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Abstract—This paper deals with a problem that arises in
vertical composition of protocols, i.e., when a channel protocol is
used to encrypt and transport arbitrary data from an application
protocol that uses the channel. Our work proves that we can ver-
ify that the channel protocol ensures its security goals independent
of a particular application. More in detail, we build a general
paradigm to express vertical composition of an application
protocol and a channel protocol, and we give a transformation
of the channel protocol where the application payload messages
are replaced by abstract constants in a particular way that
is feasible for standard automated verification tools. We prove
that this transformation is sound for a large class of channel
and application protocols. The requirements that channel and
application have to satisfy for the vertical composition are all of
an easy-to-check syntactic nature.

Index Terms—security protocols, formal methods and verifica-
tion, vertical composition, stateful protocols

I. INTRODUCTION

With vertical composition, we mean that a high-level pro-
tocol called application, or App for short, uses for message
transport a low-level protocol called channel, or Ch for short.
For instance, a banking application may be run over a channel
established by TLS. For concreteness, let us consider a simple
running example of a login protocol over a unilaterally authen-
ticated channel as shown in semi-formal notation in Figure 1.
Here [C]P represents a client C that is not authenticated but
acting under an alias (pseudonym) P , which is simply a public
key, and only C knows the corresponding private key inv(P ).
Clients can have any number of aliases, and thus choose in
every session to either work under a new identity or use the
same alias, and thereby link the sessions. The setup of the
channel has the client generate a new session key K, sign it
with inv(P ) and encrypt it for a server S. The functions f(...)

represent message formats like XML that structure data and
distinguish different kinds of messages. This gives us a secure
key between P and S: the server S is authenticated w.r.t. its
real name while the client is only authenticated w.r.t. alias
P—this is somewhat similar to the typical deployment of
TLS where P would correspond to the unauthenticated Diffie-
Hellman half-key of the client. We can transmit messages on
the channel by encrypting with the established key, and the
login protocol now uses this channel for authenticating the
client. For simplicity, the client is computing a MAC on a
challenge N from the server with a shared secret. This models
the second factor in the Danish NemID service where each

Channel protocol Ch:
Setup:

[C]P : new K
[C]P → S : crypt(pk(S), sign(inv(P ), fnewSess(P, S,K)))

Transport:
For [C]P

Ch−→ S : X, transmit scrypt(K, fpseudo(P, S,X))

For S Ch−→ [C]P : X, transmit scrypt(K, fpseudo(S, P,X))

Login protocol App:
S : newN

S
Ch−→ [C]P : f1(N,S)

[C]P
Ch−→ S : f2(mac(secret(C, S), N))

Fig. 1. Running Example

user has a personal key-card to look up the response for a
given challenge N . The first factor, a password, we just omit
for simplicity.

Most existing works on protocol composition have con-
centrated on parallel composition, i.e., when protocols run
independently on the same network only sharing an infras-
tructure of fixed long-term keys [15, 12, 7]. In contrast,
we want to compose here components that interact with
each other, namely an application App that hands messages
to a channel Ch for secure transmission. [11, 6] allow for
interaction between the protocols that are being composed,
albeit specialized to a particular form of interaction. [17] is
the first parallel compositionality result to support arbitrary
interactions between protocols: it allows for stateful protocols
that maintain databases, shares them between protocols, and
for the declassification of long-term secrets.

As a first contribution, we build upon these results a general
paradigm for vertical composition: we use such databases
to connect channel Ch and application App protocols. For
instance, when the application wants to send a message from
A to B, then it puts it into the shared set outbox(A,B) where
the channel protocol fetches it, encrypts and transmits it, and
puts it in the corresponding inbox of B where the application
can pick it up.

As a second contribution, we extend the typing result
from [19] to take into account that messages from App can
be manipulated by Ch. Thus, in our paradigm, Ch and App
are arbitrary protocols from a large class of protocols that
synchronize via shared sets inbox and outbox.

Compared to refinement approaches that “compose” a par-
ticular application with a specific channel, our vertical com-
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positionality result is much more general: from the definition
of a channel protocol Ch, we extract an idealized behavior
Ch?, the protocol interface, that hides how the channel is
actually implemented and offers only a high-level interface for
the application, e.g., guaranteeing confidential and/or authentic
transmission of messages. The application can be then verified
against this interface, and so we can at any time replace Ch by
any other channel Ch′ that implements the same interface Ch?

without verifying the application again. However, the third and
core contribution of this paper is a solution for the converse
question, namely how to also verify the channel independently
of the application, so that the channel Ch can be used with any
application App that relies only on the properties guaranteed
by the interface Ch?.

If we look for instance at the formal verification of TLS
in [8], all the payload messages that are transmitted over the
channel (corresponding to X in Figure 1) are just modeled as
fresh nonces. One could say this paper verifies that TLS is
correct if the application sends only fresh nonces. In reality,
the messages may neither be fresh nor unknown to the intruder,
and in fact they may be composed terms that could interfere
with the channel context they are embedded in. For a well-
designed channel protocol, this is unlikely to cause trouble,
but wouldn’t it be nice to formally prove that?

The core contribution of this paper is a general solution
for this problem: we develop an abstraction of the payload
messages and prove its soundness. The abstraction is indeed
similar to the fresh-nonce idea, but taking into account that
they represent structured messages that may be (partially)
known to the intruder, and that applications may transmit the
same message multiple times over a channel. This gives rise
to a translation from the concrete Ch to an abstract version
Ch] that uses nonces as payloads—a concept that all standard
protocol verification tools support. The soundness means that
it is sufficient to verify Ch] in order to establish that Ch
is secure in that it fulfills its interface Ch?, and is securely
composable with any application App that expects interface
Ch? (and given that some syntactic conditions between App
and Ch are met, like no interference between their message
formats). In the example, after verification, we know that not
only this composition is secure, but that Ch is secure for any
application that requires a unilaterally authenticated channel,
and App can securely run on any channel providing the same
interface. Thus, the composition may not only reduce the
complexity of verification, breaking it into smaller problems,
but also make the verification result more general.

Organization: in §II, we introduce the framework to model
stateful protocols. In §III, we describe our paradigm for
vertical composition, and we extend a typing result to support
an abstract payload type. In §IV, we prove that our abstraction
of payloads is sound, and that our vertical composition result
can be used with a wide variety of channel and application
protocols. We relate our work to others and conclude in §V.
Appendix A gives the proof of the main theorems. The full
extension of the typing results and further examples can be
found in the extended version [10].

II. PRELIMINARIES

Most of the content of this section is adapted from [19].

A. Terms and substitutions

We consider a countable signature Σ and a countable set V
of variable symbols disjoint from Σ. We do not fix a particular
set of cryptographic operators, and our theory is parametrized
over an arbitrary Σ. A term is either a variable x ∈ V or a
composed term of the form f(t1, . . . , tn) where f ∈ Σn, the
ti are terms, and Σn denotes the symbols in Σ of arity n. We
define the set of constants C as Σ0. We denote the set of terms
over Σ and V as T (Σ,V). We denote the set of variables of a
term t as fv(t), and if fv(t) = ∅ then t is ground. We extend
these notions to sets of terms. We denote the subterm relation
by v.

We define substitutions as functions from variables to terms.
dom(σ) ≡ {x ∈ V | σ(x) 6= x} is the domain of a substitution
σ, i.e., the set of variables that are not mapped to themselves
by σ. We then define the substitution image, img(σ), as the
image of dom(σ) under σ: img(σ) ≡ σ(dom(σ)), and we
say σ is ground if its image is ground. An interpretation is
defined as a substitution that assigns a ground term to every
variable: I is an interpretation iff dom(I) = V and img(I) is
ground. Substitutions are extended to functions on terms and
set of terms as expected. Finally, a substitution σ is a unifier
of terms t and t′ iff σ(t) = σ(t′).

B. The Intruder Model

We use a Dolev-Yao-style intruder model, i.e., cryptography
is treated as a black-box where the intruder can encrypt and
decrypt terms when he has the respective keys, but he cannot
break cryptography. In order to define intruder deduction in a
model where the set of operators Σ is not fixed, one first needs
to also specify what the intruder can compose and decompose.
To that end, we denote as Σnpub ⊆ Σ the public functions,
which are available to the intruder, of Σ of arity n, and we
define a function Ana that takes a term t and returns a pair
(K,T ) of sets of terms. This function specifies that, from the
term t, the intruder can obtain the terms T , if he knows all
the “keys” in the set K. For example, if scrypt is a public
function symbol to represent symmetric encryption, we may
define Ana(scrypt(k,m)) = ({k}, {m}) for any terms k and
m. We define the relation `, where M ` t means that an
intruder who knows the set of terms M can derive the message
t as follows:

Definition 1 (Intruder Model [19]). We define ` as the least
relation that includes the knowledge, and is closed under
composition with public functions and under analysis with
Ana:

M ` t
(Axiom),

t ∈M
M ` t1 . . .M ` tn
M ` f(t1, . . . , tn)

(Compose),

f ∈ Σnpub

M ` t M ` k1 . . .M ` kn
M ` ti

(Decompose),

Ana(t) = (K,T ),

ti ∈ T,K = {k1, . . . , kn}



Axiom says that the intruder can derive everything in his
knowledge. Compose says that the intruder can compose
messages by applying public function symbols to derivable
messages. Decompose says that the intruder can decompose,
i.e., analyze, messages if he can derive the keys specified
by Ana. The specification of Ana must satisfy the follow-
ing requirements for the typing and compositionality results
from [19] to hold:

1) Ana(t) = (K,T ) implies that K is finite, fv(K) ⊆ fv(t),
2) Ana(x) = (∅, ∅) for variables x ∈ V ,
3) Ana(f(t1, . . . , tn)) = (K,T ) implies T ⊆ {t1, . . . , tn},
4) Ana(f(t1, . . . , tn)) = (K,T ) implies

Ana(σ(f(t1, . . . , tn))) = (σ(K), σ(T )).

Ana is defined for arbitrary terms, including terms with vari-
ables (though the standard Dolev-Yao deduction is normally
used on ground terms only). The first requirement restricts
the set of keys K to be finite and to not introduce any new
variables, but the keys otherwise do not need to be subterms
of t of the term being decomposed. The second requirement
says that we cannot analyze a variable. The third requirement
says that the result of the analysis are immediate subterms of
the term being analyzed. The fourth requirement says that Ana
is invariant under instantiation.

