
Concavity, Core-concavity, Quasiconcavity: A
Generalizing Framework for Entropy Measures
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Abstract—We present a new generalising framework for condi-
tional entropies, considering a limit construction over sequences
of core-concave entropies, and prove that quasiconcave functions
are the set of such limits. This generalising framework subsumes
recently proposed frameworks for entropies in quantitative infor-
mation flow, including entropies whose conditional form reflects
the expected leakage and the leakage in the worst-case scenario.
Thanks to the properties of the limits it is also shown that several
important information theoretical properties can be proven for
the generalised entropies satisfying the axioms.

Index Terms—Concavity, Core-concavity, Quasiconcavity, G-
concavity, Concavification, Entropy, Uncertainty, Quantitative
Information Flow

I. INTRODUCTION

In recent years there has been interest in axiomatic ap-
proaches for information leakage. in CSF 2016 Alvim et al.
[1] proposed a set of axioms that characterise reasonable prop-
erties that vulnerability measures might satisfy; in particular
both axioms for prior vulnerability and for posterior vulner-
ability are considered together with axioms establishing the
relationship between prior and posterior vulnerability. Their
elegant framework establishes some fundamental connection:
in particular under axiom averaging for posterior vulnerability,
they prove the equivalence of the following axioms: convexity,
monotonicity (i.e., non-negativity of leakage), and the data-
processing inequality.1

In the same work [1] the authors also provided an al-
ternative axiomatization where the posterior vulnerability is
not averaging but a max. In this case, under max axiom
for posterior vulnerability they prove the equivalence of the
following axioms: quasiconvexity, monotonicity, and the data-
processing inequality.

One limitation of this seminal work is information theoret-
ical, i.e. while it captures measures of information based on
gain functions, it fails to capture most known entropies, like
for example most Rényi entropies. This limitation has been
addressed in the work [3] by Américo et al. which introduced
an axiomatization based on core-concavity [4], [5], which is a
generalization of concavity which subsumes most entropies
from the literature. In [3] under a variation of the axiom
averaging called η-averaging for posterior vulnerability, the

1An extended journal version of this work has been later published in [2].

following equivalence are proven: core-concavity, monotonic-
ity, and the data-processing inequality. One interesting aspect
of the axiomatization in [3] is that it goes well beyond the
information leakage community and it provides a foundational
work for the wider information theory community. In fact,
from that axioms several well-known information theoretical
properties of Shannon entropy have been generalised, for
example Shannon perfect secrecy theorem and the celebrated
Fano inequality.

Noteworthy is that while the averaging axioms from [1] are
trivially a particular case of the axioms in [3], the max axioms
case from [1] was still a distinct axiomatization.

The main contribution of this work is to close this gap,
that is to present a framework generalising all axiomatizations
in both [1] and [3]. This contribution is hence unifying
previous axiomatic efforts, but it goes beyond this. In fact
by now including quasiconcavity in the same framework as
concavity and core-concavity it also shed deep insights, so
far unknown, about the information theoretical properties of
quasiconcavity. For example Shannon perfect secrecy theorem
and the generalized Fano inequality are proven to hold for
quasiconcave functions. The proofs of these generalization are
based on properties of limits and the framework itself is a limit
construction over sequences of core-concave entropies.

This work also connects foundation of information leakage
with several works in convex analysis, optimization and mi-
croeconomics, where mathematicians have investigated when
quasiconcave functions can be “concavified”, i.e. when given a
quasiconcave function f(x), does there exist a monotonically
increasing function g such that g(f(x)) is concave. The prob-
lem is of interest because if this is the case then one can use
convex optimisation techniques to solve optimisation problems
for quasiconcave functions. The question was originally asked
by De Finetti [6] and a comprehensive answer has been
recently provided by Connell and Rasmussen [7], [8]. We
adapt several results from the concavification literature to
our limit construction. The limit construction also allows for
posteriors other than the ones considered in the literature so
far. An example, η-geometric mean is presented in this work.
Again properties of entropies with such posteriors are derived
by properties of limits.

Finally another valuable contribution of this work is to pro-
vide an answer to an order theoretical problem of max based
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vulnerabilities arising in the recent work by Chatzikokolakis
et al. [9].

A. Main Contributions and Outline

The following is an outline of the paper, with a summary
of the main contributions.
• Section II introduces notation and some preliminaries re-

garding concave and Schur/quasi/core-concave functions,
and Section III presents the necessary background in
quantitative information flow (QIF) and on the axiom-
atization of conditional entropies in the literature.

• Section IV introduces limit entropies, a new generalising
framework of entropies, and proves that the proposed
conditional form is well defined. We also prove that the
unconditional form of this family coincide with the set
of continuous quasiconcave functions.

• In Section V we show that the family of limit entropies
subsume the aforementioned generalising families from
the literature, being therefore a framework that com-
pletely captures all conditional entropies used in QIF.

• Section VI proves that all limit entropies satisfy the im-
portant properties Data Processing Inequality (DPI) and
Conditioning Reduces Entropy (CRE), and that symmetric
limit entropies respect weaker versions of some other
well-known information-theoretical properties.

• In Section VII we introduce a new conditional form based
on a generalisation of the geometric mean. We prove
that concave and core-concave entropies that have this
conditional form are limit entropies, and therefore satisfy
all the properties proven in Section VI.

• Section VIII discusses the Blackwell-Sherman-Stein The-
orem for limit entropies, and also uses the developed
framework to provide some insight into a intriguing
question raised by a recent work in the area [9].

• Finally, Section IX discusses some related work in the
literature, and Section X concludes and discusses future
work.

II. MATHEMATICAL PRELIMINARIES

In this paper, unless stated otherwise, we assume all func-
tions to be continuous real valued functions over the (n− 1)
dimensional simplex ∆n, which is defined as

∆n =

{
(p1, . . . , pn) ∈ Rn |

∑
i

pi = 1 and ∀i, pi ≥ 0

}
.

Given p ∈ ∆n, we use pi to denote the ith entry of p.

A. Uniform Convergence and Closure.

In this section we define convergence of real-valued func-
tions over ∆n, which is a fundamental concept for the results
in this paper. For a complete treatment, we refer the reader to
Chapter 7 of [10].

Definition 1: The sequence of functions {fi} is said to
converge pointwise to f if for all p ∈ ∆n and ε > 0 there
is N ∈ N such that

j > N =⇒ |fj(p)− f(p)| < ε;

and it is said to converge uniformly to f if for all ε > 0 there
is N ∈ N such that for all p ∈ ∆n

j > N =⇒ |fj(p)− f(p)| < ε.

If {fi} converges pointwise to f , then, no matter how large
m is, there might be a p such that the distance |fm(p)−f(p)|
is arbitrarily large. Uniform convergence, on the other hand,
guarantees that for large m, fm is “close” to f in the entire
domain.

For our purposes, the most fundamental result about uni-
formly convergent sequences is that they preserve continuity.
In our setting, this result can be stated as.

Theorem 1 ([10, Theorem 7.12]): If {fi} is a sequence of
continuous functions that converges uniformly to f , then f is
continuous.

To see why pointwise convergence is not a sufficiently
strong assumption for Theorem 1, consider the sequence of
functions over ∆2 given by fi(p1, p2) = i−p1 . Each fi is
continuous for all i, but the sequence converges pointwise to
the discontinuous function

f(p1, p2) =

{
1, if p1 = 0,

0, if p1 > 0.

