
Formal Verification of Secure Forwarding Protocols
Tobias Klenze

ETH Zurich
tobias.klenze@inf.ethz.ch

Christoph Sprenger
ETH Zurich

sprenger@inf.ethz.ch

David Basin
ETH Zurich

basin@inf.ethz.ch

Abstract—Today’s Internet is built on decades-old network-
ing protocols that lack scalability, reliability, and security. In
response, the networking community has developed path-aware
Internet architectures that solve these issues while simultane-
ously empowering end hosts. In these architectures, autonomous
systems construct authenticated forwarding paths based on
their routing policies. Each end host then selects one of these
authorized paths and includes it in the packet header, thus
allowing routers to efficiently determine how to forward the
packet. A central security property of these architectures is
path authorization, requiring that packets can only travel along
authorized paths. This property protects the routing policies of
autonomous systems from malicious senders.

The fundamental role of packet forwarding in the Internet and
the complexity of the authentication mechanisms employed call
for a formal analysis. In this vein, we develop in Isabelle/HOL
a parameterized verification framework for path-aware data
plane protocols. We first formulate an abstract model without
an attacker for which we prove path authorization. We then
refine this model by introducing an attacker and by protecting
authorized paths using (generic) cryptographic validation fields.
This model is parameterized by the protocol’s authentication
mechanism and assumes five simple verification conditions that
are sufficient to prove the refinement of the abstract model. We
validate our framework by instantiating it with several concrete
protocols from the literature and proving that they each satisfy
the verification conditions and hence path authorization. No
invariants must be proven for the instantiation. Our framework
thus supports low-effort security proofs for data plane protocols.
The results hold for arbitrary network topologies and sets of
authorized paths, a guarantee that state-of-the-art automated
security protocol verifiers cannot currently provide.

I. INTRODUCTION

The Internet is a global network of ca. 70,000 independently
managed networks, called autonomous systems (ASes), which
are run by entities such as Internet service providers (ISPs),
content providers, or public institutions. Routing is based on the
aging Border Gateway Protocol (BGP), a protocol that scales
poorly and has no built-in security. In response to these well-
known problems, the networking community has been working
to augment BGP with security mechanisms [1]–[3], but the
proposed solutions have proven to be insufficient, inefficient
or to introduce new problems [4]–[6].

In parallel to the proposed BGP enhancements, which trade
off performance for security, many researchers have acknowl-
edged the need for a clean-slate approach. The networking
community has invested substantial effort into developing novel
security protocols with the objective of building a new Internet
architecture that is both more efficient and more secure. We
focus here on path-aware architectures [7]–[13], which, in

contrast to the current Internet, provide end hosts with some
control over the paths along which they send their packets.

Networking architectures generally consist of a control plane
and a data plane (also called forwarding plane). On the control
plane, routers exchange topology information and establish
paths. In the path-aware Internet architectures that we focus on,
the control plane constructs forwarding paths as sequences of
cryptographically authenticated forwarding fields, one for each
AS on the path. The data plane forwards packets along these
paths. The source selects a forwarding path for each packet and
includes it in the packet’s header (packet-carried forwarding
state). Routers forward the packets according to their AS’
forwarding information, which they extract from the packet’s
path and validate by checking the associated cryptographic
authenticator. Since each packet contains its own forwarding
state, routers do not require routing tables (unlike BGP routers).

ASes have routing policies that rule out impractical or
uneconomical paths. Path-aware architectures allow end hosts
to select paths, but architectures must ensure that the policies
of ASes are followed. To protect ASes from malicious sources,
the control plane should only construct and authenticate paths
consistent with each AS’ policy, and the data plane should
only forward packets along these paths. The latter property is
called path authorization and is the central security property
of path-aware data planes. The cryptographic authenticators
embedded in forwarding paths ensure that malicious end hosts
cannot tamper with the paths produced by the control plane to
forward packets along unauthorized paths.

The complexity of data plane protocols and their central
role in future Internet architectures calls for their formal
verification to obtain sufficient assurance about their correctness
and security. There are several payoffs from this effort. First, it
enables the early detection of protocol flaws and vulnerabilities,
avoiding critical exploits and high costs for corrections after
deployment has begun. This is especially true for the data plane
since it is implemented in large numbers of high-performance
software or hardware routers, which are difficult to update after
their deployment. Second, a formal proof increases confidence
in the architecture’s security, thereby fostering its adoption.

Data plane protocols exhibit characteristics that make the
verification of path authorization particularly challenging. First,
we want to verify this security property over arbitrary network
topologies and authorized paths therein, as determined by the
control plane. Second, the formalism must be expressive enough
to describe (i) path authorization, which is a non-local property
that involves all ASes on a path, and (ii) assumptions on

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
18

a control plane adversary’s capabilities to shorten, modify,
and extend certain authorized paths. Third, the number of
participants and the message sizes in a protocol run depend
on the (unbounded) length of the path embedded in a given
packet. We anticipate that state-of-the-art automated security
protocol verifiers such as Tamarin [14] and ProVerif [15] could
only be used to verify path authorization in relatively small,
fixed topologies and fixed sets of authorized paths.

For this reason, we employ a higher-order logic theorem
prover, Isabelle/HOL [16], which allows us to model and verify
data plane protocols in their full generality. As research in novel
path-aware Internet architectures has led to several interesting
candidate (families of) data plane protocols, we would like to
verify these without the need to restart the specification and
verification effort from scratch for each protocol or variant.
Specifications and proofs should thus share as much structure as
possible. To achieve this, we propose a parametrized framework
in Isabelle/HOL for the verification of families of data plane
protocols (Fig. 1).

We first develop a simple abstract model of a packet
forwarding protocol without an attacker, for which we formulate
and easily prove path authorization. We then refine this model
into a more concrete one, where we introduce a Dolev–Yao
adversary and (generic) cryptographic authenticators, called
hop validation fields (hvf), that protect each AS-level hop along
a forwarding path. A key insight is that the only substantial
difference between path authorization mechanisms is how the
hvf is computed. This allows us to define a single skeleton
protocol model, which we can instantiate to a wide range of
actual protocols. We achieve this by parametrizing the concrete
model by (i) a cryptographic hop validation check that must be
performed by each AS locally to determine the authorization
of the forwarding path, (ii) a function that extracts an entire
forwarding path from a hop validation field, and (iii) a set of
(cryptographic) terms added to the attacker’s knowledge.

We identify five simple verification conditions on these
parameters that suffice to prove that the concrete model refines
the abstract one and therefore inherits the path authorization
property. These conditions require the hvf to be unforgeable
and to contain the path. Our development is also parametrized
by an arbitrary network topology and a set of authorized paths
constructed by the control plane. Our security proofs hold for
all network topologies and control planes that satisfy some
realistic assumptions.

To define a concrete data plane protocol in our framework,
we instantiate the parameters (i)-(iii) and discharge the five
verification conditions. We do so for the data plane of
SCION [13], several members of the EPIC protocol family [17],
and ICING [18], as well as for variants of these protocols. The
instantiations and the associated proofs of the verification con-
ditions are substantially shorter, simpler, and more manageable
than redoing a full specification and security proof for each
protocol. In particular, discharging the conditions does not
involve reasoning about state transitions (unlike, e.g., proving
an invariant).

Since path-aware Internet architectures and path authoriza-

prove properties

declare

 assume

 prove

parameters

conditions

refinement

ICING

EPIC

SCION

refi
n

e

instantia
te

Generic Models

Abstract

Concrete

Protocol Instances

define

prove

parameters

conditions

Fig. 1: Overview of our models. Refinement and instantiation
preserve properties.

tion are relatively new concepts, there is little existing verifica-
tion work. The most closely related works are the verification
of a weaker AS-local form of path authorization [19] and of
different security properties [20] for such architectures. Both
of these works mechanize their proofs in Coq using a non-
foundational approach, i.e., relying on an axiomatization or
external tools. We further discuss related work in §X.

Contributions: Our main contributions are as follows. (i) We
develop a generic framework for verifying security properties
for a general class of data plane protocols for arbitrary network
topologies. This framework has three protocol parameters
that are required to satisfy five simple verification conditions.
(ii) The five conditions provide insight into the common
structure underlying data plane protocols of path-aware Internet
architectures. (iii) We instantiate our framework with eight
different variants of realistic data plane protocols proposed in
the literature and prove that they satisfy path authorization by
establishing the parametrized model’s verification conditions.
(iv) All of our definitions and results are formalized in
Isabelle/HOL following a foundational approach, which only
relies on the axioms of higher-order logic and thus provides
strong soundness guarantees. All results are available online.1

II. PROBLEM DOMAIN AND OVERVIEW

In this section, we provide background on the secure
forwarding problem and give an overview of our framework, in
particular the protocols and security properties that we verify.

A. Motivation for future Internet architectures

Networking in today’s Internet is plagued by numerous
performance and security problems. Forwarding uses longest-
prefix matching on large routing tables, which scales poorly and
requires expensive hardware support. Changes to the network
topology trigger routing updates that can lead to outages lasting
tens of minutes [21], and in some topologies, BGP does not
converge to a stable state at all [22].

1https://doi.org/10.5281/zenodo.4515953

A

B C

D

E

F G

(a) Auth. Paths

A

B C

D

E

F G

(b) Spliced Path
– Link – Left Path – Right Path – Attacker Path

Fig. 2: If path authorization holds, a malicious sender at node F
cannot splice the two authorized paths in (a) to create the
unauthorized forwarding path in (b).

The absence of security in BGP is a major concern. The
lack of secure routing allows any of the ca. 70,000 Internet
ASes [23] to launch prefix hijacking attacks [24]. Various
protocols have been proposed that add security mechanisms
to the existing BGP infrastructure, such as BGPSec [3],
S-BGP [1], soBGP [25], psBGP [26], and PGBGP [27].
Unfortunately, these additions are insufficient to solve the
Internet’s problems [4]–[6], or they introduce new problems
such as high overhead [28], [29] and kill switches [6]. In
short, they trade off security with performance and they fail to
address the reliability problems of BGP’s convergence-based
approach.

Our work instead applies to data planes of a wide range
of future Internet architectures that follow a clean-slate path-
aware approach [7]–[13]. We first discuss these data planes
generically, and present SCION as an example in §II-E, where
we also describe SCION’s control plane.

B. Data planes of future Internet architectures

Each AS in the Internet administers its internal network
including its routing and forwarding mechanisms. We abstract
from internal forwarding and consider the networking between
ASes, which requires entities to agree on a common protocol.
Since we view the Internet as a network of ASes, we also
refer to ASes as nodes. See Fig. 2 for an example of a (tiny)
Internet topology. The internal structure of an AS is shown in
Fig. 3. Nodes are interconnected at border routers, which sit
at the edge of each node’s network and perform both inter-AS
and intra-AS forwarding.

