
Concise UC Zero-Knowledge Proofs for Oblivious
Updatable Databases

Jan Camenisch∗, Maria Dubovitskaya∗, Alfredo Rial†
∗Dfinity, Zurich, Switzerland

Email: {jan,maria}@dfinity.org
†SnT, University of Luxembourg, Esch-sur-Alzette, Luxembourg

Email: alfredo.rial@uni.lu

Abstract—We propose an ideal functionality FCD and a con-
struction ΠCD for oblivious and updatable committed databases.
FCD allows a prover P to read, write, and update values in a
database and to prove to a verifier V in zero-knowledge (ZK)
that a value is read from or written into a certain position. The
following properties must hold: (1) values stored in the database
remain hidden from V; (2) a value read from a certain position
is equal to the value previously written into that position; (3)
(obliviousness) both the value read or written and its position
remain hidden from V .

ΠCD is based on vector commitments. After the initialization
phase, the cost of read and write operations is independent of the
database size, outperforming other techniques that achieve cost
sublinear in the dataset size for prover and/or verifier. Therefore,
our construction is especially appealing for large datasets.

In existing “commit-and-prove” two-party protocols, the task
of maintaining a committed database between P and V and
reading and writing values into it is not separated from the task of
proving statements about the values read or written. FCD allows
us to improve modularity in protocol design by separating those
tasks. In comparison to simply using a commitment scheme to
maintain a committed database, FCD allows P to hide efficiently
the positions read or written from V . Thanks to this property,
we design protocols for e.g. privacy-preserving e-commerce and
location-based services where V gathers aggregate statistics about
the statements that P proves in ZK.

Index Terms—Vector commitments, ZK proofs of knowledge,
universal composability

I. INTRODUCTION

In protocols that use a commit-and-prove methodology
(e.g. [1]), the prover P commits to her input and then proves
in zero-knowledge (ZK) to a verifier V statements about the
committed values. These steps are repeated and intertwined,
i.e., commitments are updated, new ones formed, and additional
proofs executed.

We regard commitments as a tool used to maintain a database
of values between P and V . When P commits to a value, the
value is written into the database. When P proves a statement
about a value committed previously, P reads a value from
the database. Commitments guarantee the following properties:
(1) values stored in the database are hidden from V (hiding
property); (2) once a value is written into the database at a
certain position (i.e, commitment), P cannot read a different
value (binding property); (3) ZK proofs for reading or writing
a value ensure that the value remains hidden from V .

The use of commitments to maintain a database between
P and V is not adequate in protocols where it is necessary to
hide not only the value read or written into the database, but
also the position where a value is stored. Our main example
are protocols that allow V to gather statistics about what P
proves in ZK, which are of interest for e.g. privacy-preserving
e-commerce [2], billing [3] or location sharing services [4].
For instance, in [4], the positions represent locations, and the
values are counters on the number of times P visited a location.
When P visits a location, P updates the database to increment
the counter for that location. To protect P’s privacy, V must
learn neither the location nor the counter value.

Unfortunately, if commitments were used to maintain the
database, the cost of a ZK proof that meets those properties
grows linearly with the database size. We would like that this
cost be independent of the database size.

On the other hand, in commit-and-prove protocols, the task
of maintaining a database between P and V and reading and
writing values into it is not separated from the task of proving
statements about the values read or written. I.e., typically P
computes a ZK proof to prove a statement about a committed
value. Such a proof involves both reading a value from the
database and proving a statement about it.

We propose to separate the task of maintaining a database
between P and V from the task of proving statements about
the values read or written or about the positions where the
values are stored. This will improve modularity in protocol
design and will lead to simpler and more structured security
proofs that are easier to verify. Additionally, it will enable the
study of the task of maintaining a database between P and
V in isolation, which allows an easy comparison of different
techniques to maintain a database.

A. Our Contribution

UC functionality. In Section III, we define an ideal function-
ality FCD for an oblivious and updatable committed database
(CD) in the universal composability (UC) framework. The
database consists of a table Tblcd with Nmax entries of the
form [i, v], where i is a position in [1,Nmax] and v is the value
stored at that position. FCD ensures the following:

1) The values in the database remain hidden from V .
2) V is guaranteed that a value read from Tblcd at position

i is equal to the value previously written into i.

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
08

3) (Obliviousness) In read and write operations, both the
value and the position read or written are hidden from V .

The database is updatable because FCD allows P to overwrite
values into the database at any time.
FCD allows P to read and write values into the database. To

prove statements about a value, or about the position where the
value is read or written, P must use an ideal functionality FR

ZK

for zero-knowledge parameterized by the appropriate statement
R. This effectively separates the task of maintaining a database
from the task of proving statements about the positions and
values read or written. Consequently, we are able to design
constructions for the committed database task in isolation and
to compare them.

In a hybrid protocol that uses FCD and FR
ZK as building

blocks, we need to guarantee that the value and the position
read or written into FCD are equal to the value and position
sent to FR

ZK. For this purpose, we use a method proposed
in [5], which consists in sending committed inputs to FCD and
FR

ZK (see Section II).
Construction ΠCD. In Section V, we provide an efficient
construction ΠCD for FCD that uses vector commitments
(VC) [6], [7], which are suitable to implement a database
Tblcd that consists of a one-dimensional array. A VC is a type
of commitment that allows committing to a vector of values.
The committer can open single positions of the committed
vector to V with communication cost constant and independent
of the vector size. VCs can also be updated. The computation
cost of updating a commitment vc or a witness w to open a
position grows linearly only with the number of updates and
does not depend on the size of the committed vector.

ΠCD works as follows. At setup, P and V map the initial
values of Tblcd to a vector of length Nmax and compute a
vector commitment vc to that vector. When P wants to read
the value v at position i, P computes a VC witness w for
position i and proves in ZK that v is committed at position i.
To write a value v at a position i into the database, P updates
vc to vc′. vc′ commits to the same vector as vc, except that v
is now at position i. Then P sends vc′ to V and proves in ZK
that vc′ is an update of vc.

The communication cost of read and write operations is
independent of the vector length Nmax . The cost of computing
vc and w grows linearly with Nmax . However, we note that
vc and w only need to be computed once. After that, they can
be reused for multiple read operations and, when the database
is updated, vc and w can be updated with cost that grows
with the number of updates, but that is independent of Nmax .
Therefore ΠCD is suitable for large databases. In Section IX, we
show that our construction improves in terms of efficiency over
the existing ZK protocols for proving statements that involve
large witnesses, such as ZK proofs for relations described
as ORAM programs [8], [9]. In Section VI, we propose an
efficient instantiation of ΠCD that uses a VC scheme secure
under the DHE assumption.
Modular design and applications of FCD. In Section VII,
we describe how to design a hybrid protocol that uses FCD and
FR

ZK following the method in [5]. FCD is particularly useful

for protocols where P needs to hide from V the positions read
or written into the database. (Otherwise, a simple commitment
scheme could be used to store the database.) In Section VIII,
we describe some applications where this is the case. First,
we describe how to use our committed database to compute
OR proofs, i.e. ZK proofs of a disjunction of statements,
with amortized cost independent of the size of the witness.
Second, we show how FCD can be used to design protocols
for privacy-preserving e-commerce and location-based services
where service providers can gather aggregate statistics about
users. In those protocols, FCD is used to store counters on
the number of times a user buys a type of item or checks
in at a certain location. When a user purchases an item or
checks in at a location, the user computes a ZK proof that uses
the item or the location as witness. Then the corresponding
counter in FCD is incremented. At a later stage, the user can
read counters from FCD to prove that they satisfy a statistic of
interest to the service provider. We formalize this use of FCD as
“zero-knowledge counting”, i.e., counting the number of times
a witness value is used by a prover in different ZK proofs.
Beyond “zero-knowledge counting”, we discuss how FCD

is useful for gathering statistics that are more involved than
counting, such as consumption statistics in privacy-preserving
billing protocols [3].

B. Previous Work

The work in [5] increased the capabilities of modular
protocol design in the UC framework by introducing a new
functionality for non-interactive commitments FNIC. FNIC is
used to guarantee that two or more functionalities receive the
same input. Having FNIC as a separate functionality simplifies
the composition of building blocks and the security analysis
of higher-level protocols.

Many protocols (e.g. [10], [11]) use commitment schemes to
maintain a database between P and V . However, commitments
are not adequate to realize FCD because they do not allow
P to hide efficiently the positions read from or written into
the database. This is necessary in privacy-preserving protocols
that allow V to gather statistics about what P proves in ZK,
which are of interest in e-commerce [2], billing [3] or location
sharing services [4].

The literature on commit-and-prove protocols [1] is very
large. In the following, we restrict ourselves to discussing
primitives that can be applied to construct a committed database
that allows P to hide efficiently the positions read or written
and to prove statements about those positions.

Vector commitments (VCs) [6], [7], [12], a type of functional
commitment [13], are the mechanism implicitly used in [4] to
maintain a database in such a way that P can hide efficiently
the positions read or written and prove statements about them.
Unlike commitments, VCs allow us to open a vector component
with communication cost independent of the vector length.

ZK proofs of shuffles [14] can be used as a way of
hiding positions read or written by shuffling data in the
database at each read or write operation. A construction using

commitments along with proofs of shuffles could realize the
same functionality offered by VCs, but less efficiently.

Several data structures that offer ZK properties exist. Exam-
ples include ZK sets [6], [15]–[17], updatable ZK databases [7],
[18], ZK lists [19], [20] and trees [20]. These constructions
typically require the size of the data structure to be hidden,
which is a property we usually do not need for the applications
of committed databases (CD) that we consider in this paper.
(Some works relax this property [12], [21], [22].) On the other
hand, for CD it is fundamental that the data structure can be
modified dynamically, which is provided only in [7], [18], [20].
We provide a detailed comparison between those constructions
and our committed database in Section IX.

However, security for those ZK data structures has not
been defined in a composable security framework. To design
modularly protocols that need to maintain a database between
P and V , we could only use the ideal protocol for ZK proofs
parameterized with different relations. These relations would
describe both the way data is kept, read from and written into
the database, as well as the statements proven about those data.
Consequently, the modularity of the design is limited because
complex ZK proofs for those relations cannot be decomposed
into simpler ones and thus require a monolithic security analysis.
The concept of CD will allow the security analysis of similar
ZK data structures in a composable framework, which will
facilitate the modular design and analysis of protocols that use
them as a building block.