Notice that the convergence is not uniform: let ε = 1/2. For
all i there is p1 > 0 such that fi(p1, p2) = i−p1 ≥ 1/2, and
hence |fi(p1, p2)− f(p1, p2)| ≥ 1/2.

Given a set of functions, it is natural to consider all functions
that can be obtained as limits of the functions of that set. This
is what is called the uniform closure.

Definition 2 ([10]): Let A be a set of functions. The uniform
closure of A is the set of all functions that are limits of
uniformly convergent sequences of functions in A.

B. Schur/quasi/core-concavity

A function h : ∆n → R is concave if, ∀p, q ∈ ∆n and
λ ∈ (0, 1),

h(λp+ (1− λ)q) ≥ λh(p) + (1− λ)h(q). (1)

If the inequality above is strict for all p, q and λ, f is strictly
concave.

A function h is quasiconcave if, ∀p, q ∈ ∆n and λ ∈ (0, 1),

h(λp+ (1− λ)q) ≥ min(h(p), h(q)). (2)

And analogously, h is strictly quasiconcave if the inequality
above is strict for all distinct p, q and all λ ∈ (0, 1). Notice
that (1) implies (2), and thus all concave functions are quasi-
concave.

Contrary to concave functions, quasiconcave functions may
have local maxima that are not global maxima — i.e., there
might be a open neighbourhood U ⊂ ∆n and a p ∈ U such
that ∀p′ ∈ U , h(p) ≥ h(p′); but h(p) < maxq∈∆n h(q). This
might be undesirable, specially for optimization problems [11].

Thus, it is sometimes interesting to consider semistrict
quasiconcavity [12, Definition 3.11] which, under continuity
assumptions, is a equivalent condition to all local optima being
global optima [12, Theorem 3.37].



The function h is semistrictly quasiconcave if for all p, q
and all λ ∈ (0, 1).

h(p) > h(q) =⇒ h(λp+ (1− λ)q) > h(q). (3)

It is immediate that (1) implies (3), thus all concave
functions are semistrictly quasiconcave. However, notice that
(3) does not necessarily imply (2), and there are indeed
discontinuous semistrictly quasiconcave functions that are not
quasiconcave [13, Remark 2.4]. However, continuous func-
tions are more well-behaved.2

Proposition 1 ( [13, Theorem 2.5]): If h is semistrictly
quasiconcave and continuous, then it is quasiconcave.

Concavity seems like a natural requirement for entropy
measures, and in some circumstances it is equivalent to some
intuitively-desirable properties [2] w.r.t. posterior entropies,
which will be discussed in the next section. However, many
widely-used entropies in the literature — such as the Rényi
entropies [14] — are not concave. This led to the proposal of
core-concave entropies [5], a wider class of entropies that still
satisfy said intuitively-desirable properties [3].

Besides entropies, the concept of core-concave is also of
interest in the study of generalised concave functions, under
the name of G-concavity [12, Chapter 8].

Definition 3: A function h : ∆n → R is core-concave if
there are functions η, f such that:
• f : ∆n → R is a continuous and concave function,
• η : Range(f) → R is a strictly increasing continuous

function,3

• for all p ∈ ∆n, h(p) = η(f(p)).
As (3) holds for any concave function f , and the inequality

is preserved if we apply an increasing function η to both sides,
we obtain the following result.

Proposition 2 ( [12, Proposition 8.1]): All core-concave
functions are semistrictly quasiconcave.
As we will see on Section II-C, the converse of the above
result is not true: not all semistrict quasiconcave (and hence,
not all quasiconcave) functions are core-concave.

Abbreviating concavity by c.v. for and quasiconcavity by
q.c.v., the discussion in this section so far may be summarized
as follows, considering only continuous functions.

c.v =⇒ core−c.v. =⇒ semistrictly q.c.v. =⇒ q.c.v.

Another interesting concept related to concave functions is
Schur-concavity, which however is of interest only for sym-
metric functions — i.e., functions for which h(p1, . . . , pn) =
h
(
pφ(1), . . . , pφ(n)

)
for any permutation φ : {1, . . . , n} →

{1, . . . , n}.
Given p, q ∈ ∆n, p majorizes q if for all k ≤ n,

∑k
i=1 p[i] ≥∑k

i=1 q[i], where (p[1], . . . , p[n]) and (q[1], . . . , q[n]) are non-
decreasing rearrangements of p and q. A function h is said to
be Schur-concave iff h(p) ≤ h(q) whenever p majorizes q. As
any symmetric quasiconcave function is Schur-concave [15,

2Actually, as stated in [13], upper semicontinuity is sufficient.
3Notice that, being f a continuous function over a compact, Range(f) is

a closed interval.

Chapter 3.C], an immediate consequence of Proposition 2 is
the following:

Corollary 1: Any symmetric core-concave function is
Schur-concave.
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Fig. 1. A quasiconcave but not semistrictly quasiconcave function. Notice
the region between the grey dotted lines, for which the function is constant.
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Fig. 2. Function h given in (4), a semistrictly quasiconcave but not core-
concave function. The red dotted lines are the tangents of h at p1 = γ−1

and p1 = 3γ−1.

C. Are All Semistrictly Quasiconcave Functions Core-
concave?

As will be discussed in Section III, quasiconcave functions
and core-concave functions play a pivotal role in QIF, as
unconditional forms of two different generalising families
of information measures [2], [3]. As the main objective of
this paper is unifying these two families, it is paramount to
establish what is the relationship between core-concavity and
quasiconcavity.

It is clear that there are quasiconcave functions that are
not core-concave: if there is some open neighbourhood U ⊂
∆n where h is constant, but not maximal, h cannot be core-
concave: in this case, for any increasing η, η−1◦h would have
a plateau at a non-maximal point, and hence η−1◦h would not



be concave (See Figure 1). However, it is not obvious whether
all semistrictly concave functions are core-concave.

This question has received particular attention in the field
of microeconomics, where quasiconcavity of utility functions
appears naturally as a necessary and sufficient requirement for
rational agents that behave in some intuitively-reasonable ways
[16, Lecture 4].

This question was studied by Bruno de Finetti in the paper
“Sulle stratificazioni convesse” [6], in which the author identi-
fies as one of the motivations establishing whether reasonable
utility functions could always be assumed to be concave —
which would imply that for all quasiconcave h there is a
increasing function ζ such that ζ ◦ h is concave (notice that
this is equivalent to h being core-concave, by taking ζ = η−1

in Definition 3).
De Finetti proves that this is not the case, providing three

counter-examples in Section 2 of [6]. To understand why this
is the case, we present here an example of a semistrictly
quasiconcave but not core-concave function h : [0, 1] → R,
which is a scaled version of Example 3 in [7]. Let γ = 2+ 3

√
2,

and consider the following function, depicted in Figure 2
(notice that a function over [0, 1] can be naturally interpreted
as a function over ∆2).

h(r) = −γ4r4 + 6γ3r3 − 12γ2r2 + 10γr. (4)

Suppose there is a strictly increasing ζ such that f = ζ ◦ h
is concave. Now, h(γ−1) = h(3γ−1) = 3, but its derivatives
yield h′(γ−1) = 0 and h′(3γ−1) = −8γ. Thus, it is not
possible to have f ′(γ−1) > 0 unless f ′(3γ−1) = −∞. As γ−1

is to the left of where f should attain its maximum, and 3γ−1

is not on the boundary of the domain, f cannot be concave.