The path-aware Internet architectures that we examine pro-
vide end hosts with path control, which is the ability to choose
from a set of authorized forwarding paths for each destination.
End hosts select their desired forwarding path at the granularity
of inter-AS links, and embed the path alongside authenticators
in each data packet. This packet-carried forwarding state
removes the need for border routers to keep state for inter-AS
forwarding. Path control also empowers end hosts to make

AS

border router

internal router

Fig. 3: Internals of AS E of Fig. 2 with one path shown. The
internal path between border routers is decided by the AS.

path choices that are suitable for their applications’ needs.
For instance, Voice-over-IP requires little bandwidth but low
latency, whereas data synchronization requires high bandwidth,
but latency is less important. These applications can thus use
different paths. Moreover, multipath routing allows multiple
paths between the same source-destination pair to be used
simultaneously, even by the same application.

The end host’s power of choosing paths is balanced against
the interest of ASes. Paths are discovered and authorized on
the control plane (cf. §II-E), which must ensure that paths are
only authorized if they satisfy the routing policies of ASes.

The forwarding paths embedded into packets consist of a hop
field for each AS on the path. It includes the AS identifier id,
as well as the interfaces prev, on which the packet is received,
and next, on which the packet is to be sent out. The AS uses its
own networking infrastructure to forward the packet between
the border routers adjacent to these interfaces. The first and last
hop fields on a path only contain a single interface, as there is
no predecessor and successor AS, respectively. The path is fixed
by the sending end host and remains static. A moving pointer
indicates the current hop field. Each hop field is authenticated
by its AS when it is first constructed on the control plane and
a hop validation field (hvf), typically a message authentication
code (MAC) proving its authorization on the data plane, is
embedded in each hop field. Upon receiving a data packet, a
border router checks the hvf of its hop field. If it is valid, then
the path was authorized on the control plane, and the border
router forwards the packet.

Depending on the context we use the term hop field and
write hfi to refer to either the unauthenticated (without hvf) or
the authenticated (with hvf) forwarding data of the AS i. In
our formal definitions we call the former abstract hop field
(§IV, Eq. (3)), and the latter concrete hop field (§V, Eq. (8)).

There are two variants of path authorization mechanisms
that differ in how paths are authorized on the control plane:
in undirected protocols, each AS authorizes the path in its
entirety. In directed protocols, each AS only authorizes the
partial path consisting of its own hop and all subsequent hops
in forwarding direction. For instance, in Fig. 2a, AS D could
decide which of the partial paths D-B-A and D-C-A to allow,
but once authorization is granted, extensions authorized by
E and E’s children are also implicitly authorized by D. As
we will see in §VI-A and §VIII-C, the two variants require

different control plane assumptions.
In the protocols we study, path authorization still holds even

if the malicious sender learns the keys of compromised on-path
ASes. However, we must make assumptions to exclude trivial
violations of path authorization.

C. Security properties that we verify

We verify two data plane security properties (formally
defined in §IV-D): path authorization and detectability. They
protect ASes against malicious senders and compromised ASes.

1) Path authorization: This is the data plane property that all
data packets traverse the Internet only along authorized paths.
It protects ASes from malicious senders who could try to forge
paths that are advantageous to themselves (e.g., by using costly
paths that they have not paid for), detrimental to ASes (e.g.,
uneconomical valley paths [30]), or disrupt forwarding entirely
(e.g., through loops).

Path authorization is not just a local property; in particular,
it is not enough for each hop to authorize its local routing
information (prev and next interfaces), since that would still
allow for attacks such as forwarding loops. If a strictly
hierarchical structure with defined provider–customer and
peering relationships is assumed, forwarding loops can be
prevented with only local checks [31]. However, path policies
in general cannot be protected with only local checks, as
our example in Fig. 2a illustrates. In this example, two paths
leading to the destination node A are authorized: the left path
F–E–D–B–A, and the right path G–E–D–C–A. Node F is only
authorized to use the left path and is forbidden to send packets
to A via C. Path authorization implies that an attacker at F
cannot craft a packet that traverses the path given in Fig. 2b.
Each AS only checking its local forwarding information cannot
guarantee this.

2) Detectability: Since the entire forwarding path is con-
tained in each packet, a malicious source cannot hide her
presence on the path. Detectability states that the actual path
that a packet traverses is contained in the path embedded in the
packet’s header. This property does not prevent source spoofing,
but rather ensures that if a source is spoofed, then the attacker
must be in one of the nodes on the packet’s forwarding path,
thus ensuring basic accountability for data packets.

D. Security properties that we do not verify

Source and packet authentication allow border routers or
the destination to authenticate the sender and packet. Path
validation allows the destination to verify that the path
contained in the packet was actually traversed. We do not
verify these data plane properties, for reasons given in §IX-E.

Intra-AS forwarding is out of scope, since each AS exercises
control over its own network, and global coordination is not
required for intra-AS security. We also do not specify or verify
the control plane, as its properties are independent from those of
the data plane. For instance, path authorization is independent
of the property that a path authorized by the control plane is
in accordance with the routing policies of all on-path ASes.

A

B

D

. . .

MACKA(hfA)

MACKB (〈hfB ,MACKA(hfA)〉)

MACKD (〈hfD,MACKB (〈hfB ,MACKA(hfA)〉)〉)

Fig. 4: SCION’s hop validation fields that contain nested MACs.
The fields hfi contain the local forwarding data of AS i.

E. SCION control and data plane

We now show a concrete protocol that implements the control
and data plane and achieves path authorization. We use a
simplified version of SCION as an example.

Authorized paths are established on SCION’s control plane
using path-discovery beacons. Beacons are initialized by a
subset of nodes and constructed in the opposite direction of
forwarding. Each AS decides which of the beacons it has
created or received should be propagated to a given neighbor.
Since the AS is implicitly authorizing the further dissemination
by the neighbor, SCION is a directed protocol. For every beacon
that is propagated, the AS adds a hop field, containing its own
forwarding information (in accordance with its routing policy)
and cryptographic authenticators. Beacons contain two types
of authenticators: signatures, which authenticate the beacons
themselves on the control plane, and MACs, which are used
to achieve path authorization on the data plane. The signatures
are stripped off the beacons before they are embedded into a
data plane packet. On the data plane, which transports vastly
more packets than the control plane, asymmetric cryptography
is too slow to be employed for each packet. Consequently,
SCION’s data plane relies entirely on symmetric cryptography.

Each AS A has a key KA that is shared by its border
routers. The hop validation field hvfA is a MAC over A’s local
forwarding data hfA, and the MAC of the next hop B:

hvfA = MACKA
(〈hfA, hvfB〉) . (1)

Crucially, the MAC is created not only over the local routing
information, but also over the next MAC. As Fig. 4 illustrates,
this nests the MACs and protects the entire subsequent path.
During forwarding, each border router checks the validity of
its own MAC embedded in the packet header. The validation of
the MAC is substantially faster, and scales better, than looking
up authorized paths in a table on each router [13].

F. Verified data plane protocols

Our verification framework applies to both directed and
undirected protocols. We analyze two data plane protocols
besides SCION and prove path authorization and detectability:
• EPIC [17], a family of directed data plane protocols that

provide three levels of security guarantees. We verify
levels 1 and 2. EPIC levels 2 and 3 add authentication
and path validation mechanisms, which we do not verify.

N, B, N , I naturals, bools, nodes, interfaces
A×B, A∗ cartesian product, finite sequences

A⊥ option type (disjoint sum of A and {⊥})
A→ B, A ⇀ B total and partial functions
dom(f), ran(f) function domain, range

P(A), (|x ∈ A, y ∈ B |) powerset, set of records
(|x = a, y = b |), x(r) concrete record, record field x

〈〉, x# xs, 〈a, b, c〉 empty, cons, concrete sequence
xs ≤ ys, x ∈ xs sequence prefix, sequence membership

hd(xs), tl(xs) list head and tail if cons, else ⊥
xs · ys, rev(xs) concatenation, sequence reversal

TABLE I: Summary of notation and definitions.

• ICING [18], the undirected data plane protocol in the
NEBULA Internet architecture [12]. It also provides path
validation, which we do not verify.

We will formalize these protocols in §VII as instances of
our parametrized framework.

III. PRELIMINARIES

In this section, we provide background on event systems,
refinement, and model parametrization. We introduce relevant
notation in Table I. Despite our use of Isabelle/HOL, we largely
use standard mathematical notation and deliberately blur the
distinction between types and sets.

A. Event systems, invariants, and refinement

Event systems are labeled transition systems, where tran-
sitions are labeled with events. Formally, an event system is
of the form E = (S, s0, E, { e−→}e∈E), where S is a set of
states, s0 ∈ S is the initial state, E is a set of events, and
e−→⊆ S × S is the transition relation corresponding to event e.

As usual, we write s e−→ s′ for (s, s′) ∈ e−→. The set of states
reachable from a state s, written reach(E , s), is inductively
defined by s ∈ reach(E , s), and s′ ∈ reach(E , s) and s′ e−→ s′′

implies s′′ ∈ reach(E , s). A state property P is a subset of S
(or, equivalently, a predicate on S). A state property P is an
invariant of E , written E |= P , if reach(E , s0) ⊆ P .

Given an abstract event system Ea = (Sa, s
0
a , Ea, {

e−→a}e∈Ea)
and a concrete event system Ec = (Sc, s

0
c , Ec, {

e−→c}e∈Ec) we
say that Ec refines Ea if there are refinement mappings π0 :
Sc → Sa on states and π1 : Ec → Ea on events such that
π0(s0

c) = s0
a and for all sc, s

′
c ∈ Sc and ec ∈ E such that

sc
ec−→c s

′
c we have π0(sc)

π1(ec)−−−−→a π0(s′c). This is functional
forward simulation [32]. Refinement preserves invariants from
the abstract to the concrete model, i.e., Ea |= P implies that
Ec |= π−1

0 (P), where π−1
0 (P) = {s ∈ Sc | π0(s) ∈ P}.

In our models, we often use parameterized events and states
structured as records. We use the notation

e(x̄) : g(x̄, v̄) . w̄ := ū(x̄, v̄)

to specify such events, where x̄ are the event’s parameters (the
bar representing a vector), v̄ are the state record’s fields, g(x̄, v̄)
is the guard predicate defining the executability of the event,
w̄ ⊆ v̄ are the updated fields, and ū are update functions (one

for each variable in w̄). This notation denotes the transition
relation defined by s

e(x̄)−−→ s′ iff g(x̄, s(v̄)) holds, s′(w̄) =
ū(x̄, s(v̄)) and, for the state fields z̄ = v̄ − w̄ that are not
updated, s′(z̄) = s(z̄). We often use updates of parameterized
channel fields holding sets of messages. For example, if m is an
integer, the event send(A,B,m) : m > 0 . ch(A,B) += m
adds packet m to the channel ch between A and B if m is
positive, i.e., the intended update is ch(A,B) := ch(A,B) ∪
{m}. Otherwise the state remains unmodified, in particular,
ch(A′, B′) := ch(A′, B′) for all (A′, B′) 6= (A,B).