C. Outline of the Paper

We describe how to design UC protocols modularly in
Section II. In Section III, we define our ideal functionality FCD.
In Section IV, we define the building blocks of our construction
ΠCD and, in Section V, we describe ΠCD. We describe an
efficient instantiation of our construction in Section VI. In
Section VII, we show how to use our functionality as a building
block in the modular design of cryptographic protocols. In
Section VIII, we describe applications for FCD. We describe
related work in Section IX and conclude and hint some future
work in Section X.

II. MODULAR DESIGN AND IDEAL FUNCTIONALITY FNIC

We summarize the UC framework in the full version [23].
An ideal functionality can be invoked by using one or more
interfaces. In the notation in [5], the name of a message in
an interface consists of three fields separated by dots, e.g.,
cd.setup.ini in FCD in Section III. The first field indicates the
name of FCD and is the same for all interfaces. This field
is useful for distinguishing between invocations of different
functionalities in a hybrid protocol. The second field indicates
the kind of action performed by FCD and is the same in all
messages that FCD exchanges within the same interface. The
third field distinguishes between the messages that belong to the
same interface, and can take the following values. A message
cd.setup.ini is the incoming message received by FCD, i.e., the
message through which the interface is invoked. cd.setup.end
is the outgoing message sent by FCD, i.e., the message that

ends the execution of the interface. cd.setup.sim is used by
FCD to send a message to the simulator S, and cd.setup.rep
is used to receive a message from S.

In the UC framework, protocols can be described modularly
by using a hybrid model where parties invoke the ideal
functionalities of the building blocks of a protocol. One
challenge when describing a UC protocol in the hybrid
model is to ensure, when needed, that two or more ideal
functionalities receive the same input. To address this issue, we
use the method proposed in [5]. In [5], a functionality FNIC

for non-interactive commitments is proposed. FNIC interacts
with parties Pi and consists of four interfaces com.setup,
com.validate, com.commit and com.verify:

1) Any party Pi uses the com.setup interface to set up the
functionality.

2) Any party Pi uses the com.commit interface to send a
message m and obtain a commitment com and an opening
open. A commitment com consists of (com ′, parcom,
COM.Verify), where com ′ is the commitment, parcom are
the public parameters, and COM.Verify is the verification
algorithm.

3) Any party Pi uses the com.validate interface to send a
commitment com in order to check that com contains the
correct public parameters and verification algorithm.

4) Any party Pi uses the com.verify interface to send (com,
m, open) in order to verify that com is a commitment to
the message m with the opening open .

FNIC can be realized by a perfectly hiding commitment scheme,
such as Pedersen commitments [5]. In [5], a method is described
to use FNIC in order to ensure that a party sends the same
input m to several ideal functionalities. For this purpose, the
party first uses com.commit to get a commitment com to m
with opening open . Then the party sends (com,m, open) as
input to each of the functionalities, and each functionality runs
COM.Verify to verify the commitment. Finally, other parties
in the protocol receive the commitment com from each of the
functionalities and use the com.validate interface to validate
com . Then, if com received from all the functionalities is the
same, the binding property provided by FNIC ensures that all
the functionalities received the same input m . When using
FNIC, it is needed to work in the FNIC||SNIC-hybrid model,
where SNIC is any simulator for a construction that realizes
FNIC. The reason is that we need to ensure that the output
of COM.Verify is indistinguishable from the output of the
com.verify interface of FNIC. Our functionality FCD receives
committed inputs as described in [5]. We depict FNIC in the
full version [23].

III. IDEAL FUNCTIONALITY FCD

Intuition. Our functionality FCD interacts with a prover P
and a verifier V and has three interfaces: “setup”, “read” and
“write”. FCD maintains a committed database where every entry
is stored as a tuple [position, value]. The “setup” interface
initializes the database to values known to both P and V . The
“write” interface allows P to update an entry of the committed
database. V learns neither the position nor the value of the

entry being written. The “read” interface allows P to prove
to V knowledge of an entry in the database without revealing
neither its position nor the value to V . To ensure that both the
prover and the verifier use the same version of the database,
FCD maintains counters for the number of writing operations
sent by P and the number of writing operations received by
V . The counters are checked for consistency for both read and
write queries.

Both “read” and “write” interfaces require commitments to
the position and to the value to be provided as input. This
allows FCD to be used in conjunction with other functionalities
(e.g. FR

ZK for ZK proofs of knowledge) in a modular way to
build high-level protocols. That is, once the prover proves to
the verifier that the commitment values commit to a database
entry by using FCD, those commitments can be used as input
to other functionalities of the high-level (hybrid) protocol. For
example, the commitment to the position and to the value can
be input to FR

ZK to prove in ZK statements about the position
and the value read from or written into the database. This
allows us to prove different statements about the values from
the database without revealing neither the value itself nor its
position to the verifier. The binding property guaranteed by
FNIC ensures that the committed values given as input to FCD

and to FR
ZK are equal.

Notation. FCD is parameterized by a universe of state values
Uv and by a state size Nmax . FCD maintains a table Tblcd
that stores the database. Tblcd contains Nmax entries of the
form [i , v], where i ∈ [1,Nmax] is the position in the table
and v ∈ Uv is the value stored at that position. (Nmax needs
to be fixed so that FCD can be realized by a construction
based on VCs, whose set up algorithm needs knowledge of
Nmax .) FCD maintains a counter cp for the number of writing
operations sent by P and a counter cv for the number of
writing operations received by V . The interaction between the
functionality FCD, P and V takes place through the following
interfaces:
• V uses the cd.setup interface to initialize Tblcd. FCD

stores Tblcd and sends Tblcd to P and to the simulator S .
• P uses cd.read to send a position i and a value vr to FCD,

along with commitments and openings (comi , openi) and
(comr , openr) to the position and value respectively. FCD

verifies the commitments and checks that there is an entry
[i, vr] in the table Tblcd. In that case, FCD sends comi

and comr to V . S also learns comi and comr .
• P uses cd.write to send a position i and a value vw to FCD,

along with commitments and openings (comi , openi) and
(comw , openw) to the position and value respectively.
FCD verifies the commitments and then updates Tblcd to
store vw at position i. FCD sends comi and comw to V .
S also learns comi and comw .

The commitment parameters parcom and the commitment veri-
fication algorithm COM.Verify are included in the commitment
values (as in functionality FNIC).

We describe FCD in Figure 1. We consider static corruptions,
i.e. parties can only be corrupted by the adversary at the
beginning of the protocol execution. In this description, we

list all the abortion conditions and describe how FCD saves
its state before querying the simulator S and recovers it after
receiving a response from S. These steps are often omitted
in the description of ideal functionalities. In the “read” and
“write” interfaces, FCD creates a query identifier qid to link
the replies from S to the corresponding query to S. In the
“setup” interface, this is not needed because that interface can
only be invoked once.

When invoked by V or P , FCD first checks the correctness of
the input and aborts if it does not belong to the correct domain.
FCD also aborts if an interface is invoked at an incorrect
moment in the protocol. For example, P cannot invoke cd.read
before V invokes cd.setup.
FCD also aborts if the commitment verification algorithms

received as input are not ppt. This check is performed in the
manner described in Section 7.2 paragraph “running arbitrary
code” in [24].
Discussion of FCD. The restriction that the identities P and
V must be included in the session identifier sid = (P,V, sid ′)
guarantees that every verifier can create an instance of FCD

with every prover. FCD implicitly checks that sid in a message
equals the one received in the first invocation. We note that it
is easy to modify FCD and our construction for FCD so that
the setup phase is started by P .

In the “read” interface, FCD aborts if [i , vr] received as input
are not stored in Tblcd. This guarantees to V that the position
and the value committed to in comi and in comr respectively
correspond to an entry in Tblcd. After being triggered by S,
FCD aborts if the query identifier is not stored, or if the
number of writing operations received by V does not equal
the number of writing operations sent by P when the read
operation was started. This guarantees that the table used by
P when computing the read operation equals the table used by
V to verify the read operation. A similar check is performed
by FCD in the “write” interface.
FCD sends commitments to the position and to the value

to V . To hide the position and the value from V , the hiding
property of the commitment is required to hold. This is achieved
by using FNIC to compute commitments.

IV. BUILDING BLOCKS

Ideal Functionality FCRS.Setup
CRS . Our protocol uses the function-

ality FCRS.Setup
CRS for common reference string generation in [25].

FCRS.Setup
CRS interacts with any parties P that obtain the common

reference string, and consists of one interface crs.get. A party
P uses the crs.get interface to request and receive the common
reference string crs from FCRS.Setup

CRS . In the first invocation,
FCRS.Setup

CRS generates crs by running algorithm CRS.Setup. The
simulator S also receives crs . We depict FCRS.Setup

CRS in the full
version [23].
Ideal Functionality FAUT. Our protocol uses the functionality
FAUT for an authenticated channel in [25]. FAUT interacts
with a sender T and a receiver R, and consists of one interface
aut.send. T uses the aut.send interface to send a message m to
FAUT. FAUT leaks m to the simulator S and, after receiving
a response from S , FAUT sends m to R. S cannot modify m .

Functionality FCD is parameterized by a universe of values Uv and by a maximum table size Nmax . FCD interacts with a
prover P and a verifier V .

1) On input (cd.setup.ini, sid ,Tblcd) from V:
• Abort if sid /∈ (P,V, sid ′) or if (sid ,Tblcd) is already stored.
• Abort if Tblcd does not consist of entries of the form [i, v], or if the number of entries in Tblcd is not Nmax .
• Abort if for i = 1 to Nmax , v /∈ Uv for any entry [i, v] in Tblcd.
• Initialize a counter cv ← 0 for the verifier and store (sid , cv) and (sid ,Tblcd).
• Send (cd.setup.sim, sid ,Tblcd) to S.

S. On input (cd.setup.rep, sid) from S:
• Abort if (sid ,Tblcd) is not stored, or if (sid ,Tblcd, cp) is already stored.
• Initialize a counter cp ← 0 for the prover and store (sid ,Tblcd, cp).
• Send (cd.setup.end, sid ,Tblcd) to P .

