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Abstract—A number of approaches have been developed for
analysing information flow in concurrent programs in a com-
positional manner, i.e., in terms of one thread at a time. Early
approaches modelled the behaviour of a given thread’s environ-
ment using simple read and write permissions on variables, or
by associating specific behaviour with whether or not locks are
held. Recent approaches allow more general representations of
environmental behaviour, increasing applicability. This, however,
comes at a cost. These approaches analyse the code in a forwards
direction, from the start of the program to the end, constructing
the program’s entire state after each instruction. This process
needs to take into account the environmental influence on all
shared variables of the program. When environmental influence
is modelled in a general way, this leads to increased complexity,
hindering automation of the analysis.

In this paper, we present a compositional information flow
analysis for concurrent systems which is the first to support
a general representation of environmental behaviour and be
automated within a theorem prover. Our approach analyses the
code in a backwards direction, from the end of the program
to the start. Rather than constructing the entire state at each
instruction, it generates only the security-related proof obliga-
tions. These are, in general, much simpler, referring to only a
fraction of the program’s shared variables and thus reducing the
complexity introduced by environmental behaviour. For increased
applicability, our approach analyses value-dependent information
flow, where the security classification of a variable may depend
on the current state. The resulting logic has been proved sound
within the theorem prover Isabelle/HOL.

I. INTRODUCTION

Confidentiality of data in computer applications can be
achieved through access control mechanisms at the language
[26], [38], operating system [12], [28], [40], or even hardware
level [41]. Ultimately, however, confidentiality relies on a
combination of such access control mechanisms and carefully
designed code, for both their implementation and use. To fully
support secure software development, we need to be able to
detect vulnerabilities and information leaks that arise due to
programmer oversights and errors.

Our work aims to provide such support for generic soft-
ware components designed for combining applications running
in different security domains [2]. Using such cross-domain
components as the only connection between security domains,
reduces the verification effort for confidentiality to that of these
individual components. However, since such components form
the basic infrastructure on which many applications will be
built, they need to be designed to be highly efficient. For this
reason, concurrency is important.

Over the past decade, a number of information flow log-
ics have been developed to support security verification of
concurrent code [11], [14], [20], [24], [30], [31], [36], [37].
Most of this work uses rely/guarantee reasoning [18] in which
assumptions (or rely conditions) about a thread’s environment
are used in reasoning about that thread in isolation provided
all other threads guarantee that the assumption holds. This
provides a scalable analysis technique in which sequential
analyses on individual threads are composed to demonstrate
security for a concurrent program.

Each of the existing rely/guarantee-based approaches per-
forms a strongest postcondition analysis of the code of each
thread. Such an analysis moves forward through the code
one instruction at a time to construct the strongest state that
can result from the instruction’s execution, and uses this to
discharge the relevant security-related proof obligations. The
calculation of the strongest state needs to take into account
both the changes to the state resulting from the instruction
and the changes to all shared variables that the thread’s rely
condition allows.

The recent approaches of Coughlin and Smith [11] and
Schoepe et al. [36] allow the use of general rely (and
guarantee) conditions, i.e., any predicate can be used to
describe allowable state changes by the environment. In earlier
approaches, rely conditions are either limited to read and
write permissions on individual variables [24], [31], [37], or
restricted to being associated with the acquisition and release
of locks [30], limiting their applicability. For even wider
applicability, the recent approaches (as well as most of the
earlier ones) also support value-dependent information flow
security in which the security classification of variables can
change as the program executes [22], [29].

The complexity introduced by this combination of gen-
eral rely conditions and value-dependent information flow
inevitably affects the development of tool support. This has
been addressed to some extent in [11] with the proposal
of simplifications to the structure of rely conditions. These
simplifications, however, add further burden on the developer
to provide rely conditions in the required form, and also
create further verification conditions for each instruction to
be checked. The resulting type system that is encoded in the
theorem prover Isabelle/HOL [33] can be used to establish
information flow security, but requires a substantial amount
of user interaction and hence limits its practicability. The
work in [36], on the other hand, focusses on aspects of
information flow security alone and assumes external tool
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support exists to provide program annotations required to
support rely/guarantee reasoning.

In this paper, we provide an information flow logic for
concurrent code which, like the work of Coughlin and Smith
[11] and Schoepe et al. [36], uses general rely conditions and
supports value-dependent information flow. Additionally, it is
the first such logic for which there is a theorem prover en-
coding that can be used to establish information flow security
automatically.

To facilitate this, our approach uses a backwards-directed
weakest precondition analysis. Such an approach moves back-
wards through the code one instruction at a time generating
the security-related proof obligations associated with each
instruction, and simplifying (and ultimately discharging) proof
obligations generated earlier in the analysis. Carrying only the
unresolved proof obligations through the backwards analysis is
less arduous in general than carrying the entire state forward as
required in a strongest postcondition approach. Furthermore,
the proof obligations generally range over only a fraction of
the variables of the overall state space. Hence, taking into
account the changes allowed by the rely condition (at each
instruction) does not require all shared variables to be con-
sidered. Although, in general, weakest precondition analysis
suffers from exponential growth of verification conditions for
large or complex programs, Flanagan and Saxe [15] have
shown that the complexity of verification conditions can be
reduced to be linear in the size of the program in practice.

We are not the first to consider weakest precondition anal-
ysis for information flow. It was first proposed by Joshi and
Leino [19], and has been adopted by Banajee et al. [3], [7],
Barthe et al. [8], Scheben and Schmitt [35] and Balliu and
Mastroeni [5], [6], among others. We are, however, the first
to apply it for compositional (rely/guarantee) reasoning about
concurrent programs.

The paper is structured as follows. Section II provides
a motivating example which we use to illustrate concepts
in the rest of the paper. Section III details the preliminary
definitions used throughout. A core predicate transformer
which is based on the notion of weakest preconditions, is
defined in Section IV. This predicate transformer is extended
to include rely/guarantee reasoning in Section V. The encoding
in Isabelle and its automatic proof support is outlined in
Section VI. In Section VII a formalisation of general security
lattices for value-dependent information flow is proposed.
Related work is surveyed in Section VIII after which the paper
concludes with an outlook to further work in Section IX.

II. MOTIVATING EXAMPLE

Consider the code for a concurrent object in Figure 1.
The object provides synchronisation of multiple threads via
a shared variable z, enabling communication of sensitive as
well as non-sensitive data via a buffer variable x. We assume
that trusted components can write sensitive data into the buffer
variable, using the operation sync write and read the buffer
variable at any time using the operation read. Untrusted
components, however, can only access the buffer variable’s
content via the operation sync read and write to it using write.

initially z = 0 ∧ x = 0

sync write(dataType secret) :
while (¬ CAS(z, 0, 1)) {

while (z 6= 0) {}
}
x := secret;
. . .
x := 0;
z := 0;

write(dataType data) :
x := data;

sync read : dataType
dataType y;
if (CAS(z, 0, 2)) {

y := x;
z := 0;
return y;
}

read : dataType
return x;

Fig. 1. Spinlock-based reader/writer mechanism

The synchronisation mechanism encoded in both synchronised
operations ensures that no sensitive information leaks to an
untrusted component.

The encoding of the synchronisation mechanism is based on
the spinlock algorithm [17] which utilises an atomic compare-
and-swap (CAS) instruction. CAS(x, e1, e2) implements the
conditional update x := e2 in the case where x = e1, otherwise,
if x 6= e1, x remains unchanged. In either case, the result of the
test is returned. Note that the test and the (potential) update are
executed atomically (in one step) and hence the environment
cannot interfere between test and update.

Both synchronised operations attempt to set the synchro-
nising variable z (using a CAS), which is only possible when
z = 0. This gives them exclusive access to the buffer variable
x. While the trusted writer keeps trying to set z, the untrusted
reader has only one try and then gives up (similar to the try-
acquire operation in the spinlock algorithm). Once z is set by
the trusted writer, it can update x and (later) after clearing x’s
content, releases z. Similarly, when the untrusted reader sets z
(to prevent concurrent updates to x), it reads x’s content and
releases z.

This provides us with an example for value-dependent
security policies: x’s security classification is dependent on z’s
value to enable it’s use as both a sensitive and non-sensitive
buffer. Furthermore, since variables x and z are shared between
threads, the example requires an information flow logic which
supports concurrency. In order to prove that no information
leak can occur, both the trusted writer and untrusted reader
need to know that variable z will only be updated by its
environment when it evaluates to zero. Each of the threads
needs to guarantee that this constraint on z is satisfied.

III. SECURITY CLASSIFICATION AND LEVELS

We let Prog represent the set of all programs (threads)
executing instructions (skip, assignments, conditionals and
loops) over program variables and expressions. Note that ex-
pressions include Boolean or arithmetic expressions as well as
CAS constructs (as used in the motivating example). Variables
of a program are either global and can be shared with other
(concurrent) programs, or local, i.e., Var = Global ∪ Local
where Global ∩ Local = ∅. An evaluation of all variables
provides a notion of state, σ : Var → Val. We let Σ denote
the overall state space.
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Note that in our analysis we assume that assignments and
the evaluation of expressions execute atomically (i.e., without
interference from the environment). This can be achieved
through code transformations to ensure that multiple global
variables in an expression are loaded into local variables before
being referenced.

