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Abstract—Differential privacy enables general statistical anal-
ysis of data with formal guarantees of privacy protection at
the individual level. Tools that assist data analysts with uti-
lizing differential privacy have frequently taken the form of
programming languages and libraries. However, many existing
programming languages designed for compositional verification
of differential privacy impose significant burden on the program-
mer (in the form of complex type annotations). Supplementary
library support for privacy analysis built on top of existing
general-purpose languages has been more usable, but incapable
of pervasive end-to-end enforcement of sensitivity analysis and
privacy composition.

We introduce DDUO, a dynamic analysis for enforcing differen-
tial privacy. DDUO is usable by non-experts: its analysis is auto-
matic and it requires no additional type annotations. DDUO can
be implemented as a library for existing programming languages;
we present a reference implementation in Python which features
moderate runtime overheads on realistic workloads. We include
support for several data types, distance metrics and operations
which are commonly used in modern machine learning programs.
We also provide initial support for tracking the sensitivity of data
transformations in popular Python libraries for data analysis.

We formalize the novel core of the DDUO system and prove
it sound for sensitivity analysis via a logical relation for metric
preservation. We also illustrate DDUO’s usability and flexibility
through various case studies which implement state-of-the-art
machine learning algorithms.

I. INTRODUCTION

Differential privacy has achieved prominence over the past
decade as a rigorous formal foundation upon which diverse
tools and mechanisms for performing private data analysis can
be built. The guarantee of differential privacy is that it protects
privacy at the individual level: if the result of a differentially
private query or operation on a dataset is publicly released, any
individual present in that dataset can claim plausible deniability.
This means that any participating individual can deny the
presence of their information in the dataset based on the query
result, because differentially private queries introduce enough
random noise to make the result indistinguishable from that of
the same query run on a dataset which actually does not contain
the individual’s information. Additionally, differential privacy
guarantees are resilient against any form of linking attack in
the presence of auxiliary information about individuals.

High profile tech companies such as Google have shown
a commitment to differential privacy by developing projects
such as RAPPOR [54] as well as several open-source privacy-
preserving technologies [28, 29, 48]. Facebook recently re-

leased an unprecedented social dataset, protected by differential
privacy guarantees, which contains information regarding
people who publicly shared and engaged with about 38 million
unique URLs, as an effort to help researchers study social
media’s impact on democracy and the 2020 United States
presidential election [39, 33, 34, 23, 24]. The US Census
Bureau has also adopted differential privacy to safeguard the
2020 census results [2].

Both static and dynamic tools have been developed to help
non-experts write differentially private programs. Many of
the static tools take the form of statically-typed programming
languages, where correct privacy analysis is built into the
soundness of the type system. However, existing language-
oriented tools for compositional verification of differential
privacy impose significant burden on the programmer (in the
form of additional type annotations) [41, 26, 40, 18, 53, 50,
9, 11, 12, 10, 44, 5, 52, 47, 14, 19, 46] (see Section IX for a
longer discussion).

The best-known dynamic tool is PINQ [36], a dynamic
analysis for sensitivity and privacy. It features an extensible
system which allows non-experts in differential privacy to
execute SQL-like queries against relational databases. However,
PINQ comes with several restrictions that limit its applicability.
For example, PINQ’s expressiveness is limited to a subset of the
SQL language for relational databases. Methods in PINQ are
assumed to be side-effect free, which is necessary to preserve
their privacy guarantee.

We introduce DDUO, a dynamic analysis for enforcing dif-
ferential privacy. DDUO is usable by non-experts: its analysis is
automatic and it requires no additional type annotations. DDUO
can be implemented as a library for existing programming
languages; we present a reference implementation in Python.
Our goal in this work is to answer the following four questions,
based on the limitations of PINQ:

• Can a PINQ-style dynamic analysis extend to base types
in the programming language, to allow its use pervasively?

• Is the analysis sound in the presence of side effects?
• Can we use this style of analysis for complex algorithms

like differentially private gradient descent?
• Can we extend the privacy analysis beyond pure ε-

differential privacy?

We answer all four questions in the affirmative, building on
PINQ in the following ways:
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• DDUO provides a dynamic analysis for base types in a
general purpose language (Python). DDUO supports general
language operations, such as mapping arbitrary functions
over lists, and tracks the sensitivity (stability) and privacy
throughout.

• Methods in DDUO are not required to be side-effect free and
allow programmers to mutate references inside functions
which manipulate sensitive values.

• DDUO supports various notions of sensitivity and arbitrary
distance metrics (including L1 and L2 distance).

• DDUO is capable of leveraging advanced privacy variants
such as (ε, δ) and Rényi differential privacy.

Privacy analysis is reliant on sensitivity analysis, which
determines the scale of noise an analyst must add to values
in order to achieve any level of privacy. Dynamic analysis for
differential privacy is thus a dual challenge:

Dynamic sensitivity analysis. Program sensitivity is a (hy-
per)property quantified over two runs of a program with related
inputs (sources). A major challenge for dynamic sensitivity
analysis is the ability to bound sensitivity, ensuring that the
metric preservation property is satisfied, by only observing a
single run of the program. In addition, an analysis which is
performed on a specific input to the program must generalize
to future possible arbitrary inputs.

The key insight to our solution is attaching sensitivity
environments and distance metric information to values rather
than variables. Our approach provides a sound upper bound
on global sensitivity even in the presence of side effects,
conditionals, and higher-order functions. We present a proof
using a step-indexed logical relation which shows that our
sensitivity analysis is sound.

Dynamic privacy analysis. To implement a dynamic privacy
analysis, we leverage prior work on privacy filters and odome-
ters [42]. This work, originally designed for the adaptive choice
of privacy parameters, can also be used as part of a dynamic
analysis for privacy analysis. We view each application of a
privacy mechanism (e.g. the Laplace mechanism) as a global
privacy effect on total privacy cost, and use privacy filters and
odometers to track total privacy cost.

We implemented these features in a Python prototype of
DDUO via object proxies and other pythonic idioms. We
implement several case studies to showcase these features and
demonstrate the usage of DDUO in practice. We also provide
integrations with several popular Python libraries for data and
privacy analysis.

Contributions. In summary, this paper makes the following
contributions:
- We introduce DDUO, a dynamic analysis for enforcing

differential privacy, and a reference implementation as a
Python library 1.

- We formalize a subset of DDUO in a core language model,
and prove the soundness of DDUO’s dynamic sensitivity

1The reference implementation is available here: https://github.com/
uvm-plaid/dduo-python

analysis (as encoded in the model) using a step-indexed
logical relation.

- We present several case studies demonstrating the use of
DDUO to build practical, verified Python implementations
of complex differentially private algorithms.
The rest of the paper is organized as follows. First we

provide some background knowledge regarding the field of
differential privacy (Section II). We provide an overview of our
work and the necessary tradeoffs (Section III). We illustrate
the usefulness and power of DDUO through some worked
examples (Section IV). We then discuss some of the nuances of
dynamic sensitivity (Section V) and dynamic privacy tracking
(Section VI). We present the formalization of DDUO and prove
the soundness of our sensitivity analysis (Section VII). We
provide several case studies demonstrating the usefulness of
DDUO in practice (Section VIII). Finally we outline related
work (Section IX) and conclude (Section X).

II. BACKGROUND

Differential Privacy. Differential privacy is a formal notion
of privacy; certain algorithms (called mechanisms) can be said
to satisfy differential privacy. Intuitively, the idea behind a
differential privacy mechanism is that: given inputs which
differ in the data of a single individual, the mechanism should
return statistically indistinguishable answers. This means that
the data of any one individual should not have any significant
effect on the outcome of the mechanism, effectively protecting
privacy on the individual level. Formally, differential privacy
is parameterized by the privacy parameters ε, δ which control
the strength of the guarantee.