2) On input (cd.read.ini, sid , comi , i, openi , comr , vr , openr) from P:
• Abort if (sid ,Tblcd, cp) is not stored.
• Abort if i /∈ [1,Nmax], or if vr /∈ Uv , or if [i, vr] is not stored in Tblcd.
• Parse the commitment comi as (com ′i, parcomi ,COM.Verifyi).
• Parse the commitment comr as (com ′r, parcomr ,COM.Verifyr).
• Abort if COM.Verifyi or COM.Verifyr are not ppt algorithms.
• Abort if 1 6= COM.Verifyi(parcomi , com ′i, i, openi).
• Abort if 1 6= COM.Verifyr(parcomr , com ′r, vr , openr).
• Create a fresh qid and store (qid , comi , comr , cp).
• Send (cd.read.sim, sid , qid , comi , comr) to S.

S. On input (cd.read.rep, sid , qid) from S:
• Abort if (qid , comi , comr , cp′) is not stored.
• Abort if cp′ 6= cv , where cv is stored in (sid , cv).
• Delete the record (qid , comi , comr , cp′).
• Send (cd.read.end, sid , comi , comr) to V .

3) On input (cd.write.ini, sid , comi , i, openi , comw , vw , openw) from P:
• Abort if (sid ,Tblcd, cp) is not stored.
• Abort if i /∈ [1,Nmax], or if vw /∈ Uv .
• Parse the commitment comi as (com ′i, parcomi ,COM.Verifyi).
• Parse the commitment comw as (com ′w, parcomw ,COM.Verifyw).
• Abort if COM.Verifyi or COM.Verifyw are not ppt algorithms.
• Abort if 1 6= COM.Verifyi(parcomi , com ′i, i, openi).
• Abort if 1 6= COM.Verifyw(parcomw , com ′w, vw , openw).
• Increment the counter cp in (sid ,Tblcd, cp) and store [i, vw] in Tblcd.
• Create a fresh qid and store (qid , comi , comw , cp).
• Send (cd.write.sim, sid , qid , comi , comw) to S.

S. On input (cd.write.rep, sid , qid) from S:
• Abort if (qid , comi , comw , cp′) is not stored.
• Abort if cp′ 6= cv + 1, where cv is stored in (sid , cv).
• Increment the counter cv in (sid , cv).
• Delete the record (qid , comi , comw , cp′).
• Send (cd.write.end, sid , comi , comw) to V .

Fig. 1. Functionality FCD

The session identifier sid contains the identities of T and R.
We depict FAUT in the full version [23].
Ideal Functionality FR

ZK. Let R be a polynomial time
computable binary relation. For tuples (wit , ins) ∈ R we
call wit the witness and ins the instance. Our protocol uses
the ideal functionality FR

ZK for zero-knowledge in [25]. FR
ZK

is parameterized by a description of a relation R, runs with a
prover P and a verifier V , and consists of one interface zk.prove.
P uses zk.prove to send a witness wit and an instance ins to
FR

ZK. FR
ZK checks whether (wit , ins) ∈ R, and, in that case,

sends the instance ins to V . The simulator S learns ins but
not wit . We depict FR

ZK in the full version [23].
Vector Commitments. Vector commitments (VC) [6], [7]
allow us to commit to a vector of messages and to open
the commitment to one of the messages in such a way that the
size of the witness is independent of the length of the vector.
A VC scheme consists of the following algorithms.
VC.Setup(1k, `). On input the security parameter 1k and an

upper bound ` on the size of the vector, generate the
parameters of the commitment scheme par , which include
a description of the message space M and a description
of the randomness space R.

VC.Commit(par ,x, r). On input a vector x ∈ Mn (n ≤ `)
and r ∈ R, output a commitment vc to x.

VC.Wit(par , i,x, r). Compute a witness w for x[i].
VC.Verify(par , vc, x, i,w). Output 1 if w is a valid witness

for x being at position i and 0 otherwise.
VC.ComUpd(par , vc, j, x, r, x′, r′). On input a commitment

vc with value x at position j and randomness r, output
a commitment vc′ with value x′ at position j and
randomness r′. The other positions remain unchanged.

VC.VerComUpd(par , vc, vc′,w , j, x, r, x′, r′). On input com-
mitments vc and vc′, a witness w , a position j, the values
x and x′ and the randomness r and r′, output 1 if w is a
valid witness for x being at position j in the commitment
vc and if vc′ is an update of vc that replaces x by x′ at
position j and r by r′.

VC.WitUpd(par ,w , i, j, x, r, x′, r′). On input a witness w for
a position i valid for a commitment vc with value x at
position j and randomness r, output a witness w ′ for
position i valid for a commitment vc′ with value x′ at
position j and randomness r′.

A VC scheme must be correct, hiding, and binding, as defined
in the full version [23].

V. CONSTRUCTION ΠCD FOR A COMMITTED DATABASE

Our construction ΠCD in Figure 2 and Figure 3 uses a VC
scheme. A vector commitment vc is used to store the table
Tblcd. A position in the vector commitment acts as a position
in Tblcd, and the value committed to in that position acts as
the value stored in Tblcd in that position.

In the setup interface, P and V obtain the VC parameters par
from the functionality FCRS.Setup

CRS for common reference string,
which is parameterized by the setup algorithm VC.Setup =
CRS.Setup of the VC scheme. V receives as input a table Tblcd
an computes a commitment vc to Tblcd with 0 randomness. V

sends Tblcd to P by using the ideal functionality FAUT for
an authenticated channel, and P also computes a commitment
vc to Tblcd with 0 randomness.

In the read interface, P receives as input a position i and a
value vr , along with commitments and openings (comi , openi)
and (comr , openr). P uses the ideal functionality FRr

ZK for
ZK proofs of knowledge to prove to V that comi and comr

commit to i and vr such that vr is the message committed
at position i in the commitment vc. This proves that [i, vr] ∈
Tblcd.

In the write interface, P receives as input a position i and
a value vw , along with commitments and openings (comi ,
openi) and (comw , openw). P updates the commitment vc to
a commitment vc′ that commits to vw at position i, while other
positions remain unchanged. P uses the functionality FRw

ZK to
prove to V that comi and comw commit to i and vw , and that
vc′ is an update of vc where vw is committed in the position i.
We note that vc′ contains randomness chosen by P and thus,
after the first execution of the write interface, the committed
table will be hidden from V .

We describe ΠCD in Figure 2 and Figure 3. For brevity,
we omit some abortion conditions or the messages sent to the
functionalities used as building blocks. The full description is
in the full version [23].

Theorem 5.1: ΠCD securely realizes FCD in the FVC.Setup
CRS ,

FAUT, FRr

ZK and FRw

ZK -hybrid model if the VC scheme is hiding
and binding.
When P is corrupt, the binding property of the VC scheme
guarantees that the adversary is not able to open the vector
commitment to a position and a value if that value was not
previously committed at that position. When V is corrupt,
the hiding property of the VC scheme guarantees that the
committed vector remains hidden from V . We analyze in detail
the security of ΠCD in the full version [23].

VI. EFFICIENT INSTANTIATION OF CONSTRUCTION ΠCD

Our instantiation of ΠCD is based on a VC scheme secure
under the DHE assumption and on ZK proofs of knowledge
for the relations Rr and Rw for that VC scheme. To compute
those proofs, the VC scheme is extended with a structure-
preserving signature scheme. We use Pedersen commitments
as the commitment scheme used to realize FNIC.

In Section VI-A, we describe the building blocks of our
instantiation. In Section VI-B, we describe the ZK proofs
for relations Rr and Rw. We analyze the efficiency of our
instantiation in Section VI-C.

A. Building blocks of Our Instantiation

Bilinear maps. Let G, G̃ and Gt be groups of prime order p. A
map e : G× G̃→ Gt must satisfy bilinearity, i.e., e(gx, g̃y) =
e(g , g̃)xy; non-degeneracy, i.e., for all generators g ∈ G and
g̃ ∈ G̃, e(g , g̃) generates Gt; and efficiency, i.e., there exists
an efficient algorithm G(1k) that outputs the pairing group
setup grp ← (p,G, G̃,Gt, e, g , g̃) and an efficient algorithm
to compute e(a, b) for any a ∈ G, b ∈ G̃.

ΠCD uses a VC scheme and the functionalities FVC.Setup
CRS , FAUT, FRr

ZK and FRw

ZK . The table size Nmax is the maximum
length of a committed vector, and the universe of values Uv is given by the message space of the VC scheme.

1) On input (cd.setup.ini, sid ,Tblcd), V and P do the following:
• V uses the crs.get interface of FVC.Setup

CRS to obtain the VC parameters par .
• V initializes a counter cv ← 0 that counts the write operations received.
• V stores Tblcd in a vector x: for i = 1 to Nmax , x[i] = v, where [i, v] ∈ Tblcd.
• V commits to x: set r ← 0 and run vc ← VC.Commit(par ,x, r).
• V stores (sid , cv , par , vc).
• V uses the aut.send interface of FAUT to send Tblcd to P .
• P follows the same steps as V to get par , set x and compute vc.
• P initializes a counter cp ← 0 that counts write operations started.
• P stores (sid , cp, par , vc,x, r).
• P outputs (cd.setup.end, sid ,Tblcd).

2) On input (cd.read.ini, sid , comi, i , openi, comr, vr, openr), P and V do:
• P parses comi as (com ′i, parcomi,COM.Verifyi).
• P parses comr as (com ′r, parcomr,COM.Verifyr).
• P takes the stored tuple (sid , cp, par , vc,x, r).
• If (sid , i ,w) is not stored, P computes a VC witness w for position i : run w ← VC.Wit(par , i ,x, r) and store

(sid , i ,w).
• P sets witr ← (w , i , openi, vr, openr).
• P sets insr ← (par , vc, parcomi, com ′i, parcomr, com ′r, cp).
• P uses the zk.prove interface to send witr and insr to FRr

ZK, where Rr is

Rr ={(witr, insr) :

1 = COM.Verifyi(parcomi, com ′i, i , openi) ∧ (1)
1 = COM.Verifyr(parcomr, com ′r, vr, openr) ∧ (2)
1 = VC.Verify(par , vc, vr, i ,w)} (3)

In equation 1, P proves that com ′i is a commitment to i with opening openi. Similarly, in equation 2, P proves
that com ′r is a commitment to vr with opening openr. In equation 3, P proves that vr is stored in the position i
of the vector commitment vc.