For simplicity of presentation, we assume a two-valued
security lattice, however, the treatment of general security
lattices in the context of value-dependent information flow is
outlined in Section VII. The two-valued security lattice Sec
comprises the values low and high such that low v high and
high 6v low, the join operator t such that low t high = high,
and the meet operator u such that low u high = low. The
value high denotes information which is sensitive, and low
denotes information which is not. Each value in a program has
a security level, and each variable has a security classification
capturing the highest level of information the variable is
allowed to hold.

In the following we encode the two-valued security lattice
as a Boolean lattice, where true represents low and false high,
and represent security levels by Boolean variables, the join
operator by conjunction and the meet operator by disjunction.

To model a security classification of a variable, a program
has a function L (also referred to as the security policy) which
maps variables to predicates:

L : Var → Pred

where Pred is the set of all predicates. The mapping to
predicates allows value-dependent security classifications: to
maintain information flow security, variable x can only hold
low information in those states where L(x) evaluates to true,
whenever L(x) evaluates to false x can hold both high and
low information. Note that implementing value-dependent
information flow security requires any program to always clear
sensitive values from a variable prior to its classification falling
from high to low. Our analysis is geared to find places in the
program where this requirement is not met. For example, the
security classification for the code in Figure 1 would prescribe
that the variable x is low whenever variable z is not equal to
1, otherwise it is classified as high, i.e., L(x) = (z 6= 1).

For any variable that never changes its classification, either
true (i.e., always low) or false (i.e., always high) may be
used. In Figure 1, for example, L(z) = true. We assume
L(v) = false for all v ∈ Local (as local variables are not
readable by the environment). Note that, for analysis purposes,
the statement return y in sync read and return x in read are
treated as assignments of y and x to global variables, with
security classification true in the case of sync read and false
in the case of read.

The variables occurring in L(v) for some variable v, are
called control variables, and the set of all control variables
is denoted by Ctrl. To enable communication of a shared
variable’s classification between threads, control variables are
always global, i.e., Ctrl ⊆ Global. A function ctrled : Var →
PVar provides, for each control variable, the set of controlled
variables. Given the security classifications for the variables
in Figure 1 above, we have Ctrl = {z} and ctrled(z) = {x}.

Note that we assume that no variable controls its own security
classification, i.e., ∀ x ∈ Ctrl. x 6∈ ctrled(x).

The security level of a value held by or assigned to a
variable has the type of the security lattice. This security level
can be retrieved via a mapping γ : Var → Bool, in our setting.
For simplicity we use the notation Γx to denote γ(x). Note that
in contrast to much of the previous work on value-dependent
information flow [11], [30], [31], [37], we treat this function
as an auxiliary variable of the program’s global state. This
allows us to refer to it in predicates on the program’s state,
and allows it to be shared between threads. The result is a pure
program logic which reasons over state alone (rather than a
context of state/type pairs).

When a variable’s value is updated, its security level is
updated to reflect the security levels of the variables in the
expression to which it is updated. We make the assumption at
this point that all assignments are checked to never assign
a high value to a variable with low classification (which
is guaranteed by our predicate transformer defined in the
following sections).

Let Exp denote the set of all expressions. The security level
of an expression is defined by the function ΓE : Exp → Pred
with

ΓE(e) =̂
∧

v∈vars(e)(Γv ∨ L(v))

where vars : Exp → PVar returns the set of variables occur-
ring in an expression and, as introduced above, Γv = γ(v).

IV. WEAKEST PRECONDITION WITH SECURITY
ASSURANCE

In our analysis we want to assert that high security values
(which are sensitive) do not flow into variables with low
security classifications (which may be publicly visible). The
analysis follows the program code in a backwards fashion
(i.e., starting at the end) and is based on computing weakest
preconditions [13].

To achieve guarantees on the security of a concurrent
program, an analysis needs to assure that no secret-dependent
timing differences are present in the code. Otherwise, two
threads which are deemed secure by themselves can still
reveal secrets when combined (a detailed discussion can be
found in [30], [37]). To uncover the possibility of secret-
dependent timing differences, our analysis requires that branch
conditions do not depend on high information. This can be
achieved, if necessary, using program transformations (e.g.,
[1], [27]). Hence, we are not concerned in our analysis with the
termination of loops. On the other hand, exceptions caused by
evaluating an undefined expression may cause an information
leak. For example, x := y/z where x and z are high variables
is secure when z 6= 0, but if z = 0 an attacker might be able
to observe the change in behaviour due to the exception being
thrown.

We base our transformer on a modified weakest precondition
wp′ which does not establish the termination of loops (via
a loop variant), but does require expressions and branch
conditions to be defined. Furthermore, the post-condition Q
might contain references to the security level of the value in
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x, Γx, which we have introduced as an auxiliary state variable,
as well as references to x itself.

The modified transformer wp′ is defined as follows. Let
ite(b, c1, c2) abbreviate if b then c1 else c2. and while(b, c)
abbreviate while b do c.

wp′(skip,Q) =̂ Q
wp′(x := e,Q) =̂ def (e) ∧ Q[x←e,Γx←ΓE(e)]

wp′(ite(b, c1, c2),Q) =̂ def (b) ∧ (b⇒ wp′(c1,Q)) ∧
(¬b⇒ wp′(c2,Q))

wp′(while(b, c),Q) =̂ Inv ∧ (∀σ.( Inv⇒ def (b)) ∧
(Inv∧b⇒ wp′(c, Inv)) ∧ (Inv∧¬b⇒ Q))

wp′(c1; c2,Q) =̂ wp′(c1,wp′(c2,Q))

where the notation Q[x← e,Γx←ΓE(e)] denotes that all free
occurrences of x and Γx in Q are substituted by e and ΓE(e). In
the definition of the while statement, Inv is the loop invariant
which needs to hold before the loop and has to imply the
definedness of the loop condition in all states σ, be preserved
by the loop body in all possible states (if the loop condition
b is satisfied), and needs to imply the post-condition Q in all
states when the loop is exited (i.e., when the loop condition
does not hold). Intuitively, Inv can be used as a summary of the
loop’s behaviour, given that it can be shown that it is preserved
during loop iteration and leads to the post-condition once the
loop terminates.

Special consideration should be taken for CAS constructs,
which are Boolean expressions with a side-effect: a test on a
variable is atomically linked with its potential update (in case
of a positive test). In particular, the atomicity of the construct
will become relevant when interference between threads is
considered.

CAS expressions can be used anywhere in the code where
Boolean expressions are used because they return a Boolean
value. Hence they can occur on the right-hand side of assign-
ments, and also within guards in conditionals and loops.

For sequential programs, the atomicity of the CAS test and
update does not affect the weakest precondition computation.
An assignment of a CAS expression can hence be treated
similar to a conditional update of two variables (in case of
a positive test) or one variable (in case of a negative test). For
conditionals and loops using CAS expressions, the transformer
can be defined similarly.

wp′(y := CAS(x, e1, e2),Q) =̂
wp′(ite(x = e1, (x := e2; y := true), y := false),Q)

wp′(ite(CAS(x, e1, e2), c1, c2),Q) =̂
wp′(ite(x = e1, (x := e2; c1), c2),Q)

wp′(while(CAS(x, e1, e2), c),Q) =̂
wp′(while(x = e1, (x := e2; c)),Q)

Some special attention needs to be paid to instructions that
refer to the negation of a CAS instruction, since the updating
behaviour remains the same but the return value is negated.

wp′(y := ¬CAS(x, e1, e2),Q) =̂
wp′(ite(x = e1, (x := e2; y := false), y := true),Q)

wp′(ite(¬CAS(x, e1, e2), c1, c2),Q) =̂
wp′(ite(x = e1, (x := e2; c2), c1),Q)

wp′(while(¬CAS(x, e1, e2), c),Q) =̂
wp′((while(x 6= e1, c); x := e2),Q)

For presentation purposes, in the rest of this paper we
assume that all expressions are defined, i.e., def (e) = true
in the rules above. In practice, definedness can be checked
statically as is done in other program analysis tools (e.g., [21]).

A. A predicate transformer for information flow security

In our context, we additionally generate proof obligations
at each step ensuring that information flow security is not
violated by the currently analysed instruction. The additional
proof obligations are predicates which are conjoined with the
weakest precondition. We define a new transformer which is
based on wp′, called the weakest precondition for information
flow (wpif ). For an instruction, c, wpif (c,Q) is of the form

PO(c) ∧ wpQ(c,Q)

where PO(c) is an additional proof obligation that needs to be
resolved by an earlier instruction, and wpQ(c,Q) is a modified
transformation of the post-condition Q as defined below.

B. Assignment

For a simple assignment instruction, x := e, the generated
proof obligation distinguishes whether the variable x is global
(and hence accessible by other threads) and whether it is a
control variable.