B. Parametrization

The generality of our models rests on their parametrization. A
parametrized model may include assumptions on its parameters.
An instance must define the parameters and prove the assump-
tions. For easy identification, we will highlight parameters
in gray when they are first introduced. Parametrization is
independent of refinement. For instance, a model can be
parametrized and concrete at the same time (as is the case in our
framework). In our Isabelle/HOL formalization we implement
parametrization using locales [33].

IV. ABSTRACT MODEL

We define an event system that models the abstract data
plane of a path-aware network architecture. This model includes
neither cryptography nor an attacker. We prove that it satisfies
path authorization and detectability.

To distinguish definitions of this abstract model from those
of the concrete model that refines it (§V), we use subscripts
‘a’ and ‘c’, respectively.

A. Environment parameters

We model the Internet as a multigraph whose nodes represent
ASes and edges represent the network links between them.
More precisely, a network topology is a triple (N ,I , target),
where N is a set of nodes, I is a set of interfaces, and

target ∈ N ×I ⇀ N ×I (2)

is a partial bijective function that models links between ASes
and is an environment parameter to our model.2 We say that
an interface i is valid for a node A, if (A, i) ∈ dom(target),
whereby target(A, i) = (B, j) denotes the node B and interface
j at the other end of the link. Our definition thus allows for
multiple links between a given pair of nodes, with possibly
different forwarding policies.

We often reason directly about paths in the network, rather
than the network topology. These paths are defined in terms
of both nodes and their interfaces. We define a path to be a
finite sequence of abstract hop fields from the set

HFa = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥ |). (3)

Each hop field contains the local routing information of a node,
i.e., its node identifier and the interfaces that identify the links

2The bijectivity of target models unicast communication (in contrast to, e.g.,
broadcast), however this is not required as an assumption for our proofs.

dispatch-inta(A,m) :

fut(m) ∈ auth�a ∧ hist(m) = 〈〉
. int(A) += m

dispatch-intc(A,m) :
m ∈ DY(ik) ∧ hist(m) = 〈〉

. int(A) += m.
dispatch-exta(A, i,m) :

fut(m) ∈ auth�a ∧ hist(m) = 〈〉 ∧
(A, i) ∈ dom(target)

. ext send(A, i) += m.

dispatch-extc(A, i,m) :
m ∈ DY(ik) ∧ hist(m) = 〈〉
(A, i) ∈ dom(target)

. ext send(A, i) += m.
senda(A,m, hf, i) :

hf = hd(fut(m))∧hf 6= ⊥∧A = id(hf)∧ i = next(hf)∧
m ∈ int(A) ∧ (A, i) ∈ dom(target)

. ext send(A, i) += fwda(m).

sendc(A,m, hf, i) :
hf = hd(fut(m))∧hf 6= ⊥∧A = id(hf)∧ i = next(hf)∧
m ∈ int(A) ∧ (A, i) ∈ dom(target) ∧
ψ(hf, hd(tl(fut(m))), tok(m))

. ext send(A, i) += fwdc(m).
recva(A,m, hf, i) :

hf = hd(fut(m)) ∧ hf 6= ⊥ ∧A = id(hf) ∧
m ∈ ext recv(A, i) ∧ (A, i) ∈ dom(target)

. int(A) += m.

recvc(A,m, hf, i) :
hf = hd(fut(m)) ∧ hf 6= ⊥ ∧A = id(hf) ∧
m ∈ ext recv(A, i) ∧ (A, i) ∈ dom(target) ∧
i = prev(hf) ∧
ψ(hf, hd(tl(fut(m))), tok(m))

. int(A) += m.
delivera(A,m, hf) :

fut(m) = 〈hf〉 ∧A = id(hf) ∧m ∈ int(A)
. int(A) += fwda(m).

deliverc(A,m, hf) :
fut(m) = 〈hf〉 ∧A = id(hf) ∧m ∈ int(A)
ψ(hf,⊥, tok(m))

. int(A) += fwdc(m).

Fig. 5: Events of the abstract (left) and concrete (right) model, with differences highlighted.

to the previous and the next hop on the path. Both interfaces
are defined as option types, indicated by the subscript ⊥. When
there is no previous or next hop, we assign ⊥.

Our model’s second environment parameter is

autha ⊆ HF∗a , (4)

the set of authorized paths along which packets are allowed to
travel. Packets can also traverse only a part of an authorized
path. To account for such partial paths we define auth�a , the
fragment closure of autha, as the set of paths hfs such that
there exist a hfs′ ∈ autha and paths hfs1, hfs2 ∈ HF∗a such that
hfs′ = hfs1 · hfs · hfs2.

Note that authorized paths cannot be assumed to be actual
paths in the network multigraph, since attackers on the control
plane can interfere with the path construction (see §VI-A).

Our third parameter is the set of compromised nodes

Nattr ⊆ N . (5)

All other nodes are called honest. This environment parameter
only becomes relevant with the introduction of the adversary
in the concrete model (§V-C), where the attacker has access
to the keys of compromised nodes. We nevertheless introduce
it here, since using the same environment parameters in all of
our models simplifies our presentation.

The environment assumptions (ASM) expressed over these
three parameters are introduced in the refinement of the abstract
to the concrete model (§VI-A).

B. State

We model packet forwarding from a node’s internal network
to an inter-node link, and vice-versa, via two types of
asynchronous channels: internal (one per node) and external
(two per inter-node pair, one in each direction). We represent
these channels as sets of packets PKTa, defined below.

Sa = (| int ∈ N → P(PKTa),

ext ∈ N ×I ×N ×I → P(PKTa) |).

In the initial state s0
a , all channels are empty. We overload the

set inclusion operator to apply to states: A packet m is in state s,
m ∈ s, iff m ∈ ran(int(s))∪ran(ext(s)). For a valid interface i
of A with target(A, i) = (B, j), we define ext send(A, i) =
ext(A, i,B, j) and ext recv(A, i) = ext(B, j,A, i).

In the following definition of packets, we abstract from the
payload and only model the packet-carried forwarding state:

PKTa = (| past ∈ HF∗a , fut ∈ HF∗a , hist ∈ HF∗a |).

A packet consists of the desired future path fut, and the
(presumed) traversed path past in the reverse direction. The full
path is rev(past(m)) · fut(m). While this splitting of the path
simplifies our proofs, the forwarding path could equivalently be
defined as a single sequence with a moving pointer indicating
the current position on the path. We call a packet m authorized,
if fut(m) ∈ auth�a . Additionally, each packet records a path
hist, also in reverse direction. It represents the packet’s actual
trajectory and is used to express security properties. This can
be seen as a history variable.

C. Events

The events of the abstract model are given on the left-hand
side of Fig. 5. The life cycle of a packet is captured by the
following events: dispatch-inta creates a new packet containing
an authorized future path in the internal channel of a node.
The packet is transferred with alternating senda and recva
events between internal and external channels, according to the
forwarding path contained in the packet. Finally, the packet is
delivered to the end host with an event delivera. The events
dispatch-inta and delivera model the interaction with end hosts,
whereas senda and recva represent the border routers’ packet
forwarding actions. The additional dispatch-exta event creates
and sends a packet directly to an ext channel. It is not required
for normal data plane operations, but serves to introduce a
malicious sender at an inter-AS link in the refinement.

We now describe these events in more detail. The
dispatch-inta and dispatch-exta events create an authorized
packet by setting its future path to (a fragment of) an authorized
path and inserting it into an internal or external channel. The
history is set to the empty sequence in both events, and the past
path can be set arbitrarily to allow the refinement into attacker
events, where the attacker may disguise the origin of the packet.
The senda and recva events both use the current hop field, i.e.,
the hop field at the head of the future path, to determine where
the packet should be forwarded. Hence, they require a non-
empty future path. The recva event transfers a packet from the
external channel at (A, i) to A’s internal channel. The senda
event takes a packet m from the internal channel and places
the transformed packet fwda(m) on the external channel at
(A, i). The partial function fwda : PKTa ⇀ PKTa moves the
current hop field into the past path and adds it to the history.
It is defined for m with fut(m) 6= 〈〉 by

fwda(m) = (|past = hd(fut(m)) # past(m), fut = tl(fut(m)),

hist = hd(fut(m)) # hist(m)|).

We define the functions head hd : HF∗a⊥ → HFa⊥ and tail
tl : HF∗a⊥ → HF∗a⊥ by hd(x#xs) = x and tl(x#xs) = xs
and by mapping 〈〉 and ⊥ to ⊥ in both functions.

The delivera event models delivering a packet m containing
a single hop field in its future path to an end host. However,
we do not explicitly model end hosts and their state. Hence,
we simply add the packet fwda(m) to the internal channel of
the AS and thereby push the last hop field into the past and
hist paths (security properties are expressed over hist).

D. Properties

Path authorization states that packets can only traverse the
network along authorized paths. This ensures that the data plane
enforces the control plane-level routing policies. Formally, for
all packets m in a state s, rev(hist(m)) ∈ auth�a . Recall that
the order of nodes is reversed in hist. We strengthen this to an
inductive invariant by adding the future path:

∀m ∈ s. rev(hist(m)) · fut(m) ∈ auth�a . (6)

For the proof, note that new packets are required to be
authorized and for existing packets rev(hist(m)) · fut(m)
remains invariant during their forwarding.

We furthermore prove that detectability is an invariant: all
traversed hops are recorded on (i.e., a prefix of) the past path:

∀m ∈ s. hist(m) ≤ past(m). (7)

This property is independent of autha and follows directly from
the events’ definitions. Our presentation will focus on path
authorization, as it is the data plane’s central security property.

V. CONCRETE PARAMETRIZED MODEL

We refine the abstract forwarding protocol into a concrete
model. In this model, the packets’ hop fields include (generic)
cryptographic hop validation fields to secure the authorized
paths against a Dolev–Yao attacker (§V-C). The states have the
same structure as in the abstract model except that the int and
ext channels now contain concrete packets (§V-A). We present
the concrete model’s events in §V-D and the refinement in §VI.

The concrete model retains the environment parameters of the
abstract model (§IV-A), and adds the three protocol parameters,
introduced below. One of them is the cryptographic check that
ASes apply to their hop validation fields, which allows us to
abstract from the concrete cryptographic mechanism used. We
focus on the setting for directed path authorization here, and
defer undirected path authorization to §VIII-C. We compare
both classes of protocols in §IX-A.

A. Cryptographic terms, hop fields, packets and states

We introduce an algebra T of cryptographic message terms:

T = N | I⊥ | N | KN | 〈T, T, . . . , T〉 | H(T).

Terms consist of node identifiers, interfaces, natural num-
bers (e.g., for timestamps), keys (one per node), as well
as finite sequences, and cryptographic hashes of terms. We
define message authentication codes (MACs) using hashing
by MACk(m) = H(〈k,m〉). Our framework also supports
encryption and signatures, which we do not use here.

Concrete hop fields extend the abstract hop fields in HFa
with a hop validation field (hvf), a cryptographic authenticator
that protects the authenticated hop information:

HFc = (| id ∈ N, prev ∈ I⊥, next ∈ I⊥, hvf ∈ T |). (8)

We define the function toa : HFc → HFa projecting concrete
hop fields to abstract hop fields by dropping hvf and we lift it
element-wise to paths.