• V receives insr = (par ′, vc′, parcomi, com ′i, parcomr, com ′r, cp).
• V takes the stored tuple (sid , cv , par , vc).
• V aborts if cp 6= cv , or if par ′ 6= par , or if vc′ 6= vc.
• V sets comi ← (com ′i, parcomi,COM.Verifyi).
• V sets comr ← (com ′r, parcomr,COM.Verifyr).
• V outputs (cd.read.end, sid , comi, comr).

Fig. 2. Construction ΠCD: interfaces cd.setup and cd.read

A VC Scheme From the DHE Assumption. We show a
VC scheme that is secure under the Diffie-Hellman Exponent
(DHE) assumption [6]. Let k ∈ N denote the security parameter
and let ε(k) denote a negligible function. We recall the `-DHE
assumption.

Definition 6.1: [`-DHE] Let (p,G, G̃,Gt, e, g , g̃)← G(1k)
and α← Zp. Given (p,G, G̃,Gt, e, g , g̃) and a tuple (g1, g̃1,

. . . , g`, g̃`, g`+2, . . . , g2`) such that gi = g(αi) and g̃i = g̃(αi),
for any p.p.t. adversary A, Pr[g(α`+1) ← A(p,G, G̃,Gt, e, g ,
g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . , g2`)] ≤ ε(k).

VC.Setup(1k, `). Generate groups (p,G, G̃,Gt, e, g , g̃) ←
G(1k), pick α ← Zp, and compute (g1, g̃1, . . . , g`, g̃`,

g`+2, . . . , g2`), where gi = g(αi) and g̃i = g̃(αi). Output
the parameters par = (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`,
g̃`, g`+2, . . . , g2`,M = Zp,R = Zp).

VC.Commit(par ,x, r). Let |x| = n ≤ `. Output

vc = gr ·
n∏
j=1

g
x[j]
`+1−j = gr · gx[1]

` · · · gx[n]
`+1−n .

VC.Wit(par , i,x, r). Let |x| = n ≤ `. Output

w = gri ·
n∏

j=1,j 6=i

g
x[j]
`+1−j+i .

3. On input (cd.write.ini, sid , comi, i , openi, comw, vw, openw), P and V do:
• P takes the stored tuple (sid , cp, par , vc,x, r).
• P parses comi as (com ′i, parcomi,COM.Verifyi).
• P parses comw as (com ′w, parcomw,COM.Verifyw).
• If (sid , i ,w) is not stored, P computes a VC witness w for position i : run w ← VC.Wit(par , i ,x, r) and store

(sid , i ,w).
• P updates the vector commitment vc to vc′: pick random r′ ← R and run vc′ ← VC.ComUpd(par , vc, i , vr, r,

vw, r
′), where vr ← x[i].

• P increments the counter of write operations started cp′ ← cp + 1.
• P sets witw ← (w , i , openi, vr, vw, openw, r, r

′).
• P sets insw ← (par , vc, vc′, parcomi, com ′i, parcomw, com ′w, cp′).
• P updates the vector x to x′: set x′ ← x and x′[i]← vw.
• P updates the stored tuple to (sid , cp′, par , vc′,x′, r′).
• P updates the stored witnesses: for j = 1 to Nmax , if (sid , j,w) is stored, run w ′ ← VC.WitUpd(par ,w , j, i , x, r,
x′, r′) and update to (sid , j,w ′).

• P uses the zk.prove interface to send witw and insw to FRw

ZK , where Rw is

Rw ={(witw, insw) :

1 = COM.Verifyi(parcomi, com ′i, i , openi) ∧ (4)
1 = COM.Verifyw(parcomw, com ′w, vw, openw) ∧ (5)
1 = VC.VerComUpd(par , vc, vc′,w , i , vr, r, vw, r

′)} (6)

In equation 4 and equation 5, the prover proves that com ′i and com ′w are commitments to i and vw respectively. In
equation 6, the prover proves that vr is stored in the position i in the vector commitment vc, and that vc′ is a
vector commitment that stores the same values as vc, except that it stores vw in the position i and that its random
value is r′ instead of r.

• V gets insw = (ˆpar , v̂c, vc′, parcomi, com ′i, parcomw, com ′w, cp).
• V takes the stored tuple (sid , cv , par , vc).
• V aborts if cp 6= cv + 1, or if ˆpar 6= par , or if v̂c 6= vc.
• V sets cv ′ ← cv + 1 and updates the stored tuple to (sid , cv ′, par , vc′).
• V sets comi ← (com ′i, parcomi,COM.Verifyi).
• V sets comw ← (com ′w, parcomw,COM.Verifyw).
• V outputs (cd.write.end, sid , comi, comw).

Fig. 3. Construction ΠCD: interface cd.write

VC.Verify(par , vc, x, i,w). Output 1 if e(vc, g̃i) = e(w , g̃) ·
e(g1, g̃`)

x, else output 0.
VC.ComUpd(par , vc, j, x, r, x′, r′). Output the commitment

vc′ = vc ·
gr

′ · gx′

`+1−j

gr · gx`+1−j
= vc · gr

′−r · gx
′−x

`+1−j .

VC.VerComUpd(par , vc, vc′,w , j, x, r, x′, r′). Compute v ←
VC.Verify(par , vc, x, j,w). If v ← 0, output v, else run
v̄c ← VC.ComUpd(par , vc, j, x, r, x′, r′). If v̄c = vc′,
output 1, else output 0.

VC.WitUpd(par ,w , i, j, x, r, x′, r′). If i = j, output w . Oth-
erwise output the witness

w ′ = w ·
gr

′

i · gx
′

`+1−j+i

gri · gx`+1−j+i
= w · gr

′−r
i · gx

′−x
`+1−j+i .

Theorem 6.2: This VC scheme is correct, hiding, and binding
under the `-DHE assumption.

We prove this theorem in the full version [23].
Notation for ZK Proofs of Knowledge. We use classical
results for efficient ZK proofs of knowledge for discrete
logarithm relations. In the notation of [26], a UC ZK protocol
proving knowledge of exponents (w1, . . . , wn) satisfying the
formula φ(w1, . . . , wn) is described as

Kw1, . . . , wn : φ(w1, . . . , wn) (7)

The formula φ(w1, . . . , wn) consists of conjunctions and
disjunctions of “atoms”. An atom expresses group relations,
such as

∏k
j=1 g

Fj

j = 1, where the gj’s are elements of prime
order groups and the Fj’s are polynomials in the variables
(w1, . . . , wn).

A proof system for (7) can be transformed into a proof
system for the following more expressive statements about
secret exponents sexps and secret bases sbases:

Ksexps, sbases : φ(sexps, bases ∪ sbases) (8)

The transformation adds an additional base h to the public
bases. For each gj ∈ sbases , the transformation picks a random
exponent ρj and computes a blinded base g′j = gjh

ρj . The
transformation adds g′j to the public bases bases , ρj to the
secret exponents sexps , and rewrites gFj

j into g′j
Fjh−Fjρj .

The proof system supports pairing product equations∏k
j=1 e(gj , g̃j)

Fj = 1 in groups of prime order with a bilinear
map e, by treating the target group Gt as the group of the
proof system. The embedding for secret bases is unchanged,
except for the case in which both bases in a pairing are secret.
In the latter case, e(gj , g̃j)Fj needs to be transformed into
e(g′j , g̃

′
j)
Fje(g′j , h̃)−Fj ρ̃je(h, g̃′j)

−Fjρje(h, h̃)Fjρj ρ̃j .
Structure-Preserving Signatures. A signature scheme con-
sists of the algorithms KeyGen, Sign and VfSig. Algorithm
KeyGen(1k) outputs a secret key sk and a public key pk , which
include a description of the message space M. Sign(sk ,m)
outputs a signature s on the message m ∈M. VfSig(pk , s,m)
outputs 1 if s is a valid signature on m and 0 otherwise. This
definition can be extended to blocks of messages m̄ = (m1,
. . . ,mn). In this case, KeyGen(1k ,n) receives the maximum
number of messages as input. A signature scheme must fulfill
the correctness and existential unforgeability properties [27].

In structure-preserving signatures (SPS), the public key, the
messages, and the signatures are group elements in G and
G̃, and verification must consist purely in the checking of
pairing product equations. We employ SPS to sign group
elements, while still supporting efficient ZK proofs of signature
possession. For concreteness, we recall the scheme proposed
by [28] for the case in which a elements in G and b elements in
G̃ are signed. This scheme is strongly existentially unforgeable
against adaptive chosen message attacks in the generic group
model [28].
KeyGen(grp, a, b). Let grp ← (p,G, G̃,Gt, e, g , g̃) be the

bilinear map parameters. Pick at random u1, . . . , ub, v,
w1, . . . wa, z ← Z∗p and compute Ui = gui , i ∈ [1..b],
V = g̃v, Wi = g̃wi , i ∈ [1..a] and Z = g̃z . Return the
verification key pk ← (grp, U1, . . . , Ub, V,W1, . . . ,Wa,
Z) and the signing key sk ← (pk , u1, . . . , ub, v, w1, . . . ,
wa, z).

Sign(sk , 〈m1, . . . ,ma+b〉). Pick r ← Z∗p, compute R ← gr,
S ← gz−rv

∏a
i=1m

−wi
i , and T ← (g̃

∏b
i=1m

−ui
a+i)

1/r,
and output the signature s ← (R,S, T).

VfSig(pk , s, 〈m1, . . . ,ma+b〉). Output 1 if it holds both that
e(R, V)e(S, g̃)

∏a
i=1 e(mi,Wi) = e(g, Z) and e(R, T)∏b

i=1 e(Ui,ma+i) = e(g, g̃).
Commitment Schemes. A commitment scheme consists
of algorithms CSetup, Com and VfCom. The algorithm
CSetup(1k) generates the parameters of the commitment
scheme parc , which include a description of the message space
M. Com(parc , x) outputs a commitment com to x ∈M and
some auxiliary information open . The verification algorithm
VfCom(parc , com, x , open) outputs 1 if com is a commitment
to x ∈ M with some auxiliary information open or 0 if
that is not the case. A commitment scheme should fulfill the
correctness, trapdoor and binding properties as described in [5].

The Pedersen commitment scheme [29] fulfills the correct-
ness, trapdoor and binding properties. In [5], it is proven that
any commitment scheme that fulfills those properties fulfills the
ideal functionality FNIC. The Pedersen commitment scheme
works as follows. CSetup(1k) takes a group G of prime order
p with generator g , picks random α, computes h ← gα and sets
the parameters parc ← (G, g , h), which include a description
of the message space M← Zp. Com(parc , x) picks random
open ← Zp and outputs a commitment com ← gxhopen to
x ∈M and some auxiliary information open . The algorithm
VfCom(parc , com, x , open) outputs 1 if com = gxhopen .