For global variables the proof obligation ensures that the
security level of the value to be assigned, ΓE(e), does not
exceed the security classification of the variable it is assigned
to, L(x). Since both are predicates which represent low when
they are true, this holds when the latter implies the former.
For control variables a further proof obligation checks if the
assignment causes any information leaks from the variables
controlled by the updated variable.

We define the predicate transformer for assignments as
follows.

wpif (x := e,Q) =̂ PO(x := e) ∧ wpQ(x := e,Q)
where
PO(x := e) =̂ (x ∈ Global⇒ (L(x)⇒ ΓE(e))) ∧

(x ∈ Ctrl⇒ secureUpd(x := e))
wpQ(x := e,Q) =̂ wp′(x := e,Q)

The second constraint of the proof obligation concerns the
update of control variables. This constraint is key to value-
dependent information flow security in which a variable’s
classification can be modified during execution of the pro-
gram. The analysis needs to ensure that whenever such a
change in classification occurs, no high value is exposed via a
now low classified, hence observable, variable. The predicate
secureUpd formalises such a check.

secureUpd(x := e) =̂
∀ y ∈ ctrled(x).L(y)[x←e]⇒ Γy ∨ L(y)

This definition ensures that for each variable y controlled by x,
if y’s security classification after the update is low then either
y’s security level is low or its classification was low before the
update (in which case it is ensured that it holds a low value).
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C. Conditionals and loops

For a conditional statement if b then c1 else c2, the wpif
rule has a similar structure to that of wp′: in the case that b
holds wpif of the first statement c1 is computed, and in the case
where ¬b holds wpif of the second statement c2 is computed.
The definition additionally asserts as a proof obligation that the
security level of the branch condition is low to avoid secret-
dependent timing differences.

wpif (ite(b, c1, c2),Q)) =̂
PO(ite(b, c1, c2)) ∧ wpQ(ite(b, c1, c2),Q)

where
PO(ite(b, c1, c2)) =̂ ΓE(b)
wpQ(ite(b, c1, c2),Q) =̂

(b⇒wpif (c1,Q)) ∧ (¬b⇒wpif (c2,Q))

Similarly, a while loop is treated analogously to the standard
wp′ computation with an additional assertion on the security
level of the loop condition which is to be implied in all states
by the loop invariant, i.e., Inv guarantees a low security level.
As a result, when the loop condition is true, the loop body not
only maintains Inv but also the low security level of the loop
condition.

wpif (while(b, c),Q) =̂ PO(while(b, c)) ∧ wpQ(while(b, c))

where

PO(while(b, c)) =̂ Inv ∧ (∀σ. Inv⇒ ΓE(b))
wpQ(while(b, c)) =̂ ∀σ. (Inv∧b⇒ wpif (c, Inv)) ∧

∀σ. (Inv∧¬b⇒ Q)

D. Instructions with CAS expressions

The above definitions feed straightforwardly into the defini-
tion of the transformer for instructions with CAS expressions,
which may be assignments, conditionals or loops.

As is argued for conditionals, a proof obligation on the
security level of the guard is required. Since the instruction
CAS(x, e1, e2) introduces the test x = e1 we need to assure
ΓE(x = e1). The recursive call to the transformer wpif will
generate proof obligations for the remainder of the instruction.

In the case of a CAS assignment this remainder constitutes
the update of the CAS variable and the assignment of the test
outcome to y.

wpif (y := CAS(x, e1, e2)) =̂ ΓE(x = e1) ∧
(x = e1 ⇒ wpif (x := e2,wpif (y := true,Q))) ∧
(x 6= e1 ⇒ wpif (y := false,Q))

which is equivalent to

wpif (ite(x = e1, (x := e2; y := true), y := false),Q)

For conditionals with a CAS expression as a guard, the
remainder constitutes either the sub-instructions c1 or c2,
depending on the outcome of the CAS test, where c1 is
preceded by the CAS update.

wpif ((ite(CAS(x, e1, e2), c1, c2),Q) =̂ ΓE(x = e1)
(x = e1 ⇒ wpif (x := e2,wpif (c1,Q))) ∧
(x 6= e1 ⇒ wpif (c2,Q))

which is equivalent to

wpif (ite(x = e1, (x := e2; c1), c2),Q)

For a loop with a CAS expression, we need to show that the
loop invariant implies ΓE(x = e1). The execution of the loop
body depends on the CAS test and is preceded by the CAS
update.

wpif (while(CAS(x, e1, e2), c),Q) =̂ Inv ∧
∀σ. ( (Inv⇒ (ΓE(x = e1))) ∧

(Inv ∧ x = e1 ⇒ wpif (x := e2,wpif (c, Inv))) ∧
(Inv ∧ x 6= e1 ⇒ Q))

which is equivalent to

wpif (while(x = e1, (x := e2; c)),Q).

The rules for instructions with negated CAS instructions are
derived similarly.

E. Sequential composition

When we analyse a sequence of instructions, the weakest
precondition transformation of each instruction c generates its
own proof obligation and modifies the post-condition Q. The
conjunction of these two predicates is passed on as the post-
condition for preceding instructions as is the case for standard
weakest precondition computations. That is,

wpif (c1; c2,Q) =̂ wpif (c1,PO(c2) ∧ wpQ(c2,Q))

which equals wpif (c1,wpif (c2,Q)).
As we are not interested in assuring a final post-condition

(but rather detecting information leakage), our backwards
analysis starts with the final post-condition true. At each
step an additional proof obligation is generated which is
then passed on as part of the post-condition to the predicate
transformer analysing the next instruction upwards in the
program. Whenever an instruction is an assignment, these post-
conditions are potentially simplified through the substitutions
that apply. The resulting predicate can either be true (indicat-
ing that the proof obligation is satisfied), false in which case
the analysis terminates and reports an information leak, or any
other predicate that is passed on further. If in the end we are
left with a predicate p, this must be satisfied by the initial state
S0, i.e., S0 ⇒ p, for the program to be secure.

F. Example: sync write under wpif

The required security policy for the code of Figure 1 is that
z is always low and x is controlled by z (being low when z is
not set to 1), i.e., L(z) = true ∧ L(x) = (z 6= 1).

Applying the transformer wpif results in the (backwards)
reasoning that is outlined in Figure 2. The process begins at
the last line from the post-condition true (nothing specific is
required at this point). The transformer generates the predicate
wpif (z := 0, true) which is shown in curly brackets above
the last instruction. It contains the conjunction of the proof
obligations at this point as well as the modified post-condition
true[z← 0,Γz←ΓE(0)] which equals true. The condition for
global variables reduces to true since ΓE(0) is true. Substitut-
ing L(x) with the given security policy in the condition for

37



{ true }
while(¬CAS(z,0,1))){
{ true }
while(z 6= 0){ skip};
{ true }
}
{ z = 1 }
{ z 6= 1⇒ ΓE(secret) }

(x ∈ Global⇒ (L(x)⇒ ΓE(secret))) ∧
(x ∈ Ctrl⇒
(∀ y ∈ ctrled(x).L(y)[x←secret]⇒Γy ∨ L(y)))∧

true[x←secret,Γx←Γsecret]


x := secret;
{ true }
{ (z 6= 1⇒ ΓE(0)) ∧ (ΓE(0) ∨ z 6= 1) }

(x ∈ Global⇒ (L(x)⇒ ΓE(0))) ∧
(x ∈ Ctrl⇒

(∀ y ∈ ctrled(x).L(y)[x←0]⇒ Γy ∨ L(y))) ∧
(Γx ∨ z 6= 1)[x←0,Γx←ΓE(0)]


x := 0;
{ Γx ∨ z 6= 1 }{

true ∧
(L(x)[z←0]⇒ Γx ∨ L(x)) ∧
true

}


(z ∈ Global⇒ (L(z)⇒ ΓE(0))) ∧
(z ∈ Ctrl⇒ (∀ y ∈ ctrled(z).L(y)[z←0]⇒

Γy ∨ L(y)))∧
true[z←0,Γz←ΓE(0)]


z := 0;
{ true }

Fig. 2. Transformer wpif applied to sync write

control variables, allows us to simplify the whole conjunction
to Γx∨(z 6= 1). This becomes the post-condition of instruction
x := 0 and feeds into the next step. All further steps of the
analysis work in a similar fashion.

Reasoning over the nested loops reveals that it is sufficient
to assume true for both loop invariants as shown in the
following. With Q = (z = 1) we have

wpif (while(¬CAS(z, 0, 1){while(z 6= 0){skip}}, z = 1) =
Inv1 ∧ ∀σ. (Inv1 ⇒ ΓE(z = 0) ∧

(Inv1 ∧ z 6= 0⇒ wpif (while(z 6= 0){skip}, Inv1)) ∧
(Inv1 ∧ z = 0⇒ wpif (z := 1, z = 1))

With Inv1 = true we also have

wpif (while(z 6= 0){skip}, Inv1) =
Inv2 ∧ ∀σ. (Inv2 ⇒ ΓE(z 6= 0) ∧

(Inv2 ∧ z 6= 0⇒ wpif (skip, true)) ∧
(Inv2 ∧ z = 0⇒ true)

Since ΓE(z 6= 0) = ΓE(z = 0) = true, with Inv2 = true we get
wpif (while(z 6= 0){skip}, Inv1) = true. Substituting this into
the above results in

wpif (while(¬CAS(z, 0, 1){while(z 6= 0){skip}}, z = 1) = true

The result of our analysis shows that the weakest precon-
dition for the operation sync write to be secure (disregarding
its environment) is true which indicates that independent of
the initial state, no information is leaked.

