
Machine-Checking Unforgeability Proofs for
Signature Schemes with Tight Reductions to the

Computational Diffie-Hellman Problem
François Dupressoir
University of Bristol

Sara Zain
University of Surrey

Abstract—Digital signatures based on the Discrete Logarithm
(DL) problem often suffer from long signature sizes, and reduc-
tions made loose by the use of Pointcheval and Stern’s Forking
Lemma. At EUROCRYPT 2003, Goh and Jarecki provided
the first forking-free proof of unforgeability for a DL-based
signature scheme—rooting its security in the hardness of the
Computational Diffie-Hellman problem in the random oracle
model. In this paper, we present and discuss the first machine-
checked proofs for DL-based signature schemes reducing tightly
to CDH, produced using EasyCrypt. We craft our proofs around
a shim which reduces the local proof effort, and helps us identify
patterns that can be easily adapted to similar tightly-secure DL-
based schemes.

I. INTRODUCTION

The EDL signature scheme—based on the Discrete Log-
arithm (DL) problem—was independently proposed with-
out proof by Chaum and Pedersen [1] and Jakobsson and
Schnorr [2]. Goh and Jarecki [3] propose a proof in the
random oracle model that EDL is existentially unforgeable
under chosen-message attacks when constructed over a group
in which the Computational Diffie-Hellman (CDH) prob-
lem is hard. Crucially, Goh and Jarecki’s proposed security
proof does not make use of Pointcheval and Stern’s Forking
Lemma [4]: although EDL signatures contain a Schnorr proof,
it is used as a zero-knowledge proof of discrete logarithm
equality, rather than as a proof of knowledge. This allows a
much tighter reduction than most other DL-based signature
schemes, theoretically supporting shorter signatures.

Chevallier-Mames [5] presents an improvement on EDL
which reduces the size of signatures and allows cost-free use
of coupons. The scheme (denoted CM in the following) relies
on similar techniques to avoid relying on the forking lemma,
but interestingly still relies on the special soundness property
of Schnorr proofs.

A. Our Contributions

Our main contribution is the first machine-checked proof
for a signature scheme with a tight reduction to CDH. We
formalize proofs for both the EDL (Section III) and CM
(Section IV) signatures schemes, and make them publicly
available.1 We reformulate Goh and Jarecki [3] and Chevallier-
Mames’s [5] pen and paper proofs, and mechanise them in

1https://gitlab.org/ec-zksigs/edl.git

EasyCrypt. Like the original results by Goh and Jarecki [3]
and Chevallier-Mames [5], our theorems are concrete—rather
than asymptotic—security statements. However, the original
proofs were direct reductions; ours follows the methodology
based on sequences of games advocated by Shoup [6].

This, and the formalization effort, allow us to identify proof
principles that we believe are more general, and could be
applied more broadly. In developing the proof of security
for EDL, we develop a shim, used in all intermediate steps
of the proof, and whose main interest is in reducing the
amount of boilerplate proof. We reuse the same shim with
very minor tweaks for the CM scheme, whose proof differs
only in probability bounding and reduction steps. Section V
closes with discussions of further potential generalizations as
well as or related and future work.

Due to very minor mistakes and omissions in the original
proof by Goh and Jarecki [3], we cannot prove that the bound
given originally holds; we prove a very close bound instead,
similar to that given for EDL by Chevallier-Mames [5], with
minor amendments to address formal details (discussed where
relevant). Our formal theorem for the CM scheme is in line
with that given originally.

II. BACKGROUND AND OVERVIEW

In this section, we review certain background definitions of
relevance to this paper’s discussions.

A. Code-Based Game-Playing Proofs and Exact Security

Cryptographic proofs often rely on complexity theoretic
reductions, constructing an adversary against some hardness
(or statistical) assumption from an adversary against the con-
struction under study.

If early cryptographic proofs were indeed presented much
like complexity theoretic reductions, the complexity of modern
assumptions and constructions, the difficulty of reasoning
rigorously about probabilistic algorithms, and the desire to use
security proofs to inform parameter selection (and in particular
key sizes) have led to a shift towards code-based game-playing
security proofs [6]. These proofs still construct a reduction, but
do so step-by-step—with each step called a game, allowing
careful reasoning about the relation between the probabilities
of events in successive games, and isolating complex events
whose probability must be reasoned about.

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
14

Further, assumptions, constructions, security notions, and
intermediate games are expressed as simple programs. This
provides clarity in the definitions, but also helps reason about
the complexity of the reduction and its tightness, stepping
away from asymptotic results and providing concrete (or exact)
security claims for given security parameters.

In this paper, we do not use the full power of the method-
ology. Instead, we will only rely on proving statements of the
following form, with D1 and D2 distributions, and E1 and E2

events defined over the relevant distribution’s support.

Pr[D1 : E1] ≤ Pr[D2 : E2]

In places, we will also prove statements that involve some
additional failure event F2 defined over the support of D2.

Pr[D1 : E1] ≤ Pr[D2 : E2] + Pr[D2 : F2]

We will do so simply by proving the following and applying
the union bound.

Pr[D1 : E1] ≤ Pr[D2 : E2 ∨ F2]

The distributions we consider are quite often defined
by probabilistic programs with specified inputs. Code-based
game-playing proofs, and their formalization in EasyCrypt,
leverage this by allowing a proof relating two distributions to
be lifted from a proof relating the two programs that produce
them.

B. EasyCrypt

EasyCrypt2 [7] is an interactive proof assistant designed to
construct machine-checked game-based cryptographic proofs.
Cryptographic games and definitions are modelled as proba-
bilistic procedures (with random sampling, conditional state-
ments, loops and procedure calls) over a language of expres-
sions that can be user-extended with various mathematical and
data structures.

In addition to the usual features of an interactive proof
assistant, EasyCrypt features specialized program logics to
reason about probabilistic equivalences between programs (in
the probabilistic Relational Hoare Logic; pRHL), and to
directly reason about probabilities of events in given programs
(in the probabilistic Hoare Logic; or pHL). We now explain
how statements in these logics map to the practice of game-
based proofs.

1) pRHL Judgments: A pRHL judgment of the form

{Φ} c1 ∼ c2 {Ψ}

where c1 and c2 are programs, and the precondition and
postcondition Φ and Ψ (respectively) are relations between
the memories of c1 and c2, can be used to prove—for any
pair of memories m1, m2 such that m1 Φ m2—that

Pr[c1 @ m1 : E1] ≤ Pr[c2 @ m2 : E2]

2https://www.easycrypt.info

whenever for any pair of memories m′1 and m′2, such that
m′1 Ψ m′2, we have E1(m′1)⇒ E2(m′2). The notation c @ m
defines a distribution over final states by defining some code
c and an initial memory m in which that code is executed.
In the following and in our formal definitions, we always
consider top-level games whose behaviour is independent of
the initial memory (by ensuring that all variables are defined
before use). We therefore omit initial memories where possible
in the remainder of this paper.

pRHL for equivalence up to failure: For readers who
wish to match paper statements here to the formal develop-
ment, we note that a single pRHL judgement can be used
to discharge several statements on probabilities. Anticipating
slightly on discussions of the proofs, this is useful in proving
statements of the following form when the failure event F is
defined over the support of both distributions.

Pr[c1 @ m1 : E1] ≤ Pr[c2 @ m2 : E2] + Pr[c1 @ m1 : F]

Indeed, to obtain such a result, a single pRHL judge-
ment—such that the post-condition Ψ implies both that the
failure event F occurs with the same probability in c1 and
c2, and that whenever E1 holds in c1, then either E2 or F
occurred in c2—is sufficient.3

2) pHL Judgments: A pHL judgment of the form

{Φ} c {Ψ} � b

where c is a program, the precondition and postcondition Φ
and Ψ are predicates over the memory of c, b ∈ [0, 1] is some
probability bound, and � ∈ {=,≤,≥} is some relation, can
be used to prove—for any memory m such that Φ m—that

Pr[c @ m : Ψ] � b

Proofs of such statements are relatively straightforward
when the event Ψ occurs in the program’s main component,
but involve invocations of the failure event lemma when the
event is triggered by oracle queries. The failure event lemma,
in the proof we describe below, allows us to lift a bound on
the probability of an event occurring during any one oracle
query into a bound on the probability of that event occurring
during the run of the experiment.

As discussed in relation to game-based proofs, these two
ingredients suffice to follow the proofs given below. We note
that, although we do not give details, all statements below are
given proofs that are fully machine-checked in EasyCrypt.
We instead focus our writing on giving an intuition of the
reasoning formalised in those machine-checked proofs, and
of the aspects of it that might be abstracted into higher-level
proof principles.

C. Mathematical Preliminaries

To better support—and in fact add value to—the formaliza-
tion, we carry out our formal proof on abstract mathematical
objects, without specifying their implementation. As shown

3The full formal interpretation of pRHL judgments—as originally given by
Barthe et al. [8]—allows other deductions, which are not used in this paper.

ExpcdhA (G, gG, n)

a←$Fn

b←$Fn

r← AG,gG,n(g
a
G, g

b
G)

Fig. 1. The CDH experiment.

Expeuf-cma
S,F ()

(pk, sk)← S.KGen()
(m̃, σ̃)← FS.Signsk(·)(pk)
b← S.Verpk(m̃, σ̃)

Fig. 2. The EUF-CMA experiment.