We next define concrete packets as follows:

PKTc = (| tok ∈ N, past ∈ HF∗c , fut ∈ HF∗c , hist ∈ HF∗a |).

The past and future paths are sequences of concrete hop fields,
while the history remains abstract. Concrete packets contain an
additional token field tok, which is used by some instances for
a source-supplied unique packet identifier. We let terms(hf) =
{hvf(hf)} and lift this function to paths and packets by taking
the union of terms in all hop fields and in the past and future

paths, respectively. For a set T of terms and for a hop field,
path, or packet x, we write x ∈ T for terms(x) ⊆ T .

The concrete state space Sc has the same record structure as
the abstract Sa, but the channels now carry concrete packets.

B. Protocol parameters and authorized paths

We define three protocol parameters. The first is a crypto-
graphic validation check

: HFc × HFc⊥ × N→ B, (9)

which each border router performs to check the validity of its
hop field. This parameter abstracts the cryptographic structure
of the hop validation field, which is only determined in concrete
protocol instances. Here, ψ(hfA, hfB , tok) holds iff the hop field
hfA is authentic given the next hop field hfB (if any, and ⊥
otherwise) and the packet’s token tok. We also define a function

Ψ : HF∗c × N→ HF∗c ,

where Ψ(hfs, tok) returns the longest prefix of hfs such that
for every hop field hfA in hfs, and its successor hop field hfB
(⊥, if none exists), ψ(hfA, hfB , tok) holds. We call a path hfs
cryptographically valid if Ψ(hfs, tok) = hfs.

We define the set of concrete authorized paths, authc ⊆ HF∗c ,
as the set of paths hfs that are cryptographically valid, and
whose projection to HF∗a is authorized:

authc = {hfs | Ψ(hfs, tok) = hfs ∧ toa(hfs) ∈ autha}.

Similar to the abstract model, a concrete packet m is au-
thorized, if fut(m) is a fragment of an authorized path, i.e.,
fut(m) ∈ auth�c . To improve readability, we will often omit
the parameters hfB and tok from ψ and Ψ and sometimes leave
the projection toa implicit.

To achieve path authorization, protocols use the hvf to protect
the future (abstract) path. The second protocol parameter is

extract : T→ HF∗a , (10)

which is intended to extract this path from a given hvf. For
instance, in SCION, the hop validation field consists of a
MAC over the hop’s id and interfaces and, recursively, the
next hop’s hvf, allowing for such extraction. We lift extract
to hop fields by extract(hf) = extract(hvf(hf)) and to paths by
defining extract(〈〉) = 〈〉 and extract(hf # hfs) = extract(hf).
In §VI-B, we will define a consistency condition requiring
that, on cryptographically valid paths derivable by the attacker,
extract coincides with toa.

The third protocol parameter is a set of cryptographic terms

ik+
0 ⊆ T. (11)

It allows protocol instances to give the attacker additional terms
and is used in the definition of the intruder knowledge below.

t ∈ H
t ∈ DY↓(H)

〈t1, . . . , tn〉 ∈ DY↓(H)

ti ∈ DY↓(H)
1 ≤ i ≤ n

t ∈ N ∪I⊥ ∪ N
t ∈ DY↑(H)

t ∈ H
t ∈ DY↑(H)

t ∈ DY↑(H)

Hash(t) ∈ DY↑(H)

t1 ∈ DY↑(H) · · · tn ∈ DY↑(H)

〈t1, . . . , tn〉 ∈ DY↑(H)

Fig. 6: Rules for Dolev–Yao message decomposition (DY↓)
and composition (DY↑).

C. Attacker model

We model a Dolev–Yao adversary who can eavesdrop on
and inject new packets in all int and ext channels, but only has
access to the keys of compromised nodes. We first define the
attacker’s message derivation capabilities, which are used in
the attacker events, introduced in §V-D.

As usual, we model the attacker’s knowledge as a set of terms
and her message derivation capabilities as a closure operator
DY on sets of terms. Our formalization of DY is based on [34]
and defines DY(H) = DY↑(DY↓(H)) for a set of terms H
as the composition of two closure operators defined by the
rules in Fig. 6. The decomposition closure DY↓(H) closes H
under the projection of sequences to their elements and the
composition closure DY↑(H) includes all public terms (i.e.,
node identifiers, interfaces, and numbers) and closes H under
the construction of sequences and hashes.

We define the intruder knowledge in a state s ∈ Sc as the
Dolev–Yao closure (DY) of the set of terms ik(s), defined by

ik0 = {terms(x) | x ∈ authc} ∪ {Ki | i ∈ Nattr}, (12)

ik(s) = ik0 ∪ ik+
0 ∪

⋃
m∈s

terms(m). (13)

The set ik(s) is the union of the initial intruder knowledge ik0,
consisting of authorized paths (i.e., the hvf of their hop fields)
and compromised nodes’ keys, additional terms ik+

0 , and all
terms in packets of state s.

Invariant. Since in reachable states s all packets m ∈ s are
intruder-derivable, DY(ik(s)) = DY(ik0∪ ik+

0), which we show
is an invariant. We will henceforth use DY(ik0 ∪ ik+

0) instead
of DY(ik(s)).

D. Events

Each event of the abstract model is refined into a similar
event of the concrete model (Fig. 5, right). In the events’
guards we omit the state and just write ik. The concrete model
retains the same packet life-cycle of the abstract model (§IV-C).
The dispatch-intc and dispatch-extc events can send arbitrary
attacker-derivable packets, instead of only authorized packets
as in the abstract model. To defend against the attacker, we
introduce interface and cryptographic checks in sendc, recvc,
and deliverc. We now discuss the concrete model’s events in
more detail.

1) Attacker events: The two attacker events dispatch-intc
and dispatch-extc model the attacker’s active capabilities
to send a packet on any AS’ internal or external channel,
regardless of whether the AS is honest or compromised. In
both events, the packet m created by the attacker may contain
arbitrary past and future paths, but its hop validation fields
must be derivable, i.e., terms(m) ⊆ DY(ik(s)). Note that the
event dispatch-intc still covers honest senders, as the attacker
knows all authorized paths.

Similar to their abstract counterparts, both events set the
history field hist to 〈〉. The motivation for this is to rule out
unavoidable attacks where an attacker with access to an AS’
external channels modifies a packet’s forwarding path. For
example, consider Fig. 2a and suppose that the attacker has
access to D’s external channels. Then D may receive a packet
arriving on the left path from F , exchange its forwarding
path by the right path, and forward the modified packet to C,
thereby (trivially) violating path authorization. By resetting
the history we effectively consider all packets sent by the
attacker as new ones. Consequently, path authorization must
hold separately for the packets before and after the replacement
of the forwarding path by the attacker. One can also argue
that an attacker arbitrarily modifying packets en-route makes
it generally impossible to correlate packets sent by the attacker
with those the attacker has previously received.

2) Honest events: The honest events are sendc, recvc, and
deliverc. To secure the protocol against the attacker introduced
in this model, border routers now perform two validation
checks: First, upon receiving a packet from another node,
recvc includes the guard i = prev(hf) to check that interface i
over which the packet is received matches the interface prev
of the packet’s current hop field hf. Second, all honest events
check the cryptographic hop validation field that is added to
hop fields in this refinement using the check ψ(hf, hf′, tok),
where hf, hf′, and tok are the packet’s current hop field, next
hop field, and token, respectively. This check ensures that the
hop field (and indeed the whole or partial path) is authorized.

The events sendc and deliverc use the function fwdc to
forward a packet. This function is defined similarly to fwda,
but the tok field is not modified and the hop field being moved
from the future to the past path is converted from HFc to HFa
using toa before it is added to hist(m).

VI. REFINEMENT

The refinement proof rests on several global assumptions
about the control plane and and on a set of conditions about
the authentication mechanism used. To establish that a concrete
protocol satisfies the path authorization and detectability
properties, it suffices to define the protocol’s authentication
mechanism and discharge the associated conditions (see §VII).

A. Control plane assumptions

We define environment assumptions about the authorized
paths autha constructed by the control plane. There are two
types of assumptions. First, there are two assumptions about the
correct functioning of the control plane, which is independent

of the data plane. Second, additional assumptions define a
closure on the set of authorized paths in order to exclude
attacks on the routing policies of colluding ASes. These are
upper and lower bounds on autha, respectively.

The first control plane assumption is that authorized paths
are terminated: the first hop field’s prev is ⊥ and the last
hop field’s next is ⊥, except for when the respective hop field
belongs to an attacker. Second, we assume that authorized paths
are interface-valid: interfaces of adjacent hop fields on a path
point to the same link, except for when both hop fields belong
to attacker nodes. This exception accounts for out-of-band
communication by adversaries (wormholes).

To formalize interface validity, we introduce the interface
validity predicate φ : HFa × HFa⊥ → B. In the following, we
let hfA (resp. hfB) denote a hop field for which id(hfA) = A
(resp. id(hfB) = B). The parameters of φ are the current hop
field hfB and a preceding hop field hfA. For the first hop field,
which has no predecessor, no interface check is necessary.

φ(hfB ,⊥) = true

φ(hfB , hfA) = (target(A, next(hfA)) = (B, prev(hfB)))

∨ (A ∈ Nattr ∧B ∈ Nattr)

We define Φ : HF∗a → HF∗a as the longest prefix of a sequence
of hop fields hfs such for all hop fields hfB on hfs and their
respective predecessor hfA on hfs, φ(hfB , hfA) holds. ASM 1
and ASM 2 formalize the correctness of the control plane.
ASM 1: Terminated: A hop field hf with id(hf) /∈ Nattr on

hf # hfs ∈ autha (resp. on hfs · 〈hf〉 ∈ autha) has
prev(hf) = ⊥ (resp. next(hf) = ⊥).

ASM 2: Interfaces valid: All paths hfs ∈ autha are interface-
valid: Φ(hfs) = hfs.

The second type of assumptions extends the set of authorized
paths with certain path modifications to avoid trivial violations
of path authorization where an attacking source violates the
routing policy of compromised ASes. In this section, we only
present path modifications possible in directed protocols.

For example, assume that ASes E and F in Fig. 2 are
compromised. Since E is on the right path G–E–D–C–A, she
can take the suffix E–D–C–A, change her own hop field (and
issue a new hvf using the compromised key) such that prev
points to F, and prepend a new hop field for F to obtain the
path F–E–D–C–A. None of these changes require consent from
the other on-path nodes, since each AS only decides on the
authorization of the partial paths with its respective AS at the
beginning and path extensions are implicitly authorized. Hence,
this only constitutes an attack on the compromised ASes E
and F’s own routing policy, not on any honest AS’ policy. To
account for these unavoidable attacks, we accept such path
modifications as authorized in ASM 3–ASM 6.
ASM 3: Empty & Single: 〈〉 ∈ autha and 〈hf〉 ∈ autha for

all id(hf) ∈ Nattr.
ASM 4: Prepend: If the first hop field belongs to the attacker,

she can prepend another attacker hop field. Formally,
if hfB # hfs ∈ autha, B ∈ Nattr, and A ∈ Nattr then
hfA # hfB # hfs ∈ autha.