The predicate transformer defined so far only assures local
security of a thread and hence does not consider the impact

of other threads’ behaviours. The consideration of the security
on the global level is treated via the rely/guarantee framework
introduced in the following section.

V. ADDING RELY/GUARANTEE REASONING

The rely/guarantee framework, as introduced by Jones [18],
allows for a compositional approach to analysing concurrent
programs which synchronise via shared variables. Assume a
program consists of components (threads) which are running
in parallel, P1 || . . . || Pn with local variables Locali for
i ∈ {1, . . . , n}. Each of these components can be analysed
in isolation if we assume rely conditions which “summarise”
the effects of all other components. This reasoning is sound if,
in addition, each of the components guarantees a behaviour
that conforms with what the other components assume.1

Rely and guarantee conditions are captured as relations over
pre- and post-states, which have to be reflexive. That is, they
must be valid when no step is taken, or a step is taken for
which the pre- and post-state are the same. Rely conditions
additionally need to be transitive, i.e., they have to hold over
the thread behaviour as a whole, as well as over each of its
instructions.

For example, assume each operation of Figure 1 is called
by a different thread. For the sync write operation, it is the
case that no other thread changes the global variable x to a
high value. Hence, the trusted writer’s rely condition can state
that if the value of x is low in the pre-state of any environment
action, it remains low in that action’s post-state, i.e., Γx ⇒ Γ′

x
(we follow the custom to denote variables in the post-state as
primed variables). Also, when z = 1 no other thread changes
z, and hence an additional rely condition is z = 1 ⇒ z = z′.
Similarly, for sync read we know that when z = 2, z cannot
be changed by the environment and if x is low, it remains low.
Hence, its rely condition can include z = 2⇒ z = z′ ∧ Γx ⇒
Γ′

x. The guarantee conditions of these threads have a similar
form.

Let Rs and Gs denote the set of rely and guarantee
conditions of all components in a system. Let Ri and Gi be
the rely and guarantee conditions of a specific component i.
Compatibility of rely and guarantee conditions requires that the
guarantee of each component implies the rely conditions of all
other components, i.e., Gi ⇒ Rj for all i 6= j. Note that each
Gi has to be strong enough to satisfy all Rj, otherwise thread i
(by itself) can potentially invalidate what another thread relies
on. For the overall system, compatibility is defined as follows.

compatible(Rs,Gs) =
∧

Gi∈Gs (Gi ⇒
∧

Rj∈Rs∧j 6=i Rj)

If we have shown that Rs and Gs are compatible then it
suffices for the overall analysis to focus on each component
together with its rely and guarantee condition in isolation.
In the next section, we introduce a further extension to our
predicate transformer that shows information flow security of
a component under rely and guarantee conditions.

1Note that a program with dynamic thread creation can be handled using
an additional auxiliary global variable to indicate whether the dynamic thread
is active, which is accessible to the rely/guarantee specification and updated
at fork/join operations.
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A. Stability under R
The predicate transformer introduced so far works on a

single component and is designed to create proof obligations
for each instruction and at the same time simplify previously
generated proof obligations where possible. In the concurrent
setting, we additionally need to assure that the component’s
rely condition R maintains all proof obligations throughout
the analysis. If at any point the environment, by executing
one or more steps, can invalidate the proof obligations then the
current thread cannot provide assurance that they are satisfied.
We refer to this property of predicates as stability under R
and define it as

stableR(p) =̂ ∀ v′1, ..., v
′
n. R ∧ p⇒ primed(p).

where {v1, .., vn} = Var. The predicate primed(p) refers to
p in the post-state, i.e., replacing every unprimed variable, vi

with its primed counterpart, v′i . Note that for any p with no
free variables, stableR(p) obviously evaluates to true.

To simplify the onus on the user specifying the rely con-
dition, we introduce the following conditions which occur in
every Ri. For a thread i, they state that (a) the environment
cannot update variables local to thread i, (b) if the environment
does not update a (global) variable then its security level does
not change during (zero or more) environment steps, and (c)
the environment is checked to be information flow secure, i.e.,
no global variable is assigned a value in an environment step
whose security level exceeds its classification.

R1: ∀ v ∈ Locali. v = v′ ∧ Γv = Γ′
v

R2: ∀ v ∈ Var. v = v′ ⇒ Γv = Γ′
v

R3: ∀ v ∈ Global.L(v)′ ⇒ Γ′
v

B. Checks on G
Each thread also needs to validate that each instruction

meets the component’s guarantee G. We introduce a predicate
guar(G, c) which checks the guarantee condition against in-
struction c. To do so, we want to substitute all primed variables
in G with what we know about their evaluation in the post-state
(i.e., after c).

This can be done using the basic predicate transformer wp′

which performs the substitution of updated variables in a (non-
relational) predicate. However, we first need to reshape the
relational predicate G to be phrased in terms of variables v0
and v for pre- and post-state variants of any variable (instead
of v and v′). Similarly, the security levels are renamed. We
introduce

G′ = G[∀ v ∈ vars(G). v←v0, v′←v,Γv←Γv0 ,Γv′←Γv].

Based on the rephrased guarantee condition G′, the guaran-
tee check for an instruction c substitutes the (renamed) post-
state variables (via wp′) and subsequently renames pre-state
variables v0 back to their original names v. This results in a
non-relational predicate which can be evaluated in a state.

guar(G, c) =̂ wp′(c,G′)[∀ v ∈ vars(G). v0←v,Γv0←Γv]

For example, let G = (z = 2 ⇒ z = z′) ∧ x ≥ x′ then
G′ = (z0 = 2⇒ z0 = z) ∧ x0 ≥ x and hence

guar(G, x := e)
= wp′(x := e,G′)[z0←z, x0←x,Γz0←Γz,Γx0←Γx]
= (z0 = 2⇒z0 = z) ∧ x0 ≥ e

[z0←z, x0←x,Γz0←Γz,Γx0←Γx]
= (z = 2⇒ z = z) ∧ x ≥ e
= x ≥ e

That is, the update of x satisfies the guarantee condition if x
in the prestate is greater than or equal to expression e.

Since we assume that G is reflexive, it needs to be satisfied
by all instructions, even those that do not update the state. The
check guar(G, c) equals true whenever c does not update any
variables since the renaming of pre-state variables results in
equality between pre- and post-state variables.

To ensure compatibility between rely and guarantee con-
ditions, we mirror conditions R1-R3 for guarantees Gi. Note
that G1 refers to variables that are local to other threads and
furthermore that G3 below overlaps with the proof obligation
for assignments, PO(x := e).2

G1: ∀ v 6∈ (Locali ∪ Global). v = v′ ∧ Γv = Γ′
v

G2: ∀ v ∈ Var. v = v′ ⇒ Γv = Γ′
v

G3: ∀ v ∈ Global.L(v)′ ⇒ Γ′
v

C. The transformer wpifRG

To account for rely and guarantee conditions, we introduce
the predicate transformer wpifRG based on the predicate trans-
former wpif . For any instruction c, in addition to the proof
obligation PO(c) and the transformation of the post-condition
wpQ(c,Q), the transformer also generates two further condi-
tions to prove that (a) c meets the guarantee G, and (b) the
pre-condition generated so far is stable under rely R. The
former implements the checks on G for each instruction c as
introduced in Section V-B, while the latter ensures that even
if the code in the thread delivers the pre-condition required to
prevent any information leaking, the environment of the thread
is not compromising this pre-condition before instruction c
is performed. That is, if the pre-condition holds and the
environment performs one or more steps at this point in time,
the pre-condition will still hold afterwards such that c can
execute securely.

wpifRG(c,Q) =̂ PO(c) ∧ guar(G, c) ∧ wpQ(c,Q) ∧
stableR(PO(c) ∧ guar(G, c) ∧ wpQ(c,Q))

The transformer produces the usual proof obligation and
transformation of the post-condition wpQ(c,Q), checks that
the guarantee is not violated, and checks whether PO(c),
guar(G, c), and wpQ(c,Q) are stable under R.

The predicates guar(G, c) and stableR(wpQ(c,Q)) are spe-
cific to the type of instruction c which results in the instruction
specific definitions for wpifRG as follows.