When we say "neighboring" inputs, this implies two inputs
that differ in the information of a single individual. However,
formally we can defer to some general distance metric which
may take several forms. We then say that according to the
distance metric, the distance between two databases must have
an upper bound of 1. Variation of the distance metric has led to
several other useful, non-standard forms of differential privacy
in the literature.

Definition II.1 (Differential privacy). Given a distance metric
dA ∈ A×A→ R, a randomized algorithm (or mechanism)
M∈ A→ B satisfies (ε, δ)-differential privacy if for all
x , x ′ ∈ A such that dA(x , x ′) ≤ 1 and all possible sets S ⊆ B
of outcomes, Pr[M(x ) ∈ S ] ≤ eεPr[M(x ′) ∈ S ] + δ.

Differential privacy is compositional: running two mecha-
nismsM1 andM2 with privacy costs of (ε1 , δ1 ) and (ε2 , δ2 )
respectively has a total privacy cost of (ε1 + ε2 , δ1 + δ2 ).
Advanced composition [20] improves on this composition bound
for iterative algorithms; several variants of differential privacy
(e.g. Rényi differential privacy [37] and zero-concentrated
differential privacy [16]) have been developed that improve
the bound even further. Importantly, sequential composition
theorems for differential privacy do not necessarily allow the
privacy parameters to be chosen adaptively, which presents
a special challenge in our setting—we discuss this issue in
Section VI.
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III. OVERVIEW OF DDUO

DDUO is a dynamic analysis for enforcing differential
privacy. Our approach does not require static analysis of
programs, and allows DDUO to be implemented as a library
for programming languages like Python. DDUO’s dynamic
analysis has complete access to run-time information, so it
does not require the programmer to write any additional type
annotations—in many cases, DDUO can verify differential
privacy for essentially unmodified Python programs (see the
case studies in Section VIII). As a Python library, DDUO is
easily integrated with popular libraries like Pandas and NumPy.

Threat model. We assume an “honest but fallible”
programmer—that is, the programmer intends to produce a
differentially private program, but may unintentionally intro-
duce bugs. We assume that the programmer is not intentionally
attempting to subvert DDUO’s enforcement approach. Our
reference implementation is embedded in Python, an inherently
dynamic language with run-time features like reflection. In this
setting, a malicious programmer or privacy-violating third-party
libraries can bypass our dynamic monitor and extract sensitive
information directly. We allow several common side-effects
such as reference mutation, printing, reading/writing files, etc.
Note that printing/writing sensitive values in DDUO will reveal
the type of the value, but not the actual value. Data-independent
exceptions can be safely used in our system, however our
model must explicitly avoid data-dependent exceptions such as
division-by-zero errors. Terminated programs can be rerun
safely (while consuming the privacy budget) because our
analysis is independent of any sensitive information (our
metatheory implies that sensitivity of a value is itself not
sensitive). We also do not address side-channels, including
execution time. Like existing enforcement approaches (PINQ,
OpenDP, Diffprivlib), DDUO is intended as a tool to help
well-intentioned programmers produce correct differentially
private algorithms.

Soundness of the analysis. We formalize our dynamic sen-
sitivity analysis and prove its soundness in Section VII. Our
formalization includes the most challenging features of the
dynamic setting—conditionals and side effects—and provides
evidence that our Python implementation will be effective
in catching privacy bugs in real programs. DDUO relies on
existing work on privacy filters and odometers (discussed in
Section VI), whose soundness has been previously established,
for tracking privacy cost.

IV. DDUO BY EXAMPLE

This section introduces the DDUO system via examples
written using our reference Python implementation.

Data Sources. Data sources are wrappers around sensitive data
that enable tracking of privacy information in the DDUO python
library. Each data source is associated with an identifying string,
such as the name of the input file the data was read from. Data
sources can be created manually by attaching an identifying
string (such as a filename) to a raw value (such as a vector).

Or, data sources be created automatically upon loading data
through DDUO’s custom-wrapped third party APIs, such as
pandas. Note that our API can be easily modified to account
for initial sensitivities greater than 1 when users have multiple
datapoints in the input data.

from dduo import pandas as pd
df = pd.read_csv("data.csv")
df

Sensitive(<'DataFrame'>, {data.csv 7→ 1}, L∞)

A Sensitive value is returned. Sensitive values
represent sensitive information that cannot be viewed by the
analyst. When a Sensitive value is printed out, the analyst
sees (1) the type of the value, (2) its sensitivity environment,
and (3) its distance metric. The latter two components are
described next. The analyst is prevented from viewing the
value itself.

Sensitivity & distance metrics. Function sensitivity is a scalar
value which represents how much a change in a function’s
input will change the function’s output. For example, the binary
addition function f (x , y) = x + y is 1-sensitive in both x and
y , because changing either input by n will change the sum
by n . The function f (x ) = x + x , on the other hand, is 2-
sensitive in its argument x , because changing x by n changes
the function’s output by 2n . Sensitivity is key to differential
privacy because it is directly proportional to the amount of
noise we must add to the output of a function to make it
private.

DDUO tracks the sensitivity of a value to changes in the
program’s inputs using a sensitivity environment mapping
input data sources to sensitivities. Our example program
returned a Sensitive value with a sensitivity environment
of {data.csv 7→ 1}, indicating that the underlying value is 1-
sensitive in the data contained in data.csv. The DDUO library
tracks and updates the sensitivity environments of Sensitive
objects as operations are applied to them. For example, adding
a constant value to the elements of the DataFrame results in
no change to the sensitivity environment.

df + 5 # no change to sensitivity environment

Sensitive(<'DataFrame'>, {data.csv 7→ 1}, L∞)

Adding the DataFrame to itself doubles the sensitivity, in the
same way as the function f (x ) = x + x .

df + df # doubles the sensitivity

Sensitive(<'DataFrame'>, {data.csv 7→ 2}, L∞)

Finally, multiplying the DataFrame by a constant scales the
sensitivity, and multiplying the DataFrame by itself results in
infinite sensitivity.

( df * 5, df * df)
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( Sensitive(<'DataFrame'>, {data.csv 7→ 5}, L∞),
Sensitive(<'DataFrame'>, {data.csv 7→ ∞}, L∞) )

The distance metric component of a Sensitive value
describes how to measure sensitivity. For simple numeric
functions like f (x ) = x + x , the distance between two pos-
sible inputs x and x ′ is simply |x − x ′| (this is called the
cartesian metric). For more complicated data structures (e.g.
DataFrames), calculating the distance between two values is
more involved. The L∞ metric used in our example calculates
the distance between two DataFrames by measuring how many
rows are different (this is one standard way of defining “neigh-
boring databases” in differential privacy). DDUO’s handling
of distance metrics is detailed in Section V-B.

Privacy. DDUO also tracks the privacy of computations. To
achieve differential privacy, programs add noise to sensitive
values. The Laplace mechanism described earlier is one basic
mechanism for achieving differential privacy by adding noise
drawn from the Laplace distribution (DDUO provides a number
of basic mechanisms, including the Gaussian mechanism). The
following expression counts the number of rows in our example
DataFrame and uses the Laplace mechanism to achieve ε-
differential privacy, for ε = 1 .0 .

dduo.laplace(df.shape[0], ε=1.0)

9.963971319623278

The result is a regular Python value—the analyst is free to
view it, write it to a file, or do further computation on it. Once
the correct amount of noise has been added, the principle of
post-processing applies, and so DDUO no longer needs to track
the sensitivity or privacy cost of operations on the value.