III. PRELIMINARIES ON QIF AND INFORMATION THEORY

Before discussing the basic concepts of QIF, we need to in-
troduce some notation regarding random variables. We assume
all random variables to take values over finite, nonempty sets,
and use capital letters X,Y, . . . to represent random variables
taking values on the sets X ,Y, . . . . Unless stated otherwise,
we index the elements of those sets by natural numbers,
writing X = {x1, x2, . . . , x|X |}, Y = {y1, y2, . . . , y|Y|}, et
cetera.

Given a random variable (r.v.) X with |X | = n, we write
pX for the probability distribution pX(x) = Pr{X = x}. We
also overload the notation and use pX to denote the vector
(pX(x1), . . . , pX(xn)) ∈ ∆n. Given a joint random variable
X,Y , we define, for each y ∈ Y , X|y to be a r.v. taking values
in X , with probability distribution pX|y(x) = pX,Y (x,y)/pY (y).
Given a function f over ∆n, we will use f(X) and f(pX)
interchangeably.

A. Basic Model: Secrets, Observables and Systems

Sensitive information is modelled in QIF by a secret, which
is represented by a r.v. X taking values on the set X =
{x1, . . . , xn}. A system takes as input the value of X and,
upon execution, produces an observable behaviour (or simply
observable), represented by a r.v. Y . The system is modelled as

a information theoretic channel K, which is a row stochastic
matrix with rows indexed by X and columns indexed by
Y , K(y|x) being the conditional probability of the system
producing observable behaviour y when the secret value is
x — i.e., K(y|x) = pY |x(y). The notation K : X → Y
indicates that X and Y are respectively the input and output
sets. A channel K and a input X with probability pX induce
a joint distribution pX,Y (x, y) = pX(x)K(y|x). From this
joint, it is possible to compute pY (y) =

∑
x pX,Y (x, y) and

pX|y(y) =
∑
x pX,Y (x, y).

The QIF framework assumes the existence of an adversary,
whose initial knowledge about the secret corresponds to the
distribution pX , knows the values K(y|x) and is able to
observe the realisation of Y . By observing an execution of
the system resulting in an observable y ∈ Y , the adversary is
able to update its knowledge about the secret from the initial
distribution to pX|y . For this reason, the distribution pX is
often called the prior, and the distributions of the form pX|y ,
the posterior distributions. Whenever pX|y 6= pX for some
y ∈ Y the system behaviour is dependent on the secret value,
and there may be some leakage of information.

B. Background on Entropies and g-leakage
In order to quantify how much information a system leaks,

we make use of entropies, which are real valued functions
over probability distributions. Broadly speaking, an entropy
quantifies how much uncertainty regarding the secret value a
probability distribution represents, with higher values indicat-
ing that the secret is “safer” from the adversary. By comparing
the uncertainty of the secret before and after the system’s
execution, one can quantify how much information the system
leaked.

The choice of which entropy to use it is a nontrivial problem
and it is usually context-sensitive, depending on the interests
and capabilities of the adversary, and on properties of the
system being modelled. The most famous of such quantity,
specially in the field of information theory, is Shannon Entropy
[17], which measures the expected amount of questions of
the type “is the secret a member of X ′ ⊂ X ?” an optimal
adversary would need to identify the secret value. It is defined
as H1(X) = −

∑
p(xi) log(p(xi)).

4

A very common scenario in security settings is that of a
brute-force attack, i.e. when the adversary can check a big
number of secrets in a sequential manner. Guessing entropy,
introduced by Massey [18], is very useful for measuring
uncertainty in such scenarios. It is defined as Hguess(X) =∑
i · p(x[i]), in which X = {x[1], . . . , x[n]} is an enumeration

of X such that i < j ⇒ p(x[i]) ≥ p(x[j]).
Min-entropy, defined as H∞(X) = − log maxi p(xi), had

its usage in QIF first proposed by Smith [19]. By reflecting the
value of maximum probability, min-entropy is a useful entropy
for scenarios in which the adversary has only one opportunity
to guess the value of the secret correctly.

Introduced by Alvim et al. [20], the g-leakage framework
is a generalization of entropies, predicated in the use of gain

4All logarithms are in base 2.



functions g : W × X → R, in which W is a set of actions
the adversary can take. The value g(w, x) reflects the gain the
adversary obtains by choosing action w when the secret value
is x. The g-vulnerability is defined as

Vg(X) = max
w∈W

∑
i

g(w, xi)p(xi).

It reflects the expected gain of an adversary that chooses
the optimal action. Notice that this quantity is measuring
the opposite of entropies: it is greater the less uncertain the
secret is. This is inconsequential, as one can easily define a
entropy by simply defining, for example, a g-entropy by taking
Hg = − log Vg , or a g-uncertainty by taking Ug = −Vg .

The g-leakage framework is a powerful generalising tool: it
can be used to recover min-, Shannon and guessing entropy
[21]; and it has been recently shown by Alvim et al. [2]
that g-vulnerabilities are capable of expressing any nonegative
continuous and convex function over ∆n.

The Rényi entropies, proposed by Alfred Rényi in [14], are a
family of entropies generalises both Shannon and min-entropy
as limit cases. Given α ≥ 0 and α 6= 1, the Rényi entropy of
order α is defined as

Hα(X) =
α

1− α
log ‖pX‖α,

where ‖p‖α = (
∑
i p
α
i )

1/α is the α norm.5 Shannon and min-
entropy can be recovered from the above definition by taking
α→ 1 and α→∞, respectively.

C. Conditional Forms and Information Leakage

Given an entropy H , such as the ones introduced in Section
III-B, it is immediate to compute the uncertainty H(X)
associated with the prior distribution. To obtain how much
information the system leaks, we must compare the value
H(X) with the adversary’s uncertainty after the realisation of
the system’s observable behaviour Y . This is usually achieved
by considering a conditional (also called posterior) form of
entropy, which are usually obtained from the distribution
pY over the outputs and the conditional distribution pX|y .
The conditional form of H is denoted by H(X|Y ). The
information leaked by the system can then be computed by
the H-mutual information

IH(X;Y ) = H(X)−H(X|Y ). (5)

If H is Shannon entropy, the leakage of the system is
simply the well-known mutual information IH1

(X;Y ) =

5We use this definition even when ‖·‖α is not a norm, i.e., when 0 < α <
1.

H1(X) − H1(X|Y ) [22]. The conditional forms of the first
four entropies in Section III-B are defined as

H1(X|Y ) =
∑
y∈Y+

p(y)H1(X|y),

Hguess(X|Y ) =
∑
y∈Y+

p(y)Hguess(X|y),

H∞(X|Y ) = − log
∑
y∈Y+

p(y) max
i
pX|y(xi), and

Hg(X|Y ) = − log
∑
y∈Y+

p(y)Vg(X|y);

where Y+ = {y ∈ Y | p(y) > 0}.
The conditional forms of Shannon and guessing entropies

are easily justified, as they are simply the expected value of the
uncertainty of the adversary after the execution of the system.
The same intuitive approach, however, cannot be applied to
min-entropy, g-entropy or to (most of) the Rényi entropy
family, as the resulting conditional form would not, in general,
respect Conditioning Reduces Entropy (CRE). This means that
the adversary could lose information by observing the result of
the system, which disqualify those as reasonable conditional
forms. A more thorough discussion of CRE is postponed to
Section III-D.