1) Assignments:

wpifRG(x := e,Q) =̂
PO(x := e) ∧ guar(G, x := e) ∧ Q[x←e,Γx←ΓE(e)] ∧
stableR(PO(x := e) ∧

guar(G, x := e) ∧ Q[x←e,Γx←ΓE(e)])

2Note that it suffices to state Γv ⇒ Γ′
v instead of Γv = Γ′

v in Axioms R1,
R2, G1 and G2, as has been done in the Isabelle/HOL encoding.
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2) Conditionals: If c is a conditional statement
ite(b, c1, c2), assignments only occur at the lower level
of the branches c1 and c2, and the guarantee check on the
top level simplifies to true. Further guarantee checks on the
instructions within c1 and c2 are covered by the nested calls
to the transformer. Note that in the presentation we separate
the stability check on the proof obligation and the stability
check on the remainder.

wpifRG(ite(b, c1, c2),Q)) =̂
ΓE(b) ∧ stableR(ΓE(b)) ∧
(b⇒ wpifRG(c1,Q)) ∧ (¬b⇒ wpifRG(c2,Q))
stableR((b⇒wpifRG(c1,Q)) ∧ (¬b⇒wpifRG(c2,Q)))

3) Loops: When c is a loop, similarly to conditional
statements, the guarantee does not need to be checked at the
top level of this statement. Only the body of the loop can
update variables and the check of the guarantee is deferred to
the nested call of wpifRG , hence guar(G,while(b, c)) = true.

wpifRG(while(b, c),Q)) =̂ Inv ∧ stableR(Inv) ∧
(∀σ. (Inv⇒ ΓE(b)) ∧

((Inv∧b)⇒wpifRG(c, Inv)) ∧ ((Inv∧¬b)⇒Q))

Note that for any predicate p, ∀σ. p amounts to either true
or false, and since stableR(true) = stableR(false) = true, it
suffices to check stability of Inv only.

4) Instructions with CAS expressions: As can be seen for
the transformer wpif , the weakest precondition of a CAS as-
signment resembles that of a conditional. The difference when
it comes to interference with the environment, however, lies in
the atomicity of the test and the (potential) update of the CAS
variable. Consequently, stability does not need to be checked
between test and update. That is, stability is only checked on
the instruction(s) which follows the (potential) update of the
CAS (using wpifRG), and on the weakest precondition of the
instruction as a whole. It is not checked on the update to the
CAS variable (to which wpif is applied).

Also, only in the case of a positive test in CAS do we need
to check whether the subsequent update to the CAS variable
satisfies the guarantee condition. These principles result in the
following definitions for CAS instructions.

wpifRG(y := CAS(x, e1, e2)) =̂
ΓE(x = e1) ∧ stableR(ΓE(x = e1)) ∧
(x = e1 ⇒ guar(G, x := e2) ∧

wpif (x := e2,wpifRG(y := true,Q))) ∧
(x 6= e1 ⇒ wpifRG(y := false,Q)) ∧
stableR((x = e1 ⇒ guar(G, x := e2) ∧

wpif (x := e2,wpifRG(y := true,Q))) ∧
(x 6= e1 ⇒ wpifRG(y := false,Q)))

wpifRG((if (CAS(x, e1, e2)) then c1 else c2,Q)) =̂
ΓE(x = e1) ∧ stableR(ΓE(x = e1)) ∧
(x = e1 ⇒ guar(G, x := e2) ∧

wpif (x := e2,wpifRG(c1,Q))) ∧
(x 6= e1 ⇒ wpifRG(c2,Q)) ∧
stableR((x = e1 ⇒ guar(G, x := e2) ∧

wpif (x := e2,wpifRG(c1,Q))) ∧
(x 6= e1 ⇒ wpifRG(c2,Q)))

wpifRG(while (CAS(x, e1, e2)) do c,Q) =̂
Inv ∧ stableR(Inv) ∧
(∀σ.(Inv⇒ ΓE(x = e1)) ∧

(Inv ∧ x = e1 ⇒ guar(G, x := e2) ∧
wpif (x := e2,wpifRG(c, Inv))) ∧

(Inv ∧ x 6= e1 ⇒ Q))

5) Sequential composition: For sequential composition the
predicate transformer is defined as

wpifRG(c1; c2,Q) =̂ wpifRG(c1,wpifRG(c2,Q))

Note that the predicate Q in the above stems from previously
generated proof obligations which have been checked for
stability at the time of their generation.

D. Example under wpifRG

As stated earlier the security classifications of the two global
variables of our example are as follows.

L(x) = (z 6= 1) and L(z) = true

To show the working of the predicate transformer wpifRG
we now develop the rely and guarantee conditions for each
operation. For the operation sync write of Figure 1, it can
be observed that it is the only operation that writes a high
value into the buffer variable x (the environment can either
overwrite a high value or maintain a low level). Additionally,
the environment of sync write can only alter the control
variable z if it is not equal to 1. In return sync write can
guarantee that no variable is changed when the synchronised
reader has the lock (z = 2). In addition to conditions R1-
R3 and G1-G3, we have the following rely and guarantee
conditions for sync write.

Rsync write = (Γx ⇒ Γ′
x) ∧ (z = 1⇒ z = z′)

Gsync write = (z = 2⇒ z = z′ ∧ x = x′)

The operation sync read relies on the fact that when it holds
the lock (z = 2), z remains unchanged and if x changes it
will only change to a low value (which might happen through
un-synchronised writes which only write low values). The
operation can guarantee never to change x and to not change z
when it is held by the synchronised writer (z = 1). Hence,
in addition to conditions R1-R3 and G1-G3, we have the
following rely and guarantee conditions for sync read.

Rsync read = (z = 2⇒ z = z′ ∧ Γx ⇒ Γ′
x)

Gsync read = (x = x′) ∧ (z = 1⇒ z = z′)

Apart from conditions R1-R3, the rely conditions for the un-
synchronised operations are simply true and hence, since the
security classification of x is dependent on z 6= 1, the writer
will only be allowed to write a low value into x (which is
checked through the proof obligations generated by our logic).
The guarantee conditions add to G1-G3 the conditions that
z and x are unchanged, in the case of read, and that z is
unchanged and x is not assigned a high value, in the case of
write.

Rread = Rwrite = true
Gread = (z = z′ ∧ x = x′)
Gwrite = (z = z′ ∧ (Γx ⇒ Γ′

x))
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It is easy to prove that these conditions are compatible, i.e.,
for all operation i, j with i 6= j, Gi ⇒

∧
jRj.

We show the workings of the transformer wpifRG on the
operation sync write. As in the previous section, the anal-
ysis proceeds backwards through the code, starting with the
post-condition true. The results are used in the (backwards)
reasoning shown in Figure 3. In the following we develop the
guarantee checks and stability conditions for the assignments
in the operation. Note that for the sake of readability, we
abbreviate with POn (for n ∈ 1..3) the proof obligation
generated at each instruction.

For the last instruction z := 0 of the operation sync write,
the following guarantee condition is generated.

guar(G, z := 0)
= wp′(z := 0, z0 = 2⇒ z = z0 ∧ x = x0)

[z0←z, x0←x,Γz0←Γz,Γx0←Γx]
= (z = 2⇒ 0 = z ∧ x = x)
= (z 6= 2)

For the same instruction, the stability condition reduces to the
stability of the proof obligation and the guarantee condition
(as shown above). PO(z := 0) reduces to secureUpd(z := 0)
and since L(x)[z←0] = true this reduces further to Γx ∨L(x)
which equals (Γx ∨ z 6= 1). Since Rsync write provides stability
on a low value of x, and stability on z when z = 1 we can
derive the given result.

stableR((Γx ∨ z 6= 1) ∧ z 6= 2) =
= ((Γx ∨ z 6= 1) ∧ z 6= 2) ∧ Rsync write ⇒

((Γ′
x ∨ z′ 6= 1) ∧ z′ 6= 2)

= (z = 1)

For the next instruction x := 0, the following guarantee
condition is generated.

guar(G, x := 0)
= wp′(x := 0, z0 = 2⇒ z = z0 ∧ x = x0)

[z0←z, x0←x,Γz0←Γz,Γx0←Γx]
= (z = 2⇒ z = z ∧ 0 = x)
= (z = 2⇒ x = 0)

With PO2 = L(x) ⇒ ΓE(0) which simplifies to true and the
above, the stability condition is computed as follows.

stableR(PO2 ∧ guar(G, z := 0) ∧
(Γx ∧ (z = 1))[x←0,Γx←ΓE(0)])

= stableR((z = 2⇒ x = 0) ∧ z = 1)
= stableR(z = 1)
= (z = 1)

For the update x := secret, the proof obligation PO3 =
L(x) ⇒ ΓE(secret) which equals (z = 1) and guar(G, x :=
secret) = (z = 2 ⇒ x = secret). Hence the stability of the
proof obligation takes the following shape.

stableR(z = 1 ∧ (z = 2⇒ x = secret) ∧
(z = 1)[x←secret,Γx←ΓE(secret)])

= stableR(z = 1)
= (z = 1)

The reasoning over the nested loops at the beginning of the
code is equivalent to that in Section IV-F, given that the post-
condition is (z = 1) and both loop invariants can be set to