Example 1. Let scrypt, crypt and sign be public func-
tion symbols, representing respectively symmetric encryption,
asymmetric encryption and signatures, and let inv be a private
function symbol mapping public keys to the corresponding
private key. We characterize these symbols with the following
Ana theory: Ana(scrypt(k,m)) = ({k}, {m}), Ana(crypt(k,
m)) = ({inv(k)}, {m}), Ana(sign(k,m)) = (∅, {m}). To
model message formats, we define a number of transparent
functions s.t. f1 that the intruder can open without knowing
any keys, e.g., Ana(f1(t, t′)) = (∅, {t, t′}). For all other terms
t: Ana(t) = (∅, ∅).

This model of terms and the intruder is not considering al-
gebraic properties such as the ones needed for Diffie-Hellman-
based protocols. Since handling algebraic properties is making
everything more complicated, while being largely orthogonal
to the points of this paper, for simplicity, we stick with this
free term algebra model.

C. Stateful Protocols

We introduce a strand-based protocol formalism for stateful
protocols. The idea is to extend strands with a concept of
sets to model long-term mutable state information of stateful
protocols. The semantics is defined by a symbolic transition
system where constraints are built up during transitions. The
models of the constraints then constitute the concrete protocol
runs.

Protocols are defined as sets P = {R1, . . .} of transac-
tion rules of the form: Ri = ∀x1 ∈ T1, . . ., xn ∈ Tn.
new y1, . . . , ym.S where S is a transaction strand with
sets, i.e. of the form receive(t1). . . . .receive(tk). φ1. . . . .φk′ .

send(t′1). . . . .send(t′k′′) where t and t′ ranges over terms and
x̄ over finite sequences x1, . . . , xn of variables from V:

φ ::= t
.
= t′ | ∀x̄. t 6 .= t′ | t ∈̇ t′ | ∀x̄. t /̇∈ t′

| insert(t, t′) | delete(t, t′)
As syntactic sugar, we may write t 6 .= t′ and t /̇∈ t′ in

lieu of ∀x̄. t 6 .= t′ and ∀x̄. t /̇∈ t′ when x̄ is the empty
sequence. We may also write t → t′ for insert(t, t′) and
t ← t′ for t ∈̇ t′.delete(t, t′). We may also write t←−−−− for
receive(t) and t−−−−→ for send(t) when writing rules. The
prefix ∀x1 ∈ T1, . . . , xn ∈ Tn denotes that the transaction
strand S is applicable for instantiations σ of the xi variables
where σ(xi) ∈ Ti. The construct new y1, . . . , ym represents
that the occurrences of the variables yi in the transaction strand
S are instantiated with fresh constants.

Example 2. In Figure 2, we formalize the App from Figure 1;
we now look at a few rules as examples and discuss the others
later. Note that each step is labeled by either label App or
? which we also introduce below. The rule App3 models an
honest server S who first generates a new nonce N , stores it
in a set of active nonces sent(S, P ) where P is an identifier
(alias) for a currently unauthenticated agent. It then adds the
message f1(N,S) to a set outbox(S, P ) for being sent on a
secure channel to P . Here f1 is just a format to structure
the message. In App4, this is received by a client A in its
inbox(S, P ), where the relation between the client A and its
pseudonym is ensured by the positive check P ∈̇ alias(A). The
client then sends a more complex message as a reply.

We call all variables that are introduced by a quantifier
or new the bound variables of a transaction, and all other
variables free. We say a transaction is well-formed if all free
variables first occur in a receive step or a positive check,
and the bound variables are disjoint from the free variables
(over the entire protocol). For the rest of this paper we restrict
ourselves to well-formed transactions.

D. Stateful Symbolic Constraints

The semantics of a stateful protocol is defined as in terms
of a symbolic transition system of intruder constraints. The
intruder constraints are also represented as strands, essentially
a sequence of transactions where parameters and new variables
are instantiated, and are formulated from the intruder’s point of
view, i.e., a message sent in a transaction becomes a received
message in the intruder constraint and vice-versa. We first
define the semantics of constraints and then how a protocol
induces a set of reachable constraints.

By trms(A) we denote the set of terms occurring in A.
The set of set operations of A, called setops(A), is defined
as follows where we assume a binary symbol (·, ·) ∈ Σ2

pub:

setops(A) ≡ {(t, s) | insert(t, s) or delete(t, s) or t ∈̇ s
or ∀x̄.t ˙6∈ s occurs in A}

We extend trms(·) and setops(·) to transaction strands,
rules and protocols as expected. The straightforward definition
of the semantics, i.e., that an interpretation I is a model of



A, written I |= A, is found in the extended version [10].
We define again free and bound variables as for transactions,
and say a constraint is well-formed if every free variable first
occurs in a send step or a positive check and free variables
are disjoint from bound variables. We denote the free variables
of a constraint A by fv(A). In contrast, in a transaction we
defined free variables must first occur in a receive step or
a positive check; this is because constraints are formulated
from the intruder’s point of view. For the rest of the paper we
consider only well-formed constraints without further mention.

E. Reachable Constraints

Let P be a protocol. We define a state transition re-
lation ⇒ where states are constraints and the initial state
is the empty constraint 0. First the dual of a transaction
strand S, written dual(S) means “swapping” the direction
of the sent and received messages of S: dual(send(t).S) =
receive(t).dual(S), dual(receive(t).S) = send(t).dual(S)
and otherwise dual(s.S) = s.dual(S) for any other step s. The
transition A ⇒ A.dual(α(σ(S))) is possible if the following
conditions are met:

1) (∀x1 ∈ T1, . . . , xn ∈ Tn.new y1, . . . , ym.S) is a transac-
tion of P ,

2) dom(σ) = {x1, . . . , xn, y1, . . . , ym},
3) σ(xi) ∈ Ti for all i ∈ {1, . . . , n},
4) σ(yi) is a fresh constant, and
5) α is a variable-renaming of the variables of σ(S) with

fresh variables.

Note that by this semantics, each transaction is atomic (we
do not allow partial application of a transaction), and each
transaction rule can be taken arbitrarily often, thus allowing
for an unbounded number of “sessions”.

We say that a constraint A is reachable in protocol P if
0 ⇒? A where ⇒? is the transitive reflexive closure of ⇒.
Note that we consider only well-formed transactions and thus
every reachable state is a well-formed constraint.

To model goal violations of a protocol P we first fix a
special non-public constant unique to P , e.g. attackP . We
can then formulate transactions that check for violations of
the goal and if so, send out the message attackP . A protocol
has an attack if there exists a satisfiable reachable constraint
of the form A. attackP−−−−−−−−→, otherwise the protocol is secure.
This allows for modeling all security properties expressible
in the geometric fragment [1, 13], e.g., standard reachability
goals like secrecy and authentication, but not for instance
privacy-type properties. We give attack rules in our examples
in Example 3 and Example 4.

III. STATEFUL VERTICAL COMPOSITION

The compositionality result of Hess et al. [19, 18] allows for
the parallel composition of stateful protocols. The protocols
being composed may share sets. An example would be a
server that maintains a database and runs several protocols

that access and modify this database.1 After specifying an
appropriate interface how these protocols may access and
modify the database, one can verify each protocol individually
with respect to this interface and obtain the security of the
composed system.

A simple idea is to re-use this result for vertical composition
of protocols as follows (but we explain later why this is
not enough). We consider a channel protocol Ch and an
application protocol App that wants to transmit messages over
this channel. We regard them as running in parallel and sharing
two families of sets as an interface, called inbox and outbox.
In the application, if A wants to send a message to B over the
channel, she inserts it into outbox(A,B). The channel protocol
on A’s side retrieves the message from outbox(A,B), encrypts
it appropriately and transmits it to B, where it is decrypted
and delivered into inbox(A,B). The application on B’s side
can now receive the message from this inbox.

This paradigm is very general: the application can freely
transmit messages over the channel, similar to sending on the
normal network; there are no limitations on the number of
messages that can be sent. Similarly, we can model a wide
variety of channels and the protections they offer, e.g., our
running example considers a channel where only one side is
authenticated like in the typical TLS deployment. Moreover,
the channel may have a handshake that establishes one or more
keys that are used in the transport, where we can model both
that the same key is used for several message transmissions,
and that we can establish any number of such keys.

Nevertheless, there are three challenges to overcome. First,
the compositionality result of [19, 18] relies on a typing result,
and this typing result is not powerful enough for our paradigm
of vertical composition. The extension is in fact our first
main contribution in §III-A. Note that §III-B comes mainly
from [19, 18] but we include it here because we need to
incorporate our extension of the typing result, and we need
to update several definitions to take into account the specific
features of vertical composition. The second challenge in
§III-C is to define an appropriate interface between channel
and application, i.e., which security properties the channel
ensures that the application can rely on. This interface allows
for verifying the application completely independent of the
channel, in particular, the channel can then be replaced by
any other channel that implements the same interface without
verifying the application again. Finally, the third and main
challenge (in §IV) is a sound abstraction of the payload
messages of the application so that the channel can also be
verified independent of the application.

A. Typed Model and Payloads

As already mentioned, the typing result of [19, 18] is not
general enough for our purposes: since we want to define
a channel protocol independent of the application that uses

1One could also use sets to model an abstract synchronous communication
channel between participants, but that is not what we will consider here: we
will only use sets that belong to one single agent who may engage in several
protocols.



the channel, we would like the messages that the channel
transports to be of an abstract type p (payload) that can, during
composition, be instantiated by the concrete message types of
the application protocol.

This requires, however, a substantial extension of the typing
system and the typing results, since from the point of view
of the channel protocol, the payload is a variable that is
embedded into a channel message, e.g., a particular way to
encrypt the payload. The fact that the payload is a variable
reflects that the channel is indeed “agnostic” about the content
it is transporting. This is, however, incompatible with the
typing result from [19, 18], because the instantiation of the
payload type with several concrete message types from the
application protocol implies that, among the channel, messages
are unifiable message patterns of different types, which is
precisely what [19, 18] forbids.

The main idea to overcome this problem is as follows. Let
Tp be the set of concrete payload types of a given application,
i.e., the types of messages the application transmits over the
channel. Essentially, we want to exclude that there can ever be
an ambiguity over the type of a transmitted message, i.e., that
one protocol recipient sends a message of type τ1 ∈ Tp and
the recipient receives it as some different type τ2 ∈ Tp. Such
ambiguity can for instance be prevented by using a distinct
format for each type (e.g., using a tag).