There is currently no agreed conditional form for the Rényi
entropy family [23], [24]. In this work, we consider two
versions. The first, known as the Arimoto-Rényi conditional
entropy [25], is given by

Hα(X|Y ) =
α

1− α
log

∑
y∈Y+

p(y)
∥∥pX|y∥∥α, (6)

while the second, the Hayashi-Rényi conditional form intro-
duced in [26], is given by

H ′α(X|Y ) =
1

1− α
log

∑
y∈Y+

p(y)
∥∥pX|y∥∥αα. (7)

These conditional forms behave in very different ways.
The form (6) is specially interesting as it has the desir-
able property that limα→1Hα(X|Y ) = H1(X|Y ) [25] and
limα→∞H∞(X|Y ) [24]. While the form (7) coincides with
Shannon conditional entropy when α tends to 1, we have [24]

lim
α→∞

H ′α(X|Y ) = − log

(
max

y∈Y+, x∈X
pX|y(x)

)
6= H∞(X|Y ).

D. Axioms of Entropy Measures

As we have seen, different settings call for different en-
tropies. This is specially true for QIF, as each entropy measure
models particularities of the system and the interests of an
adversary. Given the myriad of possible entropy definitions,
a natural question is to establish which are the entropies that
“make sense”. To this end, Alvim et al. [2] used an axiomatic
approach to determine exactly those entropies that satisfy some
intuitively desirable properties.

Before we discuss their results, we need to make the
definition of “entropy”, which has been somewhat obscure
until here, a bit more precise.



Definition 4: Let n > 0. An entropy (over ∆n) is a quantity
H over r.v.s with two associated forms.
• A unconditional form H(X), defined for all r.v.s X for

which |X | = n. The unconditional form can be seen as
the function pX 7→ H(X) over ∆n.

• A conditional form H(X|Y ), defined for all pairs of r.v.s
(X,Y ) for which |X | = n.

Moreover we assume the unconditional form to be continuous.
We usually omit the dimension of the simplex, as it is usually
irrelevant - all our results hold for any choice of n > 0.

Definition 4 is quite ample, and many entropies satisfying
this definition are undesirable, not representing a intuitive
notion of uncertainty about X , or, for the conditional form, of
uncertainty about X when the value of Y is known.

In order to characterize exactly which entropies are rea-
sonable (in their words, “bring order to the zoo”), Alvim
et al. took an axiomatic approach. Their axioms concern
properties of the conditional and unconditional forms, and also
relationships between them.6

In the following paragraphs, we give a detailed presentation
of Alvim et al.’s [2] proposed axioms and results.

1) Axioms Regarding the Structure of Conditional Forms:
It is reasonable to expect that the conditional form of an
entropy should be expressible in terms of its unconditional
form. As discussed in Section III-C, it is usually assumed that
the conditional form H(X|Y ) will be related to the quantities
{H(X|y)}y∈Y , and also to the distribution pY . The most
natural way this can be done is simply by taking the expected
value of {H(X|y)}y∈Y , according to pY .

Definition 5 (AVG axiom): H satisfies Averaging (AVG) if
its conditional form is defined as:

H(X|Y ) =
∑
y∈Y+

p(y)H(X|y).

In security scenarios, the AVG axiom might be too forgiving,
and in some contexts one may prefer to evaluate the maximum
amount of information that the system may leak. Some well
known notions of privacy, like differential privacy, use this
maximum leakage approach. In such scenarios, a more fitting
conditional form would be one that evaluates the uncertainty
in a “worst-case” scenario.

Definition 6 (MIN axiom): H satisfies Minimum (MIN) if
its conditional form is defined as:

H(X|Y ) = min
y∈Y+

H(X|y).

2) Axioms Reflecting Reasonable Information-theoretical
Properties: The next two axioms are foundational
information-theoretic properties (see, e.g., Chapter 2 of
[22]). The first captures the idea that “information cannot
hurt”. That is, whatever the uncertainty about X is, it cannot
increase by learning a side information Y .

6As they studied measures of certainty, Alvim et al.’s original axioms are
dual versions of the ones presented here: they use convexity, quasiconvexity
and maximum instead of concavity, quasiconcavity and minimum.

Definition 7 (CRE axiom): H satisfies Conditioning reduces
entropy (CRE)7 if, for all r.v. X ,Y ,

H(X|Y ) ≤ H(X),

with equality holding if X and Y are independent.
The second axiom relates to the idea that one cannot de-

crease uncertainty by cleverly manipulating data. For example,
digitally processing a footage of a person will not create
more information about the subject than what was already
available in the original footage (to the dismay of many TV
criminalists).8

Definition 8 (DPI axiom): H satisfies Data-processing
inequality (DPI) if, for all r.v. X ,Y ,Z such that X → Y → Z
(i.e., if X and Z are conditionally independent given Y ),

H(X|Y ) ≤ H(X|Z).

3) Axioms Regarding Properties of Unconditional Forms:
Finally, the last two axioms relate properties of the uncondi-
tional forms as functions over ∆n.

Definition 9 (CV axiom): H satisfies Concavity (CV) if its
unconditional form is concave over ∆n.

Definition 10 (QCV axiom): H satisfies Quasiconcavity
(QCV) if its unconditional form is quasiconcave over ∆n.

These axioms were justified for their own sake by Alvim et
al. in [2], but this is predicated on the conditional form axioms
AVG and MIN. However, the CV and QCV axioms are important
because they provide a complete, and straightforward charac-
terizations for the entropies in relation to the other axioms, as
will be seen in the next section.

MIN

QCV

CRE DPI

EAVG

CCV

CRE DPI

AVG

CV

CRE DPI

Fig. 3. Implication graphs of axioms schemes in the literature. The AVG set
of axioms (left) and the MIN set of axioms (middle) were proposed by [2].
The EAVG set of axioms [3] (right) generalises the AVG one, when one takes
η to be the identity function.

4) Relationships Between the Axioms: The results obtained
by Alvim et al. relating the above axioms may be expressed
as follows:

Theorem 2 ([2, Propositions 14, 15, 16 and 18]): If H
satisfies AVG, then CRE, DPI and CV are equivalent.

Theorem 3 ([2, Propositions 15, 20, 22 and 23]): If H
satisfies MIN, then CRE, DPI and QCV are equivalent.

In words, any entropy whose conditional form is obtained
according to AVG respects the important properties CRE and
DPI if, and only if, its unconditional form is concave; and

7Note that this property is named monotonicity in [2].
8However, postprocessing may make the information easier to be under-

stood by humans. For example, noise reduction algorithms may make the
words in an old recording of a speech more easily discernible.



a similar result holds for MIN and QCV. The results are
summarised in Figure 3.

As mentioned in Section III-B, the set of (unconditional) g-
vulnerabilities was proven, in the same work, to coincide with
that of convex functions over ∆n. Therefore, one important
result relating to QIF is that any reasonable entropy measure
that satisfies AVG can be represented by (a dual of a) g-
vulnerability.