Hd(x)

if x /∈ H

H[x]←$ d

return H[x]

Fig. 3. A Random Oracle that lazily samples
its responses from some distribution d. H is a
map or association list, initially empty.

by Almeida, Barbosa, Barthe and Dupressoir [9], [10], this
does not preclude further refinements, even all the way down
to considering implementation adversaries. More importantly,
the proof formalized then applies to all valid instantiations of
the abstract objects, provided the refinement ensures that the
expected interface is respected.4

We consider constructions that rely on a cyclic group G
of prime order q, and on a specific generator g of G agreed
upon ahead of time. G, q and g are assumed to be public, and
known—in particular—to the adversary. We use multiplicative
notation for the group G, denoting with 1G (or simply 1
when unambiguous) its identity element, and with × its
operation. We use exponents to denote iterations of × but
take exponents directly in the field Fq such that field addition
(+) and multiplication (·) in the exponent are implicitly carried
out modulo q. We use ·−1 for field inversion. Multiplication
symbols are often omitted, as is standard.

D. The Computational Diffie-Hellman Assumption

The security of the schemes considered in this work relies
on the hardness of the Computational Diffie-Hellman (CDH)
problem, of finding gab given ga and gb. We define this as-
sumption more formally, aligning it with principles of concrete
security, and first defining the advantage of a constrained
adversary in solving CDH.

Definition 1 (CDH advantage). Let G be a cyclic group
of finite order n, and gG be a generator of G. Let A be
a computational Diffie-Hellman adversary that, on input a
description of G, n, gG, and gaG and gbG for uniformly chosen
exponents a and b, returns an element r ∈ G. The CDH
advantage of A is defined as

AdvcdhG,gG,n(A) := Pr
[
ExpcdhA (G, gG, n) : r = gabG

]
where the experiment ExpcdhA (G, gG, n) is defined in Figure 1.

The definition of hardness is natural.

Definition 2 (Hardness of CDH). The CDH problem is said
to be (t, ε)-hard in G with generator gG if, for any adversary
A that runs in time at most t, we have

AdvcdhG,gG,n(A) ≤ ε

4In particular, this would normally require the refinement to ensure or check
that inputs are indeed valid encodings of elements in the expected algebraic
structure, or to prove that it does not matter for security.

We will be more particularly interested in the hardness of
the CDH problem in our cyclic group G of prime order q with
generator g, namely AdvcdhG,g,q(A).

E. Signature Schemes

Definition 3. A signature scheme S = (KGen, Sign,Ver)
for messages in some set M consists of three probabilistic
algorithms:
• A key generation algorithm KGen that outputs a key pair

composed of a public (pk) and private key (sk);
• A signing algorithm Sign that, upon input a private key
sk and a message m ∈M, returns a signature σ;

• A verification algorithm Ver that, upon input a public key
pk, a message m ∈M and signature σ, returns a boolean
signifying acceptance (with value true, denoted with 1)
or rejection (with value false, denoted with 0).

As is standard in cryptography, the desired security property
is captured as a game between an adversary attempting to
break the security of the scheme (by forging a valid signa-
ture) and a challenger that mediates interactions between the
adversary and the signature scheme under study to specify
adversarial powers and prevent trivial wins.

More specifically, we consider the notion of existential
forgery under adaptive chosen message attacks (EUF-CMA),
in which the adversary—given the public key and oracle access
to a signing oracle that signs messages of the adversary’s
choice under the challenger’s key—attempts to produce a valid
signature on a fresh message—that is, one that has not been
queried to the signing oracle. As for CDH, we first define
the advantage of an adversary in breaking the security of a
signature scheme.

Definition 4 (EUF-CMA advantage). Given a signature
scheme S = (KGen, Sign,Ver) and an adversary (or forger) F
that, upon input a public key for S and given oracle access to
a signing oracle for S (which produces a signature upon input
a message), the advantage of A in breaking the EUF-CMA
security of S is

Adveuf-cma
S (F) := Pr

[
Expeuf-cma
S,F () : b ∧ m̃ /∈ QS

]
where the experiment Expeuf-cma

S,F () is defined in Figure 2, and
QS is the set of queries issued by the forger F to its signing
oracle.

We can then naturally define EUF-CMA security as the
relevant hardness notion.

Expeuf-cma
H,G,S,F ()

(pk, sk)← S.KGen()
(m̃, σ̃)← FH,G,S.Signsk(·)(pk)

b← S.Verpk(m̃, σ̃)

Fig. 4. EUF-CMA with two Random Oracles H and G.

Definition 5 (EUF-CMA security). A signature scheme S is
said to be (t, qS , ε)-EUF-CMA-secure if, for any adversary A
that runs in time at most t, making at most qS queries to its
S oracle, we have

Adveuf-cma
S (A) ≤ ε

F. The Random Oracle Model

The Random Oracle Model (ROM) was introduced by
Bellare and Rogaway [11] as a tool to reason about the
security of efficient cryptographic constructions that make use
of hash functions. In the ROM, hash functions are modelled
as public oracles that compute a function sampled uniformly
from the appropriate function space at the beginning of the
experiment. Formally, we equivalently capture random oracles
as stateful algorithms whose outputs to unique requests are
sampled following some distribution, as shown in Figure 3.
In the following, we consider uniform random oracles (where
d is the uniform distribution over the relevant (finite) output
space).

When analysing the security of a scheme that uses hash
functions in the ROM, it is crucial to ensure that the adversary
is given oracle access also to the hash functions. All the
schemes we consider in this paper make use of two distinct
hash functions, and we therefore consider forgers who have
access to two random oracles H and G in addition to the
signing oracle. The resulting security experiment is shown
in Figure 4. In such a context, the number of queries the
forger makes to the random oracles should also be bounded
as a resource; in the following we consider a notion of
(t, qH, qG , qS , ε)-EUF-CMA security naturally extending that
from Definitions 4 and 5.

Definition 6 (EUF-CMA security in the ROM). Given two
random oracles H and G and a signature scheme SH,G =
(KGen, Sign,Ver) and an adversary (or forger) F that, upon
input a public key for S and given oracle access to H, G,
and to a signing oracle for SH,G (which produces a signature
upon input a message), the advantage of A in breaking the
EUF-CMA security of S in the ROM is

Adveuf-cma
H,G,S (F) := Pr

[
Expeuf-cma
H,G,S,F () : b ∧ m̃ /∈ QS

]
where the experiment Expeuf-cma

H,G,S,F () is that defined in Fig-
ure 4, and QS is the set of queries issued by the forger F
to its signing oracle. A signature scheme S is said to be
(t, qH, qG , qS , ε)-EUF-CMA-secure in the ROM if, for any

EDLH,G
G,g,q

KGen()

sk←$Fq

return (sk, gsk)

Verpk(m, (z, r, s, c))

h← H(m, r)
u← gspk−c

v← hsz−c

c′ ← G(g, h, pk, z, u, v)
return c = c′

Signsk(m)

r←$ dN

h← H(m, r)
z← hsk

k←$Fq

u← gk

v← hk

c← G(g, h, gsk, z, u, v)
s← k+ c · sk
return (z, r, s, c)

Fig. 5. The EDL signature scheme, parameterized by two random oracles
H :M×N → G and G : G6 → Fq .

adversary A that runs in time at most t, making at most qH
(resp. qG , qS) queries to its H (resp. G, S) oracle, we have

Adveuf-cma
H,G,S (A) ≤ ε

Although this is not important in this paper, we note in
particular the importance—in general—of exposing these two
oracles also to any adversary against a construction that uses
any of the signature schemes we prove secure here. The
reductions we formally prove here require control over both
ROs, which must thus—in general—be independent from any
ROs taken over by any further reductions—for example, if the
schemes are used in larger protocols.

III. EDL SIGNATURES AND THEIR SECURITY

The EDL signature scheme is defined over a set M of
messages as shown in Figure 5, where, in addition to the cyclic
group G, we also consider a set N of nonces, equipped with
some distribution dN .

Key generation is as standard for DH-style schemes. Sign-
ing is done by producing a non-interactive zero-knowledge
(NIZK) proof of discrete logarithm equality with bases a
message-dependent hash and the generator, and discrete log-
arithm the secret key. Verification recomputes the message-
dependent hash and verifies the corresponding NIZK proof.

We formally prove a tight reduction to breaking CDH
in G from breaking EUF-CMA security of EDL, where by
tight we mean, like Goh and Jarecki [3] that there are no
multiplicative factors involved in relating the time complexity
and advantage of an adversary against the scheme and that of
the corresponding reduction. More precisely, we are looking
for reductions that—when applied to an adversary that breaks
the signature scheme with probability ε in time t—break the
underlying hard problem with probability ε′ ≈ ε in time t′ ≈ t.
Our proof is concrete and constructive: the concrete reduction
used in proving Theorem 1 is displayed in Figure 6.

AFG,g,q(pk, gb)

var H ∈M×N ⇀ G× Fq

var G ∈ G6 ⇀ Fq

(m̃, (z̃, r̃, _, _))← FH,G,Sign(pk)

_←H(m̃, r̃) // This is to ensure (m̃, r̃) ∈ H

d← π2(H[m̃, r̃])

return z̃ · pk−d

Oracle simulation

H(x)

d←$Fq

if (x) /∈ H⌊
H[x]← (gbg

d, d)

return π1(H[x])

G(x)

c←$Fq

if x /∈ G⌊
G[x]← c

return G[x]

Sign(m)

r←$ dN

d←$Fq

H[m, r]← (gd, d)

c←$Fq

s←$Fq

u← gspk−c

v← gdspk−dc

G[g, gd, pk, pkd, u, v]← c

return (z, r, s, c)

Fig. 6. The reduction A from CDH. AFG,g,q uses an EUF-CMA forger F as a black-box, and internally
simulates H and G. H keeps track of both the response h and i. its discrete logarithm in base g (for
queries made by the signing oracle), or ii. the unique value d ∈ Fq such that h = gbg

d (for queries made
by the forger). π1 and π2 are the first and second projections on pairs.