When the Laplace mechanism is used multiple times, their
privacy costs compose (i.e. the εs “add up” as described
earlier). DDUO tracks total privacy cost using objects called
privacy odometers [42]. The analyst can interact with a privacy
odometer object to learn the total privacy cost of a complex
computation.

with dduo.EpsOdometer() as odo:
_ = dduo.laplace(df.shape[0], ε = 1.0)
_ = dduo.laplace(df.shape[0], ε = 1.0)
print(odo)

Odometer_ε({data.csv 7→ 2.0})

Printing the odometer’s value allows the analyst to view the
privacy cost of the program with respect to each of the
data sources used in the computation. In this example, two
differentially private approximations of the number of rows
in the dataframe df are computed, each with a privacy cost
of ε = 1 .0 . The total privacy cost of running the program is
therefore 2 ·ε = 2 .0 .

DDUO also allows the analyst to place upper bounds
on total privacy cost (i.e. a privacy budget) using privacy
filters [42]. Privacy odometers and filters are discussed in
detail in Section VI.

V. DYNAMIC SENSITIVITY TRACKING

DDUO implements a dynamic sensitivity analysis by wrap-
ping values in Sensitive objects and calculating sensitivities
as operations are performed on these objects. Type systems for
sensitivity [41, 26] construct a sensitivity environment for each
program expression; in the static analysis setting, a sensitivity
environment records the expression’s sensitivity with respect
to each of the variables currently in scope.

DDUO attaches sensitivity environments to values at runtime:
each Sensitive object holds both a value and its sensitivity
environment. As described earlier, DDUO’s sensitivity environ-
ments record a value’s sensitivity with respect to each of the
program’s data sources. Formally, the sensitivity of a single-
argument function f in its input is defined as:

sens(f) , argmaxx,y
(d(f(x), f(y))

d(x, y)

)
Where d is a distance metric over the values x and y could
take (distance metrics are discussed in Section V-B). Thus, a
sensitivity environment {a 7→ 1} means that if the value of
the program input a changes by n , then the value of f (a) will
change by at most n .

A. Bounding the Sensitivity of Operations

Operations on Sensitive objects are defined to perform
the same operation on the underlying values, and also construct
a new sensitivity environment for the operation’s result.
For example, DDUO’s __add__ operation sums both the
underlying values and their sensitivity environments:
def __add__(self, other):

assert self.metric == other.metric
return dduo.Sensitive(self.value + other.value,

self.senv + other.senv,
self.metric)

The sum of two sensitivity environments is defined as the
element-wise sum of their items. For example:

{a 7→ 2, b 7→ 1}+ {b 7→ 3, c 7→ 5} = {a 7→ 2, b 7→ 4, c 7→ 5}

The DDUO library provides sensitivity-aware versions of
Python’s basic numeric operations (formalized in Section VII).
We have also defined sensitivity-aware versions of commonly-
used library functions, including the Pandas functions used in
Section IV, and subsets of NumPy and Scikit-learn.

B. Distance Metrics

At the core of the concept of sensitivity is the notion of
distance: how far apart we consider two information sources
to be from each other. For scalar values, the following two
distance metrics are often used:
• Cartesian (absolute difference) metric: d(x , y) = |x − y |
• Discrete metric: d(x , y) = 0 if x = y ; 1 otherwise
For more complex structures—like lists and dataframes—

we can use distance metrics on vectors. Two commonly-used
metrics for vectors x and y of equal length are:
• L1 (di) metric: d(x , y) =

∑
xi ,yi∈x ,y

di(xi , yi)
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• L2 (di) metric: d(x , y) =
√ ∑

xi ,yi∈x ,y
di(xi , yi)2

Both metrics are parameterized by di , a metric for the vector’s
elements. In addition to these two, we use the shorthand L∞
to mean L1 (d), where d is the cartesian metric defined above.
The L∞ metric works for any space with equality (e.g. strings),
and measures the number of elements where x and y differ.

The definition of differential privacy is parameterized by
a distance metric that is intended to capture the idea of two
inputs that differ in one individual’s data. Database-oriented
algorithms typically assume that each individual contributes
exactly one row to the database, and use the L∞ metric to
define neighboring databases (as we did in Section IV).

Distance metrics can be manipulated manually through
operations such as clipping, a technique commonly employed in
differentially private machine learning. DDUO tracks distance
metrics for Sensitive information, which can allow for
automatic conservation of the privacy budget while providing
more accurate query analysis.

Lists and arrays are compared by one of the L1 , L2 , or L∞
distance metrics. The choice of distance metric is important
when defining sensitivity and thus privacy. For example, the
Laplace mechanism can only be used with the L1 metric, while
the Gaussian mechanism can be used with either L1 or L2 .

C. Conditionals & Side Effects

Conditionals and other branching structures are challenging
for any sensitivity analysis, but they present a particular
challenge for our dynamic analysis. Consider the following
conditional:

if df.shape[0] == 10:
return df.shape[0]

else:
return df.shape[0] * 10000

Here, the two branches have different sensitivities (the else
branch is 10,000 times more sensitive in its data sources than
the then branch). Static sensitivity analyses handle this situation
by taking the maximum of the two branches’ sensitivities
(i.e. they assume the worst-case branch is executed), but this
approach is not possible in our dynamic analysis.

In addition, special care must be taken when a sensitive
value appears in the guard position (as in our example).
Static analyses typically scale the branches’ sensitivity by
the sensitivity of the guard; in practice, this approach results
in infinite sensitivity for conditionals with a sensitive guard.

To retain soundness in our dynamic analysis, DDUO requires
that conditional guards contain no sensitive values. A run-time
error is thrown if DDUO finds a sensitive value in the guard
position (as in our example above). Disallowing sensitive guards
makes it possible to ignore branches that are not executed: the
guard’s value remains the same under neighboring program
inputs, so the program follows the same branch for neighboring
executions. This approach does not limit the set of useful
programs we can write, since conditionals with sensitive guards
yield infinite sensitivities even under a precise static analysis.

Since DDUO attaches sensitivity environments to values
(instead of variables), the use of side effects does not affect
the soundness of the analysis. When a program variable is
updated to reference a new value, that value’s sensitivity
environment remains attached. DDUO handles many common
side-effect-based patterns used in Python this way; for example,
DDUO correctly infers that the following program results in
the variable total holding a value that is 20 times more
sensitive than df.shape[0].

total = 0
for i in range(20):

total = total + df.shape[0]

For side effects, our dynamic analysis is more capable than
type-based static analysis, due to the additional challenges aris-
ing in the static setting (e.g. aliasing). We have formalized the
way DDUO handles side effects and conditionals, and proved
the soundness of our sensitivity analysis; our formalization
appears in Section VII.

VI. DYNAMIC PRIVACY TRACKING

DDUO tracks privacy cost dynamically, at runtime. Dynamic
privacy tracking is challenging because the dynamic analysis
has no visibility into code that is not executed. For example,
consider the following conditional:
if dduo.gauss(ε=1.0, δ=1e-5, x) > 5:

print(dduo.gauss(ε=1.0, δ=1e-5, y))
else:
print(dduo.gauss(ε=100000000000.0, δ=1e-5, y))

The executed branch of this conditional depends on the result of
the first call to dduo.gauss , which is non-deterministic. The
two branches use different privacy parameters for the remaining
calls to dduo.gauss ; in other words, the privacy parameter for
the second use of the Gaussian mechanism is chosen adaptively,
based on the results of the first use. Sequential composition
theorems for differential privacy [20] are typically stated in
terms of fixed (i.e. non-adaptive) privacy parameters, and do
not apply if the privacy parameters are chosen adaptively.

A static analysis of this program will consider both branches,
and most analyses will produce an upper bound on the
program’s privacy cost by combining the two (i.e. taking the
maximum of the two ε values). This approach avoids the issue
of adaptively-chosen privacy parameters.