B. ZK Proofs for Rr and Rw

In ΠCD, we need to compute two ZK proofs of knowledge:
a proof for a read operation and a proof for a write operation.
We describe these proofs for the `-DHE VC scheme.

For a read operation, we need a ZK proof of knowledge
of a witness w that a value vr was committed to in a vector
commitment vc at position i. I.e., we need to compute a proof

Ki , openi, vr, openr,w :

1 = COM.Verifyi(parcomi, com ′i, i , openi) ∧
1 = COM.Verifyr(parcomr, com ′r, vr, openr) ∧
1 = VC.Verify(par , vc, vr, i ,w).}

This proof involves proving knowledge of a position i , a value
vr and a witness w such that the verification equation e(vc, g̃i)
= e(w , g)e(g1, g̃`)

vr holds. Additionally, it involves proving
that the position i is committed in a commitment com ′i with
opening openi, and the value vr is committed in a commitment
com ′r with opening openr.

Because α is secret, the relation between g̃i = g̃α
i

and
i is not efficiently provable. For this reason, we extend
the parameters of the VC scheme with structure preserving
signatures (SPS) that bind i with g̃i. We also need to bind i
with g`+1−i for a ZK proof of a write operation. (In practice,
i does not necessarily need to belong to [1,Nmax], i.e., other
unique identifiers in Zp can be assigned to the positions.) To
this end, the setup algorithm of the VC scheme is extended as
follows.

VC.Setup(1k, `). Generate groups (p,G, G̃,Gt, e, g , g̃) ←
G(1k), pick α ← Zp, and compute (g1, g̃1, . . . , g`,

g̃`, g`+2, . . . , g2`), where gi = g(αi) and g̃i = g̃(αi).
Compute (sk , pk) ← KeyGen(grp, 1, 2). For i ∈ [1, `],
run si ← Sign(sk , 〈g`+1−i, g̃i, g̃

i〉). Compute additional
bases h ← G and h̃ ← G̃. Output the parameters
par = (p,G, G̃,Gt, e, g , g̃ , g1, g̃1, . . . , g`, g̃`, g`+2, . . . ,
g2`, pk , s1, . . . , s`, h, h̃,M = Zp,R = Zp).

Therefore, our instantiation of ΠCD is secure under the
unforgeability property of the SPS scheme in addition to the `-
DHE assumption. Let (g , h) be the parameters of the Pedersen
commitment scheme for both parcomi and parcomr. Let
(U1, U2, V,W1, Z) be the public key of the signature scheme.

Let (R,S, T) be a signature on (g`+1−i, g̃i, g̃
i). We describe

the proof as follows.

Ki , openi, vr, openr, g̃i, g`+1−i,w , R, S, T :

com ′i = g ihopeni ∧ (9)
com ′r = gvrhopenr ∧ (10)

e(R, V)e(S, g̃)e(g`+1−i,W1)e(g, Z)−1 = 1 ∧ (11)

e(R, T)e(U1, g̃i)e(U2, g̃)ie(g, g̃)−1 = 1 ∧ (12)

e(vc, g̃i)
−1e(w , g̃)e(g1, g̃`)

vr = 1 (13)

Equation 9 and Equation 10 prove knowledge of the openings
of the Pedersen commitments com ′i and com ′r. Equation 11
and Equation 12 prove knowledge of a signature (R,S, T) on
a message (g`+1−i, g̃i, g̃

i). Equation 13 proves that the value
vr in com ′r is equal to the value committed in the position
i of the vector commitment vc. To prove knowledge of the
secret bases (g̃i, g`+1−i,w , R, S, T), the equations need to be
modified as described in Section VI-A.

For a write operation, we need a ZK proof of knowledge that
a vector commitment vc′ is an update of a vector commitment
vc that contains randomness r′ instead of r and value vw
instead of vr at a position i.

Ki, openi, vw, openw, vr, r, r
′,w :

1 = VfCom(parcomi, com ′i, i, openi) ∧
1 = VfCom(parcomw, com ′w, vw, openw) ∧
1 = VC.VerComUpd(par , vc, vc′,w , i, vr, r, vw, r

′)

Let (g , h) be the parameters of the Pedersen commitment
scheme for both parcomi and parcomw. Let (U1, U2, V,W1,
Z) be the public key of the signature scheme. Let (R,S, T)
be a signature on (g`+1−i, g̃i, g̃

i). We describe the proof as
follows.

Ki , openi, vw, openw, vr, r
′ − r, g̃i, g`+1−i,w , R, S, T :

com ′i = g ihopeni ∧ (14)
com ′w = gvwhopenw ∧ (15)

e(R, V)e(S, g̃)e(g`+1−i,W1)e(g, Z)−1 = 1 ∧ (16)

e(R, T)e(U1, g̃i)e(U2, g̃)ie(g, g̃)−1 = 1 ∧ (17)

e(vc, g̃i)
−1e(w , g̃)e(g1, g̃`)

vr = 1 ∧ (18)

vc′/vc = gr
′−r · gvw−vr

`+1−i (19)

Equation 14 and Equation 15 prove knowledge of the openings
of the Pedersen commitments com ′i and com ′w. Equation 16
and Equation 17 prove knowledge of a signature (R,S, T) on
a message (g`+1−i, g̃i, g̃

i). Equation 18 proves that vr is the
value committed in the position i of the vector commitment vc.
Equation 19 proves that vc′ is an update of vc that contains
vw instead of vr at position i. To prove knowledge of the
secret bases (g̃i, g`+1−i,w , R, S, T), the equations need to be
modified as described in Section VI-A.

C. Efficiency Analysis
We analyze the storage, communication, and computation

costs of our instantiation of ΠCD. We summarize them in
Table I.

Storage Cost. P stores the common reference string, which
consists of the parameters of the VC scheme. Its size grows
linearly with the maximum size Nmax of the database. Through-
out the protocol execution, in addition to the common reference
string, P also stores the last update of the vector commitment,
the committed vector, the randomness used to compute that
commitment, and the witnesses computed so far. In conclusion,
the storage cost for P grows linearly with Nmax .
V also stores the common reference string. Although in ΠCD,
V stores the whole common reference string, we observe that
in our instantiation of ΠCD this is not necessary. In practice, V
only needs to store (g , g̃ , h, h̃, g1, g̃`) and the public key (U1,
U2, V,W1, Z) of the signature scheme. These values suffice to
verify the ZK proofs of knowledge for read and write operations.
In addition to the common reference string, V only needs to
store the last update of the vector commitment. Therefore, the
storage cost for V is constant and independent of Nmax .
Communication Cost. In the setup phase, the communication
grows with Nmax because V sends Tblcd to P . This step
can be avoided in practice if Tblcd is initialized to default
values known by P and V . In a read operation, P and V run
a ZK proof of knowledge for Rr. The size of the witness
and of the instance is constant and independent of Nmax .
Therefore, the communication cost of the proof is independent
of Nmax . Similarly, in a write operation, P sends a ZK proof
of knowledge for Rw to V . The size of the witness and
of the instance is also independent of Nmax , and thus the
communication cost of the proof is independent of Nmax .
Computation Cost. To compute a proof for a read operation,
P first needs to compute a VC witness for the position to be
read. If a witness w was not computed before, the computation
cost of this step grows linearly with Nmax . When a witness has
already been computed, the computation cost is independent
of Nmax . Concretely, if the database was not updated since the
moment w was computed, the same witness w can be reused. If
the database was updated, w can be updated with a computation
cost linear in the number of updates, but independent of Nmax .

The remaining steps in the computation of the proof for Rr

are also independent of Nmax . Therefore, after computing a
witness w for a position, the remaining proofs can be computed
with cost independent of Nmax .

A proof for a write operation also requires the computation
of a witness w for the position to be written. The same
optimization used for a read proof can be applied here, i.e.,
if a witness for that position has already been computed, a
new witness can be computed with cost independent of Nmax .
In addition to the witness, P also needs to update the vector
commitment. The computation cost of a vector commitment
update is also independent of Nmax . The remaining steps to
compute the proof for Rw are also independent of Nmax .
Worst/Average/Best Case Computation Cost. The computa-
tion cost depends on the number of positions that P needs to
read or write throughout the protocol execution, as well as on
the number of values in the database that are 0.

In the worst case, P needs to read and/or write all the
positions in the database throughout the protocol execution. In

TABLE I
EFFICIENCY ANALYSIS OF OUR CONSTRUCTION.

Prover Verifier
Param Size (4` + 4)|G|+ (2` + 5)|G̃| 5|G|+ 6|G̃|

Communication Cost
Setup (default Tblcd) const. const.
Setup (V sends Tblcd) Nmax Nmax

Read const. const.
Write const. const.

Computation Cost
Setup (vc computation) Nmax Nmax

R/W: w not computed Nmax const.
R/W: w not updated nupd const.
R/W: w updated const. const.

this case, P computes vc with cost linear in Zp, and computes
Nmax VC witnesses w with a total cost that grows quadratically
with Nmax . Furthermore, if the values stored in the database
are big (e.g. random values in Zp), the computation cost of vc
and each w is negatively affected.

In the best case, P needs to read and/or write a small subset
of positions, and the database is initialized to a vector of
zeroes. In this case, the computation cost for vc is constant
(because the database is initialized to zeroes), and P only
needs to compute VC witnesses w for those positions that are
read/written. Moreover, the cost of computing those witnesses
only increases linearly with the number of non-zero values
stored in the database (instead of linearly with Nmax). Because
only a small subset of positions are written, most values in
the database are 0. Furthermore, if the values written into the
database are small numbers (rather than big or random numbers
in Zp), the computation of each VC witness w is very efficient.

The average case would be somewhere in between the worst
and best cases. I.e., P reads and/or writes a relatively small
number of positions, and most of the values in the database
are 0 or relatively small.
Efficiency measurements. Let |G|, |G̃|, and |Gt| be the bit
length of G, G̃, and Gt, respectively. In the DHE VC scheme,
given the maximum vector length `, the parameters are of size
(4` + 4) · |G| + (2` + 5) · |G̃|. (This includes the signatures
needed for the proofs for relations Rr and Rw.) We recall that
V only needs to store a small part of the parameters, whose
length is 5·|G|+6·|G̃|. A vector commitment and a witness are
of length 1 · |G|. The cost of computing a vector commitment
or a witness increases with Nmax , but the cost of updating
commitments and witnesses increases only with the number
of updated elements.