GameEDL
H,G,S,F ()

1 : sk←$Fq

2 : b←$Fq

3 : pk← gsk

4 : gb ← gb

5 : (m̃, (z̃, r̃, s̃, c̃))← FH,G,S(pk)

6 : h← H(m̃, r̃)
7 : u← gs̃pk−c̃

8 : v← hs̃pk−c̃

9 : c← G(g, h, pk, z̃, u, v)
10 : win← c̃ = c ∧ m̃ /∈ QS

Fig. 7. The EDL proof shim.

Theorem 1 (Security of EDL). If CDH is (t, ε)-hard in G with
generator g, then EDL is (t′, qH, qG , qS , ε

′)-EUF-CMA-secure
for all non-negative qH, qG , qS , and with

t . t′ + (qH + 6 · qS + 1) · texp

ε′ ≤ ε+ qS ·
(
qH + qS
|N |

+
qG + qS
q2

)
+
qG + 1

q

where texp is the cost of an exponentiation in G.

Proof. The bound on the reduction’s time complexity t is not
formally verified, and we prove it here: the reduction (as shown
in Figure 6) first runs the EUF-CMA forger and simulates its
oracles. When simulating each of the forger’s qH queries to
H, the reduction computes one exponentiation in G. When
simulating each of the forger’s qS queries to the signing oracle,
the reduction computes two exponentiations and two double-
exponentiations. Finally, the reduction computes one inverse
in Fq (whose cost is omitted, as it is dominated by that of
exponentiations) and one exponentiation to retrieve its answer.
We overapproximate the cost of double-exponentiation as the
cost of two exponentiations to get the bound shown above.

The rest of this Section is dedicated to discussing the proof
for the bound on ε′. Figures 7-8 show the intermediate games
that serve in this proof.

Goh and Jarecki’s original proof [3]—which uses gb
d in-

stead of gbg
d when simulating H—omits certain low proba-

bility cases in which their given simulation fails:
1) when b is 0;
2) when the value of d used in simulating H for forgery

verification is 0; and

3) when the same random nonce is used in two separate
signatures of the same message.

Accounting for these cases yields a valid (and indeed machine-
checked) security proof, with a slightly worse bound than that
given here. We instead formalize and check a different proof,
which yields a more precise bound.

A. Intuition

We first note that a valid forgery (m̃, (z̃, r̃, s̃, c̃)) cannot be
such that the signature scheme queried H on (m̃, r̃) (if that
were the case, the forgery would not be fresh), so either the
forger has made that query herself, or we can make the query
on her behalf after she returns. Note also that, in an honestly
computed signature (z, r, s, c) for a message m, we have h =
zsk, where h ← H(m, r). The key insight in the reduction is
to embed the CDH challenge into the EUF-CMA game, using
ga as public key (so that sk = a), and embedding gb into the
answers given by H to the forger (so that h = gbgd for some
d known to the simulator). In this setting, a valid forgery that
is such that z̃ = hsk can be used to compute gab as z̃ · pk−d.

z̃ · pk−d = ha · (ga)−d = (gbgd)a · g−ad = gab

With this key insight, a proof can be obtained by further
proving that 1) the reduction—without access to the private
key—can simulate the signing oracle an EUF-CMA forger
against EDL expects to have access to, and 2) the probability
of verification succeeding for a forgery (m̃, (z̃, r̃, s̃, c̃)) such
that z̃ 6= ha (with h← H(m̃, r̃)) is low.

We now detail the sequence of games and local claims
which formalise and leverage this intuition. The sequence of
games itself (Lemmas 2 to 4) shows that the simulated oracles
from Figure 6 are indistinguishable from the actual EUF-CMA

oracles for EDL. We then show (Lemma 6) that any run of the
forger that finds a forgery in the final game lets the reduction
solve the CDH challenge, except if the forgery is such that
z̃ 6= ha, and bound the probability that this occurs with a
successful forgery (Lemma 5).

Proofs for the local claims give an intuition of the machine-
checked reasoning on programs involved, but do not delve
into detailed discussions of the tactics used. We keep the
description here as close as possible to the EasyCrypt proof,
but omit some formal details in probability-bounding steps.
Indeed, in the formal proof, we must first transform the game
to explicitly count oracle queries. Our final theorem, like
Theorem 1 does quantify over adversaries that make a bounded
number of queries.

B. Formalization

We formally define 3 intermediate games that bridge the gap
between the EUF-CMA experiment and the CDH experiment.
We write these intermediate games as instances of a common
shim GameEDL

·,·,·,·() (shown in Figure 7), which is parameterized
by oracles presenting the same interface as the random and
signing oracles, and by a forger. Any two successive games
in our formalization differ only in the oracles provided to the
shim. The oracles we use in our proof, along with the definition
of our intermediate games as instances of the shim, are shown
in Figure 8.

Locally, using a shim allows us to focus reasoning on the
parts of the experiment that do change between the successive
games, and reduces the amount of boilerplate proof code we
need to write. In EasyCrypt, we reuse a single proof base over
the shim in all proof steps, which reduces the proof obligation
to obligations on the oracles themselves, the shim essentially
serving as a distinguisher between the various sets of oracles
we consider in our games.

The formal proof proceeds in 4 steps:
1) we refactor the EUF-CMA security of EDL as an in-

stance of the shim;
2) we embed the CDH challenge into the responses given

to H queries;
3) we simulate the proof of discrete logarithm equality

without using the witness (here the secret key); and
4) we show that a forgery either exploits the (negligible)

unsoundness of the proof of discrete logarithm equality,
or answers the given CDH challenge.

1) Refactoring: The first step refactors the EUF-CMA
game to make use of the shim, as GameEDL

0 (F) :=
GameEDL

H,G,S0,F () where H, G, and S0 are shown in Figure 8.

Lemma 2 (EDL Refactoring). For any forger F , we have

Pr
[
Expeuf-cma
H,G,EDL,F () : b ∧ m̃ /∈ QS

]
= Pr

[
GameEDL

0 (F) : win
]

Proof. This is a simple program equivalence: GameEDL
0 (F) is

the EUF-CMA experiment for EDL with KGen and Ver in-
lined, and with the addition of ineffective operations (sampling

of b and computation of gb, which are not used in the rest of
the game.

2) Embedding: In our second step, we modify the way in
which queries to H are handled to embed the CDH chal-
lenge in the log of forger queries. Consider GameEDL

1 (F) :=
GameEDL

H′,G,S1,F (), with H′, G, S1 as defined in Figure 8.
To the forger, we expose H′—which computes its output as

gbg
d for some uniformly sampled d that is kept alongside the

oracle’s response.
The signing oracle S1 is modified so that it always samples

a fresh value of h (although keeping in its log its discrete
logarithm d), regardless of whether its (m, r) had already
appeared as a query to H′ or in a signing query. This change
is visible to the adversary—who can distinguish between
GameEDL

0 (F) and GameEDL
1 (F) when the pair (m, r) being

used in a signing query already appears in the map H. We
capture this event as badH.

In addition, we keep track of an event badG , which is
triggered when the query to G made by the signing oracle
is not fresh. This event is not observable by the adversary,
but is easier to bound in GameEDL

1 (F) than in the next game,
where it does become observable.

Lemma 3 (EDL Embedding). For any forger F , we have

Pr
[
GameEDL

0 (F) : win
]

≤ Pr
[
GameEDL

1 (F) : win
]

+ Pr
[
GameEDL

1 (F) : badH
]

In addition, for any forger F that makes at most qH queries
to her H oracle, and at most qS queries to her signing oracle,
we have

Pr
[
GameEDL

1 (F) : badH
]
≤ qS ·

qH + qS
q

Proof. Thanks to the use of a common shim, we only need to
consider differences in behaviour arising from the oracles.

First we observe that logging d in H has no effect on the
adversary’s view of the system: computing gbg

d and gd both
yield the uniform distribution over G when d is uniform in
Fq , and the value of d is not used (other than in computing
the response of the random oracle) while the forger is running.
Focusing on the signing oracle, it is clear that S1 is equivalent
to S0 as long as badH is false: indeed, in that case, S1
is exactly S0 with H inlined, the conditional reduced to its
true branch, and h sampled in a way that reveals its discrete
logarithm (this is marked as the dashed box in Figure 8). This
proves the first part of the lemma.

Second, we bound the probability of badH occurring. Dur-
ing any one execution of S1, badH becomes true if a fresh
value r sampled in dN already appears in H. H increases in
size by at most 1 for each query toH′ and to S1. So each query
to S1 sets badH with probability at most qH+qS

q . A forger that
makes qS query to S1 therefore triggers badH with probability
at most qS · qH+qS

q .

