decodeScalar25519 n in
let u := decodeUCoordinate p in
let t := montgomery_rec_swap
255 (* iterate 255 times *)
k (* clamped n *)
1 (* x2 *)
u (* x3 *)
0 (* z2 *)
1 (* z3 *)
0 (* dummy *)
0 (* dummy *)
u (* x1 *)
0 (* previous bit = 0 *) in

let a := get_a t in
let c := get_c t in
let o := ZPack25519 (Z.mul a (ZInv25519 c))
in encodeUCoordinate o.

In this definition montgomery_rec_swap is a generic
ladder instantiated with integers and defined as follows:
Fixpoint montgomery_rec_swap (m : nat) (z : T')
(a: T) (b: T) (c: T) (d: T) (e: T) (f: T) (x: T) (swap:Z) :
(* a: x2 *)
(* b: x3 *)
(* c: z2 *)
(* d: z3 *)
(* e: temporary var *)
(* f: temporary var *)
(* x: x1 *)
(* swap: previous bit value *)
(T * T * T * T * T * T) :=
match m with
| S n ⇒
let r := Getbit (Z.of_nat n) z in
(* k_t = (k >> t) & 1 *)

let swap := Z.lxor swap r in
(* swap ^= k_t *)

let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in
(* (x2, x3) = cswap(swap, x2, x3) *)

let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in
(* (z2, z3) = cswap(swap, z2, z3) *)

let e := a + c in (* A = x2 + z2 *)
let a := a - c in (* B = x2 - z2 *)
let c := b + d in (* C = x3 + z3 *)
let b := b - d in (* D = x3 - z3 *)
let d := e2 in (* AA = A2 *)
let f := a2 in (* BB = B2 *)
let a := c * a in (* CB = C * B *)
let c := b * e in (* DA = D * A *)
let e := a + c in (* x3= (DA + CB)2 *)
let a := a - c in (* z3= x1* (DA - CB)2 *)
let b := a2 in (* z3= x1* (DA - CB)2 *)
let c := d - f in (* E = AA - BB *)
let a := c * C_121665 in

(* z2 = E * (AA + a24 * E) *)
let a := a + d in (* z2 = E * (AA + a24 * E) *)
let c := c * a in (* z2 = E * (AA + a24 * E) *)

let a := d * f in (* x2 = AA * BB *)
let d := b * x in (* z3 = x1* (DA - CB)2 *)
let b := e2 in (* x3 = (DA + CB)2 *)
montgomery_rec_swap n z a b c d e f x r
(* swap = k_t *)

| 0%nat ⇒
let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in
(* (x2, x3) = cswap(swap, x2, x3) *)

let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in
(* (z2, z3) = cswap(swap, z2, z3) *)

(a,b,c,d,e,f)
end.

The comments in the ladder represent the text from the RFC,
which our formalization matches perfectly. In order to opti-
mize the number of calls to CSWAP (defined in Section II-A)
the RFC uses an additional variable to decide whether a
conditional swap is required or not.

Later in our proof we use a simpler description of the ladder
(montgomery_rec) which strictly follows Algorithm 1 and
prove those descriptions equivalent.

RFC 7748 describes the calculations done in X25519 as
follows: “To implement the X25519(k, u) [...] functions (where
k is the scalar and u is the u-coordinate), first decode k and u
and then perform the following procedure, which is taken from
[curve25519] and based on formulas from [montgomery]. All
calculations are performed in GF(p), i.e., they are performed
modulo p.” [6]

Operations used in the Montgomery ladder of RFC are
performed on integers (see Appendix B-B). The reduction
modulo 2255 − 19 is deferred to the very end as part of the
ZPack25519 operation.

We now turn our attention to the decoding and encoding
of the byte arrays. We define the little-endian projection to
integers as follows.

Definition 3.1: Let ZofList : Z → list Z → Z, a
function which given n and a list l returns its little-endian
decoding with radix 2n.
Similarly, we define the projection from integers to little-
endian lists.

Definition 3.2: Let ListofZ32 : Z → Z → list Z,
given n and a returns a’s little-endian encoding as a list with
radix 2n.

With those tools at hand, we formally define the decoding
and encoding as specified in the RFC.
Definition decodeScalar25519 (l: list Z) : Z :=
ZofList 8 (clamp l).

Definition decodeUCoordinate (l: list Z) : Z :=
ZofList 8 (upd_nth 31 l (Z.land (nth 31 l 0) 127)).

Definition encodeUCoordinate (x: Z) : list Z :=
ListofZ32 8 x.

In the definition of decodeScalar25519, clamp is
taking care of setting and clearing the selected bits as stated
in the RFC and described in Section II-B.

IV. PROVING EQUIVALENCE OF X25519 IN C AND COQ

In this section we prove the following theorem:

The implementation of X25519 in TweetNaCl
(crypto_scalarmult) matches the specifications of
RFC 7748 [6] (RFC).



More formally:
Theorem body_crypto_scalarmult:
(* VST boiler plate. *)
semax_body
(* Clight translation of TweetNaCl. *)
Vprog
(* Hoare triples for function calls. *)
Gprog
(* function we verify. *)
f_crypto_scalarmult_curve25519_tweet
(* Our Hoare triple, see below. *)
crypto_scalarmult_spec.

Using our formalization of RFC 7748 (Section III) we spec-
ify the Hoare triple before proving its correctness with VST
(IV-A). We provide an example of equivalence of operations
over different number representations (IV-B).

A. Applying the Verifiable Software Toolchain

We now turn our focus to the formal specification of
crypto_scalarmult. We use our definition of X25519
from the RFC in the Hoare triple and prove its correctness.

Specifications. We show the soundness of TweetNaCl by
proving a correspondence between the C version of TweetNaCl
and a pure function in Coq formalizing the RFC. This defines
the equivalence between the Clight representation and our Coq
definition of the ladder (RFC).

Definition crypto_scalarmult_spec :=
DECLARE _crypto_scalarmult_curve25519_tweet
WITH
v_q: val, v_n: val, v_p: val, c121665:val,
sh : share,
q : list val, n : list Z, p : list Z

(*------------------------------------------*)
PRE [ _q OF (tptr tuchar),

_n OF (tptr tuchar),
_p OF (tptr tuchar) ]

PROP (writable_share sh;
Forall (λ x 7→ 0 ≤ x < 28) p;
Forall (λ x 7→ 0 ≤ x < 28) n;
Zlength q = 32; Zlength n = 32;
Zlength p = 32)

LOCAL(temp _q v_q; temp _n v_n; temp _p v_p;
gvar __121665 c121665)

SEP (sh[{ v_q }]←(uch32)− q;
sh[{ v_n }]←(uch32)− mVI n;
sh[{ v_p }]←(uch32)− mVI p;
Ews[{ c121665 }]←(lg16)− mVI64 c_121665)

(*------------------------------------------*)
POST [ tint ]
PROP (Forall (λ x 7→ 0 ≤ x < 28) (RFC n p);

Zlength (RFC n p) = 32)
LOCAL(temp ret_temp (Vint Int.zero))
SEP (sh[{ v_q }]←(uch32)− mVI (RFC n p);

sh[{ v_n }]←(uch32)− mVI n;
sh[{ v_p }]←(uch32)− mVI p;
Ews[{ c121665 }]←(lg16)− mVI64 c_121665

In this specification we state preconditions as follows:

PRE: _p OF (tptr tuchar)
The function crypto_scalarmult takes as in-
put three pointers to arrays of unsigned bytes
(tptr tuchar) _p, _q and _n.
LOCAL: temp _p v_p
Each pointer represents an address v_p, v_q and v_n.
SEP: sh [{ v_p }]←(uch32)− mVI p
In the memory share sh, the address v_p points to a list
of integer values mVI p.
Ews [{ c121665 }] ←(lg16)− mVI64 c_121665
In the global memory share Ews, the address c121665

points to a list of 16 64-bit integer values corresponding
to a/4 = 121665.
PROP: Forall (λ x 7→ 0 ≤ x < 28) p
In order to consider all the possible inputs, we assume
each element of the list p to be bounded by 0 included
and 28 excluded.
PROP: Zlength p = 32
We also assume that the length of the list p is 32. This
defines the complete representation of u8[32].