ASM 5: Suffix: The attacker can take a path’s suffix if her hop
field is the suffix’ head. Formally, if hfs′ ·hfA # hfs ∈
autha and A ∈ Nattr then hfA # hfs ∈ autha.

ASM 6: Modify: If the first hop field belongs to the attacker,
she can modify its prev. Formally, if hfA # hfs ∈
autha, next(hf′A) = next(hfA) and A ∈ Nattr then
hf′A # hfs ∈ autha. Note that id(hf′A) = id(hfA) = A.

These are not merely assumptions of our protocol model or
the specific attacker model that we employ but are inherent
to the path authorization mechanism of directed protocols.
Undirected protocols (such as ICING) require that the entire
path is authorized by each on-path AS. As we show in §VIII-C,
ASM 3–ASM 6 can then be replaced by weaker assumptions.

B. Conditions on authentication mechanisms

We define five conditions that relate the three protocol
parameters ψ, extract, and ik+

0 introduced in Eqs. (9)–(11)
with each other and with the environment parameters Nattr and
autha (via authc). These conditions are needed in the refinement
proof in §VI-C. We will have to prove these conditions for
any instance of the concrete model, which poses no significant
difficulty for the instances we present in §VII.

COND 1 and COND 2 together require that the attacker
cannot derive valid hop fields for honest nodes that are not
already contained in authc. They also constrain the parameter
ik+

0 , since instances cannot provide the attacker with terms that
allow her to create valid but unauthorized hop fields.
COND 1: Attacker knowledge derivation:

hf ∈ DY(ik0 ∪ ik+
0), ψ(hf, hf′, tok), and id(hf) /∈

Nattr imply hf ∈ DY↓(ik0 ∪ ik+
0).

COND 2: Attacker knowledge decomposition:
hf ∈ DY↓(ik0∪ik+

0) and ψ(hf, hf′, tok) imply ∃hfs ∈
authc. hf ∈ hfs.

COND 3 and COND 4 relate Ψ(hfs), the longest cryptograph-
ically valid prefix of hfs, to extract(hfs), which extracts the
subsequent path from the first hop field in hfs. In particular,
on a cryptographically valid path they coincide (modulo toa).
For instance, consider the SCION path given in Fig. 4. hvfD
is MACKD

(〈hfD,MACKB
(〈hfB ,MACKA

(hfA)〉)〉) and in this
instance extract would be defined to extract the forwarding data
from the nested MACs, i.e., extract(hvfD) = 〈hfD, hfB , hfA〉.
This is exactly the path in Fig. 4 of D and following ASes.
COND 3: Path prefix of extract: Ψ(hfs) ≤ extract(hfs).
COND 4: Extract prefix of path:

If Ψ(hfs) = hfs, then extract(hfs) ≤ hfs.
Finally, COND 5 requires the hvf to protect the tok field. This
ensures that a hop field that is valid for a certain token cannot
be used to forward a packet with a different token.
COND 5: Token protected:

ψ(hf, hf′, tok) and ψ(hf, hf′′, tok′) imply tok′ = tok.
We prove the following lemmas, which are helpful for

the refinement proof below. The first lemma states that the
extraction of a cryptographically valid path is the path itself.

Lemma 1. If Ψ(hfs) = hfs then extract(hfs) = hfs.

The second lemma asserts that the valid prefix of any
extension of an attacker-extractable hop field is authorized.

Lemma 2. Suppose hf ∈ DY↓(ik0 ∪ ik+
0) for some hop field hf.

Then Ψ(hf # hfs) ∈ auth�a for all paths hfs.

Proof. If hf is invalid, i.e., ¬ψ(hf, hd(hfs), tok) for some tok,
then Ψ(hf # hfs) = 〈〉 and the conclusion holds by ASM 3.
Otherwise, we can apply COND 2 and obtain hfs′, hfs0, hfs1,
and hfs2 such that hfs′ ∈ authc, hfs′ = hfs0 · hfs1, and
hfs1 = hf # hfs2. Since hfs′ ∈ authc, Ψ(hfs′) = hfs′ and thus
also Ψ(hfs1) = hfs1. Then we can apply Lemma 1 and obtain
extract(hfs1) = extract(hf) = hfs1. Since hfs1 is a suffix of the
authorized path hfs′, we have extract(hf) ∈ auth�a . Finally,
from COND 3, we have Ψ(hf # hfs) ≤ extract(hf). Since
auth�a is closed under prefixing, Ψ(hf # hfs) ∈ auth�a .

C. Refinement proof

To show that the concrete model refines the abstract one
(assuming ASM and COND), we first define the refinement
mapping π0 : Sc → Sa on states as the element-wise mapping
of the int and ext channels under a function that maps concrete
packets to abstract packets. We again overload toa, which
was defined as mapping concrete (sequences of) hop fields to
abstract ones in §V-A and define toa : PKTc → PKTa by

toa(m) =(| past = toa(past(m)), fut = Φ(toa(Ψ(fut(m)))),

hist = hist(m) |).

Because of the interface and cryptographic checks that we
introduce, no forwarding occurs on invalid hop fields. We thus
map fut(m) to Φ(toa(Ψ(fut(m)))). This describes the mapping
of packets in int channels. For packets in ext channels, we
modify the Φ function to additionally check that the first hop
field is interface-valid with the channel, but to simplify the
presentation, we elide this check here. The refinement mapping
π1 : Ec → Ea maps each event on the right side of Fig. 5 to
the corresponding event on the left side, where packet and hop
field parameters are transformed using toa.

In the refinement proof, we show that each concrete event e
can be simulated by its abstract counterpart π1(e). This is
straightforward for the honest events, since the concrete model
only adds guards and the concrete guards imply the validity of
the first hop field (ensuring that fut is not mapped to 〈〉). The
state updates of these events preserve the refinement relation.
The difficult cases are the attacker events. In particular, we
must show that the concrete dispatch events’ guards imply
their abstract counterparts. This is formalized in the following
theorem stating that the attacker can only derive paths that,
restricted to their valid prefix, are authorized.

Theorem 3 (Attacker refinement). If m ∈ DY(ik0 ∪ ik+
0) then

Φ(toa(Ψ(fut(m)))) ∈ auth�a .

Proof. We prove this theorem by induction over hfs = fut(m).
Here, we only sketch the proof and focus on the interesting
cases in which at least two hop fields are left, i.e., hfs =
hfA # hfB # hfs′, and both have valid hop validation fields and
interfaces. Recall that the subscript identifies the node; i.e., we

use hfA to denote a hop field for which id(hfA) = A holds.
As above, we elide the projection toa to improve readability.

• A 6∈ Nattr: If the attacker can derive hfA without KA, then
by COND 1 hfA must already be in DY↓(ik0∪ ik+

0). Then
by Lemma 2, we have Ψ(hfs) ∈ auth�a and by fragment
closure also Φ(Ψ(hfs)) ∈ auth�a as required.

• A ∈ Nattr and B 6∈ Nattr: This is the most difficult case.
By COND 1, hfB ∈ DY↓(ik0∪ ik+

0), and by COND 2, we
obtain hfsgen such that hfsgen ∈ authc and hfB ∈ hfsgen.
Paths in autha and, by extension, paths in authc are
terminated (ASM 1). However, by the case assumption,
hfB is interface-valid with hfA as the preceding AS and
thus cannot be terminated. Hence, there must be a hf’
preceding hfB on hfsgen. As hfsgen ∈ authc, there exist
hfspre and hfspost such that

hfsgen = hfspre · hf’ # hfB # hfspost ∈ authc.

Since hf’ ∈ DY↓(ik0 ∪ ik+
0), we can apply Lemma 2 and

have Ψ(hf’ # hfB # hfs′) ∈ auth�a . As authorized hop
fields are valid, ψ(hf’, hfB , tok) for some tok. Hence for
some hfs′pre and hfs′post

hfs′pre · (hf’ # Ψ(hfB # hfs′)) · hfs′post ∈ autha.

Finally, we use the assumptions on authorized paths
to show that the attacker can remove the hop fields
hfs′pre preceding hf’ (ASM 5) and swap out hf’ for hfA
(ASM 6). To apply these assumptions, we must show
that id(hf’) ∈ Nattr and that hf’ and hfA have the same
id and next. hfB is interface-valid with the predecessor
hfA (by the case assumption) and with the predecessor
hf’ (by the assumption on the interface-validity of autho-
rized paths, ASM 2). Thus hfA and hf’ must have the
same AS identifier id(hf’) = A ∈ Nattr and interface
next(hf’) = next(hfA). Hence, we have Ψ(hfs) ∈ auth�a
and by fragment closure also Φ(Ψ(hfs)) ∈ auth�a .

• A ∈ Nattr and B ∈ Nattr: This case uses the suffix and
prepend assumptions on authorized paths of §VI-A. By
the induction hypothesis Φ(Ψ(hfB # hfs′)) ∈ auth�a . By
case assumption of the validity of hfB , there is a hfspre,
hfspost such that hfspre · hfB # Φ(Ψ(hfs′)) · hfspost ∈ autha.
By ASM 5, we can take the suffix: hfB # Φ(Ψ(hfs′)) ·
hfspost ∈ autha. Finally, ASM 4 allows prepending hfA to
this authorized path.

COND 5 is required to show that hfs and hfsgen are valid for
the same tok in the second case above (however, we have elided
tokens from the presentation). ASM 3 is needed in cases we
have not shown, e.g., when A ∈ Nattr and hfB is invalid.

VII. INSTANCES

We now instantiate the concrete parametrized model to
several protocols from the literature and variants thereof. To do
so, we instantiate the model’s protocol parameters and prove
the associated conditions (§VI-B).

A. SCION

SCION embeds a MAC in each hop validation field. The tok
field is not used. In this instance, hvfA for each hop A with a
next hop B is the MAC computed over the abstract hop field
of A (containing prev, next and id), the abstract hop field of
B, and the hvfB field, using the symmetric key KA shared by
all border routers in the AS A:

hvfA = MACKA
(〈hfA, hfB , hvfB〉) . (14)

The last AS A has no successor, so hvfA = MACKA
(hfA).

We instantiate ψ with the check of Eq. (14) and set ik+
0 = ∅.

In this and all following instances, we only define extract for
valid patterns; all other patterns are mapped to 〈〉.

extract(MACKA
(hfA)) = hfA

extract(MACKA
(〈hfA, hfB , hvfB〉)) = hfA # extract(hvfB)

To show that this model of SCION inherits the security
properties proven in the parametrized models, we prove the
parametrized model’s conditions COND 1–COND 5 (§VI-B).
First, the intruder knowledge only contains keys and MACs,
which cannot be decomposed, hence DY↓(ik0) = ik0. We prove
COND 1, COND 2, and COND 5 by unfolding the definitions
of ik0, authc, and ψ. We establish COND 3 and COND 4 by
routine inductions over hfs.