A dynamic analysis, by contrast, cannot consider both
branches, and must bound privacy cost by analyzing only
the branch that is executed. Sequential composition does not
apply directly when privacy parameters are chosen adaptively,
so ignoring the non-executed branch in a dynamic analysis of
privacy would be unsound.

A. Privacy Filters & Odometers

Privacy filters and odometers were originally developed
by Rogers et al. [42] specifically to address the setting in
which privacy parameters are selected adaptively. Winograd-
Cort et al. [50] used privacy filters and odometers as part of
the Adaptive Fuzz framework, which integrates both dynamic
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analysis (for composing privacy mechanisms) and static analy-
sis (for bounding the cost of individual mechanisms). Recently,
Feldman and Zrnic [25] developed filters and odometers for
Rényi differential privacy [37].

Privacy odometers can be used to obtain a running upper
bound on total privacy cost at any point in the sequence of
adaptive mechanisms, and to obtain an overall total at the
end of the sequence. A function COMPδg

: R2k
≥0 → R ∪ {∞}

is called a valid privacy odometer [42] for a sequence
of mechanisms M1 , . . . ,Mk if for all (adaptively-chosen)
settings of (ε1 , δ1 ), . . . , (εk , δk ) for the individual mechanisms
in the sequence, their composition satisfies (COMPδg (·), δg)-
differential privacy. In other words, COMPδg

(·) returns a value
for ε that upper-bounds the privacy cost of the adaptive se-
quence of mechanisms. A valid privacy odometer for sequential
composition in (ε, δ)-differential privacy can be defined as
follows (Rogers et al. [42], Theorem 3.6):

COMPδg (ε1, δ1, . . . , εk, δk) =


∞ if

k∑
i=1

δi > δg

k∑
i=1

εi otherwise

Privacy filters allow the analyst to place an upper
bound (εg , δg) on the desired privacy cost, and halt
the computation immediately if the bound is violated.
A function COMPεg ,δg

: R2k
≥0 → {HALT,CONT} is called a

valid privacy filter [42] for a sequence of mechanisms
M1 , . . . ,Mk if for all (adaptively-chosen) settings of
(ε1 , δ1 ), . . . , (εk , δk ) for the individual mechanisms in the
sequence, COMPεg ,δg (ε1 , δ1 , . . . , εk , δk ) outputs CONT only if
the sequence satisfies (εg , δg)-differential privacy (otherwise,
it outputs HALT for the first mechanism in the sequence that
violates the privacy cost bound). A valid privacy filter for
sequential composition in (ε, δ)-differential privacy can be
defined as follows (Rogers et al. [42], Theorem 3.6):

COMPεg,δg (ε1, δ1, . . . , εk, δk) =HALT if
k∑
i=1

δi > δg or
k∑
i=1

εi > εg

CONT otherwise

It is clear from these definitions that the odometer and filter
for sequential composition under (ε, δ)-differential privacy yield
the same bounds on privacy loss as the standard theorem for
sequential composition [20] (i.e. there is no “cost” to picking
the privacy parameters adaptively).

Rogers et al. [42] also define filters and odometers for
advanced composition under (ε, δ)-differential privacy ([42], §5
and §6); in this case, there is a cost. In exchange for the ability
to set privacy parameters adaptively, filters and odometers
for advanced composition have slightly worse constants than
the standard advanced composition theorem [20] (but are
asymptotically the same).

B. Filters & Odometers in DDUO

DDUO’s API allows the programmer to explicitly create
privacy odometers and filters, and make them active for a
specific part of the program (using Python’s with syntax). When
an odometer is active, it records a running total of the total
privacy cost, and it can be queried to return this information
to the programmer.

with dduo.EdOdometer(max_delta = 10e-5) as odo:
_ = dduo.gauss(df.shape[0], ε = 1.0, δ = 10e-6)
_ = dduo.gauss(df.shape[0], ε = 1.0, δ = 10e-6)
print(odo)

Odometer_(ε, δ)({data.csv 7→ (2.0, 20−6)})

When a filter is active, it tracks the privacy cost for individual
mechanisms, and halts the program if the filter’s upper bound
on privacy cost is violated.
with dduo.EdFilter(ε = 1.0, δ = 10e-6) as odo:

print('1:', dduo.gauss(df.shape[0], ε=1.0, δ=10e-6))
print('2:', dduo.gauss(df.shape[0], ε=1.0, δ=10e-6))

1: 10.5627
Traceback (most recent call last):

...
dduo.PrivacyFilterException

In addition to odometers and filters for sequential
composition under (ε, δ)-differential privacy (such as
EdFilter and EdOdometer), DDUO provides odome-
ters and filters for advanced composition (AdvEdFilter
and AdvEdOdometer) and Rényi differential privacy
(RenyiFilter and RenyiOdometer, which follow the
results of Feldman and Zrnic [25]).

C. Loops and Composition

Iterative algorithms can be built in DDUO using Python’s
standard looping constructs, and DDUO’s privacy odometers
and filters take care of ensuring the correct form of composition.
Parallel composition is also available—via functional mapping.
Advanced composition can be achieved via special advanced
composition filters and odometers exposed in the DDUO API.
For example, the following simple loop runs the Laplace
mechanism 20 times, and its total privacy cost is reflected
by the odometer:

with dduo.EpsOdometer() as odo:
for i in range(20):
dduo.laplace(df.shape[0], ε = 1.0)

print(odo)

Odometer_ε({data.csv 7→ 20.0})

To use advanced composition instead of sequential composition,
we simply replace the odometer with a different one:
with dduo.AdvEdOdometer() as odo:

for i in range(20):
dduo.gauss(df.shape[0], ε = 0.01, δ = 0.001)
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D. Mixing Variants of Differential Privacy

The DDUO library includes support for pure ε-differential
privacy, (ε, δ)-differential privacy, and Rényi differential privacy
(RDP). Programs may use all three variants together, convert
between them, and compose mechanisms from each.

We demonstrate execution of a query while switched to
the Rényi differential privacy variant using pythonic "with"
syntax blocks. For programs that make extensive use of
composition, this approach yields significant improvements
in privacy cost. For example, the following program uses
the Gaussian mechanism 200 times, using Rényi differential
privacy for sequential composition; the total privacy cost is
automatically converted into an (ε, δ)-differential privacy cost
after the loop finishes.

with dduo.EdOdometer(max_delta = 1e-4) as odo:
with dduo.RenyiDP(1e-5):

for x in range(200):
noisy_count = dduo.renyi_gauss(α = 10,
ε=0.2, df.shape[0])

print(odo)

Odometer_(ε, δ)({data.csv 7→ (41.28, 1−5)})

VII. FORMAL DESCRIPTION OF SENSITIVITY ANALYSIS

In DDUO we implement a novel dynamic analysis for
function sensitivity, which is a relational (hyper)property
quantified over two runs of the program with arbitrary but
related inputs. In particular, our analysis computes function
sensitivity—a two-run property—after only observing one
execution of the program. Only observing one execution
poses challenges to the design of the analysis, and significant
challenges to the proof, all of which we overcome. To overcome
this challenge in the design of the analysis, we first disallow
branching control flow which depends on any sensitive inputs;
this ensures that any two runs of the program being considered
for the purposes of privacy will take the same branch observed
by the dynamic analysis. Second, we disallow sensitive input-
dependent arguments to the “scalar” side of multiplication;
this ensures that the dynamic analysis’ use of that argument
in analysis results is identical for any two runs of the program
being considered for the purposes of privacy. Our dynamic
analysis for function sensitivity is sound—meaning that the true
sensitivity of a program is guaranteed to be equal or less than
the sensitivity reported by DDUO’s dynamic monitor—and we
support this claim with a detailed proof.