5) An Extension of Alvim et al.’s Axioms: One problem
with the above of axioms is that they seem to leave out
many entropies that are widely used in the literature. For
example, as seen Section III-C, min-entropy does not fall in
either AVG nor MIN, being therefore not contemplated in their
results. A similar fate befalls several other entropies, such as
Rényi entropies of different conditional forms, Tsallis [27]
and Sharma-Mittal entropies [28] (see [3], [5] for a more
throughout discussion).

This problem was recently addressed [3] by relaxing the
AVG axiom to a more generalised averaging axiom. This
encompasses the entropies mentioned above, and generalises
the AVG part of Alvim et al.’s results. Those results are based
on core-concave entropies, first introduced in [5].

Definition 11: Let F : ∆n → R and η : Range(F ) → R
be continuous functions, and η be strictly increasing. We say
that H is given by the pair (η, F ), and write H = (η, F ), if
the unconditional form of H is H(X) = η(F (X)).

Notice that this definition does not a priori exclude any
continuous unconditional form, as it is possible to reconstruct
any arbitrary H by taking F (X) = H(X) and η to be the
identity function.

Definition 12: An entropy H = (η, F ) is core-concave if F
is concave

Notice that the unconditional form of a core-concave en-
tropy is a core-concave function, as per Definition 3.

The new axioms introduced in [3] are the following
Definition 13: Let H = (η, F ). H is said to satisfy

CCV (Core-concavity): if H = (η, F ) is core-concave (as
in Definition 12).

EAVG (η-averaging): if, given r.v. X ,Y , the conditional
form is defined as:

H(X|Y ) = η

∑
y∈Y+

p(y)F (X|y)

 .

A similar result to those obtained by Alvim et al. was proved
for this new set of axioms, also depicted in Figure 3.

Theorem 4 ( [3]): If H = (η, F ) satisfies EAVG, then CRE,
DPI and CCV are equivalent.

Notice that this result recovers Theorem 2, when one takes
η to be the identity function.

The generalising family given by CCV and EAVG solve
the aforementioned problem, capturing all conditional forms
described in Section III-C. Some choices of (η, F ) that recover
those conditional forms are summarised on Table I

TABLE I
SOME CHOICES OF (η, F ) RECOVERING THE CONDITIONAL FORMS IN

SECTION III-C

Entropy η(r) F (p)

H1 r H1(p)

Hguess r Hguess(p)

H∞ − log−r −maxi pi

Hg − log−r −Vg(p)

Hα

α

1− α
log(r) ‖p‖α (if 0 < α < 1)

α

1− α
log(−r) −‖p‖α (if α > 1)

H′α

1

1− α
log(r) ‖p‖αα (if 0 < α < 1)

1

1− α
log(−r) −‖p‖αα (if α > 1)

IV. A UNIFYING FRAMEWORK FOR ENTROPIES

As discussed in Section III-D, the recent literature regarding
the axiomatic treatment of information measures w.r.t. poste-
rior entropy suggests three classes of entropies, according to
the form of the posterior:

• entropies which satisfy CV and AVG,
• entropies which satisfy CCV and EAVG,
• entropies which satisfy QCV and MIN.

In this section, we will denote the sets of these entropies
by CAVG, HEAVG and QMIN, respectively. Each element of both
CAVG and QMIN is uniquely identified by the function that
gives its unconditional form, whereas an element of HEAVG

can be uniquely identified by a pair (η, F ). Notice that
CAVG ( HEAVG, as any given entropy in CAVG is equivalent to
a pair (id, F ) ∈ HEAVG where F is a concave function and
id(r)=r is the identity function.

The objective of this section is to define a new set of
entropies, Q, such that HEAVG ⊂ Q and QMIN ⊂ Q. In
other words, we will present a new definition that subsumes
all aforementioned entropies. After that, we will prove that
the entropies in Q satisfy some fundamental information-
theoretical properties, which are thus also proofs for HEAVG

and QMIN.

A. Entropies as Limits of Sequences

The set Q will be defined as limits of sequences of core-
concave entropies that satisfy EAVG.

Definition 14: Let {Hi = (ηi, Fi)}i be a sequence in HEAVG,
such that ηi ◦ Fi converges uniformly. We define the limit of
{Hi} to be the entropy H defined as

• H(X) = limi→∞ ηi(Fi(pX)),
• H(X|Y ) = lim supi→∞Hi(X|Y ).



We denote by Q the set of all entropies which are the limit of
a sequence of entropies in HEAVG whose unconditional form is
uniformly convergent. We refer to the entropies in Q by the
name of limit entropies.

Henceforth, we assume all sequences of entropies to be of
elements of HEAVG and that their unconditional form is uni-
formly convergent. One might wonder whether the conditional
form above is not well defined, as the limit superior (lim sup)
of a sequence might be ∞ or −∞. The next result guarantees
that this is not the case.

Proposition 3: Let {Hi = (ηi, Fi)} be a sequence in HEAVG

and suppose {ηi ◦Fi} converges uniformly. Then, the limit H
of {Hi} satisfies |H(X|Y )| <∞ for all X,Y .

Proof: Because ηi ◦ Fi is continuous and converges
uniformly on a compact set, there is γ > 0, N ∈ N such
that

i > N =⇒ ∀p ∈ ∆n, |ηi(Fi(p))| < γ.

As Hi satisfies EAVG and ηi is strictly increasing for all i, we
have for all X,Y ,

inf
p∈∆n

ηi(Fi(p)) ≤ Hi(X|Y ) ≤ sup
p∈∆n

ηi(Fi(p)).

Thus, for i > N ,

|Hi(X|Y )| ≤ max

(
− inf
p∈∆n

ηi(Fi(p)), sup
p∈∆n

ηi(Fi(p))

)
≤ γ.

The use of limit superior instead of regular limit on Defini-
tion 14 is necessary as the latter may not exist, even though
ηi ◦ Fi converges uniformly. Take, for example, the sequence
{Hi = (ηi, Fi)} given by,

ηi(x) =

{
i

1−i log(−x) if i is odd,
1

1−i log(−x) if i is even.

Fi(x) =

{
−‖p‖i if i is odd,
−‖p‖ii if i is even.

In both cases, ηi ◦ Fi converges uniformly to the un-
conditional form of min entropy. However, their condi-
tional form under EAVG is alternately the Arimoto-Rényi
and Hayashi-Rényi conditional forms. Thus, as discussed
in Section III-C, the odd subsequence converges to condi-
tional min-entropy, while the even subsequence converges to
− log maxx,y pX|y(x).

B. Unconditional Forms of Limit Entropies

As discussed in Section III-D, the set of functions that are
the unconditional forms of some entropy in HEAVG coincide
with the set of core-concave functions [3], and similarly
for QMIN and the set of quasiconcave functions [2]. From
Definition 14, however, it is not clear what set of functions
coincide with the unconditional forms of the entropies in Q.
The objective of this section is characterising this set.

As one can take constant sequences in Definition 4, this
family definitely contains all core-concave functions. But what

else may be obtained by uniformly convergence sequences of
core-concave functions?