As postcondition we have conditions as follows:

POST: tint
The function crypto_scalarmult returns an integer.
LOCAL: temp ret_temp (Vint Int.zero)
The returned integer has value 0.
SEP: sh [{ v_q }]←(uch32)− mVI (RFC n p)
In the memory share sh, the address v_q points to a list
of integer values mVI (RFC n p) where RFC n p is
the result of the crypto_scalarmult of n and p.
PROP: Forall (λ x 7→ 0 ≤ x < 28) (RFC n p)
PROP: Zlength (RFC n p) = 32
We show that the computation for RFC fits in u8[32].

crypto_scalarmult computes the same result as RFC
in Coq provided that inputs are within their respective bounds:
arrays of 32 bytes.

The correctness of this specification is formally proven in
Coq as Theorem body_crypto_scalarmult.

Memory aliasing. The semicolon in the SEP parts of the
Hoare triples represents the separating conjunction (often writ-
ten as a star), which means that the memory shares of q, n and
p do not overlap. In other words, we only prove correctness
of crypto_scalarmult when it is called without aliasing.
But for other TweetNaCl functions, like the multiplication
function M(o,a,b), we cannot ignore aliasing, as it is called
in the ladder in an aliased manner.

In VST, a simple specification of this function will assume
that the pointer arguments point to non-overlapping space in
memory. When called with three memory fragments (o, a,
b), the three of them will be consumed. However assuming
this naive specification when M(o,a,a) is called (squaring),
the first two memory areas (o, a) are consumed and VST
will expect a third memory section (a) which does not exist
anymore. Examples of such cases are illustrated in Figure 2.
As a result, a function must either have multiple specifications
or specify which aliasing case is being used. The first option
would require us to do very similar proofs multiple times
for the same function. We chose the second approach: for
functions with 3 arguments, named hereafter o, a, b, we
define an additional parameter k with values in {0, 1, 2, 3}:
• if k = 0 then o and a are aliased.
• if k = 1 then o and b are aliased.
• if k = 2 then a and b are aliased.
• else there is no aliasing.

In the proof of our specification, we do a case analysis over
k when needed. This solution does not cover all the possible



sh

M(o,a,b)

sh [{ v_o}]←(lg16)− o;
sh [{ v_a}]←(lg16)− a;
sh [{ v_b}]←(lg16)− b

sh

M(c,c,a)

sh [{ v_c}]←(lg16)− c;
sh [{ v_a}]←(lg16)− a

In Separation Logic:

sh
Ews

M(a,c,c_121665)

sh [{ v_a}]←(lg16)− a;
sh [{ v_c}]←(lg16)− c;
Ews [{ c121665}]←(lg16)− c_121665

In Separation Logic:

Fig. 2. Aliasing and Separation Logic

cases of aliasing over 3 pointers (e.g., o = a = b) but it is
enough to satisfy our needs.

B. Number representation and C implementation

As described in Section II-C, numbers in gf (array of
16 long long) are represented in base 216 and we use a
direct mapping to represent that array as a list of integers in
Coq. However, in order to show the correctness of the basic
operations, we need to convert this number to an integer. We
reuse the mapping ZofList : Z → list Z → Z from
Section III and define a notation where n is 16, to fix a a
radix of 216.
Notation "Z16.lst A" := (ZofList 16 A).

To facilitate working in Z2255−19, we define the :GF notation.
Notation "A :GF" := (A mod (2255 − 19)).

Later in Section V-B1, we formally define F2255−19 as a field.
Equivalence between operations in Z2255−19 (i.e., under :GF )
and in F2255−19 are easily proven.

Using these two definitions, we prove intermediate lemmas
such as the correctness of the multiplication Low.M where
Low.M replicates the computations and steps done in C.

Lemma 4.1: Low.M correctly implements the multiplication
in Z2255−19.
This is specified in Coq as follows:
Lemma mult_GF_Zlength :
forall (a:list Z) (b:list Z),
Zlength a = 16 →
Zlength b = 16 →
(Z16.lst (Low.M a b)):GF = (Z16.lst a * Z16.lst b):GF.

However, for our purpose, simple functional correctness is
not enough. We also need to define the bounds under which the
operation is correct, allowing us to chain them, guaranteeing
the absence of overflows.

Lemma 4.2: if all the values of the input arrays are con-
strained between −226 and 226, then the output of Low.M
will be constrained between −38 and 216 + 38.
This is seen in Coq as follows:
Lemma M_bound_Zlength :
forall (a:list Z) (b:list Z),
Zlength a = 16 →
Zlength b = 16 →
Forall (λ x ⇒ -226 < x < 226) a →
Forall (λ x ⇒ -226 < x < 226) b →
Forall (λ x ⇒ -38 ≤ x < 216 + 38) (Low.M a b).

By using each function Low.M; Low.A; Low.Sq;
Low.Zub; Unpack25519; clamp; Pack25519;
Inv25519; car25519; montgomery_rec, we defined
Crypto_Scalarmult in Coq and with VST proved that it
matches the exact behavior of X25519 in TweetNaCl.

By proving that each function Low.M; Low.A; Low.Sq;
Low.Zub; Unpack25519; clamp; Pack25519;
Inv25519; car25519 behave over list Z as their
equivalent over Z with :GF (in Z2255−19), we prove that
given the same inputs Crypto_Scalarmult performs the
same computation as RFC.
Lemma Crypto_Scalarmult_RFC_eq :
forall (n: list Z) (p: list Z),
Zlength n = 32 →
Zlength p = 32 →
Forall (λ x ⇒ 0 ≤ x ∧ x < 2 ^ 8) n →
Forall (λ x ⇒ 0 ≤ x ∧ x < 2 ^ 8) p →
Crypto_Scalarmult n p = RFC n p.

Using this equality, we can direct replace
Crypto_Scalarmult in our specification by RFC,
proving that TweetNaCl’s X25519 implementation respects
RFC 7748.

V. PROVING THAT X25519 IN COQ MATCHES THE
MATHEMATICAL MODEL

In this section we prove the following informal theorem:

The implementation of X25519 in TweetNaCl computes the
Fp-restricted x-coordinate scalar multiplication on E(Fp2)
where p is 2255 − 19 and E is the elliptic curve y2 =
x3 + 486662x2 + x.

More precisely, we prove that our formalization of the RFC
matches the definitions of Curve25519 by Bernstein:
Theorem RFC_Correct: forall (n p : list Z)
(P:mc curve25519_Fp2 _mcuType),
Zlength n = 32 →
Zlength p = 32 →
Forall (λ x ⇒ 0 ≤ x ∧ x < 2 ^ 8) n →
Forall (λ x ⇒ 0 ≤ x ∧ x < 2 ^ 8) p →
Fp2 _x (decodeUCoordinate p) = P#x0 →
RFC n p =
encodeUCoordinate
((P *+ (Z.to_nat (decodeScalar25519 n))) _x0).