Formalism Approach. We formalize the correctness of our
dynamic analysis for function sensitivity using a step-indexed
big-step semantics to describe the dynamic analysis, a step-
indexed logical relation to describe the meaning of func-
tion sensitivity, and a proof by induction and case analysis
on program syntax to show that dynamic analysis results
soundly predict function sensitivity. A step-indexed relation
is a relation R ∈ A→ B → prop whose definition is strat-
ified by a natural number index n , so for each level n
there is a new relation Rn . Typically, the relation R0 is

defined R0 (x , y) , true, and the final relation of interest is
R̂ ,

⋂
n Rn , i.e., R̂(x , y) ⇐⇒ ∀n. Rn(x , y). Step-indexing

is typically used—as we do in our formalism—when the
definition of a relation would be not well founded in its absence.
The most common reason a relation definition might be not
well-founded is the use of self-reference without any decreasing
measure. When a decreasing measure exists, self-reference
leads to well-founded recursion, however when a decreasing
measure does not exist, self-reference is not well-founded.
When using step-indexing, self-reference is allowed in the
definition ofRn , but only for the relation at strictly lower levels,
so Rn′ when n ′ < n; this is well-founded because the index
n becomes a decreasing measure for the self-reference. In this
way, step-indexing enables self-reference without any existing
decreasing measure by introducing a new decreasing measure,
and maintains well-foundedness of the relation definition.

A logical relation is one where the definition of relation on
function values (or types) is extensional, essentially saying
“when given related inputs, the function produces related
outputs”. This definition is self-referrential and not well-
founded, and among common reasons to introduce step-
indexing in programming language proofs. As the relation
R is stratified with a step-index to Rn , so must the definition
of the semantics, so for a big-step relation e ⇓ v (relating
an expression e to its final value v after evaluation) we
stratify as e ⇓n v . Also, because the definition of a logical
relation decrements the step-index for the case of function
values, we increment the step-index in the semantic case for
function application. These techniques are standard from prior
work [4], and we merely summarize the key ideas here to give
background to our reader.

Formal Definition of Dynamic Analysis. We model lan-
guage features for arithmetic operations (e � e), conditionals
(if0(e){e}{e}), pairs (〈e, e〉 and πi(e)), functions (λx . e
and e(e)) and references (ref(e), !e and e ← e); the full
language is shown in Figure 1. There is one base value: r@Σ

m

for a real number result r tagged with dynamic analysis
information Σ—the sensitivity analysis for the expression
which evaluated to r—and m—the metric associated with
the resulting value r . The sensitivity analysis Σ—also called
a sensitivity environment—is a map from sensitive sources
o ∈ source to how sensitive the result is w.r.t. that source. Our
formalism includes two base metrics m ∈ metric: diff and
disc for absolute difference (|x − y |) and discrete distance
(0 if x = y and 1 otherwise) respectively—and two derived
metrics: > and ⊥ for the smallest metric larger than each
base metric and largest metric smaller than each base metric,
respectively. Each metric is commonly used when implementing
differentially private algorithms. Pair values (〈v , v〉), closure
values (〈λx . e | ρ〉) and reference values (`) do not contain
dynamic analysis information.

Our dynamic analysis is described formally as a big-

step relation ρ ` x
p
σ, ey

q ⇓n x
p
σ, vy

q where ρ ∈ var ⇀ value is
the lexical environment mapping lexical variables to values,
σ ∈ loc ⇀ value is the dynamic environment (i.e., the heap, or
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store) mapping dynamically allocated references to values, e is
the expression being executed, and v is the resulting runtime
value which also includes dynamic analysis information. We

write gray box corners around the “input” configuration x
p
σ, ey

q

and the “output” configuration x
p
σ, vy

q to aid readability. The
index n is for step-indexing, and tracks the number of function
applications which occurred in the process of evaluation. We
show the full definition of the dynamic analysis in Figure 2.

Consider the following example:

{x 7→ 21@
{o7→1}
diff } ` ∅, (x+ x) ⇓0 42@

{o7→2}
diff

This relation corresponds to a scenario where the program
to evaluate and analyze is x + x , the variable x represents
a sensitive source value o, we want to track sensitivity w.r.t.
the absolute difference metric, and the initial value for x is
21 . This information is encoded in an initial environment
ρ = {x 7→ 21 @

{o 7→1}
diff }. The result value is 42 , and the result-

ing analysis reports that e is 2 -sensitive in the source o w.r.t.
the absolute difference metric. This analysis information is
encoded in the return value 42 @

{o 7→2}
diff . Because no function

applications occur during evaluation, the step index n is 0.

Formal Definition of Function Sensitivity. Function sensitiv-
ity is encoded through multiple relation definitions:

1) ρ1 , σ1 , e1 ∼Σ
n ρ2 , σ2 , e2 holds when the input triples

ρ1 , σ1 , e1 and ρ2 , σ2 , e2 evaluate to output stores and
values which are related by Σ . Note this definition
decrements the step-index n , and is the constant relation
when n = 0 .

2) r1 ∼r
m r2 holds when the difference between real numbers

r1 and r2 w.r.t. metric m is less than r .
3) v1 ∼Σ

n v2 holds when values v1 and v2 are related for
initial distance Σ and step-index n . The definition is by
case analysis on the syntactic category for values, such
as:

a) The relation on base values r1 @Σ1
m1
∼Σ

n r2 @Σ2
m2

holds
when Σ1 , Σ2 , m1 and m2 are pairwise equal, and
when r1 and r2 are related by Σ ·Σ1 , where Σ is the
initial distances between each input source o, and Σ1

is how much r1 and r2 are allowed to differ as a linear
function of input distances Σ , and where this function
is applied via vector dot product ·.

b) The relation on pair values 〈v11 , v12 〉 ∼Σ
m 〈v21 , v22 〉

holds when each element of the pair are pairwise related.
c) The relation on function values
〈λx . e1 | ρ1 〉 ∼Σ

n 〈λx . e2 | ρ2 〉 holds when each
closure returns related output configurations when
evaluated with related inputs.

d) The relation on locations `1 ∼Σ
n `2 holds when the two

locations are equal.
4) ρ1 ∼Σ

n ρ2 holds when lexical environments ρ1 and ρ2

map all variables to related values.
5) σ1 ∼Σ

n σ2 holds when dynamic environments σ1 and σ2

map all locations to related values.

Note that the definitions of ρ1 , σ1 , e1 ∼Σ
n ρ2 , σ2 , e2 and

v ∼Σ
n v are mutually recursive, but are well founded due to

the decrement of the step index in the former relation. We
show the full definition of these relations in Figure 1.

The function sensitivity of an expression is encoded first as
a statement about expressions respecting relatedness, that is,
returning related outputs when given related inputs, i.e., (assum-
ing no use of the store) if ρ1 ∼Σ

n ρ2 and ρ1 ` ∅, e ⇓n1 ∅, v1

and ρ2 ` ∅, e ⇓n2 ∅, v2 then n1 = n2 and v1 ∼Σ
n−n1

v2 .
When instantiated to base types, we have: if ρ1 ∼Σ

n ρ2 and
ρ1 ` ∅, e ⇓n1

∅, r1 @Σ1
m1

and ρ2 ` ∅, e ⇓n2
∅, r2 @Σ2

m2
then

n1 = n2 , Σ1 = Σ2 , m1 = m2 and r1 ∼Σ ·Σ1
m1

r2 . The fully
general form of this property is called metric preservation,
which is the main property we prove in our formal development.

Metric Preservation. Metric preservation states that when
given related initial configurations and evaluation outputs, then
those outputs are related. Outputs include result values, as well
as dynamic analysis results, and the relationship that holds
demonstrates the soundness of the analysis results.