S0(m)

r←$N

h← H(m, r)

z← hsk

k←$Fq; u← gk; v← hk

c← G(g, h, gsk, z, u, v)
s← k+ c · sk
return (z, r, s, c)

H(x)

h←$G
if x /∈ H

b H[x]← h

return H[x]

G(x)

c←$Fq

if x /∈ G

b G[x]← c

return G[x]

S1(m)

r←$N ; badH ← badH ∨ (m, r) ∈ H

d←$Fq; h← gd

H[m, r]← (h, d)

z← hsk

k←$Fq; u← gk; v← hk

badG ← badG∨
(g, h, gsk, z, u, v) ∈ G

c← G(g, h, gsk, z, u, v)
s← k+ c · sk
return (z, r, s, c)

H′(x)
d←$Fq

if x /∈ H⌊
H[x]← (gbg

d, d)

return π1(H[x])

S2(m)

r←$N
d←$Fq; h← gd

H[m, r]← (h, d)

z← pkd

c←$Fq; s←$Fq

u← gspk−c; v← hsz−c

badG ← badG∨
(g, h, pk, z, u, v) ∈ G

G[g, h, pk, z, u, v]← c

return (z, r, s, c)

Fig. 8. Oracle simulations for use in intermediate steps in the security proof for EDL signatures. Lemmas 2 and 3 use GameEDL
0 (F) := GameEDL

H,G,S0,F ().
Lemmas 3 and 4 use GameEDL

1 (F) := GameEDL
H′,G,S1,F (). Lemmas 4 and 6 use GameEDL

2 (F) := GameEDL
H′,G,S2,F ().

3) Simulation: In our third step, we simulate the proof of
discrete logarithm equality. We rely on its zero-knowledge
property to simulate the signing oracle without using the secret
key.

GameEDL
2 (F) := GameEDL

H′,G,S2,F () carries out this simula-
tion by programming the random oracle G on inputs queried by
the signing oracle—regardless of their freshness. GameEDL

2 (F)
can therefore be distinguished from GameEDL

1 (F) by the forger
exactly when the signing oracle programs G in a point the
forger had previously queried. This event—which we captured
as badG already in S1—occurs with low probability since
some of its parameters are freshly sampled in high entropy
distributions. This probability, however, is easier to bound in
S1, and we rely on the argument outlined in Section II-B1 to
prove the bound.

Lemma 4 (EDL Simulation). For any forger F , we have

Pr
[
GameEDL

1 (F) : win
]

≤ Pr
[
GameEDL

2 (F) : win
]

+ Pr
[
GameEDL

1 (F) : badG
]

In addition, for any forger F that makes at most qG queries
to her G oracle, and at most qS queries to her signing oracle,
we have

Pr
[
GameEDL

1 (F) : badG
]
≤ qS ·

qG + qS
q2

Proof. Note the fact that we bound the probability of badG
occurring in the embedding game, rather that the simulation
game. This requires a bit of additional effort. We prove the
following two relations, combining them to prove the first
claim.

Pr
[
GameEDL

1 (F) : badG
]

= Pr
[
GameEDL

2 (F) : badG
]

Pr
[
GameEDL

1 (F) : win
]

≤ Pr
[
GameEDL

2 (F) : win
]

+ Pr
[
GameEDL

2 (F) : badG
]

We do so—both in EasyCrypt and in the argument be-
low—with a single equivalence proof, in which we establish
that the badG events occur with the same probability in both
games, and that a forger F that wins against S1 also wins
against S2 unless its run against S2 triggers badG .

The oracles H′ and G are as in the previous game, with
the only difference lying in the signing oracle S2. We must
prove two facts relating executions of S1 and S2 starting from
the same memory where badG has not yet been set. First,
we must prove—unconditionally—that they produce the same
distribution over badG . Second, we must prove that executions
that leave badG unset always yield the same distribution over

the output (z, r, s and c) and state (maps H and G) of the
oracles.

Variables d and z follow the same distribution in both
games, since d is sampled in the same distribution, and
z = gd·sk.

In order to reason about further equivalences, it is necessary
to consider the code of G. Consider a version of S1 with G
inlined. Now it is clear that variable c can be sampled at the
same time as k without change in the semantics. Now, the
distribution in S1 of (k, c, k + c · sk) is the same as that of
(s− c · sk, c, s) in S2. The distributions of u, v and badG are
therefore also equal. From here on, we only need consider the
case where badG does not occur. In this case, the conditional
in G follows the then branch, yield the same distribution
over output and state. This concludes the proof of the first
claim.

Now, as discussed, we bound the probability of badG
occurring in GameEDL

1 (F) to conclude the proof. Variable
badG is set by a signing query if the tuple it uses as input
to G coincides with one of the inputs on which G has already
been queried (one that is set in G). Signing oracle S1 makes
only queries of the form

(
g, gd, gsk, z, gk, v

)
where k and d are

sampled freshly and uniformly at random in Fq . Therefore, the
probability that such a query is one of the at most qG + qS
already set in G is upper-bounded by qG+qS

q2 . The forger makes
at most qS queries to its signing oracle, so badG occurs with
probability at most qS · qG+qS

q2 .

4) Reduction: In the final step of the proof, we show that if
a forger F wins GameEDL

2 (F), the CDH adversary AF from
Figure 6 succeeds in solving its given CDH instance, except
with low probability. More specifically, a successful forgery
either can be used to solve the given CDH instance, or relies
on an unsound proof of discrete logarithm equality.

We start by stating and proving a lemma bounding the
probability of the forger relying on unsoundness.

Lemma 5 (z̃ 6= hsk). For any forger F that makes at most qG
queries to her G oracle, we have

Pr
[
GameEDL

2 (F) : win ∧ z̃ 6= hsk
]
≤ qG + 1

q

Proof. If the forger produces a valid forgery such that z 6= hsk

then there exists in map G—at the end of the game’s run—an
input-output pair ((g, h, y, z, u, v) , c) such that z 6= hlog y and
(u × yc)log h = v × zc. Indeed, consider the input-output pair((
g, h, gsk, z̃, gs̃g−sk·c̃, hs̃g−sk·c̃

)
, c
)

involved in the G query
made by the shim during verification of the forgery. Since
the forgery is valid, it must be that c̃ = c and the conditions
hold.

We now bound the probability that any specific query to G
adds such an input-output pair to G. Since all G queries made
by the signing oracle have z = hsk, it must be that the G query
we consider was either made by the forger or shim—there are
at most qG+1 such queries. Each of them samples c at random
in Fq , and—all inputs being set—there is only one value in Fq

that meets the constraints—namely c = log(v/ulog h)/log(hlog y/z).
Oracle G samples this one value with probability 1/q.

Lemma 6 (EDL Reduction). For any forger F that makes at
most qG queries to her G oracle, and at most qS queries to
her signing oracle, we have

Pr
[
GameEDL

2 (F) : win
]
≤ AdvcdhG,g,q(AFG,g,q) +

qG + 1

q

Proof. We split the probability depending on whether the
forgery breaks the discrete logarithm equality proof’s sound-
ness, and bound the summands pairwise to conclude.

Pr
[
GameEDL

2 (F) : win
]

= Pr
[
GameEDL

2 (F) : win ∧ z̃ = hsk
]

+ Pr
[
GameEDL

2 (F) : win ∧ z̃ 6= hsk
]

Lemma 5 bounds the second summand. We now bound the
first, proving that our reduction can make use of a successful
forgery run that does not break the soundness of the proof to
solve its CDH challenge.

Pr
[
GameEDL

2 (F) : win ∧ z̃ = hsk
]

≤ Pr
[
ExpcdhAFG,g,q

(G, g, q) : r = gab
]

We first show that GameEDL
2 (F) and

ExpcdhAFG,g,q
(G, g, q)—where we recall that AFG,g,q is defined

in Figure 6—are equivalent as programs until the forger
returns (Line 6 in Figure 7). Indeed, note that the shim—up
to that point—is an inlined prefix of ExpcdhA (G, g, q). Its code
samples two field elements, hides them in the group, then
calls the forger with oracles that are themselves equivalent to
those used in AFG,g,q:
• the simulated H oracle from Figure 6 is syntactically

equal to H′;
• the simulated G oracle from Figure 6 is syntactically

equal to the oracle G defined in Figure 8; and the signing
oracles differ only cosmetically

• we define h = gd in GameEDL
2 (F), and simply propagate

the definition in AFG,g,q; and
• we no longer keep track of badG in the simulated signing

oracle.
After the call to H made by the challenger at Line 6 in

Figure 7), we have H[x] = (gbg
d, 〈d〉A) for some d ∈ Fq . In

this case, we know that h = gbg
d and the CDH adversary

recovers the value d corresponding to h from the random
oracle’s record. We, therefore always have z̃ × pk−d =
gb

skgd·skg−d·sk = gb
sk. Our reduction runs with sk = a and

gb = gb, where a and b are the CDH secrets. Therefore, if the
forger wins with a valid forgery such that z̃ = hsk, then the
reduction returns the value of gab.

Combining Lemmas 2, 3, 4, and 6 allows us to conclude
the proof of Theorem 1.

CMH,G
G,g,q

KGen()

sk←$Fq

return (sk, gsk)

Verpk(m, (z, s, c))

u← gspk−c

h← H(u)
v← hsz−c

c′ ← G(m, g, h, pk, z, u, v)
return c = c′

Signsk(m)

k←$Fq

u← gk

h← H(u)
z← hsk

v← hk

c← G(m, g, h, gsk, z, u, v)
s← k+ c · sk
return (z, s, c)

Fig. 9. The CM signature scheme, parameterized by two random oracles
H : G→ G and G :M× G6 → Fq .

IV. CM SIGNATURES AND THEIR SECURITY

The CM signature scheme is defined over messages in M
as shown in Figure 9. The most notable difference from EDL
is that the message is not included in the random oracle
query to H whose output serves as the second base for the
proof of discrete logarithm equality; instead, the message is
included as an auxiliary input to the challenge-generating
random oracle query, in a way similar to standard Schnorr
signatures. This change supports security without the use
of additional randomness (which shortens the signature), but
also allows the use of coupons, where the most part of the
signature’s computation can be done offline and ahead of the
message being produced. The on-line part of the signature
then simply consists in one hash query, and two simple field
arithmetic operations.