This allows us to extend the typing and the depending com-
positionality results from [19, 18] such that every instantiation
of the abstract payload type p with a type of Tp counts as well-
typed. We now introduce all concepts in the notation of [19]
and mark our extensions; the proof of the results under the
extensions is given in the extended version [10].

Type expressions are terms built over a finite set Ta of
atomic types like Agent and Nonce and the function symbols
of Σ without constants. Our extensions are the special abstract
payload type p and a finite non-empty set Tp of concrete
payload types where Tp ⊂ T (Σ \ C,Ta).

Let Γ be a given type specification for all variables and
constants, i.e., Γ(c) ∈ Ta for every constant c and Γ(x) = τ ∈
T (Σ \ C,Ta) ∪ {p} such that τ does not contain an element
of Tp as a subterm.

The restriction that τ does not contain an element of Tp

is our new addition: it prevents that the application (or the
channel) uses any variables of a payload type (or variables
that can be instantiated with a term that contains a payload-
typed subterm). This is to prevent that we can have unifiers
between terms of distinct types. Similarly, observe that p can
only be the type of a variable, and that it cannot occur as a
proper subterm in a type expression. The type system leaves
the protocol only two choices for handling payloads: either
abstractly (in the channel) as a variable of type p or concretely
(in the application) as a non-variable term of Tp type.

The typing function is extended to composed terms as
follows: Γ(f(t1, . . . , tn)) = f(Γ(t1), . . . ,Γ(tn)) for every
f ∈ Σn \ C and terms ti. Further, it is required that for every
atomic type β ∈ Ta, the intruder has an unlimited supply of
these terms, i.e., {c ∈ C | c ∈ Σpub,Γ(c) = β} is infinite

for each atomic type β. This is needed to find solutions to
inequalities.

For the payload extension, we define a partial order on
types, formalizing that the abstract payload is a generalization
of the types in Tp:
• p > τ for all τ ∈ Tp,
• τ ≥ τ ′ iff τ = τ ′ ∨ τ > τ ′, and
• f(τ1, . . . , τn) ≥ f(τ ′1, . . . , τ

′
n) iff τ1 ≥ τ ′1∧· · ·∧τn ≥ τ ′n .

We say that two types τ and τ ′ are compatible when they
can be compared with the partial order. We say a substitution
σ is well-typed iff Γ(x) ≥ Γ(σ(x)) for all x ∈ V . This is a
generalization of [19] which instead requires Γ(x) = Γ(σ(x)),
i.e., we allow here the instantiation of p with types from Tp.
The central theorem for extending [19] with payload types is
that, for any two unifiable terms s and t with Γ(s) ≥ Γ(t),
their most general unifier is well-typed:

Theorem 1. Let s, t be unifiable terms with Γ(s) ≥ Γ(t). Then
their most general unifier is well-typed.

The modifications to the following definitions and results
with respect to [19] are minor: we use our updated notion of
well-typed, and we use the notion of compatible types instead
of the same type. We give the definitions as an almost verbatim
quote without pointing out these minor differences each time.

The typing result is essentially that the messages and sub-
messages of a protocol have different form whenever they do
not have compatible types. Thus, given a set of messages M
that occur in a protocol, define the set of sub-message patterns
SMP(M) as:

Definition 2 (Sub-message patterns [19]). The sub-message
patterns SMP(M) for a set of messages M is defined as the
least set satisfying the following rules:

1) M ⊆ SMP(M).
2) If t ∈ SMP(M) and t′ v t then t′ ∈ SMP(M).
3) If t ∈ SMP(M) and σ is a well-typed substitution then

σ(t) ∈ SMP(M).
4) If t ∈ SMP(M) and Ana(t) = (K,T ) then K ⊆

SMP(M).

It is sufficient for the typing result that the non-variable sub-
message patterns have no unifier unless they have compatible
types:

Definition 3 (Type-flaw resistance (extended from [19])).
We call a term t generic for a set of variables X , if t =
f(x1, . . . , xn), n > 0 and x1, . . . , xn ∈ X .

We say a set M of messages is type-flaw resistant iff
∀t, t′ ∈ SMP(M) \ V. (∃σ.σ(t) = σ(t′)) → Γ(t) ≥
Γ(t′)∨Γ(t) ≤ Γ(t′). We call a constraint A type-flaw resistant
iff the following holds:

• trms(A) ∪ setops(A) is type-flaw resistant,
• For all t .

= t′ occurring in A: if t and t′ are unifiable
then Γ(t) ≤ Γ(t′) or Γ(t) ≥ Γ(t′),

• For all ∀x̄. t ˙6=t′ occurring in A, no subterm of (t, t′) is
generic for x̄



• For all ∀x̄.t /̇∈ t′ occurring in A, no subterm of (t, t′) is
generic for x̄.

We say that a protocol P is type-flaw resistant iff the set
trms(P)∪ setops(P) is type-flaw resistant and all the trans-
actions of P are type-flaw resistant.

Our extension of the type system with the payload types
requires an update of the typing result of [19]. Most of this is
straightforward and Theorem 1 is the only new theorem. In a
nutshell, the typing result shows that the intruder never needs
to make any ill-typed choice to perform an attack, and thus if
there is an attack, then there is a well-typed one:

Theorem 2 ((extended from [19])). If A is a well-formed,
type-flaw resistant constraint, and if I |= A, then there exists
a well-typed interpretation Iτ such that Iτ |= A.

The typing requirements essentially imply that messages
with different meaning should be made discernable, and this
is indeed good engineering practice. However, since we will
below require that channel and application messages are also
distinguishable, we will not be able to stack several layers of
the same channel.

B. Parallel Compositionality

We now review and adapt the parallel composition result
from [19]. The compositionality result ensures that attacks can-
not arise from the composition itself. To keep track of where
a step originated in a constraint, each step in a transaction
is labeled with the name of the protocol, or with a special
label ?. This ? labels all those steps of a protocol that are
relevant to the other: when the protocols to compose share
any sets, then all checks and modifications to these sets must
be labeled ?. One may always label even more steps with ? to
make them visible to the other protocol (this may be necessary
to ensure well-formedness). From this labeling, one can obtain
an interface between the protocols to compose as follows.
Define the idealization P? of a protocol P as removing all
steps from P that are not labeled ?. The compositionality
result essentially says that the parallel composition P1 ‖ P2

is secure, if P1 ‖ P?2 and P?1 ‖ P2 are secure (and some
syntactic conditions hold), i.e., each protocol can be verified
in isolation against the idealization of the other. In the special
case that no sets are shared between the two protocols, these
idealizations are empty.

The protocols to compose should, to some extent, have
separate message spaces, e.g., by tagging messages uniquely
for each protocol. In fact, messages (or sub-messages) that
occur in both protocols must be given special attention.
Unproblematic are basic public terms {t | ∅ ` t}, i.e., all
messages that the intruder initially knows. All other messages
that can occur in more than one protocol must be part of
a set Sec of messages that are initially considered secret.
A secret may be explicitly declassified by a transaction that
sends it on the network with a ? label, e.g., when an agent
sends a message to a dishonest agent, this message has to
be explicitly declassified. For instance, Sec can contain all

public and private keys, and then declassify all public keys
and the private keys of dishonest agents. Of course it counts
as an attack if any protocol leaks a secret that has not been
declassified.

Formally, the ground sub-message patterns (GSMP) of a
set of terms M is defined as GSMP(M) ≡ {t ∈ SMP(M) |
fv(t) = ∅}. For a constraint A, we define GSMPA ≡
GSMP(trms(A) ∪ setops(A)), and similarly for protocols.
It is required for composition that two protocols are disjoint
in their ground sub-message except for basic public terms and
shared secrets:

Definition 4 (GSMP disjointness [19]). Given two sets of
terms M1 and M2, and a ground set of terms Sec (the shared
secrets), we say that M1 and M2 are Sec-GSMP disjoint iff
GSMP(M1) ∩GSMP(M2) ⊆ Sec ∪ {t | ∅ ` t}.

For declassification, we extend the definition from [19]: we
close the declassified messages under intruder deduction. We
denote the Dolev-Yao closure of a set of messages M by
DY(M) = {t |M ` t}. We now define that what the intruder
can derive from declassified messages is also declassified:2

Definition 5 (Declassification (extended from [19])). Let A
be a labeled constraint and I a model of A. Then the set of
declassified secrets of A under I is declassifiedDY(A, I) ≡
DY({t | ? :

t←−−−− occurs in I(A)}).

This modification requires the update of several definitions
and proofs from [19]. We provide the details of this extension
in the extended version [10].

If the intruder learns a secret that has not been declassified
then it counts as an attack. We say that the protocol P leaks a
secret s if there is a reachable satisfiable constraint A where
the intruder learns s before it is declassified:

Definition 6 (Leakage ([19])). Let Sec be a set of secrets and
I be a model of the labeled constraintA.A leaks a secret from
Sec under I iff there exists s ∈ Sec\declassifiedDY(A, I) and
a protocol-specific label l such that I |= A|l.send(s) where
A|l is the projection of A to the steps labeled l or ?.

We define the traces of a protocol P as the “solved” ground
instances of reachable constraints: traces(P) ≡ {I(A) | 0⇒?

A ∧ I |= A}. Next is the compositionality requirement on
protocols that ensures that all traces are parallel composable:

Definition 7 (Parallel composability [19]). Let P1 ‖ P2 be a
composed protocol and let Sec be a ground set of terms. Then
(P1,P2,Sec) is parallel composable iff

1) P1 ‖ P?2 is Sec-GSMP disjoint from P?1 ‖ P2,
2) for all s ∈ Sec and s′ v s, either ∅ ` s′ or s′ ∈ Sec,
3) for all l : (t, s), l′ : (t′, s′) ∈ labeledsetops(P1 ‖ P2), if

(t, s) and (t′, s′) are unifiable then l = l′,

2Each protocol can define more refined secrecy goals to catch unintended
declassifications (so it is not a restriction in the protocols we can model),
while the Dolev-Yao closure of declassification is necessary since later after
abstraction of payload messages, we cannot reason about deductions from
these payload messages anymore.



App1 : ∀C ∈ Agent|Hon, P ∈ Alias|Hon.
App : P /̇∈ taken.
App : P → taken.
App : P → alias(C)

App2 : ∀P ∈ Alias|Dis.