Variants. By dropping hfB from Eq. (14) we obtain the
variant described in §II-E where we instantiate ψ with the
check Eq. (1). The proof of the conditions is almost identical.

B. EPIC

Protocols with a packet-carried forwarding state face a
dilemma: secure authenticators must be long, but low com-
munication overhead requires short authenticators. EPIC uses
short authenticators, but proposes a mechanism that leverages
a stateful replay-suppression system to limit the impact of a
successful brute-force attack.

The key insight behind EPIC is that the security goals of
ASes are driven by economic interests that are unaffected by
a few individual packets being forwarded on unauthorized
paths. Hence, instead of preventing brute-force attacks, EPIC
guarantees that each successful attack can only be used to send
one packet along an unauthorized path. This is ensured by
end-host-generated, one-time hop validation fields instead of
the static validation fields of SCION.

Protocol details. The EPIC level 1 protocol uses a static
hop authenticator σ, which is created on the control plane and
almost identical to the hop validation field of Eq. (1):

σA = MACKA
(〈hfA,H(σB)〉) . (15)

If A has no successor, then σA = MACKA
(hfA).

End hosts obtain the hop authenticators for a path (which
are public), generate a unique token tok for each packet, and
compute for each hop field the packet-specific hvf as

hvfA = 〈H(σA),MACσA
(tok)〉. (16)

To check the validity of the hvf, a border router A re-computes
its own σA (using its key KA and H(σB) from the successor
hop field) and then re-computes hvfA from σA and the token
included in the packet.

The hop validation field is shortened to a few bytes in
EPIC, and can, with considerable but realistic effort, be brute-
forced by an attacker. This allows the attacker to send packets
that have valid authenticators, but are unauthorized. While
the shortening of the hop fields is not reflected in the above
equation, it motivates us to introduce a stronger attacker model
that reflects the brute-force abilities of the attacker in §VIII-B.

Two mechanisms in EPIC limit the effects of such attacks:
First, the hvf is bound to a packet’s token. Second, a replay-
suppression system at each border router prevents multiple
packets with the same token from being forwarded. Conse-
quently, a brute-force attack on the hvf can only be used to
send a single packet.

Only by brute-forcing the underlying static hop authen-
ticator σ could the attacker dynamically create valid but
unauthorized hvf for arbitrary tokens and thus send an unlimited
number of packets. However, σ is a long authenticator. Hence,
the success probability of such a brute-force attack is negligible.

Formalization. We instantiate the predicate ψ with the
conjunction of Eqs. (15) and (16). We define extract such that
it first extracts the hop authenticator, and then the path. Patterns
not covered below map to 〈〉.

extract(〈h,MACσA
(tok)〉) = extract’(σA)

extract’(MACKA
(hfA)) = hfA

extract’(MACKA
(〈hfA,H(σB)〉)) = hfA # extract’(σB)

According to our definition of the intruder knowledge given in
Eq. (12), the attacker knows the hvf values of all authorized
paths. We define ik+

0 such that the attacker additionally knows
all hop authenticators of authorized paths.

We show that EPIC is an instance of our concrete
parametrized model, and thus inherits the security properties
proven in the abstract model. The proof is closely related to that
of the SCION instance, but requires additional case distinctions
since ik+

0 provides the attacker with more ways to derive terms,
i.e., from hop authenticators. We also need to prove a lemma
stating that if a hop authenticator from ik+

0 is used to create
a hvf of a valid hop field with some tok value, then that hop
field is contained in an authorized path.

Variants. We verify EPIC level 1 in a strong attacker model
(see §VIII-B). We verify level 2, also in the same model. We
do not model or verify the separate replay suppression system.

C. ICING

Among the protocols we study, ICING [18] provides the
strongest security properties, albeit at the cost of the highest
overhead [17]. It allows ASes to authorize the entire path and
is thus an instance of the undirected setting. This requires
a separate concrete model, whose parameters, assumptions,
and conditions slightly differ from those presented above. We
discuss this model in §VIII-C.

ICING uses proofs of consent (PoCs) to achieve path
authorization. These are created by applying a pseudorandom
function (PRF) using a tag key on the entire forwarding path.
The tag key for each AS is derived from its master key KA,
and the local hop field hfA. In our symbolic model, PRFs
and MACs are modeled identically, we thus use MACs in our
definitions. We use these PoCs as hop validation fields:

hvfA = MAC〈KA, hfA〉(rev(past(m)) · fut(m)) . (17)

We define ik+
0 = ∅. The function extract requires extracting

the entire path (past and future) in the undirected setting:

extract(MAC〈KA, hfA〉(hfs)) = hfs. (18)

Variants. We verified two other versions of the protocol. In
the first one, the hop validation field consists of ICING’s path
authenticator, which includes an expiration timestamp and a
path hash besides the PoC. These additional details are not
essential for achieving path authorization and detectability but
minimize the gap between the model and proposed protocol.
We define ik+

0 to consist of all authorized PoCs, since the
attacker cannot extract them directly from the packets in this
version. The second version is a further simplified variant of
ICING compared to the one presented first, which omits the
hop field in the key input of the MAC computation.

VIII. EXTENSIONS

We now describe three features of our formalization that
we elided to simplify the presentation: additional authenticated
fields, a stronger attacker model based on an oracle, and
undirected authorization schemes.

A. Additional authenticated fields
To allow for more accurate modeling of protocols, our

formalization includes additional per-hop and per-packet fields,
which are included in autha and must thus be included in the
authentication mechanisms defined by instances.

For instance, in SCION, packet headers include an expiration
time that is fixed on the control plane and included in the MAC
computation of the hop validation field. Consequently, paths
have a limited lifespan and must be replaced on a regular basis.
To model this, our formalization includes an authenticated info
field of type T associated with each packet. In our SCION
instance, this value is set to the expiration time.

ICING allows ASes to include arbitrary cryptographically
protected forwarding information in an opaque string called
tag. Our formalization defines abstract and concrete hop fields
in an extensible way, such that additional data of type T can
be added in instances. This can be used to model additional
forwarding data that must be protected, such as ICING’s tag.

These extra fields enable a more realistic modeling of existing
protocols and make it more likely that future protocols can
be modeled. For instance, if a new protocol includes flags
indicating a path’s priority, or introduces access control fields to
allow only some user classes to use certain paths, no changes to
the abstract and parametrized models are required to prove the
protocol’s security. Adding these fields requires some changes
to our definitions but does not add significant complexity.

B. Strong attacker model

Legner et al. [17] propose a strong attacker model for EPIC,
which reflects the fact that an adversary can with some effort
brute-force correct hvf fields for individual tok values.

We model this attacker capability with an oracle. The
concrete model is additionally parameterized by a predicate
O : N → B. In the EPIC instance, the ik+

0 set additionally
contains all valid (but possibly unauthorized) hvf fields that
are created over tok values such that O(tok) holds. While this
strictly strengthens the attacker, her events must be restricted
to rule out trivial attacks. We add the guard ¬O(tok(m)) to the
dispatch-intc and dispatch-extc events to prevent the attacker
from sending packets whose hvf fields are directly obtained
from the oracle and thus trivially constitute an attack. We also
add ¬O(tok(m)) to the premises of COND 1 and COND 2.

The instance proofs are similar to the proof in the basic
attacker model. However, they must additionally account for
the attacker obtaining valid hop fields from the oracle.

C. Undirected authorization schemes

For brevity, we have focused on directed authorization
schemes, where each AS only controls the authorization of
the traversal of subsequent ASes (in forwarding direction)
and the traversal of previous ASes is outside of its control.
This setting allows the attacker to legitimately extend and
change her own path on the control plane without consent
by subsequent ASes, and hence requires the control plane
assumptions ASM 3–ASM 6.

We have a separate parametrized model for the undirected
authorization scheme, where the entire path must be approved
by all on-path ASes. The control plane assumptions can
be relaxed, and ASM 3–ASM 6 are replaced by the weaker
assumption stating that an attacker can create authorized paths
consisting entirely of compromised nodes, i.e., hfs ∈ autha if
id(hf) ∈ Nattr for all hf ∈ hfs. In this model, the cryptographic
check parameter has the entire path (including the past path) as
an argument: ψ : HFc ×HF∗c ×N→ B. The parameter extract
retains its type, but returns the entire path (including past path)
instead of just the future path. Since each hop validation field
contains the entire path, COND 3 and COND 4 are replaced
by an assumption that for a valid hf, i.e., ψ(hf, hfs, tok), extract
returns the entire path, i.e., extract(hf, hfs, tok) = hfs holds.

In the undirected setting, the entire path is embedded in
each hvf and cannot be modified unless it is completely under
the attacker’s control. Induction is neither required to show the
refinement of the dispatch events in the concrete model nor to
show the conditions in the ICING instance model, and proofs
are significantly easier than in the directed setting.

IX. DISCUSSION

A. Undirected vs. directed protocols

We briefly compare undirected and directed protocols. As
shown in §VIII-C, undirected protocols achieve path authoriza-
tion under weaker assumptions. While this sounds desirable, the
required underlying changes to how paths are authorized on the
control plane also have drawbacks. First, the beacons creating

paths in undirected protocols must complete a round-trip: the
first leg to discover the path and the second leg to authorize it.
In contrast, directed protocols can achieve both in a single leg,
where transmission is in the opposite direction of construction.
Second, the control plane must mediate between conflicting
path policies by ASes. If there is no path that satisfies the
constraints by all on-path ASes, then no forwarding can occur.
In directed protocols it is simpler to exclude this possibility, for
instance by mandating that each AS disseminates at least one
beacon from a given AS to each of its neighbors. In summary,
there is a trade-off between these protocol classes that depends
highly on the control plane and overall architecture.

B. Differences between models and real protocols

Our models abstract from real protocols in ways that are
typical for protocol verification. Real protocols operate on
bitstrings rather than typed terms, and they contain fields that
we do not model, since they are unimportant to the path autho-
rization security mechanism. Our models also overapproximate
the behaviors allowed by the actual protocols, which is sound
for safety properties. While our events accurately model the
checks that border routers perform, the interaction with end
hosts is simplified, as we do not differentiate end hosts within
an AS and do not model intra-AS topologies.

Other than these abstractions, our instance models differ
from the actual protocols in the following ways:

1) SCION: SCION is a complex architecture that includes
many features that are necessary for Internet-scale operation.
Beacons do not directly establish paths between any pair of
ASes, but only between large ASes (e.g., Tier 1 providers)
and their customer ASes and between the large-scale ASes
themselves. Such partial paths (called segments) can then be
reversed and concatenated by end hosts to connect distant
ASes. While path authorization only holds for each segment
individually, segments cannot be combined arbitrarily: there
are rules that ensure that the economic interests of ASes are
respected. Nevertheless these rules only provide local properties
and not global properties (such as path authorization, which is
expressed over entire paths). SCION also allows peering links
between ASes, which similarly to segment combinations, are
only authorized locally. For these reasons, we do not include
segment combinations or peering links in our framework.