To compute the UC ZK proofs of knowledge for Rr and Rw,
we use the compiler in [26]. The public parameters of the proof
system contain a public key of the Paillier encryption scheme,
the parameters for a multi-integer commitment scheme and the
specification of a DSA group. The cost of a proof depends on
the number of secret elements in the witness, which is 10 in
Rr and 12 in Rw, and of the number of equations composed by
Boolean ANDs, which is 5 in Rr and 6 in Rw. The computation
cost for P of a Σ-protocol for Rr or for Rw involves one

evaluation of each of the equations and one multiplication
per secret value in the witness. The compiler in [26] extends
a Σ-protocol and requires, additionally, a computation of a
multi-integer commitment that commits to the secret values in
the witness, an evaluation of a Paillier encryption for each of
the secret values in the witness, a Σ-protocol to prove that the
commitment and the encryptions are correctly generated, and
3 exponentiations in the DSA group. The computation cost
for V , as well as the communication cost, also depends on the
number of secret values in the witness and on the number of
equations. Therefore, as the number of secret values in the
witness and of equations is constant in our proofs for Rr and
Rw, the computation and communication cost of our proofs
do not depend on Nmax .

VII. MODULAR DESIGN WITH FCD

We describe how FCD is used as building block together with
FNIC, FRi

ZK and FRv

ZK to describe a hybrid protocol. Consider
as a simple example a protocol where the prover P writes
a value v at position i into the database and later on proves
statements about i and v to the verifier V . P needs to hide i
and v from V when v is written into and when it is read from
the database. The construction works as follows:

1) V runs the com.setup interface of FNIC.
2) V uses the cd.setup interface of FCD to initialize Tblcd,

which is sent to P .
3) P runs the com.setup interface of FNIC.
4) P uses the com.commit interface of FNIC to get commit-

ment and opening (comi , openi) to the position i.
5) P uses the com.commit interface of FNIC to get commit-

ment and opening (comw , openw) to the value v.
6) P uses the cd.write interface of FCD on input the tuple

(comi, i , openi, comw, v, openw) to write the entry [i, v]
into Tblcd. V receives (comi, comw). Thanks to the hiding
property of the commitments computed by FNIC, V is
oblivious to the position and the value being written.

7) V uses the com.validate interface of FNIC to validate that
comi contains the parameters and verification algorithm
used by FNIC.

8) V uses the com.validate interface of FNIC to validate
comw.

9) When P wants to prove a statement about i and v, P
uses the com.commit interface of FNIC to get a fresh
commitment and opening (comi

′, open ′i) to i.
10) P uses the com.commit interface of FNIC to get a fresh

commitment and opening (comr , openr) to v.
11) P uses the cd.read interface of FCD on input (com ′i, i,

open ′i, comr, v, openr) to read the entry [i, v] in Tblcd.
V receives (com ′i, comr). Thanks to the hiding property
of the commitments computed by FNIC, the verifier is
oblivious to the position and the value being read.

12) V uses the com.validate interface of FNIC to validate
com ′i.

13) V uses the com.validate interface of FNIC to validate
comr.

P V

FNIC
1 : (com.setup, sid) -�

2.b : (cd.setup.end, sid ,Tblcd)� FCD
2.a : (cd.setup.ini, sid ,Tblcd)�

3 : (com.setup, sid) -� FNIC

4.a : (com.commit.ini, sid , i)- FNIC

4.b : (com.commit.end, sid , comi , openi)� FNIC

5.a : (com.commit.ini, sid , v)- FNIC

5.b : (com.commit.end, sid , comw , openw)� FNIC

6.a : (cd.write.ini, sid , comi , i , openi , comw , v, openw)- FCD
6.b : (cd.write.end, sid , comi , comw)-

FNIC
7 : (com.validate, sid , comi)-�

FNIC
8 : (com.validate, sid , comw)-�

...
9.a : (com.commit.ini, sid , i)- FNIC

9.b : (com.commit.end, sid , com ′
i , open

′
i)� FNIC

10.a : (com.commit.ini, sid , v)- FNIC

10.b : (com.commit.end, sid , comr , openr)� FNIC

11.a : (cd.read.ini, sid , com ′
i , i , open

′
i , comr , v, openr)- FCD

11.b : (cd.read.end, sid , com ′
i , comr)-

FNIC
12 : (com.validate, sid , com ′

i)-�

FNIC
13 : (com.validate, sid , comr)-�

14.a : (zk.prove.ini, sid ,wit = (i, open ′
i , ...), ins = (com ′

i , ..)- FRi
ZK

14.b : (zk.prove.end, sid , ins)-

15.a : (zk.prove.ini, sid ,wit = (v, openr , ...), ins = (comr , ..)- FRv
ZK

15.b : (zk.prove.end, sid , ins)-

Fig. 4. High-level view on an example construction that uses FCD along with FNIC, FRi
ZK and FRv

ZK .

14) P uses the zk.prove interface of FRi

ZK to prove statements
about i. P sends an instance and a witness such that
com ′i is in the instance, whereas (i, open ′i) are in the
witness. V receives the instance and checks that com ′i in
the instance is equal to the one received from FCD. Then
the binding property of the commitments computed by
FNIC guarantees that the same position i that was input
to FCD is now input to FRi

ZK.
15) Similarly, P uses the zk.prove interface of FRv

ZK to prove
statements about v.

This protocol, which we depict in Figure 4, hides from V
that the commitments (comi, comw) written into the database
and the commitments (com ′i, comr) read from the database
commit to the same entry [i, v]. If this property is not needed,
a simple protocol where P sends to V commitments to i and
v and later on uses FRi

ZK and FRv

ZK to prove statements about
i and v can be used. Therefore, FCD is particularly useful as
building block of protocols where P needs to hide from V the
positions read or written.

VIII. APPLICATIONS OF FCD

FCD can be used as a building block in “commit-and-
prove” two-party protocols, where P commits to her inputs
and subsequently proves in ZK statements about the committed

values. Using FCD allows us to separate the task of storing
values to be used in further ZK proofs from the task of proving
statements in ZK about those values. Thanks to that, the design
of the protocol is more modular, which leads to a simpler
security analysis.

FCD is particularly appealing for protocols that need to hide
the positions read or written from V . A simple example of
such a protocol is an OR proof. Our main application of FCD

is its use as building block in protocols where V needs to
obtain statistics about what P proves in zero-knowledge. To
showcase this application, we describe a novel task we refer
to as zero-knowledge counting, and we describe its application
to privacy-preserving e-commerce and to privacy-preserving
location sharing services. Moreover, we show that FCD can
be used for gathering other types of statistics beyond zero-
knowledge counting. Concretely, we discuss the application
of FCD to privacy-preserving billing protocols. As described
below, our applications of FCD to obtaining statistics are very
efficient because they mirror the best case for computation cost
described in VI-C.

OR proofs. In the full version [23], we describe how FCD can
be used to compute ZK proofs for OR relations, i.e., relations
where P proves that at least one value in a database fulfills

a statement, while hiding from V which of the values fulfills
it. In a nutshell, the database of values for the OR relation is
written into Tblcd. After that, P simply reads one of the values
from Tblcd and uses FR

ZK to prove in ZK that this value fulfills
the statement. FNIC is used to ensure that FR

ZK receives the
input read from FCD. V learns neither what value is read nor
the position where it is stored.

The protocol for an OR proof is more efficient when the
values in Tblcd are known by both P and V . In this case, V
sets up the database, and then P performs a read operation.

When Tblcd needs to be hidden from V , if the database size
is Nmax , P needs to perform Nmax write operations to write
the database values into Tblcd. Therefore, this case is similar to
the worst case for computation cost described in Section VI-C.
P needs to compute a VC witness for each of the database
positions with a computation cost that grows quadratically with
Nmax . Still, this cost can be amortized if the number of read
operations performed subsequently is big compared to Nmax .
Zero-Knowledge counting. In the full version [23], we
describe the use of FCD to construct a protocol for “zero-
knowledge counting”, which roughly speaking is about counting
the number of times each possible witness is used in the
computation of different ZK proofs. ZK counting is a task
parameterized by a relation R. For the possible witness values
wit such that, for any instance ins , (wit , ins) ∈ R, ZK
counting consists in counting how many times each witness
value wit was used by P . We define an ideal functionality
FR

ZKC for ZK counting that stores one counter for each possible
witness value. When P sends (wit , ins) ∈ R, FR

ZKC increments
the counter for the witness value wit . At this stage, no
information about the witness used is revealed to V , but later
FR

ZKC allows P to disclose to V the value of the counter for
a given witness.

We construct ZK counting by using FCD as a building block.
Basically, the array stored by FCD stores the counters for each
of the witness values. Each position in the array is associated
with one of the witness values. FRc

ZK is used to prove in ZK that
a counter is correctly incremented. FNIC is used to guarantee
that equality between the counter read from FCD and the
one input to FRc

ZK, and also to guarantee equality between the
updated counter input to FRc

ZK and the counter written into
FCD.

ZK counting is useful for the collection of aggregate
statistics about P . We describe two applications of ZK counting
to privacy-preserving e-commerce and to privacy-preserving
location-sharing services. In this applications, the witnesses
represent types of items for sale and locations respectively, and
the counters represent the number of times users purchased
an item or checked-in at a location. Therefore, for privacy
protection, P needs to hide both witnesses and counters from
V . P also needs to prove in ZK statements about them. For
example, P must prove that she increments the counter for the
item that she purchases.
Privacy-Preserving E-Commerce. Priced oblivious transfer
(POT) is a protocol between a seller and a buyer that can
be applied to e-commerce of digital goods. The seller sells

messages (m1, . . . ,mN). The prices of the messages are (p1,
. . . , pN). At each purchase, the buyer chooses σ ∈ [1, N] and
obtains message mσ . The seller does not learn any information
about σ, but is guaranteed that the buyer does not learn
any information about messages different from mσ. Some
constructions of POT use zero-knowledge proofs as building
block [11], [30]. At each purchase, a buyer uses σ as witness in
order to prove in zero-knowledge that she purchases message
mσ and pays the price pσ .