{ true }
while(¬CAS(z,0,1))){
{ true }
while(z 6= 0){};
{ true }
}
{ z = 1 }

z = 1 ∧ guar(G, x := secret) ∧
(z = 1)[x←secret,Γx←Γsecret] ∧
stableR(PO3 ∧ guar(G, x := secret) ∧

(z = 1)[x←secret,Γx←ΓE(secret)])


x := secret;
{ z = 1 }

true ∧
guar(G, x := 0) ∧ (Γx ∧ z = 1)[x←0,Γx←ΓE(0)]
stableR(PO2 ∧ guar(G, z := 0) ∧

(Γx ∧ z = 1)[x←0,Γx←ΓE(0)])


x := 0;
{ Γx ∧ z = 1 }

(Γx ∨ z 6= 1) ∧
guar(G, z := 0) ∧ true[z←0,Γz←ΓE(0)] ∧
stableR(PO1 ∧ guar(G, z := 0) ∧

true[z←0,Γz←ΓE(0)])


z := 0;
{ true }

Fig. 3. Transformer wpifRG applied to sync write

true (hence stability over both is trivially true). The guarantee
condition over the CAS update evaluates to z 6= 2, as shown
in the following.

guar(G, z := 1)
= wp′(z := 1, z0 = 2⇒ z = z0 ∧ x = x0)

[z0←z, x0←x,Γz0←Γz,Γx0←Γx]
= (z = 2⇒ 1 = z ∧ x = x)
= (z 6= 2)

Hence the implication (Inv1 ∧ z = 0 ⇒ guar(G, z := 1))
evaluates to true.

The result shows that there are no proof obligations on the
initial state. The stability of this proof obligation has been
assured alongside the backwards reasoning, as prescribed by
the transformer wpifRG .

VI. ISABELLE ENCODING AND PROOF SUPPORT

Our information flow analysis is sound with respect to a def-
inition of value-dependent non-interference for shared memory
concurrent programs based on [31]. This property establishes
a strong low bisimulation that guarantees the preservation
of a low-equivalence relation between two versions of the
memory throughout execution. Given a security policy L, we
define our low-equivalence relation S such that the two related
memories must agree on the value of a variable if its security
classification is low in either.

(m1,m2) ∈ S ≡
∀ x · (m1 ∈ L x ∨ m2 ∈ L x)⇒ m1 x = m2 x

Given such a property, it is guaranteed that the values of
variables classified as low are not influenced by the values of
those classified as high. Hence, an attacker who can observe
the former cannot deduce anything about the latter.
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To demonstrate soundness of the analysis in
Isabelle/HOL [33], we prove that the desired bisimulation
must hold for a program executing with initial conditions
determined by wpifRG . This has been achieved over the
programming language introduced in this paper with an
extension to support simple array operations.

The encoding has also been used to automate our weakest
precondition analysis and applied to a selection of examples of
concurrent, non-blocking algorithms adapted to have security
properties. As well as the spinlock-based reader/writer mecha-
nism of Figure 1, we have used our encoding to automatically
verify non-interference for a reader/writer mechanism based
on the Linux seqlock algorithm [9] in which the writer thread
is never blocked by a reader thread, a version of the Treiber
stack [39] in which classified stack elements cannot be popped
by unauthorised threads, and a version of the Chase-Lev work-
stealing deque [10] in which classified tasks on the deque
can only be accessed by the worker thread; all other threads
are limited to stealing unclassified tasks. All examples were
verified within 10 seconds on a standard laptop.

The Isabelle/HOL encodings of the logic, soundness proof
and examples can be found under https://bitbucket.org/wmmif/
wp-rg-if/src/csf2021/. Code and descriptions for the examples
are found in the Appendix.

A. Relational Rely/Guarantee

To minimise the verification burden, the soundness proof
relies on an existing relational rely/guarantee logic [11] to
establish its desired bisimulation properties. This relational
logic enables the expression of predicates over a pair of
memories and enforces equivalent branching and termination
behaviours between their executions.

Consequently, we encode our definition of low-equivalence
as an invariant within the rely/guarantee logic, preserved
by both the rely and guarantee specifications. We use the
shorthand pres P to represent the preservation of a state across
a state transition.

Lemma 1: Given a relational rely/guarantee judgement (R∩
pres S), (G ∩ pres S) ` (P ∩ S) {c} Q that preserves low-
equivalence, and given two low-equivalent memories, m1 and
m2, that satisfy P, and given the pair (c,m1) may partially
evaluate to (c1,m′

1) via a trace of instructions t, then there
must exist a partially evaluated state (c2,m′

2) that (c,m2) may
reach via the trace t, such m′

1 and m′
2 are low-equivalent.

(R∩ pres S), (G ∩ pres S) ` (P ∩ S) {c} Q⇒
(m1,m2) ∈ P ∩ S ∧ (c,m1) −→t (c1,m′

1)⇒
∃ c2, m′

2 · (c,m2) −→t (c2,m′
2) ∧ (m′

1,m
′
2) ∈ S

where (c,m) −→t (c′,m′) represents the execution of program
c and memory m to a new state via a trace of instructions t.

As the language is deterministic, Lemma 1 implies that all
memories m′

2 that satisfy (c,m2) −→t (c2,m′
2) must be low-

equivalent with m′
1.

Note that both executions in Lemma 1 must evaluate the
same trace of instructions t. As the program c consists of
parallel components with non-deterministic scheduling, this

constrains the scheduling behaviour to select the same instruc-
tions from the available threads. This is slightly less restrictive
than limiting the scheduler to selecting the same threads, as
different threads may be chosen as long as their instructions
are equivalent.

B. Assertion Language for Proof Obligations

As the information flow analysis does not reason at the level
of two low-equivalent memories, the Isabelle/HOL encoding
introduces a deeply embedded assertion language over a single
memory m (mapping variables to an abstract value type) and
a type context Γ (mapping variables to their security level).
A deep embedding approach was chosen due to the ease with
which predicates may be transformed and optimised, as seen
in prior work [42]. For instance, it is trivial under such an
approach to determine the variables referenced in an assertion,
as required by secureUpd. Moreover, an operation to convert
such assertions to low-equivalent memories is included, en-
abling reasoning within the relational rely/guarantee logic.

Lemma 2: Evaluating a converted assertion, [A], on the
memory pair m1 and m2 is equivalent to evaluating the
assertion A directly on both individual memories with a Γ
computed based on their difference (denoted m14m2 below).

(m1,m2) ∈ [A] =

eval (m1,m14m2) A ∧ eval (m2,m14m2) A

where (m14m2) x = (m1 x = m2 x), overapproximating
low-equivalent variables, and eval defines the evaluation of
a deeply embedded assertion.

C. Wellformedness

It is necessary to establish a series of wellformedness
properties on the logic’s specifications and invariants to
demonstrate soundness. For example, the relation R must
be transitive and reflexive, ensuring it models any number
of environment steps. Additionally, the relation G must be
reflexive to cover the cases where the thread does not modify
the state. Moreover, the security policy L is constrained to
prevent a variable from influencing its own classification.

Wellformedness properties also apply to the logic’s as-
sertions A (i.e., the generated proof obligations and their
modifications) as they are updated throughout the analysis. For
example, the assertions must always be stable under the rely
condition R. These properties are all bundled into a definition
wellformed R G L A.

D. Sequential Judgements

To facilitate proof support and handle much of the implicit
complexity of the relational rely/guarantee logic, the encoding
defines a set of rules for judgements over a single thread.
These judgements preserve wellformedness and abstract over
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the preservation of the security policy L. The resulting rules
closely reflect those of a traditional Hoare logic.

R,G `seq A {c} A′ ≡
wellformed R G L A′ ⇒

(R∩ pres S), (G ∩ pres S) ` ([A] ∩ S) {c} [A′] ∧
wellformed R G L A

Lemma 3: Given a rely/guarantee specification, R and G, a
program c and a postcondition A′, wpifRG(c,A′) will compute
a precondition such that R,G `seq wpifRG(c,A′) {c} A′ holds.

Lemma 3 can be established via induction over c and appli-
cation of appropriate rules from the relational rely/guarantee
logic where necessary. Therefore, given wellformed R G L A′

and initial conditions that imply wpifRG(c,A′), it is possible to
establish the desired security property via Lemma 1. Moreover,
the rely/guarantee framework enables the parallel composition
of these properties, given compatible R and G specifications.

E. Proof Support

Various existing program logics have been mechanised in
Isabelle/HOL with some degree of automation via verification
condition generation using weakest-precondition transforma-
tions [16], [32]. We employ these techniques to enable similar
levels of automation when attempting to establish information
flow properties of concurrent objects within Isabelle/HOL.
While its scalability is limited, this approach allows for
experimentation with the analysis without significant reimple-
mentation. Additionally, due to the application of the verified
definitions, such an approach can provide much stronger
guarantees when compared with alternative implementations.

To achieve the automation when applying the verified defi-
nitions, the predicate transformation of the wpifRG function is
rephrased as logic rules, with multiple variations for special
cases of some program constructs. These rules are then applied
at the tactic level, using pattern matching and backtracking
to determine the best rule for a particular situation using
Isabelle/HOL’s proof tactic language Eisbach [25].