In contrast to our models, the SCION and EPIC protocols
do not include the AS identifier (id) in hop fields. Nevertheless,
in both protocols, a hvf uniquely identifies the AS for which
the hop field is valid, since the key of the AS is used in
the MAC computation. Hence, it would be possible to refine
the instance model to a model in which hop fields do not
explicitly contain the identifier. Alternatively, one could change
the parametrized model to remove the AS identifier. This would
require additional conditions.

2) EPIC: EPIC trims hop authenticators σ to a short length
to reduce space overhead. We model the trimming of σ by a
hash function. Similar to hashing, trimming makes it difficult
to recover the original value. The trimming enables brute-force
attacks, which we model by the oracle discussed in §VIII-B.

Formalization of framework LoC
Infrastructure (Dolev–Yao, event system, etc.) 2125
Abstract model & network model 644
Concrete model (w/o Theorem 3) 759
Theorem 3 for directed setting 497
Theorem 3 for undirected setting 230
Total 4255

Formalization of instances LoC
SCION 277
SCION (simplified) 272
EPIC Level 1 basic attacker 360
EPIC Level 1 strong attacker 397
EPIC Level 2 strong attacker 426
ICING (w/ extension) 301
ICING (as presented) 229
ICING (simplified) 239
Executability & assumption consistency 417
Total 2918

TABLE II: Overview of Isabelle/HOL formalization.

3) ICING: We leave out ICING’s proofs of provenance. They
are cryptographic authenticators used for path validation and
are unrelated to path authorization. In the original specification,
they are combined with the PoCs using XOR.

C. Formalization details and statistics

Our formalization in Isabelle/HOL closely follows the
models and proofs described in this paper, modulo differences
in notation and the extensions discussed in §VIII. Most of
the proof burden is handled in the abstract and concrete
parametrized models. In particular, the crux of the proof,
Theorem 3, is part of the concrete model. A substantial portion
of the instance models is boilerplate definitions and proofs
that only vary slightly between the instances. Table II gives
an overview of the different parts of our framework and the
lines of Isabelle/HOL code associated with them.

D. Consistency of environment assumptions and executability

All instance models are still parametrized by the environment
parameters, i.e., the underlying Internet topology defined
by target, the set of authorized paths autha and the set
of compromised nodes Nattr ⊆ N . We instantiate these
parameters with the topology and authorized paths given
in Fig. 2 and Nattr = {F}. We discharge the associated
assumptions ASM 1–ASM 6 from §VI-A in this example
model to show their consistency. Furthermore, we show the
executability of the instantiated event system for the EPIC
level 1 protocol in the strong attacker model, showing that it is
indeed possible to send a packet from a source to a destination,
i.e., the model’s events can be executed in the correct order.

E. Unverified data plane security properties

1) Source and packet authentication: These properties allow
for the identification of a packet’s origin and in some cases its
header and content by ASes or the destination. The challenge
in designing protocols that provide these properties is that they

require keys between the source and the authenticating entity.
Naı̈ve solutions, such as using public key cryptography per
packet, or distributing symmetric keys between each pair of
entities are prohibitively inefficient. Hence, protocols often use
dynamic key derivation techniques such as DRKey [35], [36].
With shared keys in place, authentication by a router or the
destination can be easily implemented, modeled, and verified
as a single-message two-party protocol. In contrast to network-
wide properties like path authorization and detectability, the
verification of source and packet authentication does not
require any of the special features listed in the introduction. In
particular, the network topology need not be modeled explicitly,
and the set of authorized paths is irrelevant for this property.
This makes it feasible to use automated tools such as Tamarin
and ProVerif, in which protocol analysis is simpler than in
Isabelle/HOL. For these reasons, we exclude source and packet
authentication from our verification framework.

2) Path validation: This property proves to subsequent ASes
and the destination that all previous hops on the path embedded
in the packet were indeed traversed. While path validation is
provided by some architectures [37], there are two reasons
why it is less critical than the properties presented above.
First, path validation only establishes a lower bound on the
set of ASes that have been traversed and does not stop on-
path attackers from sending copies of packets to ASes that
are not part of the sender’s intended path. Second, if there is
at most one on-path attacker, then the much simpler packet
authentication property is sufficient to imply path validation for
the destination. By having the destination authenticate a packet
(including the embedded path), any change of the embedded
path by an on-path attacker will be detected by the destination
even without a mechanism that provides path validation. Hence,
path validation becomes only relevant for the destination if
there are at least two colluding on-path attackers. For these
reasons, we do not verify path validation in this work.

X. RELATED WORK

As mentioned in the introduction, there exists relatively
little work on the verification of path authorization for packet
forwarding in path-aware internet architectures. We review
those works here as well as other research on the verification
of secure routing (i.e., path construction) protocols.

A. Data plane protocols for path-aware architectures

Over the past two decades, several other path-aware ar-
chitectures have been developed [7]–[10]. Several of these
use forwarding tables or other state on routers (instead of
cryptographic authenticators) to achieve path authorization [9],
[10], which does not fit into our framework. Others are not
specified in sufficient detail to allow for formal verification [8]
or only achieve local properties without considering full path
authorization over multiple hops [7]. Finally, some data plane
protocols [37], including OPT [35], focus only on source
authentication and path validation, neither of which we verify.

A recent proposal [38], which we call Anapaya-SCION,
achieves the same directed path authorization as SCION, but

its MAC does not include the next hop field’s MAC. Instead,
a single per-path field that combines all subsequent MACs
with XOR is included in the MAC computation and updated
at each hop. We do not verify this variant, as we currently do
not support XOR or packet field updates by routers.

B. Verification of secure data plane protocols
Chen et al. [19] define SANDLog, a Prolog-style declarative

language for specifying both data and control plane protocols.
They also present an invariant proof rule for SANDLog
programs and a verification condition generator, which targets
Coq. They verify route authenticity of S-BGP and both route
authenticity (on the control plane) and data path authenticity
(on the data plane) of SCION. Hence, their coverage of SCION
is more comprehensive than ours. However, their data plane
property is weaker than our path authorization, as it only
guarantees that each traversed hop appears on some authorized
path, but does not relate successively traversed hops.

Zhang et al. [20] prove source authentication and path
validation properties of the OPT packet forwarding proto-
cols [35]. These properties differ from those that we study here.
They use LS2, a logic for reasoning about secure systems, in
combination with axioms from Protocol Composition Logic
(PCL) [39]. They directly embed their logic’s axioms and
prove the protocols’ properties in Coq. As PCL does not have
a formal semantics (cf. [40]), the soundness of their approach
is questionable. In contrast, we use a foundational approach
that only relies on the axioms of higher-order logic and on
definitions.

C. Verification of secure routing protocols
Cortier et al. [41] propose a process calculus for modeling

routing protocols, including a model of the network topology
and a localized Dolev-Yao adversary. They propose two
constraint-based NP decision procedures for analyzing routing
protocols for a bounded number of sessions. The first one
analyzes a protocol for any network topology, i.e., it decides
whether there exists a network topology for which there is
an attack on the protocol. The second procedure analyzes a
protocol for a given network topology. They also define a logic
to express properties such as loop-freedom and route validity.
They analyze two ad-hoc routing protocols from the literature.
This work is extended to protocols with recursive tests in [42].

Cortier, Degrieck, and Delaune [43] prove a reduction result
showing that for proving path validity it is sufficient to consider
just five topologies of four nodes. Path validity is similar to
our ASM 2 but omitting interfaces. They then analyze two
ad-hoc routing protocols using ProVerif.

D. Verification of network configurations
A different line of research is devoted to the verification of

network configurations. Earlier work focused purely on the
data plane [44]–[46] while more recent work also takes the
control plane into account [47]–[51]. Verified properties include
reachability, isolation, way-pointing, and loop freedom. These
works are restricted to a setting with a fixed, concrete network
topology and they do not consider security properties.

XI. CONCLUSION

The verification of future Internet architectures is a challeng-
ing problem, since (i) automated protocol verification tools lack
the expressiveness to reason about arbitrary network topologies
and (ii) the relevant protocols are likely to undergo changes
before their eventual standardization and deployment. General
guarantees for evolving protocols require general specifications
and proofs that abstract from the idiosyncrasies of particular
protocol instances. Our parameterized framework satisfies
these requirements and substantially reduces the per-protocol
specification and verification work compared to restarting
verification from scratch for each protocol. For each protocol
instance, one must only define the three parameters and
prove the five conditions to establish path authorization and
detectability. Our abstractions are general enough to cover a
whole class of protocols proposed in the literature.

As future work, we plan to extend our framework with
support for an XOR operator on terms, and en-route hop
field updates to enable verification of Anapaya-SCION. In
order to obtain guarantees that the router implementations
behave according to the verified model, we will apply the
Igloo methodology [52] to soundly link model verification
with code verification.

An interesting research question is how additional properties,
such as source authentication and path validation, can be
integrated in a parametrized framework, even when not all
instances support these properties. Such an integration would
allow for the verification of EPIC level 3, full ICING, and OPT.
Moreover, it would be interesting to investigate the existence
of a reduction result in the vein of Cortier et al.’s work [43]
for path-aware Internet architectures.

ACKNOWLEDGMENTS

We thank Sofia Giampietro, Markus Legner, Adrian Perrig
and the anonymous reviewers for their insights, careful reading
of the manuscript and helpful suggestions.

REFERENCES

[1] S. Kent, C. Lynn, and K. Seo, “Secure Border Gateway Protocol (S-
BGP),” IEEE Journal on Selected Areas in Communications, vol. 18,
no. 4, 2000.

[2] R. Bush, “Origin validation operation based on the Resource Public Key
Infrastructure (RPKI),” RFC 7115, 2014.

[3] M. Lepinski and K. Sriram, “BGPsec Protocol Specification,” RFC
8205, Sep. 2017. [Online]. Available: https://rfc-editor.org/rfc/rfc8205.txt

[4] D. Cooper, E. Heilman, K. Brogle, L. Reyzin, and S. Goldberg, “On
the risk of misbehaving RPKI authorities,” in Proceedings of the ACM
Workshop on Hot Topics in Networks (HotNets), 2013, pp. 1–7.

[5] Q. Li, Y.-C. Hu, and X. Zhang, “Even rockets cannot make pigs fly
sustainably: Can BGP be secured with BGPsec?” in Proceedings of
the NDSS Workshop on Security of Emerging Networking Technologies
(SENT). Internet Society, 2014.

[6] B. Rothenberger, D. E. Asoni, D. Barrera, and A. Perrig, “Internet kill
switches demystified,” in Proceedings of the European Workshop on
Systems Security (EuroSec), 2017.

[7] B. Raghavan and A. C. Snoeren, “A system for authenticated policy-
compliant routing,” ACM SIGCOMM Computer Communication Review,
vol. 34, no. 4, 2004.