POT schemes use a prepaid mechanism [2], [11], [30]. The
buyer pays an initial deposit to the seller. When the buyer
purchases mσ , the buyer subtracts the price pσ from the deposit
in such a way that the seller learns neither pσ nor the new
value of the deposit.

Recently, in [31], FCD is used as building block in the
construction of a POT scheme that allows the seller to obtain
aggregate statistics about the purchases of a buyer. Seller and
buyer execute multiple POT protocols where each of the indices
[1, N] is associated with a type of digital content. FCD is
used to store a database of N counters, where the counter at
position i ∈ [1, N] counts the number of times the buyer has
purchased messages associated with index i. At each purchase,
the corresponding counter is incremented. We remark that
hiding the position of the counter that is updated is crucial to
maintain the privacy properties of POT. FCD is also used to
store the buyer’s deposit, which is updated at each purchase.

As described in [31], FCD allows the design of the first POT
protocol where the seller obtains statistics about the buyer’s
purchases. Aggregate statistics about multiple buyers are also
possible by using a secure multiparty computation protocol on
input the committed database of each of the buyers.

As explained in [31], the use of FCD introduces little over-
head in comparison to previous POT protocols [11], [30] that
do not gather statistics. The reason is that previous protocols
already needed a database (in the form of a commitment) to
store and update the deposit. With ΠCD the database also stores
the counters N , but the communication cost and amortized
computation cost of reading and writing the database is
independent of N . Furthermore, this application of FCD mirrors
the best case for computation cost described in Section VI-C.
Namely, from the probably large number N of messages sold
by the seller, the average buyer is likely to purchase a small
subset, so only a small subset of positions is read and written.
Additionally, the counters are initialized to zero.
Privacy-Preserving Location-Sharing Services. In location-
sharing services, a user checks in at a venue (e.g., a restaurant
or shop) and reports her location to the service provider. The
service provider sends the user’s location to the user’s registered
friends.

In a privacy-preserving location-sharing service, a user
encrypts her location and sends it to the service provider [4].
The service provider forwards the encrypted location to the
user’s registered friends, but does not learn the location himself.
Still, the service provider requires the user to prove in ZK
that the encrypted location is a venue registered with the
service provider. There are different ways this ZK proof can

be computed. For example, the service provider can issue a
list of signatures where each signature signs a registered venue.
The user then picks the signature that signs the venue where
she checks in and proves in ZK that the encrypted message
equals a message signed by the service provider.

In this setting, FCD can be used to allow the service provider
to obtain aggregate information about the venues where the
user checks in. Each time a user checks in at a venue, the user
uses the identifier of the venue as witness in the ZK proof.
By using FCD, the protocol can be augmented to count the
number of times each of the venues’ identifiers is used as
witness by the user, and to eventually reveal to the service
provider aggregate data about the venues where the user checks
in. This could be used by users, e.g., to obtain discounts at
venues where they have checked-in a certain number of times.
We remark that this application of FCD is possible thanks to
the fact that, when a counter is incremented, FCD hides from
the provider both the counter value and the witness associated
to that counter.

In terms of efficiency, the communication cost and amortized
computation cost of our construction for FCD are independent
of N . Moreover, this application of FCD also mirrors the best
case for computation cost, i.e., the average user is likely to
check-in at a small subset of the probably large number N of
venues offered by the provider, and the counters are initialized
at 0.
Privacy-Preserving Billing. In privacy-preserving billing [3],
a meter measures the consumption of a service by a user and
outputs signed meter readings. The service provider establishes
a tariff policy. To protect user privacy, the user computes the
price to be paid for all the meter readings in a billing period
and proves in ZK that the price is correct according to the
signed meter readings and the tariff policy.
FCD can be used in this setting to allow the provider to

get aggregate statistics about user consumption and to enable
history-dependent policies. For example, the provider can offer
discounts to users whose consumption does not exceed a
threshold during e.g. 90 per cent of time on high-demand
periods. Using FCD, the user can store her consumption
readings in the database at positions that represent the time of
consumption, and then prove in ZK that she fulfills the policy
without disclosing the times of consumption used.

IX. RELATED WORK

Several cryptographic primitives allow us to represent a
number of values in a much smaller cryptographic artifact
and later prove knowledge of a number represented in the
artifact. We summarize these primitives and compare them to
our solution. In the full version [23], we give a more detailed
review of those primitives.
Commitments and ZK proofs of shuffles. Many protocols
(e.g. [1], [10], [11]) use commitment schemes to maintain
a database between a prover P and a verifier V . However,
commitments on their own are not adequate to realize FCD

because they do not allow P to hide the positions read from
or written into the database. ZK proofs of shuffles [14] can be

used to shuffle the commitments in order to hide the positions
read or written. A construction using commitments along with
proofs of shuffles could realize FCD, but less efficiently than
a construction based on VCs.
Accumulators. A cryptographic accumulator [32] allows one
to represent a set X succinctly as a single accumulator value A.
It also provides a method to prove succinctly that an element x
belongs to X to any party that holds A. This method consists in
computing a witness W whose size is independent of the size
|X| of the set. Soundness (or collision-freeness) guarantees
that it is infeasible to prove that x ∈ X if x /∈ X . The
main difference between VCs and accumulators is that, while
accumulators allow for committing to a set, VCs allow for
committing to a vector of messages, where each message is
committed at a specific position. This allows the construction
of an updatable committed database where it is also possible to
prove statements about the position where a message is written
or read.
Vector Commitments. In [7], a definition of non-hiding VCs
with updates is given. To obtain hiding VCs, it is suggested to
compose a non-hiding VC scheme with a standard commitment
scheme. Two constructions of non-hiding VCs are given based
on the CDH and RSA assumptions. In [6], a construction of
mercurial VCs based on the Diffie-Hellman Exponent (DHE)
assumption is proposed. This construction leads to constructions
of non-hiding and hiding VCs based on DHE, which were
used in, e.g., [33]–[35].

Our committed database uses as building block any hiding
VC scheme with updates, along with ZK proofs of knowledge
that a vector component is being read or written. To instantiate
our committed database, we use a construction of hiding VCs
with updates based on the DHE assumption along with the
corresponding ZK proofs for reading and writing. In this
construction, the size of the public parameters is linear in
the maximum vector length. In comparison, in a hiding VC
construction from CDH, the size of the public parameters
would be quadratic (the advantage would be to use a more
standard assumption).

Recently, in [36], subvector commitments (SVC) are pro-
posed. In SVC, a commitment can be opened to a set of
positions such that the size of the witness does not depend on
the size of the set. A construction for SVC secure under the
cube Diffie-Hellman assumption is given, in which the public
parameter size grows quadratically with the vector length. FCD

and our applications for it in Section VIII only require to
open one vector component at a time. SVC can be used to
construct a variant of FCD where several positions are read or
written simultaneously. Nevertheless, we note that, despite that
SVC provides witnesses of size independent of the number
of positions open, the entire witness of read or write proofs
would still grow with the number of positions, and thus the
efficiency of those proofs would not be independent of the set
size. In [36], [37], constructions for SVC based on groups of
hidden order are proposed that are better suited for bit vectors.
Polynomial and functional commitments. Polynomial com-
mitments allow a committer to commit to a polynomial and

open the commitment to an evaluation of the polynomial.
They can be used as VCs by committing to a polynomial that
interpolates the vector to be committed. In [12], a construction
of polynomial commitments from the SDH assumption is
proposed, which has the disadvantage that efficient updates
cannot be computed without knowledge of the trapdoor. A
further generalization of VCs and polynomial commitments
are functional commitments [13], [36].
Zero-Knowledge Data Structures. Zero-Knowledge Sets
(ZKS) [15] allow a prover P to commit to a set X and
to subsequently prove to a verifier V (non-)membership of
an element x in X . Zero-Knowledge Databases (ZKDB) are
similar to ZKS but each element x ∈ X is associated with a
value v, in such a way that a proof that x ∈ X reveals v to V .
Both ZKS and ZKDB are two-party protocols between P and
V . Security for V requires that an adversarial P is not able to
prove x ∈ X if x /∈ X (and vice versa), while zero-knowledge
requires that proofs of (non-)membership reveal nothing else
beyond (non-)membership, not even the size of the set. In [19],
a construction for zero-knowledge lists (ZKL) is proposed,
where a list is defined as an ordered set. Updatable ZKDB were
first proposed in [18]. In [7], a construction for updatable ZKDB
based on updatable VCs and trapdoor mercurial commitments
is proposed.

There are several differences between our committed
database and previous work. First, our committed database
is updatable, which was only considered in [7], [18]. Second,
our committed database is oblivious. P proves in ZK that a pair
of commitments commit to a position and value that are stored
in the database. In contrast, in previous constructions, P reveals
a position and a value along with a proof that the position and
the value are stored in the database. The obliviousness property
allows our committed database to be used as building block
in applications that protect the privacy of the P , because P
could choose to open the commitments, but could also prove
statements in ZK about the committed position and value
without revealing them.

From a definitional point of view, security definitions given
in previous works are not in the UC model and a mechanism
to integrate modularly ZKS or ZKDB as building blocks of
other protocols is not given. Our functionality for a committed
database allows the security analysis of ZK data structures in
a composable framework, which will facilitate the modular
design and analysis of protocols that use them as a building
block.

Another key difference is that we do not require the size of
the database to be hidden. Thanks to that, our construction for a
committed database is more efficient than existing constructions
for ZKS or ZKDB. This relaxation of the ZK property is not
relevant for our applications for a committed database. In this
respect, our construction for a committed database is similar to
the constructions for “nearly” ZKS and ZKDB given in [12].
However, this “nearly” ZKS and ZKDB constructions based on
the SDH assumption are not updatable and, moreover, extending
them with efficient updates is not possible without knowledge
of the trapdoor. In fact, as pointed out in [38], when hiding

the size of the database is required, for any construction that
uses a non-interactive commitment phase (as is the case in
the ZKS and ZKDB constructions cited above), black-box
extraction of the database by the simulator in the security
proof is not possible. In [38], a secure committed database
where the database size is hidden is defined in the UC model,
and a construction that uses an interactive commitment phase
is proposed. As a consequence of needing to hide the database
size, the construction in [38] is also less efficient than ours.
Also, their ideal functionality does not facilitate modular design,
and it outputs position-value pairs instead of commitments to a
position and to a value, which hinders its use as building block
in protocols that need to protect the privacy of the prover.