This approach is preferable to the computation of wpifRG
function directly, as it allows for the simplification and elimi-
nation of proof obligations early in the analysis. For example,
it is possible to eliminate the stableR proof obligation on an
instruction that does not write or read global variables. This
considerably reduces the growth of the weakest-precondition,
simplifying later reasoning.

After automatic application of these rules to a program, the
remaining subgoals consist of predicate entailments phrased
in the deeply embedded assertion language. Reasoning in
this form is difficult due to the lack of theorems over the
assertion language. To alleviate this, operations over the as-
sertion language are made executable, enabling normalization
via Isabelle/HOL’s code generation capabilities. The resulting
normalized predicate implications are fully expanded to only
use Isabelle/HOL’s built-in operators over an abstract memory
and type state. These are then fed into simplification tactics
to be decomposed and clarified, with most subgoals being
immediately discharged.

Any remaining subgoals typically require additional lemmas
and more complex tactics to be successfully discharged. The
mechanised examples focus on operations over natural num-
bers, for which there is a large amount of existing support
in Isabelle/HOL. Consequently, all non-trivial subgoals can
be resolved via application of Isabelle/HOL’s sledgehammer
tactic to identify the required lemmas and suitable tactics.

F. Arrays
The encoding includes basic support for arrays, in order

to verify additional concurrent algorithms and explore the
limitations of the proof support.

Arrays are modelled as a collection of individual variables,
with specialised operations to enable writing and reading.
The store operation (i.e., the assignment to an array at a
particular index) takes a list of variables, representing the
array; an index operation, identifying which variable to access;
and an expression to evaluate and store. To compute the
weakest-precondition of such a store all constituent variables
of the array are substituted with an expression representing the
possibility of modification. For instance, a store of the form
A[i] := e, where A is the array, i is the modified index and e
is the written expression, would substitute An, the nth variable
of the array A, with if i = n then e else An.

In a similar fashion, the proof obligations for such a store
consist of the proof obligations for each variable that could
be assigned, guarded by a test on the outcome of the index
expression.

The load operation (i.e., the read of an array at a particular
index) takes a destination variable, to write the value to; a list
of variables, representing the array; and an index operation. To
compute the weakest-precondition for a load, an expression
is generated to represent the possible outcomes of the load
given each potential index, which the destination variable is
then substituted with.

Similar to the store, the proof obligations for a load consist
of the proof obligations for each variable that could be read,
guarded by a test on the outcome of the index expression.

Additionally, the index expression for array operations is
constrained to be low-equivalent, similar to branching expres-
sions. This is required as an invalid array access will halt the
program, under our semantics. As this may be observable to an
attacker, a difference in halting behaviour can leak information
if the index is influenced by a secret.

G. Predicate Size
All mechanised examples can be verified within 10 seconds

on a standard laptop. However, this execution time is highly
dependent on the size of the predicate, which is in turn
significantly influenced by the R specification via the stableR
proof obligations for each instruction. Hence, the examples are
constructed with the smallest possible R.

The use of a compact R is employed in the Treiber stack
example. Rather than providing a detailed rely/guarantee spec-
ification that one would require to demonstrate correctness of
the algorithm, a simplified specification is used with sufficient
information to reason about information flow. This results in
a significantly quicker verification.
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VII. TREATMENT OF GENERAL SECURITY LATTICES

To generalise the treatment to non-binary security lattices
we propose the following formalisation. Assume a complete
lattice of security values Sec, with possibly more than two
values, with partial order v, a join (t) and a meet operator
(u) such that x v y⇔ x t y = y and x v y⇔ x u y = x.

Within this lattice of security values, the user needs to spec-
ify a threshold defining which security levels are considered
observable by a potential attacker, secattack ∈ Sec, such that
all sec v secattack are considered publicly accessible.

In order to specify value-dependent classifications that range
over more than two security values, we introduce conditional
security expressions, CondSec. These expressions evaluate to
a value in Sec depending on the current state. For example,
assume Sec = {secret, confidential, public}, then the security
classification for a multi-purpose buffer can be defined as the
following conditional security expression (assuming a syntax
of ternary if-then-else expressions).

L(buffer) =
if userId = customer then public

else if userId = finance then confidential
else secret

A wellformedness condition on CondSec requires that each
expression is complete in the sense that we can decide in every
state the security value of the expression (i.e., the conditions
in a conditional security expression must form a partition of
the state space).

CondSec subsumes the security lattice Sec, e.g., the
Sec value public could be represented by the expression
(if true then public), and therefore its partial order v and meet
and join operators, u and t. The semantics is defined via an
evaluation function that takes the current state σ ∈ Σ into
account.

evalsec : CondSec× Σ→ Sec

The wellformedness condition on conditional security expres-
sions assures that evalsec is a total function.

Substitution over a conditional security expression, csec[x←
e], substitutes free variables in the conditions with the corre-
sponding expression, e.g.,

L(buffer)[userId←finance] =
if finance = customer then public

else if finance = finance then confidential
else secret

which simplifies to confidential.
Building on this we define the security classification of

variables as a mapping from variables to conditional security
expressions L : Var → CondSec. The security level maps
each variable to a security value, i.e., γ : Var → Sec.
The security level of expressions maps an expression to a
conditional security expression, i.e., ΓE : Exp → CondSec,
combining security classification and security level of the
involved variables.

ΓE(e) =̂u v∈vars(e)(Γv t L(v)).

The proof obligation to ensure information flow security can
then be phrased as follows.

PO(x := e) =̂ (x ∈ Global⇒ L(x) w ΓE(e)) ∧
(x ∈ Ctrl⇒ ∀ y ∈ ctrled(x).L(y)[x←e] w (Γy t L(y)))

For conditional and loop instructions, we need to ensure
that the security level of the guard lies below the accessible
security level of a potential attacker, secattack. Hence we define

PO(ite(b, c1, c2)) =̂ ΓE(b) v secattack

PO(while(b, c)) =̂ Inv ∧ (∀σ. Inv⇒ (ΓE(b) v secattack))

The Isabelle encoding of the corresponding generalised
information flow logic and soundness proof can be found in
https://bitbucket.org/wmmif/wp-rg-if/src/lattice.

VIII. RELATED WORK

A number of approaches to verification of information flow
in shared-variable concurrent programs have been developed
over the last decade. These approaches fall into two camps:
those based on rely/guarantee reasoning, and those based on
separation logic [34].

The earliest approach using rely/guarantee reasoning is
that of Mantel et al. [24]. This work associates modes with
each variable referenced by a thread. The modes are either
assumptions or guarantees on read and write access to the
variable, e.g., an assumption that no other thread writes to
the variable, or a guarantee that this thread will not read the
variable. This simple form of rely and guarantee conditions is
adopted by Murray et al. [31] who additionally added value-
dependent security classifications, and Smith et al. [37] in a
value-dependent information flow logic for programs running
on hardware weak memory models. While trivial to apply,
these modes introduce complex proof obligations to establish
overall program correctness via compatibility of assumptions
and guarantees [4], [23]. Smith et al. [37] avoid this problem
by requiring modes to be static over the execution of a pro-
gram, limiting applicability. In their later work [30], Murray
et al. simplify the analysis by associating mode changes with
the acquisition and release of locks. This work also associates
invariants with the acquisition of locks opening the way for
more general rely and guarantee conditions.

As shown by Coughlin and Smith [11], simple rely and
guarantee conditions supported by modes are not sufficient
for all concurrent programs. Furthermore, the use of locks, as
proposed by Murray et al., [30] limits applicability to lock-
based programs. Coughlin and Smith [11] provide a value-
dependent information flow logic which supports general rely
and guarantee condition, and can be used with non-blocking
programs which do not employ locks. The approach however,
based on a forwards strongest postcondition analysis, suffers
from complexity, hindering its automation. The only other
approach supporting general rely and guarantee conditions
that are not associated with locks is that of Schoepe et al.
[36]. This approach separates the rely/guarantee analysis from
the security analysis to simplify the latter. While this sounds
promising, the rely/guarantee analysis is not described in the
paper but is assumed to be available using an external tool.
As such, its automation is yet to be explored.
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The separation logic approaches include those of Karbyshev
et al. [20] and Ernst and Murray [14]. In the approach of Kar-
byshev et al., the thread-local conditions on shared variables
are restricted to ownership of the variables, i.e., whether the
thread has exclusive access to a variable, or whether its access
is shared with other threads. This is similar to the modes of
Mantel et al. [24]. Ownership is transferred between threads
by sending and receiving signals over channels, similar to the
use of locks by Murray et al. [30]. The approach also does
not support value-dependent security levels. Hence, it does not
support the range of programs supported by our approach.

The focus of Karbyshev et al.’s work, however, is on timing
channels due to branching on high values. In particular, it
considers where such branching forces a particular outcome
in a data race, due to either significant delay in a branch or
the scheduler becoming tainted by adapting to the workload
in a branch. This is complementary to our analysis (where
branching on high values is not allowed) and it would be
interesting to use its ideas to extend the applicability of our
approach.