Theorem VII.1 (Metric Preservation).

If: ρ1 ∼Σ
n ρ2 (H1)

And: σ1 ∼Σ
n σ2 (H2)

Then: ρ1 , σ1 , e ∼Σ
n ρ2 , σ2 , e

That is, either n = 0 or n = n ′ + 1 and. . .

If: n1 ≤ n ′ (H3)

And: ρ1 ` x
p
σ1 , ey

q ⇓n1 x
p
σ′1 , v1y

q
(H4)

And: ρ2 ` x
p
σ2 , ey

q ⇓n2 x
p
σ′2 , v2y

q
(H5)

Then: n1 = n2 (C1)
And: σ′1 ∼Σ

n′−n1
σ′2 (C2)

And: v1 ∼Σ
n′−n1

v2 (C3)

Proof. See detailed proof in the extended version of this paper
[3].

Instantiating Metric Preservation. Metric preservation is not
enough on its own to demonstrate sound dynamic analysis of
function sensitivity. Suppose we execute the dynamic analysis
on program e with initial environment ρ, yielding a final store
σ, base value r , sensitivity environment Σ , metric m and
step-index n as a result:

ρ ` ∅, e ⇓n σ, r@Σ
m

To know the sensitivity of e is to know a bound on two arbitrary
runs of e, that is, using two arbitrary environments ρ1 and
ρ2 . Does Σ tell us this? Remarkably, it does, with one small
condition: ρ1 and ρ2 must agree with ρ on all non-sensitive
values. This is not actually limiting: a non-sensitive value is
essentially auxiliary information; they are constants and fixed
for the purposes of sensitivity and privacy.

We can encode the relationship that environments ρ and
ρ1 agree on all non-sensitive values as ρ ∼Σ ′

ρ1 for any
Σ ′, and we allow for environments ρ and ρ1 to differ on
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b ∈ B n ∈ N i ∈ Z r ∈ R x ∈ var

o ∈ source sensitive sources
` ∈ loc reference locations
e ∈ expr ::= x variables

| r real numbers
| e� e arith. operations
| if0(e){e}{e} cond. branching
| 〈e, e〉 pair creation
| πi(e) pair access
| λx. e function creation
| e(e) function application
| ref(e) reference creation
| !e reference read
| e← e reference write

q ∈ R̂ ::= r | ∞ ext. reals
� ∈ binop ::= + | n | o operations
m ∈ metric ::= diff absolute difference

| disc discrete
| ⊥ bot metric
| > top metric

v ∈ value ::= r@Σ
m tagged base value

| 〈v, v〉 pair
| 〈λx. e | ρ〉 function (closure)
| ` location (pointer)

ρ ∈ env , var ⇀ value value environment
σ ∈ store , loc ⇀ value mutable store
Σ ∈ senv , source ⇀ R̂ sens. environment

ρ1, σ1, e1 ∼Σ
0 ρ2, σ2, e2

M⇐⇒ true
ρ1, σ1, e1 ∼Σ

n+1 ρ2, σ2, e2
M⇐⇒ ∀n1 ≤ n, n2, σ

′
1, σ
′
2, v1, v2.

ρ1 ` x
p
σ1, e1y

q ⇓n1 x
p
σ′1, v1y

q ∧ ρ2 ` x
p
σ2, e2y

q ⇓n2 x
p
σ′2, v2y

q

⇒ n1 = n2 ∧ σ′1 ∼Σ
n−n1

σ′2 ∧ v1 ∼Σ
n−n1

v2

ρ, σ, e ∼Σ
n ρ, σ, e

r1 ∼rdiff r2
M⇐⇒ |r1 − r2| ≤ r

r1 ∼rdisc r2
M⇐⇒

{
0 ≤ r if r1 = r2

1 ≤ r if r1 6= r2

r1 ∼r⊥ r2
M⇐⇒ r1 ∼rdiff r2 ∧ r1 ∼rdisc r2

r1 ∼r> r2
M⇐⇒ r1 ∼rdiff r2 ∨ r1 ∼rdisc r2

r ∼rm r

r1@Σ1
m1
∼Σ
n r2@Σ2

m2

M⇐⇒ Σ1 = Σ2 ∧ m1 = m2 ∧ r1 ∼Σ·Σ1
m1

r2

〈v11, v12〉 ∼Σ
n 〈v21, v22〉

M⇐⇒ v11 ∼Σ
n v21 ∧ v21 ∼Σ

n v22

〈λx. e1 | ρ1〉 ∼Σ
n 〈λx. e2 | ρ2〉

M⇐⇒ ∀n′ ≤ n, v1, v2, σ1, σ2. σ1 ∼Σ
n′ σ2 ∧ v1 ∼Σ

n′ v2

⇒ σ1, {x 7→ v1} ] ρ1, e1 ∼Σ
n′ σ2, {x 7→ v2} ] ρ2, e2

`1 ∼Σ
n `2

M⇐⇒ `1 = `2

v ∼Σ
n v

ρ1 ∼Σ
n ρ2

M⇐⇒ ∀x ∈ (dom(ρ1) ∪ dom(ρ2)). ρ1(x) ∼Σ
n ρ2(x)

σ1 ∼Σ
n σ2

M⇐⇒ ∀` ∈ (dom(σ1) ∪ dom(σ2)). σ1(`) ∼Σ
n σ2(`)

ρ ∼Σ
n ρ

σ ∼Σ
n σ

Fig. 1. Formal Syntax & Step-indexed Logical Relation.

any sensitive value while agreeing on non-sensitive values as
ρ ∼{o 7→∞} ρ1 . Under such an assumption, Σ and m are sound
dynamic analysis results for two arbitrary runs of e , i.e., under
environments ρ1 and ρ2 , so long as one of those environments
agrees with ρ—the environment used to compute the dynamic
analysis. We encode this property formally as the following
corollary to metric preservation:

Corollary VII.1.1 (Sound Dynamic Analysis for Sensitivity).

If: n1 < n , n2 < n and n3 < n (H1)
And: ρ ∼{o 7→∞}n ρ1 (H2)

And: ρ ` x
p∅, ey

q ⇓n1 x
p
σ, r@Σ

my
q

(H3)

And: ρ1 ∼Σ ′

n ρ2 (H4)

And: ρ1 ` x
p∅, ey

q ⇓n2 x
p
σ1 , r1 @Σ1

m1y
q

(H5)

And: ρ2 ` x
p∅, ey

q ⇓n3 x
p
σ2 , r2 @Σ2

m2y
q

(H6)

Then: r1 ∼Σ ′·Σ
m1

r2 (C1)