In [39], a functionality for a database such that both prover
and verifier know the database contents is proposed. The
verifier can write information into the database, while the
prover performs a read operation similar to the one of FCD.
Non-hiding VCs are used to construct the functionality. In [40],
a variant of the functionality in [39] that interacts with multiple
provers and provides unlinkable read operations is defined and
constructed by using SVCs.
ZK proofs for large datasets. In most ZK proofs, the
computation and communication cost grow linearly with the
size of the witness, which is inadequate for proofs about
datasets M of large size |M |. However, there are techniques
that attain costs sublinear in |M |. Probabilistically checkable
proofs [41] achieve verification cost sublinear in |M |, but the
cost for the prover is linear in |M |. In succinct non-interactive
arguments of knowledge [42], verification cost is independent
of |M |, but the cost for the prover is still linear in |M |.

ZK proofs for relations described as ORAM programs [8],
[9] involve an initialization phase in which the prover commits
to M . In [8], the cost for the prover is linear in |M |, whereas
the cost for the verifier is independent of |M |. After the
initialization phase, many proofs can be computed about M
whose cost is sublinear (proportional to the runtime of the
ORAM program) both for the prover and for the verifier.
The protocol in [8] uses a non-programmable random oracle,
which is key for achieving constant cost for the verifier in the
initialization phase. Any protocol in the standard model would
involve communication cost linear in M to allow knowledge
extraction.

To compare our protocol with [8], we consider the setting of
an OR proof when the database must be hidden from V , i.e.,
P writes M into Tblcd, and after that reads values in M from
Tblcd. Assuming the worst case of all non-zero values in M ,
the cost of writing M into Tblcd is quadratic in |M | for Tblcd
and linear in |M | for V . However, after that the cost of each
read operation is independent of |M | for both P and V . Our
protocol provides thus better asymptotic amortized cost than
the state of the art protocol in [8] when the number of read
operations is big compared to |M |. (In the initialization phase,
the cost for the verifier is linear in |M | which is unavoidable
when aiming for security in the standard CRS-hybrid model.)
We note that [8] does not provide a concrete instantiation or
efficiency analysis of their protocol, so we do not compare it

with the instantiation of our protocol in Section VI.

X. CONCLUSION AND FUTURE WORK

We have made a couple of design choices in FCD. For
instance, all parties are authenticated and the functionality
implies interaction between P and V . Our functionality could
be extended, depending on the requirements of potential
applications. For instance, a non-interactive functionality would
allow for applications with multiple verifiers. Another extension
of FCD could provide pseudonymity or anonymity, which
would be suitable for applications such as attribute-based
credentials [10]. FCD is suitable for protocols in which a one-
dimensional array is adequate to implement the database. FCD

could be extended to more complex updatable data structures,
such as multi-dimensional arrays, lists, trees, and graphs. Some
of these would require operations beyond read and write.
Acknowledgements. Alfredo Rial is supported by the Luxem-
bourg National Research Fund (FNR) CORE project “Stateful
Zero-Knowledge” (Project code: C17/11650748).

REFERENCES

[1] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai, “Universally
composable two-party and multi-party secure computation,” in STOC
2002, pp. 494–503.

[2] W. Aiello, Y. Ishai, and O. Reingold, “Priced oblivious transfer: How to
sell digital goods,” in EUROCRYPT 2001, pp. 119–135.

[3] A. Rial and G. Danezis, “Privacy-preserving smart metering,” in WPES
2011, pp. 49–60.

[4] M. Herrmann, A. Rial, C. Dı́az, and B. Preneel, “Practical privacy-
preserving location-sharing based services with aggregate statistics,” in
WiSec’14, pp. 87–98.

[5] J. Camenisch, M. Dubovitskaya, and A. Rial, “UC commitments for
modular protocol design and applications to revocation and attribute
tokens,” in CRYPTO 2016, pp. 208–239.

[6] B. Libert and M. Yung, “Concise mercurial vector commitments and
independent zero-knowledge sets with short proofs,” in TCC 2010, pp.
499–517.

[7] D. Catalano and D. Fiore, “Vector commitments and their applications,”
in PKC 2013, pp. 55–72.

[8] P. Mohassel, M. Rosulek, and A. Scafuro, “Sublinear zero-knowledge
arguments for RAM programs,” in EUROCRYPT 2017, pp. 501–531.

[9] Z. Hu, P. Mohassel, and M. Rosulek, “Efficient zero-knowledge proofs
of non-algebraic statements with sublinear amortized cost,” in CRYPTO
2015, pp. 150–169.

[10] J. Camenisch and A. Lysyanskaya, “An efficient system for non-
transferable anonymous credentials with optional anonymity revocation,”
in EUROCRYPT 2001, pp. 93–118.

[11] A. Rial, M. Kohlweiss, and B. Preneel, “Universally composable adaptive
priced oblivious transfer,” in Pairing 2009, pp. 231–247.

[12] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-size commitments
to polynomials and their applications,” in ASIACRYPT 2010, pp. 177–194.

[13] B. Libert, S. C. Ramanna, and M. Yung, “Functional commitment
schemes: From polynomial commitments to pairing-based accumulators
from simple assumptions,” in ICALP 2016, pp. 30:1–30:14.

[14] M. Chase, M. Kohlweiss, A. Lysyanskaya, and S. Meiklejohn, “Malleable
proof systems and applications,” in EUROCRYPT 2012, pp. 281–300.

[15] S. Micali, M. O. Rabin, and J. Kilian, “Zero-knowledge sets,” in FOCS
2003, pp. 80–91.

[16] M. Chase, A. Healy, A. Lysyanskaya, T. Malkin, and L. Reyzin,
“Mercurial commitments with applications to zero-knowledge sets,” J.
Cryptology, vol. 26, no. 2, pp. 251–279, 2013.

[17] D. Catalano, D. Fiore, and M. Messina, “Zero-knowledge sets with short
proofs,” in EUROCRYPT 2008, pp. 433–450.

[18] M. Liskov, “Updatable zero-knowledge databases,” in ASIACRYPT 2005,
2005, pp. 174–198.

[19] E. Ghosh, O. Ohrimenko, and R. Tamassia, “Zero-knowledge authen-
ticated order queries and order statistics on a list,” in ACNS 2015, pp.
149–171.

[20] E. Ghosh, M. T. Goodrich, O. Ohrimenko, and R. Tamassia, “Verifiable
zero-knowledge order queries and updates for fully dynamic lists and
trees,” in SCN 2016, pp. 216–236.

[21] R. Ostrovsky, C. Rackoff, and A. D. Smith, “Efficient consistency proofs
for generalized queries on a committed database,” in ICALP 2004, pp.
1041–1053.

[22] S. Goldberg, M. Naor, D. Papadopoulos, L. Reyzin, S. Vasant, and A. Ziv,
“NSEC5: provably preventing DNSSEC zone enumeration,” in NDSS
2015, 2015.

[23] J. Camenisch, M. Dubovitskaya, and A. Rial, “Concise uc zero-
knowledge proofs for oblivious updatable databases,” 2019. [Online].
Available: http://hdl.handle.net/10993/39423

[24] R. Canetti, “Universally composable security: A new paradigm for
cryptographic protocols,” Cryptology ePrint Archive, Report 2000/067,
2000, https://eprint.iacr.org/2000/067.

[25] ——, “Universally composable security: A new paradigm for crypto-
graphic protocols,” in FOCS 2001, pp. 136–145.

[26] J. Camenisch, S. Krenn, and V. Shoup, “A framework for practical
universally composable zero-knowledge protocols,” in ASIACRYPT 2011,
pp. 449–467.

[27] S. Goldwasser, S. Micali, and R. L. Rivest, “A digital signature scheme
secure against adaptive chosen-message attacks,” SIAM J. Comput.,
vol. 17, no. 2, pp. 281–308, 1988.

[28] M. Abe, J. Groth, K. Haralambiev, and M. Ohkubo, “Optimal structure-
preserving signatures in asymmetric bilinear groups,” in CRYPTO 2011,
pp. 649–666.

[29] T. P. Pedersen, “Non-interactive and information-theoretic secure verifi-
able secret sharing,” in CRYPTO ’91, pp. 129–140.

[30] J. Camenisch, M. Dubovitskaya, and G. Neven, “Unlinkable priced
oblivious transfer with rechargeable wallets,” in FC 2010, pp. 66–81.

[31] A. Damodaran, M. Dubovitskaya, and A. Rial, “UC priced oblivious
transfer with purchase statistics and dynamic pricing,” in INDOCRYPT
2019, pp. 273–296.

[32] J. C. Benaloh and M. de Mare, “One-way accumulators: A decentralized
alternative to digital sinatures (extended abstract),” in EUROCRYPT ’93,
pp. 274–285.

[33] B. Libert, T. Peters, and M. Yung, “Group signatures with almost-for-free
revocation,” in CRYPTO 2012, pp. 571–589.

[34] M. Izabachène, B. Libert, and D. Vergnaud, “Block-wise p-signatures
and non-interactive anonymous credentials with efficient attributes,” in
Cryptography and Coding - 13th IMA International Conference, IMACC
2011, pp. 431–450.

[35] M. Kohlweiss and A. Rial, “Optimally private access control,” in WPES
2013, pp. 37–48.

[36] R. W. F. Lai and G. Malavolta, “Subvector commitments with application
to succinct arguments,” in CRYPTO 2019, pp. 530–560.

[37] D. Boneh, B. Bünz, and B. Fisch, “Batching techniques for accumulators
with applications to iops and stateless blockchains,” in CRYPTO 2019,
pp. 561–586.

[38] M. Chase and I. Visconti, “Secure database commitments and universal
arguments of quasi knowledge,” in CRYPTO 2012, pp. 236–254.

[39] A. Damodaran and A. Rial, “UC updatable databases and applications,”
in AFRICACRYPT 2020, pp. 66–87.

[40] ——, “Unlinkable updatable databases and oblivious transfer with access
control,” in ACISP 2020, pp. 584–604.

[41] J. Kilian, “A note on efficient zero-knowledge proofs and arguments
(extended abstract),” in STOC 1992, pp. 723–732.

[42] R. Gennaro, C. Gentry, B. Parno, and M. Raykova, “Quadratic span
programs and succinct nizks without pcps,” in EUROCRYPT 2013, pp.
626–645.