The separation logic approach of Ernst and Murray [14] is
more in line with our work. It does not allow branching on high
variables, and supports value-dependent security classifications
and general thread-local conditions on shared variables. Like
the earlier work of Murray et al. [30], however, the conditions
on shared variables are associated with the acquisition and
release of locks. Hence, it only supports lock-based programs.
Its focus is on providing information flow support for C,
in particular pointers are supported through the points-to
notation of separation logic. Leveraging ideas from this work
would be interesting to move our approach to a more realistic
programming language.

IX. CONCLUSION

Reasoning about concurrent programs constitutes a complex
task as can be seen in the approaches presented in the litera-
ture. The need for minimal verification conditions generated by
the analysis is only amplified in the concurrent setting, since
the effects of the environment’s behaviour (the rely condition
in a rely/guarantee approach) need to be considered at every
single step.

Our solution proposes a backwards-directed analysis, based
on weakest precondition computations, in which verification
conditions only carry information relevant to the security
analysis. Our logic is the first to combine such a backwards
analysis with general rely/guarantee reasoning. The encoding
of the logic in Isabelle/HOL delivers a high degree of automa-
tion for the reasoning process as is showcased by a number
of examples. A similar result has not been achieved with
other approaches for information flow security for concurrent
programs conducted in a forward fashion.

Future work is directed towards the analysis of assembly
code (lifted to an intermediate representation) and an extension
to the logic to incorporate the effects of hardware weak
memory models. This will allow us to reason on executable
code directly, thereby incorporating the effects of compiler
optimisations into the analysis results. The effects of out-of-

order executions (as performed by modern hardware architec-
tures) demands special attention in particular for non-blocking
algorithm which avoid the use of locks.
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initially z = 0 ∧ x = 0

sync write(dataType secret) :
z := z+1;
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... // wait until x is read
x := 0;
z := z+1

sync read : dataType
return x

write(dataType data) :
x := data

read : dataType
do

do
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while (r1 % 2 6= 0)
r2 := x;

while (z 6= r1)
return r2

Fig. 4. seqlock reader/writer mechanism
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APPENDIX

We briefly describe other examples that have been verified
secure using our Isabelle/HOL theories. The proof for these
examples is conducted automatically using a single proof
tactic.

Seqlock

Seqlock (short for sequence lock) [9] is a Linux reader/writer
mechanism which allows reading of shared variables without
locking the global memory, thus supporting fast write access.
The writer thread increments a counter z. It then proceeds to
write to the variables, and finally increments z again. The two
increments of z ensure that it is odd when the thread is writing
to the variables, and even otherwise. Hence, when a reader
thread wishes to read the shared variables, it waits in a loop
until z is even before reading them. Also, before returning it
checks that the value of z has not changed (i.e., another write
has not begun). If it has changed, the process starts over.

We adapt this algorithm in Figure 4 to provide a
reader/writer mechanism similar to that of Figure 1. In this
algorithm, however, the writer thread is never blocked by a
reader thread.

To verify this algorithm automatically within Isabelle/HOL,
we use the following security classifications, and rely and
guarantee conditions (in addition to R1-R3 and G1-G3).

L(z) = true and L(x) = (z%2 = 0)
Rsync write = Gpublic read = (Γx ∧ z′ = z)
Rread = Gsync write = (z′ ≥ z)
Rwrite = Rsync read = true
Gwrite = Gsync read = (Γx ∧ z′ = z)
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Treiber stack

The Treiber stack [39] was the first proposed non-blocking
implementation of a concurrent stack. It models the stack using
a linked-list of nodes, each node with a value in variable
val, and next pointer in variable next. A thread doing a push
operation assigns the value being pushed onto the stack to the
val variable of a new node stored in a local variable n. It then
repeatedly tries to make n the head of the stack by setting a
local variable ss (short for snap-shot) to the global variable
head, setting n’s next variable to ss, and then assigning head
to n provided it is still equal to ss (i.e., provided another thread
has not in the meantime changed the value of head).

A thread doing a pop operation repeatedly sets a local
variable ss to head, returning empty if ss is null, and otherwise
setting another local variable ssn to ss’s next variable and a
local variable v to ss’s val variable. Finally, it assigns ssn to
head and returns v provided head is still equal to ss.

In our adaptation of the Treiber stack in Figure 5, we add
an additional variable level to a node to record whether the
value in the node is high or low. The pop operation shown
is that for an untrusted thread. It only allows a value to be
popped from the stack when its level is low.

To verify this algorithm automatically within Isabelle/HOL,
we use the following rely and guarantee conditions (in addition
to R1-R3 and G1-G3).

L(head) = true and for all nodes n in the stack,
L(n.level) = true and L(n.val) = (n.level = Low)
Rput = Gpop = true
For all nodes n in the stack,
Rpop = Gput = (n.level = Low⇒ n′.level = Low)

Chase-Lev deque

The Chase-Lev work-stealing deque (double-ended queue)
[10] is implemented as a circular array of size L with a
head and tail pointer. The pointers are non-wrapping, i.e., if a
pointer has the value i, it points to the array element at position
i mod L.

The put operation straightforwardly adds an element to the
end of the deque, incrementing the tail pointer. The interesting
behaviour is in the way that the take and steal operations
interact when called concurrently. To take the task at position
t = tail − 1, the worker process decrements tail to equal t,
thereby publishing its intent to take that task. This publication
means subsequent thief processes will not try to steal the task
at position t. It then reads head into a local variable h and if
h < t knows that there is more than one task in the deque and
it is safe to take the task at position t, i.e., no thief process
can concurrently steal it.

If t < h the worker knows the deque is empty and sets tail
back to its original value. The final possibility is that h = t.
In this case, there is one task on the deque and conflict with
a thief may arise. To deal with this conflict, both the take and
steal operations employ a CAS instruction. If h = t, rather
than decrementing tail to take the task, the worker uses the
CAS to increment head. Therefore, if the worker finds h = t,
it also restores tail to its original value. The steal operation

initially head = null

put(Value v, Level l) :
Node n, ss;
n := new Node;
n.level := l;
n.val := v;
do

ss := head;
n.next := ss;

while (¬ CAS(head, ss, n));

pop : Value
Node n, ss, ssn;
Value v;
Level Level;
int exit;
exit := 0;
v := empty;
do

ss := head;
if (ss = null)

level := ss.level;
if (level = Low)

ssn := ss.next;
v := ss.val;
if (CAS(head, ss, ssn))

exit := 1;
while (exit = 0);
return v;

Fig. 5. Treiber stack

works similarly. The operation reads the deque’s head and tail
into local variables h and t, and if the deque is not empty tries
to increment head from h to h+1 using a CAS. If it succeeds,
the value of head has not been changed since read into the
local variable h and hence the thief has stolen the task.

Our adaptation of the Chase-Lev deque is shown in Fig-
ures 6 and 7. As well as a circular array of tasks, the deque
has a circular array of security levels. This array is also of
size L and records in position i the security level of the task
in position i of the task array. The put operation (Figure 6)
has two inputs, a task v and security level u, and updates both
arrays. The steal operation (Figure 7) reads the security level
of the task it is trying to acquire and returns fail when that task
is high. To ensure that the steal operation cannot read tasks
which are being concurrently overwritten, we use an approach
inspired by seqlock. If z changes at any time while steal is
reading a level and associated task, the read is restarted.

To verify this algorithm automatically within Isabelle/HOL,
we use the following rely and guarantee conditions (in addition
to R1-R3 and G1-G3).
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L(tail) = L(head) = L(z) = true and for all i < L,
L(tasks[i]) = (levels[i] = Low) and L(levels[i]) = true
Rput = Gsteal = (z′ = z ∧ ∀ i < L · tasks′[i] = tasks[i] ∧

levels[i]′ = levels[i])
Gput = Gtake = Rsteal = (z′ ≥ z ∧ (∀ i < L · z%2 = 0 ∧

z′ = z⇒ levels′[i] = levels[i]))
Rtake = true

initially z = 0 ∧ head = 0 ∧ tail = 0

put(Task task, Level level) :
int t;
t := tail;
z := z + 1;
levels[t mod L] := level;
tasks[t mod L] := task;
z := z + 1;
tail := t + 1

take : Task
int h, t;
Task task;
t := tail - 1;
tail := t;
h := head;
if (h ≤ t)

task := tasks[ t mod L];
if (h = t)

if (¬ CAS(head, h, h + 1))
task := 0

tail := tail + 1;
else

task := empty;
tail := tail + 1

return task

Fig. 6. Chase-Lev deque: put operation and take operation

steal : Task
int h, t, r;
Task task;
Level level;
h := head;
t := tail;
if (h < t)

do
do

r := z;
while (¬ (r %2=0));
level := levels[h mod L];
if (level = Low)

task := tasks[h mod L];
else

task := fail;
while (z 6= r);
if (¬ CAS(head, h, h+1))

task := fail;
else

task := empty;
return task;

Fig. 7. Chase-Lev deque: steal operation
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