We first review the work of Bartzia and Strub [11] (V-A1).
We extend it to support Montgomery curves (V-A2) with
projective coordinates (V-A3) and prove the correctness of the
ladder (V-A4). We discuss the twist of Curve25519 (V-B1)
and explain how we deal with it in the proofs (V-B2).

A. Formalization of elliptic curves

Figure 3 presents the structure of the proof of the ladder’s
correctness. The white tiles are definitions, the orange ones



are hypotheses and the green tiles represent major lemmas
and theorems.

We consider the field K and formalize the Montgomery
curves (Ma,b(K)). Then, by using the equivalent Weierstraß
form (Ea′,b′(K)) from the library of Bartzia and Strub, we
prove that Ma,b(K) forms a commutative group. Under the
hypotheses that a2 − 4 is not a square in K, we prove the
correctness of the ladder (Theorem 5.9).

Library from Bartzia & Strub

Ma,b(K)

E
a′,b′ (K)

Ma,b(K) is an commutative group

Hyp:

∀x ∈ K,
x2 6= a2 − 4

Thm:

∀x ∈ K, n ∈ N, P ∈ Ma,b(K),

x = χ0(P ) =⇒
ladder n x = χ0(n · P )

Fig. 3. Overview of the proof of Montgomery ladder’s correctness.

We now turn our attention to the details of the proof of the
ladder’s correctness.

Definition 5.1: Given a field K, using an appropriate choice
of coordinates, an elliptic curve E is a plane cubic algebraic
curve defined by an equation E(x, y) of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

where the ai’s are in K and the curve has no singular point
(i.e., no cusps or self-intersections). The set of points defined
over K, written E(K), is formed by the solutions (x, y) of E
together with a distinguished point O called point at infinity:

E(K) = {(x, y) ∈ K×K | E(x, y)} ∪ {O}

1) Short Weierstraß curves: For the remainder of this text,
we assume that the characteristic of K is neither 2 nor 3. Then,
this equation E(x, y) can be reduced into its short Weierstraß
form.

Definition 5.2: Let a ∈ K and b ∈ K such that

∆(a, b) = −16(4a3 + 27b2) 6= 0.

The elliptic curve Ea,b is defined by the equation

y2 = x3 + ax+ b.

Ea,b(K) is the set of all points (x, y) ∈ K2 satisfying the Ea,b
along with an additional formal point O, “at infinity”. Such a
curve does not have any singularities.

In this setting, Bartzia and Strub defined the parametric
type ec which represents the points on a specific curve.
It is parameterized by a K : ecuFieldType—the type
of fields whose characteristic is neither 2 nor 3—and E :
ecuType—a record that packs the curve parameters a and
b—along with the proof that ∆(a, b) 6= 0.

Inductive point := EC_Inf | EC_In of K * K.
Notation "(| x, y |)" := (EC_In x y).
Notation "∞" := (EC_Inf).

Record ecuType := { A : K; B : K; _: 4 * A3 + 27 * B2 6= 0}.
Definition oncurve (p : point) :=
if p is (| x, y |)
then y2 == x3 + A * x + B
else true.

Inductive ec : Type := EC p of oncurve p.

Points on an elliptic curve form an abelian group when
equipped with the following structure.
• The negation of a point P = (x, y) is defined by

reflection about the x-axis, i.e., −P = (x,−y).
• The addition of two points P and Q is defined as the

negation of the third intersection point of the line passing
through P and Q, or tangent to P if P = Q.

• O is the neutral element under this law: if 3 points are
collinear, their sum is equal to O.

These operations are defined in Coq as follows (where we
omit the code for the tangent case):
Definition neg (p : point) :=
if p is (| x, y |) then (| x, -y |) else EC_Inf.

Definition add (p1 p2 : point) :=
match p1 , p2 with
| ∞ , _ ⇒ p2

| _ , ∞ ⇒ p1

| (| x1 , y1 |), (| x2 , y2 |) ⇒
if x1 == x2 then ... else
let s := (y2 - y1 ) / (x2 - x1 ) in
let xs := s2 - x1 - x2 in
(| xs , - s * (xs - x1 ) - y1 |)

end.

The value of add is proven to be on the curve with coercion:
Lemma addO (p q : ec): oncurve (add p q).

Definition addec (p1 p2 : ec) : ec :=
EC p1 p2 (addO p1 p2 )

2) Montgomery curves: Speedups can be obtained by
switching to projective coordinates and other forms than the
Weierstraß form. We consider the Montgomery form [30].

Definition 5.3: Let a ∈ K\{−2, 2}, and b ∈ K\{0}. The
elliptic curve Ma,b is defined by the equation

by2 = x3 + ax2 + x.

Ma,b(K) is the set of all points (x, y) ∈ K2 satisfying Ma,b

along with an additional formal point O “at infinity”.
Similar to the definition of ec, we define the parametric type
mc which represents the points on a specific Montgomery
curve. It is parameterized by a K : ecuFieldType—the
type of fields whose characteristic is neither 2 nor 3—and M
: mcuType—a record that packs the curve parameters a and
b—along with the proofs that b 6= 0 and a2 6= 4.
Record mcuType := { cA : K; cB : K; _: cB 6= 0; _: cA2 6= 4}.
Definition oncurve (p : point K) :=
if p is (| x, y |)
then cB * y2 == x3 + cA * x2 + x
else true.

Inductive mc : Type := MC p of oncurve p.

Lemma oncurve_mc: forall p : mc, oncurve p.

We define the addition on Montgomery curves in a similar
way as for the Weierstraß form.
Definition add (p1 p2 : point K) :=
match p1 , p2 with



| ∞, _ ⇒ p2

| _, ∞ ⇒ p1

| (|x1 , y1 |), (|x2 , y2 |) ⇒
if x1 == x2

then if (y1 == y2 ) && (y1 6= 0)
then ... else ∞

else
let s := (y2 - y1 ) / (x2 - x1 ) in
let xs := s2

* cB - cA - x1 - x2 in
(| xs , - s * (xs - x1 ) - y1 |)

end.

And again we prove that the result is on the curve:
Lemma addO (p q : mc) : oncurve (add p q).

Definition addmc (p1 p2 : mc) : mc :=
MC p1 p2 (addO p1 p2 )

We define a bijection between a Montgomery curve and its
short Weierstraß form (Lemma 5.4) and prove that it respects
the addition as defined on the respective curves. In this way
we get all the group laws for Montgomery curves from the
Weierstraß ones.

After having verified the group properties, it follows that
the bijection is a group isomorphism.

Lemma 5.4: Let Ma,b be a Montgomery curve, define

a′ =
3− a2

3b2
and b′ =

2a3 − 9a

27b3
,

then Ea′,b′ is a Weierstraß curve, and the mapping ϕ : Ma,b 7→
Ea′,b′ defined as:

ϕ(OM ) = OE
ϕ((x, y)) =

(x
b

+
a

3b
,
y

b

)
is a group isomorphism between elliptic curves.

3) Projective coordinates: In a projective plane, points are
represented by triples (X : Y : Z) excluding (0 : 0 : 0). Scalar
multiples of triples are identified with each other, i.e., for all
λ 6= 0, the triples (X : Y : Z) and (λX : λY : λZ) represent
the same point in the projective plane. For Z 6= 0, the point
(X : Y : Z) corresponds to the point (X/Z, Y/Z) in the
affine plane. Likewise, the point (X,Y ) in the affine plane
corresponds to (X : Y : 1) in the projective plane.

Using fractions as coordinates, the equation for a Mont-
gomery curve Ma,b becomes

b

(
Y

Z

)2

=

(
X

Z

)3

+ a

(
X

Z

)2

+

(
X

Z

)
.