It turns out that this family is exactly the set of continuous
quasiconcave functions. This is a direct consequence of a result
obtained in a recent work by Connell and Rasmussen [7]. We
quote their result below, changing only the definitions to match
those of our work.

Proposition 4 ([7, Corollary 3]): Suppose h is any qua-
siconcave function (possibly discontinuous). There exists a
sequence of continuous strictly quasiconcave and core-concave
functions hi which converge to h as i→∞ pointwise almost
everywhere, and uniformly on compact sets if hi is continuous.

We are particularly interested in the last part of the state-
ment, as we assume all entropies to have a continuous uncon-
ditional form over ∆n, which is a compact set. This leads us
to an interesting result.

Theorem 5: The set of continuous quasiconcave functions
over ∆n is the uniform closure (as in Definition 2) of the set
of continuous core-concave functions over ∆n.

Proof: That the set of continuous quasiconcave functions
is contained in the uniform closure of the set of core-concave
functions is directly implied by Proposition 4. Conversely,
suppose {hi} is a uniformly convergent sequence of core-
concave functions. As any core-concave is quasiconcave, for
any p1, p2 ∈ ∆n, and λ ∈ [0, 1] we have

hi(λp1 + (1− λ)p2) ≥ min(hi(p1), hi(p2)).

Thus, by taking i → ∞ on the inequality above, we see that
the limit of the sequence {hi} is quasiconcave.

An immediate consequence of this Theorem is the following
Corollary.

Corollary 2: All entropies in Q have a continuous quasi-
concave unconditional form. Moreover, for each continuous
quasiconcave function h, there is some entropy H ∈ Q such
that H(X) = h(pX).

V. EXISTING ENTROPIES AS SUBSETS OF Q

The next step is to prove that the generalised families of
entropies introduced in Section III-D are subsumed by the
family of limit entropies — that is, that HEAVG ⊂ Q and
QMIN ⊂ Q.

Proving that HEAVG ⊂ Q is straightforward.
Proposition 5: HEAVG ⊂ Q

Proof: Let H = (η, F ) ∈ HEAVG and define a constant
sequence in HEAVG by taking (ηi, Fi) = (η, F ) for all i ∈ N.
Then, H is the limit of (ηi, Fi), and thus H ∈ Q.

Proving that QMIN ⊂ Q is not as straightforward. From
Corollary 2, we know that the unconditional forms of the en-
tropies in Q actually contemplate all continuous quasiconcave
functions. However, we still must show that, for any quasicon-
cave unconditional form, we can obtain a conditional entropy
that satisfies MIN. We start by introducing the following result,
which is a stronger version of Theorem 4 in [3], and which
follows from the proof therein.



Theorem 6 ([3, Theorem 4]): Let HM = (η, F ) ∈ HEAVG,
and let σ = supp∈∆n

F (p). Let {(ηi, Fi)}i∈N be the sequence
given by

ηi(x) = η
(
−(−x)

1/i + σ
)

and Fi(p) = − (−F (p) + σ)
i
.

Then, (ηi, Fi) ∈ HEAVG for all i ∈ N. Moreover, for all X,Y ,

min
y
HM (X|y) = lim

i→∞
ηi

∑
y∈Y+

p(y)Fi(X|y)

 .

Given this result, we are able to obtain a sequence of
entropies whose limit satisfy MIN, for any quasiconcave
unconditional form.

Theorem 7: QMIN ⊂ Q
Proof: Let HM ∈ QMIN. It suffices to prove that there

is a sequence {(ηi, Fi)}i∈N in HEAVG such that: 1) ηi ◦ Fi(p)
converges uniformly to HM (p); and, 2) for all r.v.s X,Y ,

HM (X|Y )= min
y
HM (X|y)= lim

i→∞
ηi

∑
y∈Y+

p(y)Fi(X|y)

 .

(8)
By Corollary 2, there is a sequence of entropies Hj =

(ηj , Fj)j∈N in HEAVG which converges uniformly to the un-
conditional form of HM .

Let i ∈ N and X,Y be r.v.s. Because Hj con-
verges uniformly to HM and min is a continuous function,
minyHj(X|y) also converges to minyHM (X|y) as j →∞.
Therefore, there is Ni ∈ N such that j > Ni implies∣∣∣∣min

y
Hj(X|y)−min

y
HM (X|y)

∣∣∣∣ < 1

2i
.

For each j, let σj = supp∈∆n
F (p) and define a sequence

{ηj,k, Fj,k}k by

ηj,k(x) = ηj

(
−(−x)

1/k + σj

)
and

Fj,k(p) = − (−Fj(p) + σj)
k
.

Then, Theorem 6 implies that there is Ni,j ∈ N such that, for
all k > Ni,j ,

∣∣∣∣∣ηj,k
(∑

y

p(y)Fj,k(X|y)

)
−min

y
Hj(X|y)

∣∣∣∣∣ < 1

2i
.

Now, for each i ∈ N, choose ji > Ni and ki > Ni,ji ,
and define η′i = ηji,ki , F

′
i = Fji,ki . Let ε > 0. Then, for all

i > 1/ε,∣∣∣∣∣η′i
(∑

y

p(y)F ′i (X|y)

)
−min

y
HM (X|y)

∣∣∣∣∣ < 1

2i
+

1

2i
< ε.

Thus, {η′i, F ′i}i satisfies (8). Moreover, notice that η′i(F
′
i (p)) =

ηji,ki(Fji,ki(p)) = ηji(Fji(p)), and thus the sequence of
functions {η′i ◦F ′i}i is a subsequence of {ηj ◦Fj}j , and hence
it converges uniformly to the unconditional form of HM .

VI. INFORMATION THEORETICAL PROPERTIES OF LIMIT
ENTROPIES

In this section, we establish some fundamental information-
theoretical properties of the entropies in Q — and hence,
obtaining the same properties for HEAVG and QMIN as a by-
product.

The properties discussed in this section have been proved
separately for HEAVG in [3], and could be adapted for QMIN.
Hence, the novelty here is to provide unified proofs that serves
both cases. Moreover, in case in the future one finds other
interesting entropy families subsumed in Q, the proofs here
will guarantee that they satisfy these properties as well.

Because limit superior preserves inequalities [10, Theorem
3.19], the proofs of these results is a quite straightforward
modification of those in [3], with Definition 14.

A. DPI and CRE

Proposition 6: All entropies in Q satisfy CRE and DPI.
Proof: Let H ∈ Q be the limit of a sequence {(ηi, Fi)}i

in HEAVG.
(CRE) From Theorem 4, each (ηi, Fi) satisfies CRE; that is,

for all i and all r.v.s X,Y

ηi

(∑
y

p(y)Fi(pX|y)

)
≤ ηi(Fi(pX))

By taking the limit superior in both sides, we arrive at
H(X|Y ) ≤ H(X).

(DPI) Again from Theorem 4, each (ηi, Fi) satisfies DPI;
that is, for all i and all r.v.s X,Y, Z such that X → Y → Z,
we have

ηi

(∑
y

p(y)Fi(pX|y)

)
≤ ηi

(∑
y

p(z)Fi(pX|z)

)
.

Again, by taking the limit superior in both sides, we arrive
at H(X|Y ) ≤ H(X|Z).

B. Properties Requiring Symmetry and Expansibility

The results of this section require the entropies to be both
symmetric and expansible.