? :
inv(P )−−−−−−−→

App3 : ∀S ∈ Agent|Hon, P ∈ Alias, new N.

App : N → sent(S, P ).
? : f1(N,S)→ outbox(S, P )

App4 : ∀S ∈ Agent, P ∈ Alias|Hon, C ∈ Agent|Hon.
? : f1(N,S)← inbox(S, P ).

App : P ∈̇ alias(C).
? : f2(mac(secret(C, S), N))→ outbox(P, S)

App5 : ∀S ∈ Agent|Hon, P ∈ Alias, C ∈ Agent.

? : f2(mac(secret(C, S), N))← inbox(P, S).
App : N ← sent(S, P )

App6 : ∀S ∈ Agent|Hon, P ∈ Alias, C ∈ Agent|Hon.
? : f2(mac(secret(C, S), N))← inbox(P, S).

App : N ∈̇ sent(S, P ).

App : P /̇∈ alias(C).

App :
attackApp−−−−−−−−−→

Fig. 2. Example of a login protocol

4) P1 ‖ P2 is type-flaw resistant and P1,P2,P?1 and P?2
are well-formed.

where labeledsetops(P) ≡ {l : (t, s) | l : insert(t, s) or
l : delete(t, s) or l : t∈̇s or l : (∀x̄.t /̇∈ s) occurs in P}.

Composition of secure, parallel composable protocols is
secure:

Theorem 3 (Parallel Composition [19]). If (P1,P2,Sec) is
parallel composable and P1 ‖ P?2 is well-typed secure in
isolation, and P?1 ‖ P2 does not leak a secret under in the
typed model, then all goals of P1 hold in P1 ‖ P2.

C. Channels and Applications
As our second contribution, we propose a general paradigm

for expressing vertical composition problems as parallel com-
position of a channel protocol Ch and an application protocol
App that transmits messages over the channel. We employ the
parallel compositionality result from [19], where we connect
the two protocols with each other via shared sets inbox and
outbox. We may even denote this by using the notation App

Ch
,

emphasizing it is essentially a parallel composition. Let us first
look more closely to the application protocols:

Definition 8 (Application Protocol). Let inbox and outbox be
two families of sets (e.g., parametrized over agent names).
An application protocol App is a protocol that does not
contain any normal sending and receiving step, but may insert
messages into sets of the outbox family, and retrieve messages
from sets of the inbox family and perform no other operations
on these sets. The inbox and outbox steps are labeled ?
(since these sets will be shared with the channel protocol),
and no other operations are labeled ?— except potentially
set operation steps needed to ensure well-formedness of the
idealization App? whose sets are only accessed by the ap-
plication. The set of concrete payload types Tp of the type
system is determined to contain exactly those message types
that are inserted into an outbox or received from an inbox
by the application. Finally, let the set Sec of shared secrets
contain all application messages.

This definition does not specify what guarantees the applica-
tion can get from the channel (like secure transmission). This

will in fact be formalized next as part of the channel protocol.
Recall also that our type system requires that no variable may
have a type in which a Tp type occurs as a subterm.

Example 3. We formalize the running example from Figure 1,
i.e., a login protocol as an application that runs over a
secure channel where one side is not yet authenticated. As
explained, we formalize the unauthenticated endpoint of a
channel using an alias P , which is an unauthenticated public
key and the owner is the person who created P and knows the
corresponding private key inv(P ). Thus let Names be a set of
the public constants that is further partitioned into a subset
Agent, representing real names of agents, and a subset Alias,
representing the aliases. The set Names is further partitioned
between honest principals Hon and dishonest principals Dis.
We write for example Agent|Hon when we restrict the agent
set to the honest principals. Since global constants cannot be
freshly created, the rules App1 and App2 formalize that every
agent can assume any alias P that has not yet been taken,
mark it as taken and insert it into its set of aliases. For the
honest users, the knowledge of the corresponding inv(P ) is
implicitly understood, for the dishonest agents, we declassify
inv(P ). (P is public anyway, and by obtaining inv(P ) the
intruder will be able to use alias P .)3 Note that, in this
way, the protocol can simply distinguish between pseudonyms
belonging to honest and dishonest agents—which of course is
not visible to any agent.

The actual protocol begins with App3, and it assumes
a secure channel between some server S and some unau-
thenticated client under some alias P . Here, the server S
generates a fresh nonce N (of type Nonce) and inserts it into
its set sent(S, P ) of unanswered challenges. Note that N is
of type Nonce. Then S uses the channel to P by inserting
f1(N,S) into its outbox for P , where f1 is message format,
i.e., a transparent function. The rule App4 describes how this
message is received by the unauthenticated client C who is

3This declassification step is in principle forbidden by Definition 8. How-
ever, as we see below at the channel protocol, the channel will automatically
declassify all payloads sent to a dishonest recipient, and thus, we can
see declassification of inv(P ) in the application as syntactic sugar for
∀P ∈ AliasDis, C ∈ Agent|Dis.? : inv(P )→ outbox(C,C).



Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch : K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P ),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P ),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K → sessKeys(B,P )
Ch3 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

? : X ← outbox(A,B).
Ch : K ∈̇ sessKeys(A,B).
? : X → secCh(A,B).

Ch :
scrypt(K,fpseudo(A,B,X))−−−−−−−−−−−−−−−−−−−→

Ch4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,fpseudo(A,B,X))←−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(B,A).
? : X ∈̇ secCh(A,B).
? : X → inbox(A,B)

Ch5 : ∀A ∈ Names, B ∈ Names|Dis.

? : X ← outbox(A,B).

? :
X−−−−−→

Ch6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? : X → inbox(A,B)

Ch7 : ∀A ∈ Names|Hon, B ∈ Names|Hon.

Ch :
scrypt(K,fpseudo(A,B,X))←−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(A,B).

? : X /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Fig. 3. Example for an unilaterally authenticated pseudonymous secure channel

the owner of P . The client computes a MAC of the challenge
N with a pre-shared secret(C, S) with the server. Here mac
is a public function and secret a private function. This in fact
models a personal code card where agents can look up the
answer to a challenge N from a server. C inserts its response,
f2(mac(secret(C, S), N)), into its outbox(P, S). In the rule
App5, an honest server can retrieve C’s message from its set
inbox(P, S), where N ← sent(S, P ) means that the server
both checks that N is an active challenge for P and removes
it from the set. At this point, S accepts C as authenticated,
i.e., S believes that C is indeed the owner of alias P and
thus the other endpoint of the secure channel. Consequently,
App6 defines that it counts as an attack if that is actually not
the case: this rule can fire when a server could accept the
login (with App5) while P is actually not owned by C. Note
that in this rule, we limit C and S to honest agents, similar
to standard authentication goals (if the intruder authenticates
under the name of any dishonest agents, there are no security
guarantees for such sessions). App6 is in fact a non-injective
authentication goal (it does not check for replay); we discuss
such examples in the extended version [10].

The payload types of this application are Tp =
{f1(Nonce,Agent), f2(mac(secret(Agent,Agent),Nonce))}.

Observe that the example protocol would indeed have an
attack if we implemented the channel as simply transmitting
the payload messages in clear text through the network. The
application obviously needs the channel to implement some
properties in order to be secure, and this is indeed now part
of the formalization of the channel itself:

Definition 9 (Channel Protocol). Let again inbox and outbox
be families of sets. A channel protocol is a protocol that uses
these families only in a particular way: it only retrieves from
outbox as variable X of the abstract payload type p and only
inserts to inbox also with X of type p, and these steps must
be labeled star.

Example 4 (Unilaterally authenticated secure channel). We
now model the channel protocol from Figure 1 in our frame-

work as a unilaterally authenticated secure channel, similar
to what TLS without client authentication would establish. We
consider the same sets of agents that we used in Example 3.
Additionally we have a function pk(A) to model an authenti-
cated public key of a server A and the corresponding private
key is inv(pk(A)). We define all these public keys and the
private keys of any dishonest A as public terms.

In the first rule Ch1 in Figure 3, an honest client with alias
P generates a session key K (of type Key) for talking to an
agent B, stores it in sessKeys(P,B) and signs it with the
private key inv(P ) of their alias, and encrypts it with the public
key pk(B) of B. Note that a similar protocol for a mutually
secure channels would just instead of P use a real name
A, and use inv(pk(A)) for signing, but this would require
clients to have an authenticated public key. Also note that this
implicitly assumes that all users know the public keys of all
servers, and in the extended version [10] we consider variants
where this is actually communicated using key certificates.

In Ch2, an honest agent B is receiving a session key K
encrypted with his public key and signed by an agent under
an alias P . They insert K into sessKeys(B,P ). Note that this
is a minimal key exchange protocol for simplicity (that does
not protect against replay).

The following rules use the session keys, and they do not
distinguish whether endpoints are real names (from the set
Agent) or aliases (from the set Alias), and instead use the
union set Names. In Ch3, an honest A can transmit a payload
message X that an application protocol has inserted into
an outbox set using for encryption any session key K that
was established for that recipient. The term X has a type
payload p, and in a composition, p will be instantiated with
all the concrete payload types from the application, like Tp

in Example 3. Let us ignore the insertion into the set secCh
for a moment.

In Ch4, an honest B can receive the encrypted payload X
from A, provided it is encrypted correctly with a key K that
has been established with A. (Both A and B can be a real
name or an alias.) It is inserted into inbox(A,B) to make it
available on an application level. We ignore again the secCh.



Ch?3 : ∀A ∈ Names|Hon, B ∈ Names|Hon.
? : X ← outbox(A,B).
? : X → secCh(A,B).

Ch?4 : ∀A ∈ Names|Hon, B ∈ Names|Hon.
? : X ∈̇ secCh(A,B).
? : X → inbox(A,B)

Ch?5 : ∀A ∈ Names, B ∈ Names|Dis.

? : X ← outbox(A,B).

? :
X−−−−−→

Ch?6 : ∀A ∈ Names|Dis, B ∈ Names.

? :
X←−−−−− .

? : X → inbox(A,B)

Fig. 4. Idealization of the channel protocol from Figure 3

Rules Ch5 and Ch6 describe symmetrically the sending and
the receiving operations for a dishonest principal, i.e., the in-
truder can receive message directed to any dishonest recipient,
and send messages under the identity of any dishonest sender,
where recipient and sender can both be real names or aliases.
Note also that Ch5 means declassifying the payload X: the
message was directed to a dishonest agent, so if it was a secret
so far, it cannot be considered one anymore.