Following Chevallier-Mames [5], we formally prove a tight
reduction to breaking CDH in G from breaking the EUF-
CMA security of CM. The proof is, here again, concrete and
constructive. The reduction is displayed in Figure 10. Unlike
the EDL simulator, the simulator shown in Figure 10 must
keep track of different information when simulating random
oracle queries placed by the forger or internal to the simulation
of signatures. We capture this in code using a tagged disjoint
union, denoting with 〈X〉t`]〈Y 〉tr the set that contains values
from set X tagged with tl and values from set Y tagged with
tr (for distinct tags). We use a tagged tuple notation (with
〈v〉t denoting a value v tagged with tag t) to denote values in
sum types, using match to match on the tag t and bind the
tuple’s elements to names provided in the pattern. We later
use π as a notation to project out a tagged union’s contents
so that π(〈v〉t) = v.

Theorem 7 (Security of CM). If CDH is (t, ε)-hard in G with
generator g, then CM is (t′, qH, qG , qS , ε

′)-EUF-CMA-secure
for all non-negative qH, qG , qS and with

t . t′ + (6 · qS + (qH + 1) + 5) · texp

ε′ ≤ ε+ qS ·
(
qH + qS

q
+
qG + qS
q2

)
+
qG + 1

q
+ 2 · qS · (qG + 1)

q

where texp is the cost of an exponentiation in G.

Proof. The complexity bound is not formally verified, so we
argue the time bound here: the reduction (see Figure 10) first
runs the EUF-CMA forger, simulating its oracles. When sim-
ulating H, the reduction computes one exponentiation and one
product in G (whose cost we omit). Simulating G is straight-
forward and incurs no cost. Simulating signature queries
requires two exponentiations and two double exponentiations
(which we cost as four exponentiations). Finally, extracting
the CDH solution from the simulator’s state and the forger’s
output costs one H query, two double exponentiations and one
exponentiation (with some operations on exponents whose cost
is omitted, as dominated by the cost of exponentations in G).

The rest of this Section is dedicated to discussing the proof.
As with EDL, we include a high-level and intuitive overview
and details of its formalization, but do so at a lesser level of
detail, focusing instead of aspects that differ, and patterns that
are common to both proofs.

A. Proof Overview

The security argument for CM signatures is slightly less
intuitive. Indeed, the statement being proved as part of the
signing process is entirely independent from the message
which is instead included into the challenge. This means that
valid forgeries can in fact involve a query to H that was made
by the signing oracle.

If the forger produces a forgery such that z 6= hsk, or in
cases where the verification of the forgery involves a fresh
query to H, or one that was made by the forger, the proof is
exactly as that of EDL. However, there is one additional case
to consider. Indeed, the final reduction for the EDL scheme
exploits the fact that the message to be signed is included in
the input to H to deduce that a fresh forgery must involve a
query to H whose response contains the CDH challenge gb.

In CM, we cannot exclude a valid signature (z̃, s̃, c̃) on
some fresh message m̃ where u = gs̃pk−c̃ was previously
used as input to H in a signing query. In such a situation,
however, we have two valid pairs (c, s) and (c̃, s̃) such that
gspk−c = u = gs̃pk−c̃ (the former from the simulator’s log of
the original query of H on u, and the latter from the forgery
itself), and we can recover the secret key as sk = s−s̃

c−c̃ when
c 6= c̃. There is a low probability of having c = c̃ here,
which is accounted for using a final failure event col, which
captures collisions in the output of G, and whose probability
accounts for the final term in the probability bound. (We
in fact need to capture only some such collisions, since we
also know that the forgery is fresh. Details are discussed in
relation to Lemma 12, below.) As such, and interestingly, the

AFG,g,q(pk, gb)

var H ∈ G⇀ G× (〈Fq〉A] 〈Fq × Fq〉S)
var G ∈M×G6 ⇀ Fq

(m̃, (z̃, s̃, c̃))← FH,G,Sign(pk)

u← gs̃pk−c̃

_←H(u) // This is to ensure u ∈ H

match (π2(H[u])) with

| 〈d〉A 7→ return z̃ · pk−d

| 〈s, c〉S 7→ return g
s−s̃
c−c̃

b

Oracle simulation

H(u)

d←$Fq

if u /∈ H⌊
H[u]← (gb · gd, 〈d〉A)

return π1(H[u])

G(x)

c←$Fq

if x /∈ G⌊
G[x]← c

return G[x]

Sign(m)

d←$Fq

s←$Fq

c←$Fq

u← gspk−c; h← gd

z← pkd; v← hsz−c

H[u]← (h, 〈s, c〉S)
G[m, g, h, pk, z, u, v]← c

return (z, s, c)

Fig. 10. The reduction A to CDH. A uses an EUF-CMA forger F as a black-box, and internally simulates
H and G through initially empty finite maps H and G. H keeps track of both the response h and the random
exponents s and c used in the related signature (for queries made by the signing oracle), or the value logg(h ·
g−1
b) (for direct queries). π1 and π2 are the first and second projections on pairs.

GameCM
H,G,S,F ()

sk←$Fq

b←$Fq

pk← gsk

gb ← gb

(m̃, (z̃, s̃, c̃))← FH,G,S(pk)

u← gspk−c̃

h← H(u)

v← hs̃pk−c̃

c← G(m̃, g, h, pk, z̃, u, v)
win← c̃ = c ∧ m̃ /∈ QS

Fig. 11. The GameCM
·,·,·,·() shim used

in the security proof for CM. We use
a dashed box to isolate code that serves
as the core of the reduction (Figure 10).

proof still leverages the special soundness of Schnorr proofs,
but does so without making use of the forking lemma. The
scheme itself is designed so that the forger gives the simulator
(via random oracle queries) enough information to fork its
execution without rewinding when producing a forgery from
which a CDH solution can only be extracted via special
soundness.

B. Formalization

As before, throughout the formal proof, we make use of
a shim game (Figure 11), which remains unchanged except
in the first and last steps, allowing us to focus the formal
reasoning (and, here, the discussions) on meaningful changes
in the oracles and to limit boilerplate proof artefacts. As
before, variables shared between the shim and the intermediate
oracle definitions in Figure 12 are simply made global in the
shim so they can be accessed directly.

Figure 12 shows the oracles we use in the sequence of
games, with claims on the game transitions displayed as
Lemmas 8 and 9, and on the final reduction as Lemma 12. In
our CM sequence of games, we omit details of the refactoring
step, but display the corresponding oracles (in Figure 12) for
completeness and clarity in proofs.

1) Step 1 — Embedding: In this proof step (Lemma 8),
we change the way in which queries to H are handled. We
expose H′ to the forger so that gb can easily be recovered
by the simulator from the answers given, without affecting
their distribution. In the signing oracle, we program answers
to internal H′ queries regardless of previous queries. The
corresponding simulations are shown in Figure 12.

As with the EDL proof, oracle S1 keeps track of a failure
event badG that will only become relevant in Lemma 9.

Lemma 8 (CM Embedding). For all forgers F that make at
most qH queries to their H oracle, and at most qS queries to
their signing oracles, we have

Adveuf-cma
CM (F) ≤ Pr

[
GameCM

1 (F) : win
]

+ qS ·
qH + qS

q

Proof. The proof is an easy replay of those of Lemma 2 and
Lemma 3, noting that the randomiser in the input to H is now
sampled in G instead of N .

2) Step 2 — Simulation: The second step (Lemma 9) sim-
ulates the zero-knowledge proof by programming the relevant
random oracle in the signing oracle. In this proof, unlike in that
for EDL, we need to modify also the random oracle exposed
to the forger as G′ to detect collisions in G′ as they happen,
and to keep track of which of the forger or signing oracle
made particular queries (by internally tagging responses). We
wield both of these tools in the proof of Lemma 12, below.

Lemma 9 (CM Simulation). For all forgers F that make at
most qG queries to their G oracle and at most qS queries to
their signing oracle, we have

Pr
[
GameCM

1 (F) : win
]

≤ Pr
[
GameCM

2 (F) : win
]

+ qS ·
qG + qS
q2

Proof. The proof is the same as that of Lemma 4, noting in
addition that the colS and colA events do not affect the oracles’
behaviour, and that neither does internally tagging responses
from G′ with the party that first observed them.

S0(m)

k←$Fq

u← gk

h← H(u)
z← hsk; v← hk

c← G(m, g, h, gsk, z, u, v)
s← k+ c · sk

return (z, s, c)

H(u)

h←$G
if u /∈ H

b H[u]← h

return H[u]

G(x)

c←$Fq

if x /∈ G

b G[x]← c

return G[x]

S1(m)

k←$Fq

u← gk; badH ← badH ∨ u ∈ H

d←$Fq

h← gd; z← hsk; v← hk

badG ← badG∨
(m, g, h, gsk, z, u, v) ∈ G

c← G(m, g, h, gsk, z, u, v)
s← k+ c · sk

H[u]← (h, 〈s, c〉S)
return (z, s, c)

H′(u)

d←$Fq

if u /∈ H⌊
H[u]← (gbg

d, 〈d〉A)
return π1(H[u])

S2(m)

s←$Fq; c←$Fq

u← gspk−c

d←$Fq

h← gd; z← pkd; v← hsz−c

badG ← badG∨
(m, g, h, pk, z, u, v) ∈ G

colS ← colS ∨ ∃x̃.G[x̃] = 〈c〉A
G[m, g, h, pk, z, u, v]← 〈c〉S

H[u]← (h, 〈s, c〉S)
return (z, s, c)

G′(x)
c←$Fq

if x /∈ G⌊
colA ← colA ∨ ∃x̃.G[x̃] = 〈c〉S
G[x]← 〈c〉A

return π(G[x])

Fig. 12. Oracle simulations for use in intermediate steps in the security proof for Chevallier-Mames signatures. Lemmas 8 and 9 use GameCM
1 (F) :=

GameCM
H′,G,S1,F

(). Lemmas 9 and 12 use GameCM
2 (F) := GameCM

H′,G′,S2,F
().