Multiplying both sides by Z3 yields

bY 2Z = X3 + aX2Z +XZ2.

Setting Z = 0 in this equation, we derive X = 0. Hence,
(0 : 1 : 0) is the unique point on the curve at infinity.

By restricting the parameter a of Ma,b(K) such that a2− 4
is not a square in K (Hypothesis 5.5), we ensure that (0, 0) is
the only point with a y-coordinate of 0.

Hypothesis 5.5: The number a2 − 4 is not a square in K.
Hypothesis mcu_no_square : forall x : K, x2 6= a2 - 4.

We define χ and χ0 to return the x-coordinate of points on
a curve.

Definition 5.6: Let χ : Ma,b(K) 7→ K ∪ {∞} and χ0 :
Ma,b(K) 7→ K such that

χ((x, y)) = x, χ(O) =∞, and
χ0((x, y)) = x, χ0(O) = 0.

Using projective coordinates we prove the formula for
differential addition.

Lemma 5.7: Let Ma,b be a Montgomery curve such that
a2− 4 is not a square in K, and let X1, Z1, X2, Z2, X4, Z4 ∈
K, such that (X1, Z1) 6= (0, 0), (X2, Z2) 6= (0, 0), X4 6= 0
and Z4 6= 0. Define
X3 = Z4((X1 − Z1)(X2 + Z2) + (X1 + Z1)(X2 − Z2))2,

Z3 = X4((X1 − Z1)(X2 + Z2)− (X1 + Z1)(X2 − Z2))2,

then for any point P1 and P2 in Ma,b(K) such that X1/Z1 =
χ(P1), X2/Z2 = χ(P2), and X4/Z4 = χ(P1 − P2), we have
X3/Z3 = χ(P1 + P2).
Remark: These definitions should be understood in K∪{∞}.
If x 6= 0 then we define x/0 =∞.
Similarly, we also prove the formula for point doubling.

Lemma 5.8: Let Ma,b be a Montgomery curve such that
a2 − 4 is not a square in K, and let X1, Z1 ∈ K, such that
(X1, Z1) 6= (0, 0). Define

c = (X1 + Z1)2 − (X1 − Z1)2

X3 = (X1 + Z1)2(X1 − Z1)2

Z3 = c
(

(X1 + Z1)2 +
a− 2

4
× c
)
,

then for any point P1 in Ma,b(K) such that X1/Z1 = χ(P1),
we have X3/Z3 = χ(2P1).

With Lemma 5.7 and Lemma 5.8, we are able to efficiently
compute differential additions and point doublings using pro-
jective coordinates.

4) Scalar multiplication algorithms: By taking Algorithm 1
and replacing xDBL&ADD by a combination of the formu-
las from Lemma 5.7 and Lemma 5.8, we define a ladder
opt_montgomery (in which K has not been fixed yet).

This gives us the theorem of the correctness of the Mont-
gomery ladder.

Theorem 5.9: For all n,m ∈ N, x ∈ K, P ∈ Ma,b(K), if
χ0(P ) = x then opt_montgomery returns χ0(n · P )
Theorem opt_montgomery_ok (n m: nat) (x : K) :
n < 2m →
forall (p : mc M), p#x0 = x →
opt_montgomery n m x = (p *+ n)#x0.

The definition of opt_montgomery is similar to
montgomery_rec_swap that was used in RFC. We
proved their equivalence, and used it in our final proof of
Theorem RFC_Correct.

B. Curves, twists and extension fields

Figure 4 gives a high-level view of the proofs presented
here. The white tiles are definitions while green tiles are
important lemmas and theorems.

A brief overview of the complete proof is described below.
We first set a = 486662, b = 1, b′ = 2, p = 2255 − 19,
with the equations C = Ma,b, and T = Ma,b′ . We prove
the primality of p and define the field Fp. Subsequently, we
show that neither 2 nor a2− 2 is a square in Fp. We consider
Fp2 and define C(Fp), T (Fp), and C(Fp2). We prove that for



p = 2255 − 19

C = M486662,1
T = M486662,2

p is prime

Fp

∀x ∈ Fp,
x2 6= 2

∀x ∈ Fp,
x2 6= a2 − 4

C(Fp) T (Fp)

∀x ∈ Fp,
∃P ∈ C(Fp),
∃Q ∈ T (Fp),

x = χ0(P ) ∨ x = χ0(Q)

∀x ∈ Fp,
∀P ∈ C(Fp),

x = χ0(P ) =⇒
lad n x = χ0(n · P )

∀x ∈ Fp,
∀Q ∈ T (Fp),

x = χ0(Q) =⇒
lad n x = χ0(n · Q)

F
p2

C(F
p2

) C(Fp) ⊂ C(F
p2

)

T (Fp) ⊂ C(F
p2

)

Thm:

∀x ∈ Fp,
∀P ∈ C(F

p2
),

x = χ0(P ) =⇒
ladder n x = χ0(n · P )

Fig. 4. Proof dependencies for the correctness of X25519.

all x ∈ Fp there exists a point with x-coordinate x either
on C(Fp) or on the quadratic twist T (Fp). We prove that all
points in M(Fp) and T (Fp) can be projected in M(Fp2) and
derive that computations done in M(Fp) and T (Fp) yield the
same results if projected to M(Fp2). Using Theorem 5.9 we
prove that the ladder is correct for M(Fp) and T (Fp); with the
previous results, this results in the correctness of the ladder
for M(Fp2), in other words the correctness of X25519.

Now that we have a red line for the proof, we turn our
attention to the details. Indeed Theorem 5.9 cannot be applied
directly to prove that X25519 is doing the computations over
M(Fp2). This would infer that K = Fp2 and we would need
to satisfy Hypothesis 5.5:

∀x ∈ K, x2 6= a2 − 4,

which is not possible as there always exists x ∈ Fp2 such that
x2 = a2 − 4. Consequently, we first study Curve25519 and
one of its quadratic twists Twist25519, both defined over Fp.

1) Curves and twists: We define Fp as the numbers between
0 and p = 2255 − 19. We create a Zmodp module to
encapsulate those definitions.
Module Zmodp.
Definition betweenb x y z := (x ≤ ? z) && (z <? y).
Definition p := locked (2255 - 19).
Fact Hp_gt0 : p > 0.
Inductive type := Zmodp x of betweenb 0 p x.

We define the basic operations (+,−,×) with their respec-
tive neutral elements (0, 1) and prove Lemma 5.10.

Lemma 5.10: Fp is a field.
For a = 486662, by using the Legendre symbol we prove that
a2 − 4 and 2 are not squares in Fp. This allows us to study
M486662,1(Fp) and M486662,2(Fp), one of its quadratic twists.

Definition 5.11: We instantiate opt_montgomery in two
specific ways:

– Curve25519_Fp(n, x) for M486662,1(Fp).

– Twist25519_Fp(n, x) for M486662,2(Fp).

With Theorem 5.9 we derive the following two lemmas:
Lemma 5.12: Let x ∈ Fp, n ∈ N, P ∈ Fp × Fp such that

P ∈M486662,1(Fp) and χ0(P ) = x, then

Curve25519_Fp(n, x) = χ0(n · P ).

Lemma 5.13: Let x ∈ Fp, n ∈ N, P ∈ Fp × Fp such that
P ∈M486662,2(Fp) and χ0(P ) = x, then

Twist25519_Fp(n, x) = χ0(n · P ).

As the Montgomery ladder does not depend on b, it is trivial
to see that the computations done for points in M486662,1(Fp)
and in M486662,2(Fp) are the same.