[8] B. Bhattacharjee, K. Calvert, J. Griffioen, N. l Spring, and J. Sterbenz,
“Postmodern internetwork architecture,” University of Kansas, Tech. Rep.
ITTC Technical Report ITTC-FY2006-TR-45030-01, Feb. 2006.

[9] X. Yang, D. Clark, and A. W. Berger, “NIRA: A new inter-domain
routing architecture,” IEEE/ACM Transactions on Networking, vol. 15,
no. 4, pp. 775–788, 2007.

[10] P. B. Godfrey, I. Ganichev, S. Shenker, and I. Stoica, “Pathlet routing,”
in Proceedings of ACM SIGCOMM, 2009.

[11] X. Zhang, H.-C. Hsiao, G. Hasker, H. Chan, A. Perrig, and D. Andersen,
“SCION: Scalability, control, and isolation on next-generation networks,”
in Proceedings of the IEEE Symposium on Security and Privacy, 2011.

[12] T. Anderson, K. Birman, R. Broberg, M. Caesar, D. Comer, C. Cotton,
M. J. Freedman, A. Haeberlen, Z. G. Ives, A. Krishnamurthy, W. Lehr,
B. T. Loo, D. Mazières, A. Nicolosi, J. M. Smith, I. Stoica, R. van
Renesse, M. Walfish, H. Weatherspoon, and C. S. Yoo, “The NEBULA
future Internet architecture,” in The Future Internet. Springer, 2013.

[13] A. Perrig, P. Szalachowski, R. M. Reischuk, and L. Chuat, SCION:
A Secure Internet Architecture. Springer, 2017. [Online]. Available:
https://doi.org/10.1007/978-3-319-67080-5

[14] S. Meier, B. Schmidt, C. Cremers, and D. Basin, “The TAMARIN prover
for the symbolic analysis of security protocols,” in Computer Aided
Verification (CAV). Springer, 2013, pp. 696–701.

[15] B. Blanchet, “An efficient cryptographic protocol verifier based on
prolog rules,” in Proceedings. 14th IEEE Computer Security Foundations
Workshop, 2001, pp. 82–96.

[16] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL - A Proof
Assistant for Higher-Order Logic. Springer, 2002, vol. 2283. [Online].
Available: https://doi.org/10.1007/3-540-45949-9

[17] M. Legner, T. Klenze, M. Wyss, C. Sprenger, and A. Perrig,
“EPIC: Every packet is checked in the data plane of a path-aware
Internet,” in 29th USENIX Security Symposium (USENIX Security
20). USENIX Association, 2020, pp. 541–558. [Online]. Available:
https://www.usenix.org/conference/usenixsecurity20/presentation/legner

[18] J. Naous, M. Walfish, A. Nicolosi, D. Mazières, M. Miller, and
A. Seehra, “Verifying and enforcing network paths with ICING,” in
Proceedings of the Seventh COnference on Emerging Networking
EXperiments and Technologies (CoNEXT). ACM, 2011. [Online].
Available: https://doi.org/10.1145/2079296.2079326

[19] C. Chen, L. Jia, H. Xu, C. Luo, W. Zhou, and B. T. Loo, “A program
logic for verifying secure routing protocols,” Logical Methods in
Computer Science, vol. Volume 11, Issue 4, 2015. [Online]. Available:
https://lmcs.episciences.org/1620

[20] F. Zhang, L. Jia, C. Basescu, T. H.-J. Kim, Y.-C. Hu, and A. Perrig,
“Mechanized network origin and path authenticity proofs,” in Proceedings
of the 2014 ACM Conference on Computer and Communications Security.

[21] E. Katz-Bassett, C. Scott, D. R. Choffnes, Í. Cunha, V. Valancius,
N. Feamster, H. V. Madhyastha, T. E. Anderson, and A. Krishnamurthy,
“LIFEGUARD: practical repair of persistent route failures,” in SIGCOMM
2012. ACM, pp. 395–406.

[22] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” ser. SIGCOMM ’99. New York, NY, USA: ACM, 1999, p.
277–288.

[23] T. Bates, P. Smith, and G. Huston, “CIDR report,” https://www.cidr-report.
org/as2.0/, 2020.

[24] H. Ballani, P. Francis, and X. Zhang, “A study of prefix hijacking and
interception in the internet,” ACM SIGCOMM Computer Communication
Review, vol. 37, no. 4, pp. 265–276, 2007.

[25] R. White, “Securing BGP through secure origin BGP (soBGP),” Business
Communications Review, vol. 33, no. 5, pp. 47–47, 2003.

[26] T. Wan, E. Kranakis, and P. C. van Oorschot, “Pretty secure
BGP, psBGP,” in Proceedings of the Network and Distributed
System Security Symposium, NDSS 2005, San Diego, California, USA,
2005. [Online]. Available: https://www.ndss-symposium.org/ndss2005/
pretty-secure-bgp-psbgp/

[27] J. Karlin, S. Forrest, and J. Rexford, “Pretty good BGP: Improving BGP
by cautiously adopting routes,” in Proceedings of the IEEE International
Conference on Network Protocols. IEEE, 2006.

[28] Y. Gilad, A. Cohen, A. Herzberg, M. Schapira, and H. Shulman, “Are
we there yet? On RPKI’s deployment and security.” in NDSS, 2017.

[29] NIST, “RPKI monitor,” https://rpki-monitor.antd.nist.gov, 2020.
[30] L. Gao, “On inferring autonomous system relationships in the Internet,”

IEEE/ACM Trans. on Networking, vol. 9, no. 6, pp. 733–745, 2001.
[31] L. Gao and J. Rexford, “Stable internet routing without global coordina-

tion,” IEEE/ACM Trans. Netw., vol. 9, no. 6, p. 681–692, Dec. 2001.
[32] N. A. Lynch and F. W. Vaandrager, “Forward and backward simulations:

I. untimed systems,” Inf. Comput., vol. 121, no. 2, 1995.

[33] C. Ballarin, “Locales: A module system for mathematical theories,” J.
Autom. Reason., vol. 52, no. 2, pp. 123–153, 2014. [Online]. Available:
https://doi.org/10.1007/s10817-013-9284-7

[34] L. Paulson, “The inductive approach to verifying cryptographic
protocols,” J. Computer Security, vol. 6, 1998. [Online]. Available:
http://www.cl.cam.ac.uk/users/lcp/papers/Auth/jcs.pdf

[35] T. H.-J. Kim, C. Basescu, L. Jia, S. B. Lee, Y.-C. Hu, and A. Perrig,
“Lightweight source authentication and path validation,” in Proceedings
of the 2014 ACM Conference on SIGCOMM, 2014, p. 271–282. [Online].
Available: https://doi.org/10.1145/2619239.2626323

[36] B. Rothenberger, D. Roos, M. Legner, and A. Perrig, “PISKES: Pragmatic
Internet-scale key-establishment system,” in Proceedings of the ACM
Asia Conference on Computer and Communications Security (ASIACCS),
2020.

[37] K. Bu, A. Laird, Y. Yang, L. Cheng, J. Luo, Y. Li, and K. Ren,
“Unveiling the mystery of Internet packet forwarding: A survey of
network path validation,” ACM Comput. Surv., vol. 53, no. 5, Sep. 2020.
[Online]. Available: https://doi.org/10.1145/3409796

[38] Anapaya Systems, “SCION header specification,” https://scion.docs.
anapaya.net/en/latest/protocols/scion-header.html, 2020.

[39] A. Datta, A. Derek, J. C. Mitchell, and A. Roy, “Protocol composition
logic (PCL),” Electr. Notes Theor. Comput. Sci., vol. 172, pp. 311–358,
2007.

[40] C. J. F. Cremers, “On the protocol composition logic PCL,” in
Proceedings of the 2008 ACM Symposium on Information, Computer
and Communications Security, ASIACCS 2008, Tokyo, Japan, March
18-20, 2008, M. Abe and V. D. Gligor, Eds. ACM, 2008, pp. 66–76.
[Online]. Available: https://doi.org/10.1145/1368310.1368324

[41] M. Arnaud, V. Cortier, and S. Delaune, “Modeling and verifying ad hoc
routing protocols,” Inf. Comput., vol. 238, pp. 30–67, 2014. [Online].
Available: http://dx.doi.org/10.1016/j.ic.2014.07.004

[42] ——, “Deciding security for protocols with recursive tests,” in Automated
Deduction – CADE-23. Springer, 2011, pp. 49–63.

[43] V. Cortier, J. Degrieck, and S. Delaune, “Analysing routing protocols:
Four nodes topologies are sufficient,” in Principles of Security and Trust.
Springer, 2012, pp. 30–50.

[44] P. Kazemian, G. Varghese, and N. McKeown, “Header space analysis:
Static checking for networks,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, NSDI
2012, 2012, pp. 113–126.

[45] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “Veriflow:
Verifying network-wide invariants in real time,” in NSDI 2013, pp. 15–27.

[46] D. Kozen, “NetKAT – A formal system for the verification of
networks,” in Proc. of Programming Languages and Systems - 12th
Asian Symposium, APLAS 2014, ser. Lecture Notes in Computer
Science, vol. 8858. Springer, 2014, pp. 1–18. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-12736-1 1

[47] A. Gember-Jacobson, R. Viswanathan, A. Akella, and R. Mahajan, “Fast
control plane analysis using an abstract representation,” in Proceedings
of the ACM SIGCOMM. ACM, 2016, pp. 300–313. [Online]. Available:
https://doi.org/10.1145/2934872.2934876

[48] S. K. Fayaz, T. Sharma, A. Fogel, R. Mahajan, T. D. Millstein, V. Sekar,
and G. Varghese, “Efficient network reachability analysis using a
succinct control plane representation,” in 12th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2016. USENIX
Association, 2016, pp. 217–232. [Online]. Available: https://www.usenix.
org/conference/osdi16/technical-sessions/presentation/fayaz

[49] K. Weitz, D. Woos, E. Torlak, M. D. Ernst, A. Krishnamurthy,
and Z. Tatlock, “Scalable verification of border gateway protocol
configurations with an SMT solver,” in Proc. ACM Program. Lang.,
ser. OOPSLA 2016, New York, NY, USA, 2016, p. 765–780. [Online].
Available: https://doi.org/10.1145/2983990.2984012

[50] R. Beckett, A. Gupta, R. Mahajan, and D. Walker, “A general
approach to network configuration verification,” in Proceedings of the
ACM SIGCOMM. ACM, 2017, pp. 155–168. [Online]. Available:
https://doi.org/10.1145/3098822.3098834

[51] ——, “Abstract interpretation of distributed network control planes,”
Proc. ACM Program. Lang., vol. 4, no. POPL, pp. 42:1–42:27, 2020.
[Online]. Available: https://doi.org/10.1145/3371110

[52] C. Sprenger, T. Klenze, M. Eilers, F. A. Wolf, P. Müller, M. Clochard,
and D. Basin, “Igloo: Soundly linking compositional refinement
and separation logic for distributed system verification,” Proc. ACM
Program. Lang., vol. 4, no. OOPSLA, Nov. 2020. [Online]. Available:
https://doi.org/10.1145/3428220