3) Step 3 — Reduction: Finally, the reduction step shows
that if a forger F wins GameCM

2 (F), the CDH adversary
AF from Figure 10 succeeds in solving its given CDH
instance, except with low probability. We prove (Lemma 12)
that a successful forgery: i. solves the given CDH instance;
ii. relies on an unsound proof of discrete logarithm equality
(Lemma 10); or iii. finds a (restricted) collision in the random
oracle (Lemma 11).

We start by bounding the two events that prevent the
simulator from solving CDH.

Lemma 10. For all forgers F that make at most qG queries
to their G oracle, we have

Pr
[
GameCM

2 (F) : win ∧ z̃ 6= hsk
]
≤ qG + 1

q

Proof. The proof is identical to that of EDL (Lemma 5).

Lemma 11. For all forgers F that make at most qG queries to
their G oracle and at most qS queries to their signing oracle,
we have

Pr
[
GameCM

2 (F) : colA ∨ colS
]
≤ 2 · qS · (qG + 1)

q

Proof. First note that

Pr
[
GameCM

2 (F) : colA ∨ colS
]

≤ Pr
[
GameCM

2 (F) : colA
]

+ Pr
[
GameCM

2 (F) : colS
]

We now show that Pr
[
GameCM

2 (F) : colA
]
≤ qS ·(qG+1)

q .
The colA event occurs when the freshly sampled value c

coincides with one of the c values previously sampled by the
signing oracle. There are at most qS such values, and the event
occurs with probability at most qS

q during each one of the
at most qG + 1 queries made to qG during the execution of
GameCM

2 (F) (at most qS made by the forger, and one made
to validate the forgery).

To conclude the proof, we establish the same bound on
Pr
[
GameCM

2 (F) : colS
]

using a symmetric argument (with
the roles of qG + 1 and qS reversed).

Lemma 12 (CM Reduction). For all forgers F that make at
most qG queries to their G oracle, and at most qS queries to
their signing oracle, we have

Pr
[
GameCM

2 (F) : win
]

≤ AdvcdhG,g,q(AF) +
qG + 1

q
+ 2 · qS · (qG + 1)

q

Proof. First, note that we can split the forger’s success prob-
ability as follows, for any forger F .

Pr
[
GameCM

2 (F) : win
]

= Pr
[
GameCM

2 (F) : win ∧ z̃ = hsk
]

+ Pr
[
GameCM

2 (F) : win ∧ z̃ 6= hsk
]

We can further split the first summand based on whether
one of the collision events captured as colA and colS occurred
during the run.

Pr
[
GameCM

2 (F) : win ∧ z̃ = hsk
]

≤ Pr
[
GameCM

2 (F) : colA ∨ colS
]

+ Pr
[
GameCM

2 (F) : win ∧ z̃ = hsk ∧ ¬(colA ∨ colS)
]

With Lemmas 10 and 11, it is now sufficient to prove that a
forger that wins with a forgery such that z = hsk and without
causing a collision in G allows our reduction to solve its given
CDH instance.

Pr
[
GameCM

2 (F) : win ∧ z̃ = hsk ∧ ¬(colA ∨ colS)
]

≤ Pr
[
ExpcdhAFG,g,q

(G, g, q) : r = gab
]

First observe that GameCM
2 (F) and ExpcdhA (G, g, q), as pro-

grams, share i. their oracles (up to projection on G, and the
removal of code that tracks failure events badG , colS and
colA); and ii. a common prefix, which ends at the end of the
dashed box shown in Figure 11 (for GameCM

2 (F)) and after
the third line of AFG,g,q (for the CDH game). Up until those
points, the two programs are perfectly equivalent, and produce
the same state (up to projections on G).

Consider two possible cases after the call to H made
by the challenger as part of the verification query (or,
rather, at the end of the dashed box in Figure 11): either
i. H[u] = (gbg

d, 〈d〉A) for some d (when u was not used
in a signature); here, the same proof as in EDL applies, or
ii. H[u] = (gd, 〈s, c〉S) for some d, s and c (when u was used
in a signature).

In the second case, we have H[u] = (gd, 〈s, c〉S) for some d,
s and c such that gs−sk·c = u = gs̃−sk·c̃ (where the first equality
comes from the fact that the signing oracle only inserts pairs
of values with that property into H, and the second equality
comes from the construction of u by the reduction). If c 6= c̃,
then we can compute the discrete logarithm sk = s−s̃

c−c̃ of pk,
allowing us to solve the CDH instance (pk, gb) given as input
to A—simply by computing gb

sk (sk = a and gb = gb, where
a and b are the CDH secrets).

It remains to show that we are in a case where c 6= c̃.
We know that u was queried to H by the signing oracle.
Therefore, it must be that there exists a message m such
that G[m, g, h, pk, hsk, u, usk] = 〈c〉S (since the signing ora-
cle always inserts such an element in G after inserting an
element in H). Since the forgery is fresh, it must be that
m 6= m̃. Since the forgery is also valid, it must also be that
G[m̃, g, h, pk, hsk, u, usk] = 〈c̃〉A (the query may be fresh; this
does not impact the reasoning). Therefore, it must be that c 6= c̃
or one of colA or colS would have occurred.

As before, combining Lemmas 8, 9 and 12 allows us to
conclude the proof of Theorem 7.

V. CONCLUSION

We now briefly discuss and reflect on the formal develop-
ment itself before discussing related work (both on tight DL-
based signatures and machine-checked cryptographic proofs)
and highlighting interesting directions for further generaliza-
tions beyond the shim presented here and beyond simple
digital signatures.

A. Formal Development

We now discuss some aspects of the formal development.
Differences between paper and formal proofs: The

bounds we prove formally are slightly tighter than those
presented in this paper.

In practice, our formal proof bounds the probability of badH
as Pr

[
GameEDL

1 (F) : badH
]
≤ qS ·

qH+
qS−1

2

q instead of qS ·
qH+qS

q for EDL, and has similarly tighter bounds for badG
and for both events in the CM proof. This is simply due to
more precise accounting of queries: during the ith query to
S, we can bound the number of entries in H by qH + i − 1
instead of qH+ qS , and the bound is

∑
0≤i<qS

qH+ i instead
of the bound

∑
0≤i<qS

qH+qS discussed in the proofs above.
We choose to keep the bound (and related discussions) simple
in this presentation, as these details add little to the paper’s
contributions while making the pen-and-paper argument more
difficult to trust.

In order to formally obtain the tight bounds discussed here,
our formal shim is slightly more complex than the ones shown
in Figures 7 and 11, and takes two different G oracles, with
the second used only in the shim’s verification query. This
allows us to instantiate the shim’s verification algorithm with
a version of G that does not count towards the total number
of queries when bounding the probability of badG in the
simulation step.

Related to this, an unfortunate amount of the complex-
ity in the formal proof comes from the need to explicitly
count oracle queries when bounding probabilities. In practice,
EasyCrypt in fact requires that oracles that may trigger
the event whose probability is being bounded be called a
statically bounded number of times. Our formal development
uses the manipulations discussed by Barthe et al. [7] to instead
bound the adversary. We expect ongoing work on formalizing
complexity analysis to better support such analyses in future
developments.

Proof Effort and Challenges: An initial version of the
formal proof for EDL was developed over the course of 6
person-months by a novice to both cryptography and formal
proof. The starting point was Goh and Jarecki’s 2003 proof [3],
which our initial proof followed and extended with additional
failure events. The initial proof for CM was carried out in one
person-week by an experienced EasyCrypt developer, relying
heavily on the insights gained during the EDL formalization
(in particular, adapting the sequence of games instead of
starting from the direct reduction). The development of the
common shim, along with adapting the existing proofs to
make use of it, took one additional person-week. The effort

involved in its ideation is more difficult to quantify, as it
occurred continuously through the roughly 6.5 person months
of development—and additional reading of related work.

The proof relies on algebraic arguments which form the
core of its practical difficulty (past initially formalizing the
sequence of games). Further support for symbolic techniques
(perhaps inspired by the tools discussed by Barthe et al. [12])
would greatly simplify our proofs, and future proofs in DL-
based settings.

Lessons Learned: Our formal efforts started from existing
pen-and-paper proofs, based on direct reductions. We first
isolated the three steps on paper and almost immediately
started formalizing the arguments. Although we converged
relatively quickly towards the pattern embedding, simulation,
reduction, initial formalization efforts which placed a different
order on the proof steps were in large part wasted—derivations
of group and field arithmetic results were mainly preserved.
This—once again—highlights the value of first gaining as full
an understanding as possible on paper of the arguments to
formalise before starting the machine-checking effort itself.

On the other hand, later iterations to adapt the full proofs
to make use of the shims were almost lossless, in the sense
that the main changes we needed to make to the proofs were
removals of repeated arguments. These modifications were
only made possible by the identification—through the initial
formalizations—of the proofs’ common structure.

Striking the right balance between gaining understanding
before embarking on a formalization effort and gaining un-
derstanding through the formalization effort remains a del-
icate exercise. We cannot offer insights, but hope that this
simple observation encourages both more thorough pen-and-
paper arguments and more deliberate experimentation with
formalization.