An entropy H ∈ Q is called symmetric if, for all
(p1, . . . , pn) ∈ ∆n and all bijections φ : {1, . . . , n} →
{1, . . . , n}, we have H(p1, . . . , pn) = H(pφ(1), . . . , pφ(n)).

As any symmetric quasiconcave function is Schur-concave
[15, Chapter 3.C], Corollary 2 implies that any symmetric
entropy in Q has a Schur-concave unconditional form.

The next proposition is quite natural, but important for our
next results.

Proposition 7: If H ∈ Q is symmetric, it is the limit of a
sequence {(ηi, Fi)}i, where each Fi is symmetric.

Proof: Let H ∈ Q be symmetric, and {(ηi, Fi)}i be a
sequence whose limit is H . Fix i ∈ N and let Φ be the set of
all permutations over {1, . . . , n}. For each permutation φ ∈ Φ
define Fφi (p1, . . . , pn) = Fi

(
pφ(1), . . . , pφ(n)

)
. Finally, let

F ∗i (p) =
1

n!

∑
φ∈Φ

Fφi (p).



Being a finite sum of concave functions, F ∗i is itself concave.
Moreover by construction it is symmetric. We claim that
{(ηi, F ∗i )} has H as limit. In fact, for each p ∈ ∆n

min
φ∈Φ

ηi

(
Fφi (p)

)
≤ ηi (F ∗i (p)) ≤ max

φ∈Φ
ηi

(
Fφi (p)

)
.

As H being symmetric implies that lim ηi

(
Fφi (p)

)
= H(p)

for all φ, we have limi→∞ ηi(F
∗
i (p)) = H(p). Similarly, for

each X,Y ,

min
φ∈Φ

ηi

(∑
y

p(y)Fφi (X|y)

)
≤ ηi

(∑
y

p(y)F ∗i (Y |y)

)
and

ηi

(∑
y

p(y)F ∗i (Y |y)

)
≤ max

φ∈Φ
ηi

(∑
y

p(y)Fφi (X|y)

)
.

And thus the conditional form is also preserved.
The other condition is expansibility. In information theory,

this usually means that one can “append” a distribution with
outcomes with probability equal to 0, without changing the
value of the entropy. Although the idea in this section in
similar — to provide results relevant to expansible entropies —
defining them on our framework is unnecessarily complicated.

Instead, when comparing entropies of distributions of differ-
ent sizes, we will henceforth use the following convention: we
“append” the shortest distribution with the necessary number
of 0s and assume all quantities are over the same simplex.
For example, if |X | = 2 and |Y| = 3; the inequality
H(p(x1), p(x2)) ≤ H(q(y1), q(y2), q(y3)) actually means
H(p(x1), p(x2), 0) ≤ H(q(y1), q(y2), q(y3)) and both sides
of inequality are defined over ∆3.

Notice that the results using this convention correctly con-
template expansible entropies — for example, all results below
hold for Rényi entropies with the regular definition.

The next properties have been proved to hold for expansible,
symmetric entropies in HEAVG in Section V of [3]. We use
those results and Proposition 7 to extend it to all entropies in
Q. These properties have an important and natural meaning
in the context of information theory and information security.
The following is an informal overview:

1) AIE (additional information increases entropy): this says
that the entropy of a joint random variable (X,Y ) is
higher than the entropy of any of its constituents X,Y .

2) weak subadditivity: subadditivity expresses that the
entropy of a joint random variable (X,Y ) is upper
bounded by the sum of the entropies of its constituents,
i.e. H(X,Y ) ≤ H(X) + H(Y ). Subadditivity doesn’t
holds for general entropies like Rényi entropies but we
show a weaker version holding for all entropies in Q.

3) perfect secrecy: we show that Shannon’s celebrated
result about encryption holds for all entropies in Q.

4) generalized Fano inequality: Fano inequality is the basic
result connecting Shannon entropy with Bayes error. We
show a generalized Fano inequality which is valid for
all entropies in Q.

1) AIE (additional information increases entropy):
Proposition 8: Let H ∈ Q be symmetric and expansible.

Then:

1) ∀X,Y H(X) ≤ H(X,Y ),
2) ∀X,Y, Z H(X|Z) ≤ H(X,Y |Z).

Proof: Those inequalities have been proven for symmet-
ric and expansible HEAVG [3, Proposition 5]. Let H ∈ Q.
Invoking Proposition 7, there is a sequence of symmetric
{Hi = (ηi, Fi)}i whose limit is H . By taking the limit as i→
for Hi(X), Hi(X,Y ) in inequality 1), and the limit superior
for Hi(X|Z), Hi(X,Y |Z) in inequality 2), we obtain the
result for H ∈ Q.

2) Subadditivity: The subadditivity property H(X,Y ) ≤
H(X) + H(Y ) does not hold for all entropies in Q. As a
counterexample consider the following joint distribution over
(X,Y ), with X = {x1, x2} and Y = {y1, y2}

p(X,Y )(x1, y1) = 0, p(X,Y )(x1, y2) = 1/4,

p(X,Y )(x2, y1) = 1/4, p(X,Y )(x2, y2) = 1/2.

And one can check that for any Rényi entropy Hα with α >
1.61, we have Hα(X,Y ) > Hα(X) +Hα(Y ).

Proposition 9: Let H ∈ Q be symmetric. Then H(X,Y ) ≤
H(p̃) where p̃ is the |X ||Y|-sized distribution given by
p̃(x, y) = pX(x)/|Y|, for all x ∈ X , y ∈ Y .

Proof: Again, this result has been proven for all entropies
in HEAVG [3, Proposition 6]. By Proposition 7, there is a
sequence {Hi = (ηi, Fi)}i whose limit is H , and the result
is obtained by taking the limit as i goes to infinity on the
inequality Hi(X,Y ) ≤ Hi(p̃).

3) Perfect Secrecy: Shannon’s perfect secrecy theorem was
generalized to symmetric entropies in HEAVG in [3, Proposition
7], by extending an argument from [24].

SupposeM is a set of plaintext messages, C one of cipher-
text and K of keys, and associate with them the r.v.s M,C
and K, respectively. A symmetric encryption scheme is a pair
of functions (e, d) such that the encryptor e : M× K → C
associates one ciphertext for each choice of plaintext and key,
and the decryptor d : C × K → M reverses the process. The
pair (e, d) is said to satisfy perfect secrecy if C and M are
independent r.v., and it satisfies perfect correctness if it does
not make any decryption errors, that is

p(m, k|c) =

{
0 if d(c, k) 6= m,

p(k|c) if d(c, k) = m.

Proposition 10: Let H ∈ Q be symmetric. If the scheme
(e, d) satisfies perfect secrecy and correctness, then the fol-
lowing holds: H(M) ≤ H(K).

Proof: Invoking Proposition 7, there is a sequence of
symmetric {Hi = (ηi, Fi)}i whose limit is H . The inequality
H(M) ≤ H(K). has been proven for all symmetric entropies
in HEAVG [3, Proposition 7]. Therefore, Hi(M) ≤ Hi(K), and
the result follows by taking the limit i→∞ in both sides of
the inequality.