For formulating goals, and especially the interface to the
application, we introduce the set secCh(A,B) that represents
all messages ever sent by an honest A for an honest B. Note
the similarity between rules Ch4 and Ch7: they are applicable
when a message that looks like a legitimate message from
honest A to honest B with the right session key arrives at B.
Ch4 can fire if the corresponding X was indeed sent by A for
B, i.e., secCh holds, and otherwise we have an authentication
attack and Ch7 fires. This expresses that the channel ensures
non-injective agreement of the payload messages: recipient B
can be sure it came from A, but we do not check for replay
here. (In fact, in this simple channel, the intruder can simply
replay the encrypted message so that B can receive a payload
more often than it was sent. For sn example of a channel
offering replay protection, see the extended version [10].)

Now consider the idealization Ch? of the protocol, i.e., the
restriction to ?-labeled steps of the Ch protocol as in Figure 4:
this describes abstractly every changes that the channel can
ever do to the sets outbox and inbox that it shares with the
application (given that the channel protocol does not have an
attack, i.e., Ch7 can never fire): all messages sent by honest
A to honest B move to a set secCh(A,B) and from there into
the inbox of B, and the intruder can read messages directed
to a dishonest B and send messages as any dishonest A.

Observe how interface and attack declaration complement
each other: when a message arrives at an honest B coming
apparently from an honest A, either this is true (and rule Ch4

is applicable), or not (and rule Ch7 is applicable). The former
case is what the interface advertises, while if the latter can
ever happen, the verification of the channel fails.

Secrecy is specified implicitly: recall that all messages from
the application are part of the set Sec of shared secrets and
it counts as an attack if a protocol leaks a secret that has not
been explicitly declassified. Here we only declassify messages
that are directed at a dishonest agent (Ch?5), i.e., the interface
advertises that it will keep all messages secret (if they are not
public anyway) except those sent to dishonest recipients.

Example 5 (Perfect Forward secrecy). Figure 5 shows a
modification of our running example that also provides perfect

forward secrecy of the channel, i.e., even when the private key
of the server B is given to the intruder, it does not compromise
past sessions. For this reason, we have a new special rule
Ch0a that gives inv(pk(B)) to the intruder and marks B as
compromised. The transactions of the key-exchange (Ch0b, Ch1

and Ch2) require that B is uncompromised; however, after
the key K is established, the channel allows for transactions
with a compromised B. In our running example, the channel
would not provide forward secrecy because the intruder could
learn all session keys K any client has established with B
and thus decrypt all traffic with B. We have a slightly more
complicated key exchange: in Ch0b the server generates a new
(ephemeral) public key PK and signs it. Ch1 is similar to the
running example, except that the key K is now encrypted with
PK instead of inv(pk(B)). This is somewhat simulating an
aspect of Diffie-Hellman, since both PK and P play the role
of ephemeral keys, and later discovery of the authentication
key inv(pk(B)) does not reveal the session key K. We do not
need to even update the specification of the goals, because
the channel should provide exactly the same interface to the
application: it keeps the secrecy of all payload messages that
have not been explicitly declassified (either by the application
or by sending to a dishonest agent with Ch5). It is merely a
change on the channel level that long-term private keys may
be lost.4

Let us take stock. We can define application and channel
protocols App and Ch that interact with each other via the
inbox and outbox sets, and the idealization of the channel pro-
tocol Ch? describes abstractly the properties that the channel
guarantees, such as authentication or secrecy properties, and
in fact, one can use this for more complicated properties like
preserving the order of transmissions. Verifying the application
now essentially means to verify that App ‖ Ch? is secure,
i.e., that the application has no attack as long as the channel
does not manipulate the inbox and outbox sets in any other
way than described in Ch? and does not leak any messages
except those explicitly declassified in Ch?. The first main point
of composition is here that this verification App ‖ Ch? is
independent of the concrete implementation Ch: any channel
Ch′ with Ch′? = Ch? would work! In fact, using Theorem 3
we can derive:

Theorem 4 (Vertical Composition (with unabstracted pay-
load)). Given a channel protocol Ch and an application

4Note that in our specification the public-key infrastructure is only used by
the channel. If the application were to use them, then inv(pk(B)) would have
to be part of Sec and thus declassified in Ch0a, and similarly compromized
would have to be a shared set (i.e., operations labeled ?).



Ch0a : ∀B ∈ Agent.

Ch : B → compromized

Ch :
inv(pk(B))−−−−−−−−−−→

Ch0b : ∀P ∈ AliasHon, B ∈ Agent, new PK .

Ch : B /̇∈ compromized
Ch : PK → tmpK(B,P )

Ch :
sign(inv(pk(B)),fPK (B,P,PK ))−−−−−−−−−−−−−−−−−−−−−−→

Ch1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch : B /̇∈ compromized

Ch :
sign(inv(pk(B)),fPK (B,P,PK ))←−−−−−−−−−−−−−−−−−−−−−−

Ch : K → sessKeys(P,B).

Ch :
crypt(PK ,sign(inv(P ),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch2 : ∀A ∈ Alias, B ∈ Agent|Hon.
Ch : B /̇∈ compromized

Ch :
crypt(PK ,sign(inv(P )),fnewSess(P,B,K))←−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : PK ← tmpK(B,P )
Ch : K → sessKeys(B,P )

Fig. 5. Example for a channel with perfect forward secrecy.

protocol App w.r.t. a ground set Sec of terms where the only
shared sets are the inbox and outbox sets5 s.t. (Ch,App,Sec)
is parallel composable. If both App ‖ Ch? and App? ‖ Ch are
secure and do not leak secrets (in the typed model) then the
vertical composition App

Ch
is secure (even in the untyped model).

The verification of App ‖ Ch? is now independent of the
concrete channel, however the verification of App? ‖ Ch is still
depending largely on the concrete messages of App, especially
if, to achieve well-formedness, almost everything in App has
to be labeled ?. The next section is solving exactly this.

IV. ABSTRACTING THE PAYLOAD

As our third and core contribution, we show how to verify
the channel independent of the payload messages of a partic-
ular application. After recasting the vertical composition as a
parallel composition, the problem is that a concrete execution
of Ch ‖ App? has the concrete messages from the application
at least in the outbox and inbox sets and as subterms of the
messages that the channel transmits. There are two reasons
why we want to do this independently of App: it should be
simpler (we do not want the complexity of the messages of
App) and more general (we do not want to have to verify the
channel again when considering a different application).

We show a transformation of the problem, at the end of
which we have a completely App-independent protocol Ch]

such that each transformation is sound (if there is an attack,
then so there is after the transformation). If we manage to
verify Ch], then we have also verified Ch ‖ App? and (with
the results of the previous section) the vertical composition
App

Ch
. In fact, the requirements to automated verification tools to

handle Ch] are modest: besides whatever the modeling of the
channel itself requires, our result will only require a supply
of fresh constants that can be used as payloads and which can
occasionally be given to the intruder—and the tool needs to
be able to track which ones are still secret.

A. Abstract Constants

At the core of the transformation is the idea to replace
the concrete payload messages that can be inserted on the

5Note: ?-labeled set operations on other sets (like secCh in the example)
are not forbidden by this as long as each set is mentioned in only one of the
protocols. This then simply means that the respective set is not “hidden” by
the interface.

channel by abstract constants in a sound way. The intuition is
as follows: the precise form of the messages of the application
should not matter as long as we can ensure that they do not
interfere with the form of the messages of the channel. For that
purpose, let G ⊆ Sec be an infinite set of constants disjoint
from GSMPCh and from GSMPApp. All elements of G are
elements of a new type a that does not occur in App or Ch. We
now define a protocol Ch] where we replace payload messages
X of type p by variables of this type a and where we remove
the outbox and inbox sets.

Moreover, we introduce two new sets, closed and opened.
We use these two sets during transactions to keep track of
which constants from G have been used, namely they are in
closed if they have not been declassified, in opened otherwise.

B. Translation from Ch ‖ App? to Ch]

We now explain formally the transformation of Ch into the
protocol Ch]. As explained, in the rules of Ch], the payload
messages of type p have been replaced by variables of type
a, thus allowing us to verify the channel without considering
the concrete terms from the application. Furthermore, since
after this abstraction we do not need the interface with the
application anymore, we drop the steps with outbox and inbox
sets. We prove later in this section that Ch] has an attack if
Ch ‖ App? has, i.e., this abstraction is sound.

Definition 10 (Transformation of rules of Ch to rules of Ch]).
Given a channel rule Chi, its translation to Ch] rules is as
follows.
• we remove all the steps containing outbox or inbox sets,
• if the rule contains any variable X of type p, we make

a case split into two rules: one containing the positive
check (? : X ∈̇opened) and the other containing (? : X ∈̇
closed), and X is now of type a. We repeat this case
splitting until there is no more variable of type p, and

• for every rule that contains both (? : X ∈̇ closed) and
(? :

X−−−−−→), we replace these two steps by (? : X ←
closed. ? : X → opened. ? :

X−−−−−→).
Finally, we add the special rule: Ch]new : new G.? : G →
closed for creating new constants.

The idea of the special rule (Ch]new) is that any “new”
abstract constant is first inserted in closed, and they are moved
to opened and reveled to the intruder whenever they represent
a payload that is declassified. Note that this setup handles both



Ch]1 : ∀P ∈ Alias|Hon, B ∈ Agent, new K.

Ch : K → sessKeys(P,B).

Ch :
crypt(pk(B),sign(inv(P ),fnewSess(P,B,K)))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Ch]2 : ∀P ∈ Alias, B ∈ Agent|Hon.

Ch :
crypt(pk(B),sign(inv(P ),fnewSess(P,B,K)))←−−−−−−−−−−−−−−−−−−−−−−−−−−−−− .

Ch : K → sessKeys(B,P )

Ch]3a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.
? : G ∈̇ opened/G ∈̇ closed.

Ch : K ∈̇ sessKeys(A,B).
? : G→ secCh(A,B).

Ch :
scrypt(K,fpseudo(A,B,G))−−−−−−−−−−−−−−−−−−−→

Ch]4a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.
? : G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,fpseudo(A,B,G))←−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(B,A).
? : G ∈̇ secCh(A,B).

Ch]5a :

? : G ∈̇ opened.