Because 2 is not a square in Fp, we can partition Fp as
follows:

Lemma 5.14: For all x in Fp, there exists a y in Fp such
that

y2 = x ∨ 2y2 = x.

For all x ∈ Fp, we can compute x3 + ax2 + x. Using
Lemma 5.14 we can find a y such that (x, y) is either on
the curve or on the quadratic twist:

Lemma 5.15: For all x ∈ Fp, there exists a point P in
M486662,1(Fp) or in M486662,2(Fp) such that the x-coordinate
of P is x.
Theorem x_is_on_curve_or_twist:
forall x : Zmodp.type,
(exists (p : mc curve25519_mcuType), p#x0 = x) ∨
(exists (p' : mc twist25519_mcuType), p'#x0 = x).

2) Curve25519 over Fp2 : The quadratic extension Fp2 is
defined as Fp[

√
2] by [3]. The theory of finite fields already

has been formalized in the Mathematical Components library,
but this formalization is rather abstract, and we need concrete
representations of field elements here. For this reason we
decided to formalize a definition of Fp2 ourselves.

We can represent Fp2 as the set Fp × Fp, representing
polynomials with coefficients in Fp modulo X2 − 2. In a
similar way as for Fp we use a module in Coq.
Module Zmodp2 .
Inductive type :=
Zmodp2 (x: Zmodp.type) (y:Zmodp.type).

Definition pi (x: Zmodp.type * Zmodp.type) : type :=
Zmodp2 x.1 x.2.

Definition mul (x y: type) : type :=
pi ((x.1 * y.1) + (2 * (x.2 * y.2)),

(x.1 * y.2) + (x.2 * y.1)).

We define the basic operations (+,−,×) with their respec-
tive neutral elements 0 and 1. Additionally we verify that
for each element of in Fp2\{0}, there exists a multiplicative
inverse.

Lemma 5.16: For all x ∈ Fp2\{0} and a, b ∈ Fp such that
x = (a, b),

x−1 =
( a

a2 − 2b2
,
−b

a2 − 2b2

)
As in Fp, we define 0−1 = 0 and prove Lemma 5.17.

Lemma 5.17: Fp2 is a commutative field.



We then specialize the basic operations in order to speed
up the verification of formulas by using rewrite rules:

(a, 0) + (b, 0) = (a+ b, 0)

(a, 0)−1 = (a−1, 0)

(a, 0) · (b, 0) = (a · b, 0)

(0, a)−1 = (0, (2 · a)−1)

The injection a 7→ (a, 0) from Fp to Fp2 preserves
0, 1,+,−,×. Thus (a, 0) can be abbreviated as a without
confusion.

We define M486662,1(Fp2). With the rewrite rule above, it
is straightforward to prove that any point in M486662,1(Fp) is
also in M486662,1(Fp2). Similarly, any point in M486662,2(Fp)
also corresponds to a point in M486662,1(Fp2). As direct
consequence, using Lemma 5.15, we prove that for all x ∈ Fp,
there exists a point P ∈ Fp2 × Fp2 on M486662,1(Fp2) such
that χ0(P ) = (x, 0) = x.
Lemma x_is_on_curve_or_twist_implies_x_in_Fp2 :
forall (x:Zmodp.type),
exists (p: mc curve25519_Fp2 _mcuType),
p#x0 = Zmodp2 .Zmodp2 x 0.

We now study the case of the scalar multiplication and show
similar proofs.

Definition 5.18: Define the functions ϕc, ϕt and
– ϕc : M486662,1(Fp) 7→M486662,1(Fp2)

such that ϕ((x, y)) = ((x, 0), (y, 0)).
– ϕt : M486662,2(Fp) 7→M486662,1(Fp2)

such that ϕ((x, y)) = ((x, 0), (0, y)).
– : Fp2 7→ Fp such that ψ(x, y) = x.
Lemma 5.19: For all n ∈ N, for any point P ∈ Fp ×

Fp on M486662,1(Fp) (respectively on the quadratic twist
M486662,2(Fp)), we have

P ∈M486662,1(Fp) =⇒ ϕc(n · P ) = n · ϕc(P ), and
P ∈M486662,2(Fp) =⇒ ϕt(n · P ) = n · ϕt(P ).

Notice that
∀P ∈M486662,1(Fp), ψ(χ0(ϕc(P ))) = χ0(P ), and
∀P ∈M486662,2(Fp), ψ(χ0(ϕt(P ))) = χ0(P ).

In summary, for all n ∈ N, n < 2255, for any point P ∈
Fp×Fp in M486662,1(Fp) or M486662,2(Fp), Curve25519_Fp
computes χ0(n·P ). We have proved that for all P ∈ Fp2×Fp2
such that χ0(P ) ∈ Fp, there exists a corresponding point on
the curve or the twist over Fp. Moreover, we have proved that
for any point on the curve or the twist, we can compute the
scalar multiplication by n and obtain the same result as if we
did the computation in Fp2 .

Theorem 5.20: For all n ∈ N, such that n < 2255, for
all x ∈ Fp and P ∈ M486662,1(Fp2) such that χ0(P ) = x,
Curve25519_Fp(n, x) computes χ0(n · P ).

We then prove the equivalence of operations between
F2255−19 and Z2255−19, in other words between Zmodp and
:GF . This allows us to show that given a clamped value n
and normalized x-coordinate of P , RFC gives the same results
as Curve25519_Fp.

All put together, this finishes the proof of the mathematical
correctness of X25519: the fact that the code in X25519, both
in RFC 7748 and in the TweetNaCl implementation, correctly
computes scalar multiplication in the elliptic curve.

VI. CONCLUSION

Any formal system relies on a trusted base. In this section
we describe our chain of trust.

Trusted Code Base of the proof. Our proof relies on a trusted
base, i.e., a foundation of definitions that must be correct. One
should not be able to prove a false statement in that system,
e.g., by proving an inconsistency.

In our case we rely on:
• Calculus of Inductive Constructions. The intuitionistic

logic used by Coq must be consistent in order to trust
the proofs. As an axiom, we assume that the functional
extensionality is also consistent with that logic:

∀x, f(x) = g(x) =⇒ f = g.

• Verifiable Software Toolchain. This framework devel-
oped at Princeton allows a user to prove that a Clight
code matches a pure Coq specification.

• CompCert. When compiling with CompCert we only
need to trust CompCert’s assembly semantics, as the
compilation chain has been formally proven correct.
However, when compiling with other C compilers like
Clang or GCC, the whole code base of these compilers
becomes part of the TCB.

• clightgen. The tool translating from C to Clight, the
first step of the CompCert compilation. This compilation
step is not covered by the proofs of CompCert and VST
requires Clight input. For example, VST does not sup-
port the direct verification of o[i] = a[i] + b[i],
which clightgen translates to

aux1 = a[i]; aux2 = b[i];
o[i] = aux1 + aux2;

The -normalize flag is taking care of this rewriting
and factors out assignments from inside subexpressions.

• Finally, we must trust the Coq kernel and its associated
libraries; the Ocaml compiler on which we compiled
Coq; the Ocaml Runtime and the CPU. Those are
common to all proofs done with this architecture [28],
[7].

Corrections in TweetNaCl. As a result of this ver-
ification, we removed superfluous code. Indeed indexes
17 to 79 of the i64 x[80] intermediate variable of
crypto_scalarmult were adding unnecessary complexity
to the code, we removed them.

Wu and Donenfeld brought to our attention that the original
car25519 function carried a risk of undefined behavior if c
is a negative number.

c=o[i]>>16;
o[i]-=c<<16; // c < 0 = UB !