Proof.
By Metric Preservation, (H2), (H1), (H3) and (H5) we have
Σ1 = Σ and m1 = m . By Metric Preservation, (H4), (H1),
(H5) and (H6) we have proved the goal (C1).
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e dr ∈ R̂→ R̂
e dr ∈ senv→ sens

er′dr ,
{

0 if r′ = 0
r if r′ 6= 0

eΣdr(o) , eΣ(o)dr
alloc(L) /∈ L ∈ ℘(loc) Z = {o 7→ 0}

ρ ` x
p
σ, ey

q ⇓n x
p
σ, vy

q

VAR

ρ ` x
p
σ, xy

q ⇓0 x
p
σ, ρ(x)y

q

REAL

ρ ` x
p
σ, ry

q ⇓0 x
p
σ, r@Z

discy
q

FUN

ρ ` x
p
σ, λx. ey

q ⇓0 x
p
σ, 〈λx. e | ρ〉y

q

PLUS

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , r1@Σ1

m1y
q

ρ ` x
p
σ′, e2y

q ⇓n2 x
p
σ′′, r2@Σ2

m2y
q

ρ ` x
p
σ, e1 + e2y

q ⇓n1+n2 x
p
σ′′, (r1 + r2)@Σ1+Σ2

m1tm2y
q

TIMES-L

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , r1@Z

m1y
q

ρ ` x
p
σ′, e2y

q ⇓n2 x
p
σ′′, r2@Σ2

m2y
q

ρ ` x
p
σ, e1 n e2y

q ⇓n1+n2 x
p
σ′′, (r1 × r2)@r1Σ2

m2 y
q

TIMES-R

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , r1@Σ1

m1y
q

ρ ` x
p
σ′, e2y

q ⇓n2 x
p
σ′′, r2@Z

m2y
q

ρ ` x
p
σ, e1 o e2y

q ⇓n1+n2 x
p
σ′′, (r1 × r2)@r2Σ1

m1 y
q

IFZ-T

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , r1 @Z

m1y
q

ρ ` x
p
σ′, e2y

q ⇓n2 x
p
σ′′, v2y

q
r1 = 0

ρ ` x
p
σ,if0(e1){e2}{e3}y

q ⇓n1+n2 x
p
σ′′, v2y

q

IFZ-F

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , r1 @Z

m1y
q

ρ ` x
p
σ′, e3y

q ⇓n2 x
p
σ′′, v3y

q
r1 6= 0

ρ ` x
p
σ,if0(e1){e2}{e3}y

q ⇓n1+n2 x
p
σ′′, v3y

q

PAIR

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , v1y

q

ρ ` x
p
σ′, e2y

q ⇓n2 x
p
σ′′, v2y

q

ρ ` x
p
σ, 〈e1, e2〉y

q ⇓n1+n2 x
p
σ′′, 〈v1, v2〉y

q

PROJ

ρ ` x
p
σ, ey

q ⇓n x
p
σ′, 〈v1, v2〉y

q

ρ ` x
p
σ, πn′(e)y

q ⇓n x
p
σ′, vn′y

q

REF

ρ ` x
p
σ, ey

q ⇓n x
p
σ′, vy

q

` = alloc(dom(σ))

ρ ` x
p
σ,ref(e)y

q ⇓n x
p{` 7→ v} ] σ′, ỳ

q

READ

ρ ` x
p
σ, ey

q ⇓n x
p
σ′, ỳ

q

ρ ` x
p
σ, !ey

q ⇓n x
p
σ′, σ′(`)y

q

WRITE

ρ ` x
p
σ , e1y

q ⇓n1 x
p
σ′ , ỳ

q

ρ ` x
p
σ′, e2y

q ⇓n2 x
p
σ′′, vy

q

ρ ` x
p
σ, e1 ← e2y

q ⇓n1+n2 x
p
σ′′[` 7→ v], vy

q

APP

ρ ` x
p
σ, e1y

q ⇓n1 x
p
σ′, 〈λx. e | ρ〉y

q
ρ ` x

p
σ′, e2y

q ⇓n2 x
p
σ′′, vy

q {x 7→ v} ] ρ ` x
p
σ′′, ey

q ⇓n3 x
p
σ′′′, v′y

q

ρ ` x
p
σ, e1(e2)y

q ⇓n1+n2+n3+1 x
p
σ′′′, v′y

q

Fig. 2. Formal Big-step, Step-indexed Semantics and Metafunctions.

Note that the final results are related using Σ—the analysis
result derived from an execution under ρ—while r1 and r2

are derived from executions under unrelated (modulo auxiliary
information) environments ρ1 and ρ2 .

In simpler terms, this corollary shows that even though the
dynamic analysis only sees one particular execution of the
program, it is accurate in describing the sensitivity of the
program—even though the notion of sensitivity considers two
arbitrary runs of the program, including those whose inputs
differ entirely from those used in the dynamic analysis.

VIII. IMPLEMENTATION & CASE STUDIES

We have developed a reference implementation of DDUO as
a Python library, using the approaches described in Sections IV,
V, and VI.

A major goal in the design of DDUO is seamless integration
with other libraries. Our reference implementation provides
initial support for NumPy, Pandas, and Sklearn. DDUO provides
hooks for tracking both sensitivity and privacy, to simplify
integrating with additional libraries.

We present case studies which focus on demonstrating
DDUO’s (1) similarity to regular Python code, (2) applicability
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Name Type Conditions
laplace : (ε : R, value : R) → R where priv(laplace(ε, value)) , ε

gauss : (ε : R, δ : R, value : R) → R where priv(gauss(ε, δ, value)) , (ε, δ)

ed_odo : (f : A→ B, in : A) → (out : B, (ε, δ) : (R,R)) where priv(ed_odo(f, in)) , priv(f(in))

renyi_odo : (f : A→ B, in : A) → (out : B, (α, ε) : (R,R)) where priv(renyi_odo(f, in)) , priv(f(in))
ed_filter : (f : A→ B, in : A, (ε, δ) : (R,R)) → (out : B) where (ε, δ) ≥ priv(f(in))

renyi_filter : (f : A→ B, in : A, (α, ε) : (R,R)) → (out : B) where (α, ε) ≥ priv(f(in))
conv_renyi : (f : A→ B, in : A, δ : R) → (out : B) where priv(f(...)) = (α, ε)

and conv(α, ε, δ) = (ε, δ)
svt : (ε : R, qs : [A→ B], data : [A], t : R)→ N where for q in qs, sens(q) = 1

and priv(svt(ε, qs, data, t)) , ε

exp : (ε : R, q : A→ B, data : [A]) → N where priv(exp(ε, q, data)) , ε

map : (f : A→ B, in : [A]) → [B] where sens(map(f, )) , sens(f( ))

priv: denotes the privacy leakage of a program given by dynamic analysis; sens: denotes the sensitivity of a program given by dynamic analysis; conv:
represents the conversion equation from renyi to approximate differential privacy
Types are written as follows: the → symbol is used to seperate the domain and range of a function, either of which may be given as an atomic type such as a
natural number (N), or as a tuple which is a comma-seperated list of types surrounded by parentheses, or as a symbol (A) indicating parametric polymorphism
(generics). In some cases, types may also be accompanied with a placeholder name (ε : R) for further qualification in the where clause.

Fig. 3. Core API Methods

to complex algorithms, (3) easy integration with existing
libraries. Although our approach is automatic, DDUO is able to
compute privacy leakage bounds that match those of bespoke
privacy-preserving algorithms. In this section we focus on the
Noisy Gradient Descent case study, other case studies have
been moved to the extended version of this paper [3] due to
space requirements. We introduce new adaptive variants of
algorithms that stop early when possible to conserve privacy
budget. These variants cannot be verified by prior work using
purely static analyses, because their privacy parameters are
chosen adaptively.

Run-time overhead. Run-time overhead is a key concern in
DDUO’s instrumentation for dynamic analysis. Fortunately,
experiments on our case studies suggest that the overhead of
DDUO’s analysis is generally low. Table I presents the run-time
performance overhead of DDUO’s analysis as a percentage
increase of total runtime. The worst overhead time observed
in our case studies was less than 60%.

In certain rare cases, DDUO’s overhead can be much higher.
For example, mapping the function lambda x: x + 1 over
a list of 1 million numbers takes 160x longer under DDUO
than in standard Python. The overhead in this case comes
from a combination of factors: first, DDUO’s map function,
itself implemented in Python, is much slower than Python’s
built-in map operator; second, DDUO’s map function requires
the creation of a new Sensitive object for each element of
the list—a slow operation in Python.