? :
G−−−−−→

Ch]7a,b : ∀A ∈ Names|Hon, B ∈ Names|Hon.
? : G ∈̇ opened/G ∈̇ closed.

Ch :
scrypt(K,fpseudo(A,B,G))←−−−−−−−−−−−−−−−−−−− .

Ch : K ∈̇ sessKeys(A,B).

? : G /̇∈ secCh(A,B).

Ch :
attackCh←−−−−−−−−

Ch]6a,b :

? : G ∈̇ opened/G ∈̇ closed.

? :
G←−−−−− .

Ch]new : new G.

? : G→ closed

Ch]5b :

? : G← closed
? : G→ opened.

? :
G−−−−−→

Fig. 6. Ch] for our example channel Ch from 3

payloads that are secret to the intruder and payloads that are
known to the intruder, and further they can be fresh or they
can be a repetition. We now give as an example the translation
of the rules from Figure 3:

Example 6 (Abstraction of the channel from Example 4).
In Figure 6, we give the set of rules of Ch] transformed from
the set of rules given in Figure 3 following Definition 10 where
we have actually renamed the payload variables X into G to
emphasize that they now bear the type a. We consider the
same set of agents that we used in Example 3. We write
? : G ∈̇ opened/G ∈̇ closed as a syntactic sugar to avoid
writing two rules, one with (? : G ∈̇ opened) and one with
(? : G ∈̇ closed), when all other things are equal.

Ch1 and Ch2 are not affected by the transformation since
they do not deal with any payload messages. These two rules
can be seen as “pure” channel rules since they are already
independent of any application protocol. Thus Ch]1 and Ch]2
are identical to the original rules.

A payload message X occurs in Ch3, thus we need to divide
this rule into two rules. The rule Ch]3a contains the positive
check (? : G ∈̇ opened) at the beginning whereas the rule
Ch]3b contains (? : G ∈̇ closed). The further transformations
are similar for the two rules since there is no declassification
step for the payload. The step containing the set operation
for outbox is dropped. The payload message inserted into
the secCh set is replaced by the variable G of type a,
as is the payload message in the transmitted message. The
transformations for the rule Ch4 are very similar. It needs
to be split into two rules, the inbox step is dropped and the
payload messages X are replaced by a variable G of type a.

The rule Ch5 also has to be split into two rules. Since
the payload is declassified upon transmission to the intruder,
the transformations are different for the two rules. In Ch]5a,
we add the positive check (? : G ∈̇ opened). We then simply
remove the step with outbox and replace the payload message
by the variable G of type a. In Ch]5b, we add the positive
check (? : G ∈̇ closed). We also remove the step with outbox.

Since, the remaining step, after replacing the payload with
the variable of type a, is the declassification of that variable,
and since that G is in closed, we need to replace the pre-
viously added positive check and the declassification step by
(? : G ← closed.? : G → opened.? :

G−−−−−→). We correctly
abstracted the declassification of the original payload.

The rule Ch6 has to be be split into two rules. The step
with the set inbox is removed and the payload is replaced by
a variable of type a in both rules. Note that these rules become
superfluous (since they contain only a check and a receive) but
we keep them here to illustrate the transformation. We also
add the rule Ch]new that me mentioned before. Finally, Ch7

has also to be split into two rules. Further, in both rules, the
payload variable X is replaced by the variable G of type a.

Recall that the parallel composability of Ch and App
requires that GSMPCh ∩GSMPApp? ⊆ Sec ∪ {t | ∅ ` t} and
that the definition of an application requires that GSMPApp ⊆
Sec ∪ {t | ∅ ` t}. For the abstraction of the payload
we actually need something even stronger, namely that the
application is completely disjoint from the channel without
payloads. Having defined Ch], we can specify this simply as
GSMPCh] ∩ GSMPApp ⊆ {t | ∅ ` t}, i.e., the only terms
common to the channel and the application are public. This
allows us to label any ground term and subterm of a channel
and an application protocol in any well-typed instantiation
in a unique way either as Pub (when it is in {t | ∅ ` t}),
Ch (when it is in GSMPCh] or a variable of type p) or App
(when it is in GSMPApp). We require that when f(t1, . . . , tn)
is a message of GSMPCh and Ana(f(t1, . . . , tn)) = (K,T )
that none of the keys in K or their subterms are labeled
App, i.e., the channel never uses payload messages in key
positions. This is because application payloads are abstracted
and thus application payload messages cannot be used to
encrypt channel messages. In fact a violation of this rule would
be a poor practice of protocol design.

Let us now collect all the conditions we stated for vertical
composition in the following notion of vertical composability:



Definition 11 (Vertical Composability). Let Ch be a channel
protocol, App an application protocol w.r.t. a ground set Sec
of terms. Then (Ch,App,Sec) is vertical composable iff

1) (Ch,App,Sec) is parallel composable,
2) GSMPApp ⊆ Sec ∪ {t | ∅ ` t},
3) GSMPCh] ∩GSMPApp ⊆ {t | ∅ ` t}, and
4) none of the keys in K or their subterms in an analysis

rule s.t. Ana(f(t1, . . . , tn)) = (K,T ) are labeled App.

The first condition was also required in Theorem 4. Con-
ditions (2)–(3) give the disjointness requirements. Condition
(4) requires that the keys or their subterms are not labeled
App. We now can give the main theorem:

Theorem 5. Let Ch be a channel protocol and App an
application protocol w.r.t. a ground set Sec of terms that are
vertical composable. If there is an attack in Ch||App? then
there is one in the protocol Ch].

The proof is given in Appendix A and the proof idea is
as follows. First, we define an intermediate channel protocol
ChApp where the payloads are instantiated by arbitrary concrete
ground terms from the application and where we delete the
steps with the sets outbox and inbox. We show that this
protocol has an attack if Ch ‖ App? has. Then we define
a translation of ground traces of ChApp that replace the
concrete payloads with abstract ones, keeping track of which
are declassified and show that the resulting trace is a trace of
Ch]. Again, we show that all attacks are preserved.

This last result allows us to conclude on the security of the
vertical composition of a channel and an application protocol:

Corollary 1. Let Ch be a channel protocol and App an
application protocol w.r.t. a ground set Sec of terms. If
(Ch,App,Sec) is vertical composable and Ch] and Ch? ‖ App
are both secure in isolation, then the composition App

Ch
is also

secure.

To summarize, in order to prove the security of App

Ch
w.r.t. a ground set Sec of terms, one has first to prove
that (Ch,App,Sec) is vertical composable (Definition 11).
This means that one has to prove (Ch,App,Sec) is parallel
composable (Definition 7) and Ch ‖ App is type-flaw resistant
(Definition 3). Then, one has to make sure that all the terms
from GSMPApp are shared secrets or public terms, and that
none of the keys or their subterms are labeled App, to
avoid them being abstracted. Finally, one has to check that
GSMPApp and GSMPCh] only shares public terms. All these
requirements are syntactical conditions. Provided that Ch]

and Ch? ‖ App are secure in isolation, one can conclude
with Corollary 1. We show in full detail how to apply the
results to our main example in the extended version [10].

V. RELATED WORK AND CONCLUSION

There exists a sequence of works on protocol composability
that has pushed the boundaries of the class of protocols that
can be composed, for instance [15, 12, 7]. These works are
concerned with protocols that do not interact with each other

but just run independently on the same network, maybe sharing
an infrastructure of fixed long-term keys. A limited form of
interaction is allowed in [11] for vertical composition: a hand-
shake protocol can generate secure keys that are then used to
encrypt traffic of an application protocol; similarly, [6] allows
for sequential composition between a handshake establishing
keys that can then be used by a subsequent protocol.

There are several refinement approaches that are close to
vertical composition, such as [24], where a particular ap-
plication that assumes abstract channels for communication
gets refined by a particular implementation of a channel. The
drawback of a refinement proof is that it has to be entirely re-
done after changing the application. Indeed, the work [5] bears
the word refinement in its title, while it is actually a vertical
composition (i.e., not specializing to a particular application)
and is thus closest to our work. Our paper generalizes this
result in several regards: while [5] considers only authentic,
confidential and secure channels, we can specify any chan-
nel property that can be expressed by our formalism; this
is of course also limited to trace-based properties but we
can formulate all goals from the geometric fragment [13].
Second, [5] formulates the result only for secrecy goals of the
application, while our result holds for all properties expressible
in our formalism. Moreover, note that our formalism is stateful,
i.e., both channel and application may use information that
goes beyond single isolated sessions. This also includes a
general notion of declassification that has not been present in
any vertical composition approach so far. Moreover, [5] re-
quires a particular tagging scheme on protocols, while we
have a more general non-unifiability requirement (that can
be implemented by tagging but also instead by other forms
of message structuring like XML or ASN.1). Last but not
least, we want to point out the succinctness of our result. We
see a contribution of this paper in decomposing the problem
into two smaller problems: a parallel composition of stateful
protocols and a sound abstraction of payloads messages in the
channel. For the first, we had to make a non-trivial extension to
an existing compositionality result, namely handling abstract
payload types and declassification, but this allows to reduce a
large part of the problem to existing results, and can handle
everything in greater generality. This is both mathematically
economical and easy to understand and use.

Our work significantly generalizes [22, 23], which were
a first step in solving vertical composition without fixing
a particular form of interaction, but had to fix the number
of transmissions that the channel can be used for, and the
constructions are very complicated. We see as future work
the application of our results in cases where the low-level
protocol can hardly be called a channel but some general
way to handle a form of payload, e.g., a distributed ledger,
generalizing further the class of compositions that we support.

We emphasize that our results can be used with standard
automated verification tools. Our compositionality result re-
duces the verification of App

Ch
to a number of syntactic conditions

and the verification tasks of Ch? ‖ App and Ch]. In most



cases, these are well suited for automated verification tools:
while one can of course consider protocols that are not suitable
for automated verification, our running example for instance
requires only features expressible (with slight over approxi-
mation) in the standard tools like ProVerif [3], AVISPA [2],
Maude-NPA [9], CPSA[14] or Tamarin [21]. We have verified
for instance our running example in Isabelle with PSPSP [16].