We replaced this statement with a logical and, proved cor-
rectness, and thus solved this problem.

o[i]&=0xffff;

Aside from these modifications, all subsequent alterations to
the TweetNaCl code—such as the type change of loop indexes
(int instead of i64)—were required for VST to step through



the code properly. We believe that those adjustments do not
impact the trust of our proof.

We contacted the authors of TweetNaCl and expect that
the changes described above will soon be integrated in a new
version of the library.

Lessons learned. Most efforts in the area of high-assurance
crypto are carried out by teams who at the same time work on
tools and proofs and often even co-develop the implemen-
tations with the proofs. In this effort we set out to verify
pre-existing software, written in a not particularly verification-
friendly language using a set of tools (VST and Coq) whose
development we are not actively involved in.

TweetNaCl comes with a claim of verifiability, but it became
clear rather quickly that this claim is only based on the
overall simplicity of the library and not supported by code
written carefully such that it can efficiently be verified with
existing tools. The difference between our verified version
of TweetNaCl and the original TweetNaCl in Appendix A
gives an idea of some minimal changes we had to apply to
work with VST; many more small changes would have made
the proof much easier and more elegant. As one example, in
pack25519 the subtraction of p and the carry propagation
are done in a single for loop; had they been split into two
loops, the final result would have been the same but with a
much smaller verification effort.

There were many positive lessons to be learned from this
verification effort; most importantly that it is possible to prove
“legacy” cryptographic software written in C correct without
having to co-develop proofs and tools. However, we also
learned that it is still necessary to understand to some extent
how these tools (in particular VST) work under the hood. VST
is a collection of lemmas and proof tactics; the idea is to
expose the user only to the tactics and hide the details of the
underlying lemmas. At least in the VST versions we worked
with, this approach did not quite work and at various stages
in the proofs we had to look into the underlying lemmas. This
was due to the provided tactics not terminating, for example in
the last few steps of pack25519’s VST proof. Some struggle
with VST also taught us another very pleasant lesson, namely
that the VST development team is very responsive and helpful.
Various of our issues were sorted out with their help and we
hope that some of the experience we brought in also helped
improve VST.

Extending our work. The high-level definition (Section V)
can easily be ported to any other Montgomery curve and with
it the proof of the ladder’s correctness assuming the same
formulas are used. In addition to the curve equation, the field
Fp would need to be redefined as p = 2255−19 is hard-coded
in order to speed up some proofs.

With respect to the C code verification (Section IV), the
extension of the verification effort to Ed25519 would make
direct use of the low-level arithmetic. As the ladder-steps
formula is different, this would require a high level verification
similar to Theorem 5.9; also, a full correctness verification

of Ed25519 signatures would require verifying correctness of
SHA-512.

The verification of, e.g., X448 [35], [6] in C would require
the adaptation of most of the low-level arithmetic (mainly
the multiplication, carry propagation and reduction). Once the
correctness and bounds of the basic operations are established,
reproving the full ladder would make use of our generic
definition.

A complete proof. We provide a mechanized formal proof of
the correctness of the X25519 implementation in TweetNaCl
from C up the mathematical definitions with a single tool. We
first formalized X25519 from RFC 7748 [6] in Coq. We then
proved that TweetNaCl’s implementation of X25519 matches
our formalization. In a second step we extended the Coq
library for elliptic curves [11] by Bartzia and Strub to support
Montgomery curves. Using this extension we proved that the
X25519 specification from the RFC matches the mathematical
definitions as given in [3, Sec. 2]. Therefore in addition to
proving the mathematical correctness of TweetNaCl, we also
increase the trust of other works such as [19], [23], which rely
on RFC 7748.
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A. THE COMPLETE X25519 CODE FROM TWEETNACL

Verified C Code We provide below the code we verified.
1 #define FOR(i,n) for (i = 0;i < n;++i)
2 #define sv static void
3
4 typedef unsigned char u8;
5 typedef long long i64 __attribute__((aligned(8)));
6 typedef i64 gf[16];
7
8 sv set25519(gf r, const gf a)
9 {

10 int i;
11 FOR(i,16) r[i]=a[i];
12 }
13
14 sv car25519(gf o)
15 {
16 int i;
17 FOR(i,16) {
18 o[(i+1)%16]+=(i<15?1:38)*(o[i]>>16);
19 o[i]&=0xffff;
20 }
21 }
22
23 sv sel25519(gf p,gf q,int b)
24 {
25 int i;
26 i64 t,c=~(b-1);
27 FOR(i,16) {
28 t= c&(p[i]^q[i]);
29 p[i]^=t;
30 q[i]^=t;
31 }
32 }
33
34 sv pack25519(u8 *o,const gf n)
35 {
36 int i,j,b;
37 gf t,m={0};
38 set25519(t,n);
39 car25519(t);
40 car25519(t);
41 car25519(t);
42 FOR(j,2) {
43 m[0]=t[0]-0xffed;
44 for(i=1;i<15;i++) {
45 m[i]=t[i]-0xffff-((m[i-1]>>16)&1);
46 m[i-1]&=0xffff;
47 }
48 m[15]=t[15]-0x7fff-((m[14]>>16)&1);
49 b=(m[15]>>16)&1;
50 m[14]&=0xffff;
51 b=1-b;
52 sel25519(t,m,b);
53 }
54 FOR(i,16) {
55 o[2*i]=t[i]&0xff;
56 o[2*i+1]=t[i]>>8;
57 }
58 }
59
60 sv unpack25519(gf o, const u8 *n)
61 {
62 int i;
63 FOR(i,16) o[i]=n[2*i]+((i64)n[2*i+1]<<8);



64 o[15]&=0x7fff;
65 }
66
67 sv A(gf o,const gf a,const gf b)
68 {
69 int i;
70 FOR(i,16) o[i]=a[i]+b[i];
71 }
72
73 sv Z(gf o,const gf a,const gf b)
74 {
75 int i;
76 FOR(i,16) o[i]=a[i]-b[i];
77 }
78
79 sv M(gf o,const gf a,const gf b)
80 {
81 int i,j;
82 i64 t[31];
83 FOR(i,31) t[i]=0;
84 FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
85 FOR(i,15) t[i]+=38*t[i+16];
86 FOR(i,16) o[i]=t[i];
87 car25519(o);
88 car25519(o);
89 }
90
91 sv S(gf o,const gf a)
92 {
93 M(o,a,a);
94 }
95
96 sv inv25519(gf o,const gf i)
97 {
98 gf c;
99 int a;

100 set25519(c,i);
101 for(a=253;a>=0;a--) {
102 S(c,c);
103 if(a!=2&&a!=4) M(c,c,i);
104 }
105 FOR(a,16) o[a]=c[a];
106 }
107
108 int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
109 {
110 u8 z[32];
111 int r,i;
112 gf x,a,b,c,d,e,f;
113 FOR(i,31) z[i]=n[i];
114 z[31]=(n[31]&127)|64;
115 z[0]&=248;
116 unpack25519(x,p);
117 FOR(i,16) {
118 b[i]=x[i];
119 d[i]=a[i]=c[i]=0;
120 }
121 a[0]=d[0]=1;
122 for(i=254;i>=0;--i) {
123 r=(z[i>>3]>>(i&7))&1;
124 sel25519(a,b,r);
125 sel25519(c,d,r);
126 A(e,a,c);
127 Z(a,a,c);
128 A(c,b,d);
129 Z(b,b,d);
130 S(d,e);
131 S(f,a);
132 M(a,c,a);
133 M(c,b,e);
134 A(e,a,c);
135 Z(a,a,c);
136 S(b,a);
137 Z(c,d,f);
138 M(a,c,_121665);
139 A(a,a,d);
140 M(c,c,a);
141 M(a,d,f);
142 M(d,b,x);
143 S(b,e);
144 sel25519(a,b,r);
145 sel25519(c,d,r);
146 }
147 inv25519(c,c);
148 M(a,a,c);
149 pack25519(q,a);
150 return 0;
151 }