Fortunately, the same strategies for producing high-
performance Python code without privacy also help reduce
DDUO’s overhead. Python’s performance characteristics have
prompted the development of higher-performance libraries like
NumPy and Pandas, which essentially provide data-processing
combinators that programmers compose. By providing sen-

Technique Ref. Libraries Used Overhead
Noisy Gradient Descent [13] NumPy 6.42%
Multiplicative Weights (MWEM) [30] Pandas 14.90%
Private Naive Bayes Classification [45] DiffPrivLib 12.44%
Private Logistic Regression [17] DiffPrivLib 56.33%

TABLE I
LIST OF CASE STUDIES INCLUDED WITH THE DDUO IMPLEMENTATION.

sitivity annotations for these libraries, we can re-use these
high-performance implementations and avoid creating extra
objects. As a result, none of our case studies demonstrates the
worst-case performance overhead described above.

Case study: gradient descent with NumPy. Our first case
study (Figure 4) is a simple machine learning algorithm based
on [13] implemented directly with DDUO-instrumented NumPy
primitives. The remaining case studies appear in the Appendix.

Given a dataset X which is a list of feature vectors
representing training examples, and a vector y which classifies
each element of X in a finite set, gradient descent is the process
of computing a model (a linear set of weights) which most
accurately classifies a new, never seen before training example,
based on our pre-existing evidence represented by the model.

Gradient descent works by first specifying a loss function
that computes the effectiveness of a model in classifying a
given dataset according to its known labels. The algorithm then
iteratively computes a model that minimizes the loss function,
by calculating the gradient of the loss function and moving
the model in the opposite direction of the gradient.

One method of ensuring privacy in gradient descent involves
adding noise to the gradient calculation, which is the only
part of the process that is exposed to the private training
data. In order to add noise to the gradient, it is convenient to
bound its sensitivity via clipping to some L2 norm. In this
example, clipping occurs in the gradient_sum function
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def dp_gradient_descent(iterations, alpha, eps):
eps_i = eps/iterations
theta = np.zeros(X.shape[1])
with dduo.RenyiFilter(alpha,eps_max):
with dduo.RenyiOdometer((alpha, eps)) as odo:
noisy_count = dduo.renyi_gauss(α=alpha,
ε=eps,X.shape[0])
priv_acc = 0
acc_diff = 1

while acc_diff > 0.05:
grad_sum = gradient_sum(theta,

X_train, y_train, sensitivity)
noisy_grad_sum = dduo.gauss_vec(grad_sum,
α=alpha,ε=eps_i)

noisy_avg_grad = noisy_grad_sum/noisy_count
theta = np.subtract(theta, noisy_avg_grad)
priv_acc_curr = dduo.renyi_gauss(alpha,
eps_acc, accuracy(theta))

acc_diff = priv_acc_curr - priv_acc
priv_acc = priv_acc_curr

print(odo)
return theta

theta = dp_gradient_descent(iterations,
α=alpha, ε=epsilon)

acc = dduo.renyi_gauss(alpha,
eps_acc, accuracy(theta))

print(f"final accuracy: {acc}")

Odometer_(α, ε)({data.csv 7→ (10.0, 2.40)})
final accuracy: 0.753

Fig. 4. Gradient Descent with NumPy

before summation.
The original implementation of this algorithm [13] was based

on the advanced composition theorem. Advanced composition
improves on sequential composition by providing much tighter
privacy bounds over several iterations, but requires the analyst
to fix the number of iterations up front, regardless of how
many iterations the gradient descent algorithm actually takes
to converge to minimal error.

We present a modified version based on adaptive Renyi
differential privacy which provides not only a tighter analysis
of the privacy leakage over several iterations, but also allows
the analyst to halt computation adaptively (conserving the
remaining privacy budget) once a certain level of model
accuracy has been reached, or loss has been minimized. We
introduce random noise to the accuracy calculation because it
is a computation on the sensitive input training dataset in this
case.

IX. RELATED WORK

Dynamic Enforcement of Differential Privacy. The first
approach for dynamic enforcement of differential privacy
was PINQ [36]. Since then several works have been based
on PINQ, such as Featherweight PINQ [21] which models
PINQ formally and proves that any programs which use its
simplified PINQ API are differentially private. ProPer [22]
is a system (based on PINQ) designed to maintain a privacy
budget for each individual in a database system, and operates
by silently dropping records from queries when their privacy
budget is exceeded. UniTrax [38] follows up on ProPer: this

system allows per-user budgets but gets around the issue of
silently dropping records by tracking queries against an abstract
database as opposed to the actual database records. These
approaches are limited to an embedded DSL for expressing
relational database queries, and do not support general purpose
programming.

A number of programming frameworks for differential pri-
vacy have been developed as libraries for existing programming
languages. DPELLA [35] is a Haskell library that provides
static bounds on the accuracy of differentially private programs.
Diffprivlib [32] (for Python) and Google’s library [49] (for
several languages) provide differentially private algorithms,
but do not track sensitivity or privacy as these algorithms are
composed. εktelo [51] executes programmer-specified plans
that encode differentially private algorithms using framework-
supplied building blocks.

Dynamic Information Flow Control. Our approach to dy-
namic enforcement of differential privacy can be seen as similar
to work on dynamic information flow control (IFC) and taint
analysis [7]. The sensitivities that we attach to values are
comparable to IFC labels. However, dynamic IFC typically
allows the programmer to branch on sensitive information and
handles implicit flows dynamically. DDUO prevents branching
on sensitive information, similar to an approach taken for
preventing side-channels in the "constant time" programming
discipline for cryptographic code [8]. Another connection
with this line of work is that our use of the logical relations
proof technique for a differential privacy theorem is similar
to the usage of this technique for noninterference theorems
[43, 31, 1, 15, 6, 27].

Static Verification of Differential Privacy. The first approach
for static verification of differential privacy was FUZZ [41],
which used linear types to analyze sensitivity. DFUZZ [26]
adds dependent types, and later work [18, 40] extends the
approach to (ε, δ)-differential privacy. FUZZI [53] integrates
a FUZZ-like type system with an expressive program logic.
Adaptive Fuzz [50] combines a FUZZ-style static type system
for sensitivity analysis with a dynamic privacy analysis using
privacy filters and odometers; Adaptive Fuzz is most similar
to our approach, but uses a static sensitivity analysis. All of
these approaches require additional type annotations.

A second category is based on approximate couplings [9].
The APRHL [11, 12], APRHL+ [10], and SPAN-APRHL [44]
relational logics are extremely expressive, but less amenable
to automation. Albarghouthi and Hsu [5] use an alternative
approach based on constraint solving to synthesize approximate
couplings. A third approach is based on randomness align-
ments; LightDP [52] and ShadowDP [47] take this approach.
Randomness alignments are effective for verifying low-level
mechanisms like the sparse vector technique. The latter two
categories are generally restricted to first order imperative
programs.

Dynamic Testing for Differential Privacy. A recent line of
work [14, 19, 46, 49] has resulted in approaches for testing
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differentially private programs. These approaches generate a
series of neighboring inputs, run the program many times on
the neighboring inputs, and raise an alarm if a counterexample
is found. These approaches do not require type annotations,
but do require running the program many times.

X. CONCLUSION

We have presented DDUO, a dynamic analysis that supports
general-purpose differentially private programming with an
emphasis on machine learning. We have formalized the sensi-
tivity analysis of DDUO and proven its soundness using a step-
indexed logical relation. Our case studies demonstrate the utility
of DDUO by enforcing adaptive variants of several differentially
private state-of-the-art machine learning algorithms from the
ground up, while integrating with some of Python’s most
popular libraries for data analysis. It is our hope that the
usability and strong guarantees of DDUO will inspire data
analysts, technology corporations, researchers, and students in
computer science to continue to build a community and culture
of verifiable data privacy.
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