We see however three main limitations to our results. First,
the behavior and goals must of course be expressible with
transaction and sets, where the interface between low-level
and high-level is just sets that one can only read and the other
can only write—and the low-level is agnostic of the high-level
data. Second, the results we are building on do not support
algebraic properties, limiting the class of primitives that can be
used, e.g., it is not possible yet to consider Diffie-Hellmann-
based protocols. We consider the extension of this compo-
sitionality result to support the term algebra as future work.
Third, we require that messages from channel and payload are
discernable. This forbids multiple vertical compositions with
several instances of the same channel protocol.

Finally, while this work is based on a black-box model of
cryptography, there is a great similarity of the ideas in this
paper with the Universal Composability framework [4, 20].
UC is typically used in a refinement style: one defines an ideal
functionality and shows that (under appropriate cryptographic
hardness assumptions) a particular real system implements the
ideal one in the sense that real and ideal system cannot be
distinguished. The real system can be for instance a channel
protocol Ch and the ideal system would be similar to our
abstraction Ch?, i.e., abstractly describing properties of the
channel without containing concrete cryptography. We can
then verify an application being correct using Ch? instead
of Ch. The differences to our work are that we do not
consider one particular implementation Ch, but give a general
methodology to verify an arbitrary implementation Ch, in
particular, reducing the problem to one with abstract constants
Ch] that is compatible with existing protocol verification tools.
This allows notably also for payloads that can be declassified,
even after occurring in a transmission. However, our model
is Dolev-Yao style abstracting from cryptography and we
consider it an interesting future challenge to extend our ideas
in UC style to a full cryptographic result.
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APPENDIX

A. Proofs

We give in this section the proofs of our results. We first
introduce a new notation. Each constraint can be seen as a



sequence of blocks with each block being an application of a
transaction rule. We sometimes write a block between pq. For
n > 0, we write A(n) when we consider the n-th block or
A(1, n) when we consider the n first blocks of the constraint.
We adopt the following convention for n = 0: A(0) and
A(1, 0) are the empty constraints. Given a constraint A(1, n),
we define M(A(1, n)) = {m | m←−−−−− occurs in A(1, n)} as
the intruder knowledge until the n-th block of the constraint
A. We use later the same notations for traces, i.e., tr(1, n)
and tr(n). We designed in Section IV a transformation from
a channel protocol Ch to the protocol Ch]. To prove the
main theorem of this work, we first want to introduce an
intermediary transformation. In order to lower the complexity
of verifying the protocol Ch ‖ App?, we want to reduce
the problem of solving an intruder constraint representing a
protocol execution of Ch ‖ App? containing set operations
coming from the idealization of the application protocol App?

to solving an intruder constraint without these set operations
— namely set operations with the outbox and inbox sets. We
call the protocol that we obtain at the end of this transforma-
tion an instantiated channel and we denote it by ChApp.

Definition 12 (Transformation of rules of Ch to rules of
ChApp). Given a pure channel rule Chi, its translation into
an instantiated channel rule is given as follows. If the rule
contains a step of the form (X ← outbox(A,B)), where
X is a payload variable, it is split into a rule for every
t ∈ GSMPApp s.t. ChAppi,t = Chi[X 7→ t] where the payload is
instantiated with a ground subterm from the application. All
others with a set operation for a set of the set families inbox
or outbox are dropped.

Note that if Chi is a well-formed rule, then ChAppi,t , for every
t ∈ GSMPApp, are also well-formed rules. Indeed, instead
of retrieving a variable from an outbox set, we instantiate
it with a ground term from GSMPApp. By Definition 11, a
channel protocol can only retrieve from an outbox set, no
other set operation is allowed on this set family. Similarly, a
channel protocol can only insert into an inbox set, no other
set operation is allowed on this set family. We now state a
soundness theorem for this transformation.

Theorem 6. Let A be a constraint of the protocol Ch ‖ App?
and I an interpretation s.t. I |= A. Then there exists a
constraint A′ of the protocol ChApp s.t. I |= A′. Furthermore,
if there is an attack against Ch ‖ App? then there is an attack
against ChApp.

Proof. Let A be a constraint of Ch ‖ App? and I an
interpretation s.t. I |= A. We define the following translation
and then prove it is a constraint of ChApp. The translation
of the constraint A, that we denote A′, is obtained by the
following operations:

• for every block b being an application of an App? rule,
drop the block b,

• for every step (X ← outbox(A,B)), instantiate X with
I(X) in the whole constraint,

• for every step s where a set of the set family outbox or
inbox occurs, drop the step s (but not the entire block to
which the step belongs to).

We show that A′ is a constraint of the protocol ChApp

defined in Definition 12 and that I |= A′. We proceed by
induction where the induction hypothesis H(n) is concerned
with the first n blocks of the constraints A(1, n) and A′(1, n):
(a) A′(1, n) is a valid constraint of the protocol ChApp,
(b) the knowledge of the intruder is the same in both con-

straints, i.e. M(I(A(1, n))) = M(I(A′(1, n))),
(c) the state of the sets, except the set from the set families

outbox and inbox and sets only accessed from App? are
the same in both traces,

(d) I |= A′(1, n)

For n = 0, it is obvious. Let us now assume that H(n)
holds for every blocks until n ≥ 0, let us prove it holds also
for n+ 1 blocks. We have to distinguish if the block n+ 1 is
the application of a Ch or an App? transaction.

First, consider the case when the block n + 1 is the
application of an App? rule. Then it is dropped from the con-
straint, so A′(1, n + 1) = A′(1, n). By induction hypothesis,
I |= A′(1, n) so I |= A′(1, n + 1) (d). Since the only set
operations allowed in App? are set operations involving sets
from the set families inbox and outbox or sets only accessed
by the application, the requirement on the state of sets holds
(c). There are no sent messages in App?, thus we also have
that M(I(A(1, n+ 1))) = M(I(A′(1, n+ 1))) (b). Also, by
induction hypothesis A′(1, n) is a valid constraint of ChApp

and thus so is A′(1, n+ 1) (a).
Second, consider the case when the block n + 1 is an

application of a Ch rule. If the block n + 1 contains a
step (X ← outbox(A,B)), since by induction hypothesis
I |= A(1, n) and I(X) ∈ GSMPApp, it is possible to
instantiate X with I(X) in the whole constraint. Then, all
the steps where a set of the set family inbox or outbox occur
are dropped. Since by induction hypothesis, the constraint
until now did not contain any of these sets, removing these
steps does not affect the satisfiability of the constraint, i.e.
I |= A′(1, n+1) (d). Following this argument, the knowledge
of the intruder remains the same after the translation, so
M(I(A(n + 1))) = M(I(A′(n + 1))) (b) and besides sets
of the set families inbox and outbox, the state of sets remains
the same (c). Also, during the translation of this Ch block, we
instantiated X with a ground term from GSMPApp and remove
the sets from the set families inbox and outbox, so we obtain
a valid block of a constraint of ChApp. Thus A′(1, n+ 1) is a
valid constraint of ChApp (a).

By induction we proved that there exists a constraint A′ of
the protocol ChApp s.t. I |= A′. It entails that if there is an
attack against Ch ‖ App?, there is an attack against ChApp.

We are now ready to take it to the level of the protocol
Ch]. We want to define a ground trace of Ch] from a
translation of a ground trace of ChApp. For that purpose, we
define an abstraction function denoted g that takes terms from
GSMP•App = GSMPApp \ {t | ∅ ` t} — namely the terms



that are labeled App — and abstract from them by replacing
them by a fresh constant g from G — the infinite set of
constants that we defined in Section IV-A. This function leaves
unchanged the terms labeled Ch or Pub:

Definition 13 (g function). Let g be an injective function
from GSMP•App to G (i.e., ∀s, t ∈ GSMP•App. g(s) =
g(t) ⇒ s = t). We extend g to a function from TΣ → TΣ

by setting g(f(t1, . . . , tn)) = f(g(t1), . . . , g(tn)) whenever
f(t1, . . . , tn) /∈ GSMP•App. When g(t) ∈ G, we may some-
times write simply gt to denote the element of G that t maps
to.

If we apply this function to all steps of a ground trace
of ChApp, we can abstract from the terms introduced by the
application. We use this function to defined a ground trace tr ′

that we later prove to be a valid trace of Ch]:

Definition 14 (Translated trace tr ′). We define the meta
function status on the abstract constants of a trace tr ′:

status(g, tr ′(1, n)) =


(g ∈̇ opened) if (g → opened)

∈ tr ′(1, n)

(g ∈̇ closed) otherwise

For a given ground trace tr of ChApp and n >= 1, we define
the translated ground trace tr ′ by:

tr ′(0) = {pg → closedq | g ∈ g(GSMP(M(tr))) ∩G}
tr ′(n) = p{status(g, tr ′(a, n− 1)) | g ∈ g(tr(n)) ∩G}.

g(tr(n))q

Besides, if g ∈ declassifiedDY(tr ′(n)) ∩ G, i.e., g is
declassified in the n-th block in a step ? :

g←−−−−, and
(g ∈̇ closed) ∈ tr ′(n), then these two steps are replaced by
(g ← closed.g → opened.? :

g←−−−−).

We now show that the declassified terms of a ground trace
of Ch] are just the abstraction of the declassified terms of the
original ground trace of ChApp:

Lemma 1. The declassified Payload messages of the trans-
lated trace coincides with the ones of the original trace
modulo g, i.e., g(declassifiedDY(tr(1, n) ∩ GSMP•App) =
declassifiedDY(tr ′(0, n))) ∩G.

Proof. Let g ∈ g(declassifiedDY(tr(1, n)) ∩ GSMP•App). By
Definition 13, g ∈ G. If g ∈ closed, then it is going to
be declassified and inserted in opened during the transla-
tion of original trace as defined in Definition 14 and then
g ∈ declassifiedDY(tr ′(0, n)). If g ∈ opened, then it means
it has been declassified before because abstraction constants
can only be inserted in an opened during declassification
and then again g ∈ declassifiedDY(tr ′(0, n)). Thus, g ∈
declassifiedDY(tr ′(0, n)) ∩G.

For the other direction, let M = declassifiedDY(tr(1, n))
and M ′ = declassifiedDY(tr ′(0, n)), i.e., the declassified
messages of each trace without restriction to payloads. First
observe that for every s ∈ M ′ there is a t with M ` t and
g(t) = s: this is because M ′ contains only messages that
are the translation g(t) of a message t declassified in tr , or

that have been opened, i.e., t ∈ declassifiedDY(tr(1, n)) ∩
GSMP•App. Let M ′ ` s, then there is a corresponding deriva-
tion M ` t with g(t) = s, because we can replace every con-
stant from G in the proof M ′ ` s with the corresponding term
from M . Thus declassifiedDY(tr ′(0, n)) ⊆ g(declassifiedDY(
tr(1, n))).