Diff from TweetNaCl We provide below the diff between the
original code of TweetNaCl and the code we verified.
1 --- tweetnacl.c
2 +++ tweetnaclVerifiableC.c
3 @@ -5,7 +5,7 @@
4 typedef unsigned char u8;
5 typedef unsigned long u32;
6 typedef unsigned long long u64;
7 -typedef long long i64;
8 +typedef long long i64 __attribute__((aligned(8)));
9 typedef i64 gf[16];

10 extern void randombytes(u8 *,u64);
11
12 @@ -273,18 +273,16 @@
13 sv car25519(gf o)
14 {
15 int i;
16 - i64 c;
17 FOR(i,16) {
18 - o[i]+=(1LL<<16);
19 - c=o[i]>>16;
20 - o[(i+1)*(i<15)]+=c-1+37*(c-1)*(i==15);
21 - o[i]-=c<<16;
22 + o[(i+1)%16]+=(i<15?1:38)*(o[i]>>16);
23 + o[i]&=0xffff;
24 }
25 }
26
27 sv sel25519(gf p,gf q,int b)
28 {
29 - i64 t,i,c=~(b-1);
30 + int i;
31 + i64 t,c=~(b-1);
32 FOR(i,16) {
33 t= c&(p[i]^q[i]);
34 p[i]^=t;
35 @@ -295,8 +293,8 @@
36 sv pack25519(u8 *o,const gf n)
37 {
38 int i,j,b;
39 - gf m,t;
40 - FOR(i,16) t[i]=n[i];
41 + gf t,m={0};
42 + set25519(t,n);
43 car25519(t);
44 car25519(t);
45 car25519(t);
46 @@ -309,7 +307,8 @@
47 m[15]=t[15]-0x7fff-((m[14]>>16)&1);
48 b=(m[15]>>16)&1;
49 m[14]&=0xffff;
50 - sel25519(t,m,1-b);
51 + b=1-b;
52 + sel25519(t,m,b);
53 }
54 FOR(i,16) {
55 o[2*i]=t[i]&0xff;
56 @@ -353,7 +352,8 @@
57
58 sv M(gf o,const gf a,const gf b)
59 {
60 - i64 i,j,t[31];
61 + int i,j;
62 + i64 t[31];
63 FOR(i,31) t[i]=0;
64 FOR(i,16) FOR(j,16) t[i+j]+=a[i]*b[j];
65 FOR(i,15) t[i]+=38*t[i+16];
66 @@ -371,7 +371,7 @@
67 {
68 gf c;
69 int a;
70 - FOR(a,16) c[a]=i[a];
71 + set25519(c,i);
72 for(a=253;a>=0;a--) {
73 S(c,c);
74 if(a!=2&&a!=4) M(c,c,i);
75 @@ -394,8 +394,8 @@
76 int crypto_scalarmult(u8 *q,const u8 *n,const u8 *p)
77 {
78 u8 z[32];
79 - i64 x[80],r,i;
80 - gf a,b,c,d,e,f;
81 + int r,i;
82 + gf x,a,b,c,d,e,f;
83 FOR(i,31) z[i]=n[i];
84 z[31]=(n[31]&127)|64;
85 z[0]&=248;
86 @@ -430,15 +430,9 @@
87 sel25519(a,b,r);
88 sel25519(c,d,r);



89 }
90 - FOR(i,16) {
91 - x[i+16]=a[i];
92 - x[i+32]=c[i];
93 - x[i+48]=b[i];
94 - x[i+64]=d[i];
95 - }
96 - inv25519(x+32,x+32);
97 - M(x+16,x+16,x+32);
98 - pack25519(q,x+16);
99 + inv25519(c,c);

100 + M(a,a,c);
101 + pack25519(q,a);
102 return 0;
103 }

As follow, we provide the explanations of the above changes
to TweetNaCl’s code.
• lines 7-8: We tell VST that long long are aligned on

8 bytes.
• lines 16-23: We remove the the undefined behavior as

explained in Section VI.
• lines 29-31; lines 60-62: VST does not support for loops

over i64, we convert it into an int.
• lines 39 & 41: We initialize m with 0. This change allows

us to prove the functional correctness of pack25519
without having to deal with an array containing a mix of
uninitialized and initialized values. A hand iteration over
the loop trivially shows that no uninitialized values are
used.

• lines 40 & 42; lines 70 & 71: We replace the FOR loop
by set25519. The code is the same once the function
is inlined. This small change is purely cosmetic but stays
in the spirit of tweetnacl: keeping a small code size while
being auditable.

• lines 50-52: VST does not allow computation in the ar-
gument before a function call. Additionally clightgen
does not extract the computation either. We add this small
step to allow VST to carry through the proof.

• lines 79-82: VST does not support for loops over i64,
we convert it into an int.
In the function calls of sel25519, the specifications
requires the use of int, the value of r being either 0 or
1, we consider this change safe.

• Lines 90-101: The for loop does not add any benefits to
the code. By removing it we simplify the source and the
verification steps as we do not need to deal with pointer
arithmetic. Thus, x is limited to only 16 i64, i.e., gf.

B. COQ DEFINITIONS

A. Montgomery Ladder

Generic definition of the ladder:
(* Typeclass to encapsulate the operations *)
Class Ops (T T': Type) (Mod: T → T):=
{
A : T → T → T; (* Add *)
M : T → T → T; (* Mult *)
Zub : T → T → T; (* Sub *)
Sq : T → T; (* Square *)
C_0 : T; (* Constant 0 *)
C_1 : T; (* Constant 1 *)
C_121665: T; (* const (a-2)/4 *)
Sel25519: Z → T → T → T; (* CSWAP *)
Getbit: Z → T' → Z; (* ith bit *)

}.

Local Notation "X + Y" := (A X Y) (only parsing).

Local Notation "X - Y" := (Zub X Y) (only parsing).
Local Notation "X * Y" := (M X Y) (only parsing).
Local Notation "X 2" := (Sq X) (at level 40,
only parsing, left associativity).

Fixpoint montgomery_rec_swap (m : nat) (z : T')
(a: T) (b: T) (c: T) (d: T) (e: T) (f: T) (x: T) (swap:Z) :
(* a: x2 *)
(* b: x3 *)
(* c: z2 *)
(* d: z3 *)
(* e: temporary var *)
(* f: temporary var *)
(* x: x1 *)
(* swap: previous bit value *)
(T * T * T * T * T * T) :=
match m with
| S n ⇒
let r := Getbit (Z.of_nat n) z in
(* k_t = (k >> t) & 1 *)

let swap := Z.lxor swap r in
(* swap ^= k_t *)

let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in
(* (x2, x3) = cswap(swap, x2, x3) *)

let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in
(* (z2, z3) = cswap(swap, z2, z3) *)

let e := a + c in (* A = x2+ z2 *)
let a := a - c in (* B = x2- z2 *)
let c := b + d in (* C = x3+ z3 *)
let b := b - d in (* D = x3- z3 *)
let d := e2 in (* AA = A2 *)
let f := a2 in (* BB = B2 *)
let a := c * a in (* CB = C * B *)
let c := b * e in (* DA = D * A *)
let e := a + c in (* x3= (DA + CB)2 *)
let a := a - c in (* z3= x1* (DA - CB)2 *)
let b := a2 in (* z3= x1* (DA - CB)2 *)
let c := d - f in (* E = AA - BB *)
let a := c * C_121665 in

(* z2 = E * (AA + a24 * E) *)
let a := a + d in (* z2 = E * (AA + a24 * E) *)
let c := c * a in (* z2 = E * (AA + a24 * E) *)
let a := d * f in (* x2 = AA * BB *)
let d := b * x in (* z3 = x1* (DA - CB)2 *)
let b := e2 in (* x3 = (DA + CB)2 *)
montgomery_rec_swap n z a b c d e f x r
(* swap = k_t *)

| 0%nat ⇒
let (a, b) := (Sel25519 swap a b, Sel25519 swap b a) in
(* (x2, x3) = cswap(swap, x2, x3) *)

let (c, d) := (Sel25519 swap c d, Sel25519 swap d c) in
(* (z2, z3) = cswap(swap, z2, z3) *)

(a,b,c,d,e,f)
end.