B. Related Work

We now discuss closely related work, first considering
digital signature schemes, and then the state of machine-
checked proofs for DL-based cryptographic constructions.

Proofs for digital signature schemes: Tight proofs for
digital signatures exist for PSS [13]. EDL, CM and their
variants by Katz and Wang [14] and Goh et al. [15] are—to our
knowledge—the only DL-based signature schemes equipped
with tight proofs. Coron [13], and Bader, Jager, Li and
Schäge [16] show the impossibility of obtaining tight reduc-
tions in some settings (for FDH, and for signing in multi-
user settings). Proofs following our game sequence are not
necessarily tight: the final reduction step is where looseness
could be introduced, rather than the sequence itself. As such,
we believe the techniques presented here are not limited to
those schemes for which tight bounds can be established.

Katz and Wang [14] discuss a proof technique—based on
claw-free permutations—that applies to PSS as well as to
DL-based signing schemes to obtain tight security proofs.
Machine-checking their proofs could yield interesting insights
in future. Barthe et al [17] formalise a security proof for PSS.
Although the proof involves the consideration of faults, it also

establishes a tight machine-checked security bound for the
security of PSS in the absence of faults, following proofs by
Coron and Mandal [13], [18]. The proof’s structure is in fact
similar to that of the proofs discussed here; considering it as
an instance of our shim may help generalize the shim further
for broader applicability.

El Kaafarani, Katsumata and Pintore [19] propose a tightly-
secure post-quantum signing scheme based on CSIDH [20]
and CSI-FiSh [21]. Their proof relies on a generic result on the
security of Fiat-Shamir in the Quantum-Random Oracle Model
(QROM) due to Kiltz, Lyubashevsky and Schaffner [22]. The
proof shape we formalise here does not consider the QROM,
and is unlikely to apply in the presence of quantum-capable
adversaries. Extensions in this direction would be natural as
future work. We note, however, that the formalization of such
proof is still on the edge of feasibility [23].

Machine-checked proofs for DL-based cryptography:
Although this paper presents the first machine-checked proof
for a DL-based signature scheme, other machine-checked
proofs exist for DL-based cryptography more generally.

EasyCrypt was used to formalize the security of Cramer-
Shoup [24], one-round key exchange protocols [25] and Ama-
zon Web Services’ Key Management Service [26].

Only the Cramer-Shoup proofs involve reasoning about
arithmetic in cyclic groups similar to that done here, with the
others focusing on DL-based key exchange and key encap-
sulation. (Complexity in these other cases often stems from
considering multiple interactive instances with corruption.)

Proofs in other tools, such as F∗ [27] or CryptoVerif [28]
(for Wireguard [29], TLS 1.3 [30], [31], Signal [32],
OEKE [33] and HPKE [34]), also focus on protocol reasoning,
with little to no reasoning about the group structure involved,
and challenges arising from the complexity of the properties
being proved rather than inherent complexity in the mathemat-
ical arguments involved.

C. Further Generalizations

The security proofs of EDL and CM, as initially presented
by Chevallier-Mames [5], are very similar—and indeed carry
over very similar objects. In this formalization effort, we
purposefully sought out similarities, and attempted to factor
them out. We believe the proof pattern extracted in this way
could be adapted to other constructions—existing or new—to
obtain new proofs of tight security.

In particular, we outline a three-step proof structure, that
relies on:
• embedding the underlying challenge into random oracle

answers;
• simulating the zero-knowledge proof; and
• reducing from a combination of soundness of the zero-

knowledge proof and the underlying computational as-
sumption (perhaps via special soundness).

We now discuss potential directions for further generalizations.
Embedding in EDL and CM involves computing the random

oracle answer h from gb and some trapdoor information d such
that h is distributed uniformly at random in G but such that

f(d, hsk) = gb. In this context, the embedding operation is in
fact a one-time pad, and our proof relies on its malleability.
It is worth considering whether the proof technique could be
generalised to cases where the secrecy of the embedding is not
perfect. This may be required in settings where the embedding
function itself (or the extraction function f) is not as simple
as in this case.

A related observation is that the relation being proved by the
(sound, zero-knowledge, and potentially special sound) proof
or argument needs to be tightly integrated with the embedding
function: it is only because we can malleably push exponents
into the embedding that we can leverage the soundness of
the proof system to extract the solution to the given hard
problem instance. The occurrence of special soundness in the
CM proof may appear—at first glance—more ad hoc, but also
highlights a precious ingredient in the proof pattern: for CM-
style schemes that commit to the message only late in the
signing process, it is important that the witness for the relation
be sufficient to solve the target hard problem.

D. Future Work

Beyond the generalizations discussed above, we also note
that the results presented here, and associated proof artefacts,
also open new directions to push formalization into.

The original EDL scheme was proposed by Chaum and
Pedersen [1] for use in a tamper-resistant wallet. Signature
computation was meant to be split, with the host producing
the value h and a proof of its well-formedness, and the
wallet producing the rest of the signature. Direct Anonymous
Attestation schemes [35] are very similar in their structure.
They are widely deployed in Trusted Platform Modules, and
ECC-DAA [36] is now part of a FIDO alliance standard
(as ECDAA). This makes DAA schemes excellent targets for
formalization on the back of the results presented here.

A more immediate extension would also consider the
schemes by Katz and Wang [14] and Goh, Jarecki, Katz and
Wang [15], which also benefit from tight discrete logarithm-
based reductions. Extending the proof schema—and the cor-
responding formal shim—to support, notably, Goh, Jarecki,
Katz and Wang’s techniques to leverage unpredictability—as
opposed to full randomness—of the second base h would
extend the class of signature schemes whose security could
be machine-checked at minimal cost.

ACKNOWLEDGMENTS.

This work was supported by Microsoft Research and EP-
SRC through Microsoft’s PhD Scholarship Programme. We
thank Constantin Cătălin Drăgan and the anonymous reviewers
for useful comments on earlier versions of this paper.

REFERENCES

[1] D. Chaum and T. P. Pedersen, “Wallet databases with observers,” in
Advances in Cryptology – CRYPTO’92, ser. Lecture Notes in Computer
Science, E. F. Brickell, Ed., vol. 740. Santa Barbara, CA, USA:
Springer, Heidelberg, Germany, Aug. 16–20, 1993, pp. 89–105.

[2] M. Jakobsson and C. Schnorr, “Efficient oblivious proofs of correct
exponentiation,” in Secure Information Networks: Communications and
Multimedia Security, IFIP TC6/TC11 Joint Working Conference on
Communications and Multimedia Security (CMS ’99), September 20-
21, 1999, Leuven, Belgium, 1999, pp. 71–86.

[3] E.-J. Goh and S. Jarecki, “A signature scheme as secure as the Diffie-
Hellman problem,” in Advances in Cryptology – EUROCRYPT 2003, ser.
Lecture Notes in Computer Science, E. Biham, Ed., vol. 2656. Warsaw,
Poland: Springer, Heidelberg, Germany, May 4–8, 2003, pp. 401–415.

[4] D. Pointcheval and J. Stern, “Security proofs for signature schemes,”
in Advances in Cryptology – EUROCRYPT’96, ser. Lecture Notes in
Computer Science, U. M. Maurer, Ed., vol. 1070. Saragossa, Spain:
Springer, Heidelberg, Germany, May 12–16, 1996, pp. 387–398.

[5] B. Chevallier-Mames, “An efficient CDH-based signature scheme with
a tight security reduction,” in Advances in Cryptology – CRYPTO 2005,
ser. Lecture Notes in Computer Science, V. Shoup, Ed., vol. 3621. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 14–18, 2005,
pp. 511–526.

[6] V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs,” Cryptology ePrint Archive, Report 2004/332, 2004, http://eprint.
iacr.org/2004/332.

[7] G. Barthe, F. Dupressoir, B. Grégoire, C. Kunz, B. Schmidt, and
P.-Y. Strub, EasyCrypt: A Tutorial. Cham: Springer International
Publishing, 2014, pp. 146–166. [Online]. Available: https://doi.org/10.
1007/978-3-319-10082-1_6

[8] G. Barthe, B. Grégoire, and S. Zanella-Béguelin, “Formal certification
of code-based cryptographic proofs,” SIGPLAN Not., vol. 44, no. 1,
p. 90–101, Jan. 2009. [Online]. Available: https://doi.org/10.1145/
1594834.1480894

[9] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir, “Certified
computer-aided cryptography: efficient provably secure machine code
from high-level implementations,” in ACM CCS 2013: 20th Conference
on Computer and Communications Security, A.-R. Sadeghi, V. D. Gligor,
and M. Yung, Eds. Berlin, Germany: ACM Press, Nov. 4–8, 2013, pp.
1217–1230.

[10] ——, “Verifiable side-channel security of cryptographic implemen-
tations: Constant-time MEE-CBC,” in Fast Software Encryption –
FSE 2016, ser. Lecture Notes in Computer Science, T. Peyrin, Ed., vol.
9783. Bochum, Germany: Springer, Heidelberg, Germany, Mar. 20–23,
2016, pp. 163–184.

[11] M. Bellare and P. Rogaway, “Random oracles are practical: A paradigm
for designing efficient protocols,” in ACM CCS 93: 1st Conference
on Computer and Communications Security, D. E. Denning, R. Pyle,
R. Ganesan, R. S. Sandhu, and V. Ashby, Eds. Fairfax, Virginia, USA:
ACM Press, Nov. 3–5, 1993, pp. 62–73.