We thus proved that the declassified Payload messages
of the translated trace coincides with the ones of the orig-
inal trace modulo g, i.e., declassifiedDY(tr ′(0, n)) ∩ G =
g(declassifiedDY(tr(1, n))) ∩GSMP•App.

Lemma 2. Let tr be a ground trace from ChApp of
length at least n + 1. Let M+ = M(tr(1, n + 1))
and M? = M(tr ′(0, n + 1)). If g(DY(M(tr(1, n)))) ⊆
DY(g(M(tr ′(0, n)))) then also g(DY(M+)) ⊆ DY(M?)
or there exists g ∈ DY(M?) s.t. (g → closed) occurs in
tr ′(0, n+ 1) and not (g → opened).

Proof. Let tr , tr ′, n,M+,M? given as in the statement. Let
us say that tr(1, n + 1) leaks payload if there is a message
t ∈ GSMP•App \declassifiedDY(tr(1, n+1)) such that M+ `
t, and similarly, say that tr ′(0, n + 1) leaks payload if there
is a message g ∈ G \ declassifiedDY(tr ′(0, n+ 1)) such that
M? ` g. If tr ′(0, n+1) leaks payload, then this lemma holds,
because M? ` g for some g ∈ G (so g → closed occurs in the
trace) and g /∈ declassifiedDY(tr ′(0, n+ 1)) (so g → opened
does not). Thus for the remainder of this proof we can assume
that tr ′(0, n+ 1) does not leak payload.

Note that, if g ∈ declassifiedDY(tr ′(1, n+1))∩G, then by
Lemma 1, there exists a t ∈ declassifiedDY(tr(0, n + 1)) ∩
GSMP•App such that g(t) = g.

We proceed by structural induction over the derivation
M+ ` t (see Definition 1). Our induction hypothesis (for
m ∈ N) is: ϕ(m) ≡ ∀t. M+ `m t =⇒ M? ` g(t) where
`m denotes the derivation in at most m steps.

The initial case ϕ(0) coincides with the (Axiom) case:

M+ ` t , t ∈ M+. By definition of the translated trace
tr ′, g(t) ∈M? thus M? ` t.

The induction step ϕ(m) =⇒ ϕ(m+ 1): we have either a
composition or a decomposition step.

For the (Compose) derivation, we have that
t = f(t1, . . . , tp) for some f ∈ Σppub and
M+ `m t1 · · · M+ `m tp

M+ `m+1 f(t1, . . . , tp)
. By induction, we have

that M? ` g(t1),. . . ,M? ` g(tp). We further distinguish two
cases:

1) f(t1, . . . , tn) ∈ GSMP•App: We have g(f(t1, . . . , tn)) ∈
G, and ti ∈ GSMPApp for 1 ≤ i ≤ n. For
each 1 ≤ i ≤ n, we have either ti ∈ {t |
∅ ` t}, then g(ti) = ti, otherwise g(ti) ∈ G. In
that case, g(ti) ∈ declassifiedDY(tr ′(0, n + 1)) ∩ G
since tr ′(0, n + 1) does not leak, and thus ti ∈
declassifiedDY(tr(1, n+ 1)) ∩GSMP•App by Lemma 1.
Thus, ti ∈ declassifiedDY(tr(1, n + 1)) for all 1 ≤
i ≤ n (including public ti). Thus, by DY-closure also
f(t1, . . . , tn) ∈ declassifiedDY(tr(1, n + 1)), and since



also f(t1, . . . , tn) ∈ GSMP•App, again by Lemma 1, we
have g(f(t1, . . . , tn)) ∈ declassifiedDY(tr ′(1, n+1))∩G
and thus g(f(t1, . . . , tn)) ∈ M? by the construction of
tr ′. We thus have M? ` g(f(t1, . . . , tp)) and therefore
ϕ(m+ 1) holds.

2) f(t1, . . . , tn) 6∈ GSMP•App: then by definition of g,
g(f(t1, . . . , tp)) = f(g(t1), . . . , g(tp)). Since M? `
g(ti) by induction, also M? ` f(g(t1), . . . , g(tp)) and
thus ϕ(m+ 1) holds.

(Decompose): then there is t0 = f(t1, . . . , tq) such that
t ∈ {t1, . . . , tq} and

M+ `m t0 M+ `m k1 . . . M+ `m kp

M+ `m+1 t

Ana(t0) =
({k1, . . . , kp},
{t} ∪ T )

By the form of Ana rules, {k1, . . . , kp} ⊆ {t1, . . . , tq}.
W.l.o.g. we can assume that the keys are the first p positions
of f , i.e. t1 = k1, . . . , tp = kp. By induction, we have
that M? ` g(t0),M? ` g(k1), . . . ,M? ` g(kp). To show:
M? ` g(t). We distinguish further two the cases:

1) t0 ∈ GSMP•App: we have that g(t0) ∈ G, and
t, t1, . . . , tn ∈ GSMPApp. For each 0 ≤ i ≤ p,
we have either ti ∈ {t | ∅ ` t}, then g(ti) =
ti, otherwise ti ∈ GSMP•App and thus g(ti) ∈ G.
In that case, g(ti) ∈ declassifiedDY(tr ′(0, n + 1)) ∩
G, since tr ′(1, n + 1) does not leak, and thus by
Lemma 1, ti ∈ declassifiedDY(tr(1, n+1))∩GSMP•App.
Thus ti ∈ declassifiedDY(tr(1, n + 1)) for all 0 ≤
i ≤ p (including public ti). Thus by DY , also t ∈
declassifiedDY(tr(1, n + 1)). If t ∈ {t | ∅ ` t}, then
trivially M? ` g(t), otherwise since t ∈ GSMPApp, we
have t ∈ declassifiedDY(tr(1, n + 1)) ∩ GSMP?

App and
thus again by Lemma 1, g(t) ∈ declassifiedDY(tr ′(0, n+
1)) ∩G, and thus g(t) ∈M? by construction. Therefore
M? ` g(t) and therefore ϕ(m+ 1) holds.

2) t0 /∈ GSMP•App: excluding the trivial case t0 ∈ {t | ∅ `
t}, t0 is thus labeled channel and thus by our assumptions
so are also the keys t1, . . . , tp, i.e., they cannot be part
of GSMP•App either. Thus, g(t0) = g(f(t1, . . . , tn)) =
f(g(t1), . . . , g(tn)) = f(t1, . . . , tp, g(tp+1), . . . , g(tn)).
By induction, we have that M? ` g(t0) and M? `
g(ti) = ti for 1 ≤ i ≤ p. Thus the corresponding analysis
step is possible in M?, yielding M? ` g(t).

Theorem 5. Let Ch be a channel protocol and App an
application protocol w.r.t. a ground set Sec of terms that are
vertical composable. If there is an attack in Ch ‖ App? then
there is one in the protocol Ch].

Proof. Let us consider a constraint A of Ch ‖ App? and
an interpretation I s.t. I |= A. By Theorem 6, there exists
a constraint A′ of ChApp s.t. I |= A′. I(A′) is a ground
trace of ChApp. We note it tr and we consider its translation
following Definition 14.
trace tr(1, n) and the n + 1 blocks of steps of the translated
trace tr ′(0, n) defined in Definition 14:

We proceed now by induction, where the induction hypoth-
esis H(n) is concerned with the first n blocks of the original

• either tr ′(0, n) is a valid trace of Ch], and
g(DY(M(tr(1, n)))) ⊆ DY(M(tr ′(0, n))),

• either DY(M(tr ′(0, n))) ∩ (g(Sec \ declassifiedDY(
tr(1, n))) ∪ {attackCh}) 6= ∅

The second conjunction holds for n = 0. We show that
tr ′(0, 0) is a valid trace of Ch]. It was defined in Definition 14
that initially a number of g-values are inserted in the closed
set. These steps can be generated by the rule Ch]new. There is
initially no declassified values.

Suppose the induction hypothesis holds for some number
n ≥ 0, and the number of blocks of steps in both traces is at
least n+ 1. Note that once the second disjunction is true for
n, it is also true for all n′ > n. Thus we suppose the second
disjunction does not hold until n. We start by showing that
the translation of every new block is the application of a valid
rule of Ch]. Note that as specified in Definition 14, all the
constants g ∈ G occurring in tr ′(0, n+ 1) have been inserted
in the set closed at the start of the trace. The function status
only inserts positive checks at the beginning of the blocks, as
in every rule of Ch]. There are already no outbox or inbox in
ChApp. We then apply the function g to the block that replace
every ground term from the application, that replaced payload
variables, by an abstract constant from G. We also specify how
to correctly declassify the constants from G. Thus we obtain a
valid application of a rule of Ch]. Then we can now show that
the induction hypothesis holds for n + 1. We distinguish the
following cases according to the kind of blocks of steps that
we are concerned with at the block n + 1. In the following,
we consider that the second disjunction is not true until n
otherwise the induction is trivially true as we explained earlier.

• new messages are received but not the constant attackCh:
it means the knowledge of the intruder is augmented by
the set of new received messages, i.e. M(tr(1, n+ 1)) =
M(tr(1, n))∪M(tr(n+1). By induction hypothesis, we
can apply Lemma 2 and we have g(DY(M(tr(1, n +
1)))) ⊆ DY(g(M(tr ′(0, n + 1)))) or there exists g ∈
DY(g(M(tr(1, n + 1)))) s.t. (g ∈̇ closed) occurs in
tr ′(0, n + 1). Therefore, either of the disjunction of the
induction hypothesis holds and H(n+ 1) holds.

• no new messages are received: the knowledge of
the intruder stays the same, i.e. M(tr(1, n + 1)) =
M(tr(1, n)). We can use the induction hypothesis and
apply Lemma 2, either of the disjunction holds and
H(n+ 1) holds.

• the constant attackCh is received in the original trace:
as explained in Definition 13, the constant attackCh is
not abstracted. This means the constant attackCh is also
received in the translated trace. Therefore the second
disjunction holds in the block n+ 1 and H(n+ 1).

By induction, we proved the theorem.

Finally, the composition of vertical composable and se-
cure application and channel protocols is secure. The proof
of Corollary 1 is a direct consequence of Theorems 3 and 5.