Definition get_a (t:(T * T * T * T * T * T)) : T :=
match t with
(a,b,c,d,e,f) ⇒ a

end.
Definition get_c (t:(T * T * T * T * T * T)) : T :=
match t with
(a,b,c,d,e,f) ⇒ c

end.

B. RFC in Coq

Instantiation of the Class Ops with operations over Z and
modulo 2255 − 19.
Definition modP (x:Z) : Z :=
Z.modulo x (Z.pow 2 255 - 19).

(* Encapsulate in a module. *)
Module Mid.
(* shift to the right by n bits *)
Definition getCarry (n: Z) (m: Z) : Z :=
Z.shiftr m n.

(* logical and with n ones *)
Definition getResidue (n: Z) (m: Z) : Z :=
Z.land n (Z.ones n).

Definition car25519 (n: Z) : Z :=
38 * getCarry 256 n + getResidue 256 n.

(* The carry operation is invariant under modulo *)
Lemma Zcar25519_correct:



forall (n: Z), n:GF = (Mid.car25519 n) :GF.

(* Define Mid.A, Mid.M ... *)
Definition A a b := Z.add a b.
Definition M a b :=
car25519 (car25519 (Z.mul a b)).

Definition Zub a b := Z.sub a b.
Definition Sq a := M a a.
Definition C_0 := 0.
Definition C_1 := 1.
Definition C_121665 := 121665.
Definition Sel25519 (b p q: Z) :=
if (Z.eqb b 0) then p else q.

Definition getbit (i:Z) (a: Z) :=
if (Z.ltb a 0) then (* a < 0*)
0

else if (Z.ltb i 0) then (* i < 0 *)
Z.land a 1

else (* 0 ≤ a & 0 ≤ i *)
Z.land (Z.shiftr a i) 1.

End Mid.

(* Clamping *)
Definition clamp (n: list Z) : list Z :=
(* set last 3 bits to 0 *)
let x := nth 0 n 0 in
let x' := Z.land x 248 in
(* set bit 255 to 0 and bit 254 to 1 *)
let t := nth 31 n 0 in
let t' := Z.lor (Z.land t 127) 64 in
(* update the list *)
let n' := upd_nth 31 n t' in
upd_nth 0 n' x'.

(* x^{p - 2} *)
Definition ZInv25519 (x: Z) : Z :=
Z.pow x (Z.pow 2 255 - 21).

(* reduction modulo P *)
Definition ZPack25519 (n: Z) : Z :=
Z.modulo n (Z.pow 2 255 - 19).

(* instantiate over Z *)
Instance Z_Ops : (Ops Z Z modP) := {}.
Proof.
apply Mid.A. (* instantiate + *)
apply Mid.M. (* instantiate * *)
apply Mid.Zub. (* instantiate - *)
apply Mid.Sq. (* instantiate x2 *)
apply Mid.C_0. (* instantiate Const 0 *)
apply Mid.C_1. (* instantiate Const 1 *)
apply Mid.C_121665. (* instantiate (a-2)/4 *)
apply Mid.Sel25519. (* instantiate CSWAP *)
apply Mid.getbit. (* instantiate ith bit *)

Defined.

Definition decodeScalar25519 (l: list Z) : Z :=
ZofList 8 (clamp l).

Definition decodeUCoordinate (l: list Z) : Z :=
ZofList 8 (upd_nth 31 l (Z.land (nth 31 l 0) 127)).

Definition encodeUCoordinate (x: Z) : list Z :=
ListofZ32 8 x.

(* instantiate montgomery_rec_swap with Z_Ops *)
Definition RFC (n: list Z) (p: list Z) : list Z :=
let k := decodeScalar25519 n in
let u := decodeUCoordinate p in
let t := montgomery_rec_swap
255 (* iterate 255 times *)
k (* clamped n *)
1 (* x2 *)
u (* x3 *)
0 (* z2 *)
1 (* z3 *)
0 (* dummy *)
0 (* dummy *)
u (* x1 *)
0 (* previous bit = 0 *) in

let a := get_a t in
let c := get_c t in
let o := ZPack25519 (Z.mul a (ZInv25519 c))
in encodeUCoordinate o.

C. ORGANIZATION OF THE PROOF FILES

Requirements. Our proofs requires the use of Coq 8.8.2
for the proofs and Opam 2.0 to manage the dependencies.
We are aware that there exists more recent versions of Coq;
VST; CompCert etc. however to avoid dealing with backward
breaking compatibility we decided to freeze our dependencies.

Associated files. The repository containing the proof is com-
posed of two folders packages and proofs. It aims to be
used at the same time as an opam repository to manage the
dependencies of the proof and to provide the code.

The actual proofs can be found in the proofs folder in
which the reader will find the directories spec and vst.

packages/ This folder provides all the required Coq de-
pendencies: ssreflect (1.7), VST (2.0), CompCert (3.2), the
elliptic curves library by Bartzia & Strub, and the theorem of
quadratic reciprocity.

proofs/spec/ In this folder the reader will find multiple
levels of implementation of X25519.
• Libs/ contains basic libraries and tools to help reason

with lists and decidable procedures.
• ListsOp/ defines operators on list such as ZofList

and related lemmas using e.g., Forall.
• Gen/ defines a generic Montgomery ladder which can

be instantiated with different operations. This ladder is
the stub for the following implementations.

• High/ contains the theory of Montgomery curves,
twists, quadratic extensions and ladder. It also proves the
correctness of the ladder over F2255−19.

• Mid/ provides a list-based implementation of the basic
operations A, Z, M . . . and the ladder. It makes the link
with the theory of Montgomery curves.

• Low/ provides a second list-based implementation of
the basic operations A, Z, M . . . and the ladder. Those
functions are proven to provide the same results as the
ones in Mid/, however their implementation are closer
to C in order facilitate the proof of equivalence with
TweetNaCl code.

• rfc/ provides our rfc formalization. It uses integers for
the basic operations A, Z, M . . . and the ladder. It specifies
the decoding/encoding of/to byte arrays (seen as list of
integers) as in RFC 7748.

proofs/vst/ Here the reader will find four folders.
• c contains the C Verifiable implementation of Tweet-

NaCl. clightgen will generate the appropriate trans-
lation into Clight.

• init contains basic lemmas and memory manipulation
shortcuts to handle the aliasing cases.

• spec defines as Hoare triple the specification of the
functions used in crypto_scalarmult.

• proofs contains the proofs of the above Hoare triples
and thus the proof that TweetNaCl code is sound and
correct.