[12] G. Barthe, B. Grégoire, C. Jacomme, S. Kremer, and P.-Y. Strub,
“Symbolic methods in computational cryptography proofs,” in CSF
2019: IEEE 32st Computer Security Foundations Symposium, S. Delaune
and L. Jia, Eds. Hoboken, NJ, USA: IEEE Computer Society Press,
jun 25-28 2019, pp. 136–151.

[13] J.-S. Coron, “Optimal security proofs for PSS and other signature
schemes,” in Advances in Cryptology – EUROCRYPT 2002, ser. Lecture
Notes in Computer Science, L. R. Knudsen, Ed., vol. 2332. Amsterdam,
The Netherlands: Springer, Heidelberg, Germany, Apr. 28 – May 2,
2002, pp. 272–287.

[14] J. Katz and N. Wang, “Efficiency improvements for signature schemes
with tight security reductions,” in ACM CCS 2003: 10th Conference
on Computer and Communications Security, S. Jajodia, V. Atluri, and
T. Jaeger, Eds. Washington, DC, USA: ACM Press, Oct. 27–30, 2003,
pp. 155–164.

[15] E.-J. Goh, S. Jarecki, J. Katz, and N. Wang, “Efficient signature
schemes with tight reductions to the Diffie-Hellman problems,” Journal
of Cryptology, vol. 20, no. 4, pp. 493–514, Oct. 2007.

[16] C. Bader, T. Jager, Y. Li, and S. Schäge, “On the impossibility of
tight cryptographic reductions,” in Advances in Cryptology – EU-
ROCRYPT 2016, Part II, ser. Lecture Notes in Computer Science,
M. Fischlin and J.-S. Coron, Eds., vol. 9666. Vienna, Austria: Springer,
Heidelberg, Germany, May 8–12, 2016, pp. 273–304.

[17] G. Barthe, F. Dupressoir, P.-A. Fouque, B. Grégoire, M. Tibouchi,
and J.-C. Zapalowicz, “Making RSA-PSS provably secure against non-
random faults,” in Cryptographic Hardware and Embedded Systems
– CHES 2014, ser. Lecture Notes in Computer Science, L. Batina
and M. Robshaw, Eds., vol. 8731. Busan, South Korea: Springer,
Heidelberg, Germany, Sep. 23–26, 2014, pp. 206–222.

[18] J.-S. Coron and A. Mandal, “PSS is secure against random fault attacks,”
in Advances in Cryptology – ASIACRYPT 2009, ser. Lecture Notes in
Computer Science, M. Matsui, Ed., vol. 5912. Tokyo, Japan: Springer,
Heidelberg, Germany, Dec. 6–10, 2009, pp. 653–666.

[19] A. El Kaafarani, S. Katsumata, and F. Pintore, “Lossy CSI-FiSh:
Efficient signature scheme with tight reduction to decisional CSIDH-
512,” in PKC 2020: 23rd International Conference on Theory and
Practice of Public Key Cryptography, Part II, ser. Lecture Notes in
Computer Science, A. Kiayias, M. Kohlweiss, P. Wallden, and V. Zikas,
Eds., vol. 12111. Edinburgh, UK: Springer, Heidelberg, Germany,
May 4–7, 2020, pp. 157–186.

[20] W. Castryck, T. Lange, C. Martindale, L. Panny, and J. Renes, “CSIDH:
An efficient post-quantum commutative group action,” in Advances in
Cryptology – ASIACRYPT 2018, Part III, ser. Lecture Notes in Computer
Science, T. Peyrin and S. Galbraith, Eds., vol. 11274. Brisbane,
Queensland, Australia: Springer, Heidelberg, Germany, Dec. 2–6, 2018,
pp. 395–427.

[21] W. Beullens, T. Kleinjung, and F. Vercauteren, “CSI-FiSh: Efficient
isogeny based signatures through class group computations,” in Ad-
vances in Cryptology – ASIACRYPT 2019, Part I, ser. Lecture Notes
in Computer Science, S. D. Galbraith and S. Moriai, Eds., vol. 11921.
Kobe, Japan: Springer, Heidelberg, Germany, Dec. 8–12, 2019, pp. 227–
247.

[22] E. Kiltz, V. Lyubashevsky, and C. Schaffner, “A concrete treatment
of Fiat-Shamir signatures in the quantum random-oracle model,” in
Advances in Cryptology – EUROCRYPT 2018, Part III, ser. Lecture
Notes in Computer Science, J. B. Nielsen and V. Rijmen, Eds., vol.
10822. Tel Aviv, Israel: Springer, Heidelberg, Germany, Apr. 29 –
May 3, 2018, pp. 552–586.

[23] D. Unruh, “Post-quantum verification of Fujisaki-Okamoto,” in Ad-
vances in Cryptology – ASIACRYPT 2020, Part I, ser. Lecture Notes in
Computer Science, S. Moriai and H. Wang, Eds., vol. 12491. Daejeon,
South Korea: Springer, Heidelberg, Germany, Dec. 7–11, 2020, pp. 321–
352.

[24] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin, “Computer-
aided security proofs for the working cryptographer,” in Advances in
Cryptology – CRYPTO 2011, ser. Lecture Notes in Computer Science,
P. Rogaway, Ed., vol. 6841. Santa Barbara, CA, USA: Springer,
Heidelberg, Germany, Aug. 14–18, 2011, pp. 71–90.

[25] G. Barthe, J. M. Crespo, Y. Lakhnech, and B. Schmidt, “Mind the gap:
Modular machine-checked proofs of one-round key exchange protocols,”
in Advances in Cryptology – EUROCRYPT 2015, Part II, ser. Lecture
Notes in Computer Science, E. Oswald and M. Fischlin, Eds., vol. 9057.
Sofia, Bulgaria: Springer, Heidelberg, Germany, Apr. 26–30, 2015, pp.
689–718.

[26] J. B. Almeida, M. Barbosa, G. Barthe, M. Campagna, E. Cohen,
B. Grégoire, V. Pereira, B. Portela, P.-Y. Strub, and S. Tasiran, “A
machine-checked proof of security for AWS key management service,”
in ACM CCS 2019: 26th Conference on Computer and Communications
Security, L. Cavallaro, J. Kinder, X. Wang, and J. Katz, Eds. ACM
Press, Nov. 11–15, 2019, pp. 63–78.

[27] N. Swamy, C. Hritcu, C. Keller, A. Rastogi, A. Delignat-Lavaud,
S. Forest, K. Bhargavan, C. Fournet, P.-Y. Strub, M. Kohlweiss, J.-K.
Zinzindohoué, and S. Zanella-Béguelin, “Dependent types and multi-
monadic effects in F*,” in 43rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL). ACM, Jan. 2016,
pp. 256–270. [Online]. Available: https://www.fstar-lang.org/papers/
mumon/

[28] B. Blanchet, “A computationally sound mechanized prover for security
protocols,” IEEE Trans. Dependable Secur. Comput., vol. 5, no. 4,
pp. 193–207, 2008. [Online]. Available: https://doi.org/10.1109/TDSC.
2007.1005

[29] B. Lipp, B. Blanchet, and K. Bhargavan, “A mechanised cryptographic
proof of the wireguard virtual private network protocol,” in IEEE
European Symposium on Security and Privacy, EuroS&P 2019,
Stockholm, Sweden, June 17-19, 2019. IEEE, 2019, pp. 231–246.
[Online]. Available: https://doi.org/10.1109/EuroSP.2019.00026

[30] K. Bhargavan, B. Blanchet, and N. Kobeissi, “Verified models and
reference implementations for the TLS 1.3 standard candidate,” in 2017
IEEE Symposium on Security and Privacy. San Jose, CA, USA: IEEE
Computer Society Press, May 22–26, 2017, pp. 483–502.

[31] B. Blanchet, “Composition theorems for CryptoVerif and application
to TLS 1.3,” in CSF 2018: IEEE 31st Computer Security Foundations
Symposium, S. Chong and S. Delaune, Eds. Oxford, UK: IEEE
Computer Society Press, jul 9-12 2018, pp. 16–30.

[32] N. Kobeissi, K. Bhargavan, and B. Blanchet, “Automated verification
for secure messaging protocols and their implementations: A
symbolic and computational approach,” in 2017 IEEE European
Symposium on Security and Privacy, EuroS&P 2017, Paris, France,
April 26-28, 2017. IEEE, 2017, pp. 435–450. [Online]. Available:
https://doi.org/10.1109/EuroSP.2017.38

[33] B. Blanchet, “Automatically verified mechanized proof of one-
encryption key exchange,” in CSF 2012: IEEE 25st Computer Security
Foundations Symposium, S. Zdancewic and V. Cortier, Eds. Cambridge,
MA, USA: IEEE Computer Society Press, jun 25-27 2012, pp. 325–339.

[34] J. Alwen, B. Blanchet, E. Hauck, E. Kiltz, B. Lipp, and D. Riepel,
“Analysing the HPKE standard,” IACR Cryptol. ePrint Arch., vol. 2020,
p. 1499, 2020. [Online]. Available: https://eprint.iacr.org/2020/1499

[35] E. F. Brickell, J. Camenisch, and L. Chen, “Direct anonymous at-
testation,” in ACM CCS 2004: 11th Conference on Computer and
Communications Security, V. Atluri, B. Pfitzmann, and P. McDaniel,
Eds. Washington, DC, USA: ACM Press, Oct. 25–29, 2004, pp. 132–
145.

[36] L. Chen, D. Page, and N. P. Smart, “On the design and implementation
of an efficient daa scheme,” in Smart Card Research and Advanced
Application, D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 223–237.