4) Bounds in terms of probability of error: One of the
most celebrated inequalities in information theory is the Fano’s
inequality, which bounds the conditional entropy H(X|Y ) in
terms of the probability of error — that is, the probability of
an optimal adversary guessing the value of X wrongly given
the knowledge of Y .

Fano’s inequality does not hold in general for entropies
other than Shannon entropy. However, it is possible to obtain
the following generalisation.

Let X be a r.v.. The probability of error eX is, of course,
eX = 1 − maxx∈X pX(x). Given a joint r.v. (X,Y ), the
expected probability of error ê is ê =

∑
y p(y)eX|y where

êX|y = 1−maxx∈X pX|y(x).
Proposition 11: (Fano’s generalization) Let H ∈ Q be

symmetric.

1) H(X) ≤ H
(

1− eX , eXn−1 , . . . ,
eX
n−1

)
.

2) H(X|Y ) ≤ H
(

1− ê, ê
n−1 , . . . ,

ê
n−1

)
.

Proof: Those inequalities have been proven for HEAVG [3,
Proposition 8]. Invoking Proposition 7, there is a sequence of
symmetric {Hi = (ηi, Fi)}i whose limit is H . By substituting
H for Hi and taking the limit as i→ in both sides in inequality
1), and the limit superior in inequality 2), we obtain the result
for all symmetric H ∈ Q.

Proposition 11 is a generalisation of Fano’s inequality:

H1(X|Y ) ≤ H1(ê, 1− ê) + ê log(n− 1),

as it reduces exactly to the above expression when Shannon
entropy (H1) is chosen. In fact, we have

H1(X|Y ) ≤H1(1− ê, ê

n− 1
, . . . ,

ê

n− 1
)

=(1− ê) log(
1

1− ê
)

+ (n− 1)
ê

n− 1
log(

n− 1

ê
)

=H1(ê, 1− ê) + ê log(n− 1).

VII. OTHER CONDITIONAL FORMS DERIVABLE FROM Q
One way of understanding the relationship between the

subfamilies CAVG, HEAVG and QMIN to the wider Q is as a
restriction imposed on the conditional form: CAVG is exactly
the subset of entropies of Q that respect AVG, and the same
is true for HEAVG and QMIN; and EAVG and MIN, respectively.

A natural question is whether there are any other interesting
conditional forms that could be considered by our framework.
In this section we answer this question positively, by showing
a subfamily of limit entropies whose conditional form gen-
eralises the geometric mean. As a result of our generalising
approach, this new family immediately inherits all properties
proven in Section VI.

A. Entropies Satisfying Geometric and η-geometric Mean

Definition 15: Given an entropy H as in Definition 4, we
say that it satisfies geometric mean (GM) if

H(X|Y ) =
∏
y

(H(X|y))
p(y)

.

And, given an entropy H = (η, F ), we say that it satisfies
η-geometric mean (EGM) if

H(X|Y ) = η

(∏
y

(F (X|y))
p(y)

)
.

Notice that EGM generalises GM by taking η = id and H(X) =
F (X).

We have the following result.

Theorem 8: Let H = (η, F ) satisfy CCV and EGM and
suppose F is nonegative. Then, H ∈ Q.

Proof: To prove the result, we need to provide a sequence
{(ηi, Fi)}i of entropies in HEAVG such that 1) {ηi ◦ Fi}
converges uniformly to the unconditional form of H and 2)
for all X,Y , we have

H(X|Y ) = η

(∏
y

(F (X|y))
p(y)

)

= lim
i→∞

ηi

∑
y∈Y+

p(y)Fi(X|y)

 .

(9)

For each i, let Fi = F 1/i. Then, for all p, q ∈ ∆n and
λ ∈ [0, 1], we have

Fi(λp+ (1− λ)q) = (F (λp+ (1− λ)q))
1/i

≥ (λF (p) + (1− λ)F (q))
1/i

≥ (λF (p))
1/i

+ (1− λ) (F (q))
1/i

= λFi(p) + (1− λ)Fi(q),

where the first inequality follows from concavity of F and
r 7→ r1/i being increasing when r is nonegative, and the second
from concavity of r 7→ r1/i when r is nonegative. Thus Fi is
concave.

Define ηi by taking ηi(r) = η((r)i). As r 7→ ri is increasing
for r ≥ 0, ηi is the composition of two increasing functions,
and therefore increasing. Now, ηi(Fi(p)) = η(F (p)), thus
{ηi ◦ Fi} trivially converges uniformly to H .

Next, we prove the convergence for the conditional form.
First, we introduce the following result from [29, Section 2.3]:
let λ1, . . . , λn and p1, . . . , pn be nonegative real numbers, and
suppose

∑
i pi = 1. Then

lim
α→0

(∑
i

piλ
α
i

)1/α

=
∏
i

λpii . (10)



Using the result above, we have:

lim
i→∞

ηi

(∑
y

p(y)Fi(X|y)

)

= lim
i→∞

η

((∑
y

p(y)
(
F (X|y)

1/i
))i)

=η

(
lim
i→∞

(∑
y

p(y)
(
F (X|y)

1/i
))i)

=η

(∏
y

F (X|y)p(y)

)
= H(X|Y ),

where the third line follows from continuity of η, and the
fourth from (10).

Theorem 8 allows us to define two interesting entropy
families.

Definition 16: We define H+
EGM to be the set of all entropies

H = (η, F ) that satisfy EGM, CCV, and for which F is
nonegative. Analogously, we define C+

GM to be the set of
all entropies satisfying GM, CV, and that have a nonegative
unconditional form.

As a corollary of Theorem 8, it is immediate that H+
EGM ⊂ Q

and, by taking η = id, we also obtain C+
GM ⊂ Q. Therefore, both

families satisfy DPI, CRE, and all the properties in Section VI.
As a final remark, we note that the nonegativity requirement

over H+
EGM does not limit the unconditional form of these

entropies.
Proposition 12: Given any core-concave function h over

∆n, there is a entropy in HEGM whose unconditional form
coincides with h.

Proof: Let h = (η, f) be a core-concave function, and let
σ = infp∈∆n

f(p). Define a entropy H ′ = (η′, F ′) by taking
η′(r) = η(r+ σ), F ′(p) = f(p)− σ and H ′(X|Y ) satisfying
EGM. Then, H ′ ∈ H+

EGM and the unconditional form of H ′

coincides with h.

VIII. BLACKWELL-SHERMAN-STEIN THEOREM FOR
LIMIT ENTROPIES AND IMPLICATIONS TO PREORDERS

Given a pair of channels K1 : X → Y1, K2 : X → Y2, one
problem of interest in QIF is whether K2 is robustly better
than K1 — that is, whether for all entropies and all distri-
butions on the input, K1 leaks at least as much information
as K2. Given a family of entropies A, we write K1 ≥A K2

whenever the above statement is true for this family. More
specifically, K1 ≥A K2 means that H(X|Y1) ≤ H(X|Y2) for
all H ∈ A and all pX . This relation defines a preorder over
channels that share a same input.

An important result both in QIF and in the field of
Statistical Decision Making is the Blackwell-Sherman-Stein
(BSS) Theorem [30]–[32]. It connects the preorders defined
above to the notion of degradedness [33], also known in the
QIF community as refinement [34]. We say that a channel
K2 : X → Y2 is degraded from a channel K1 : X → Y2 —

and write K1 ≥d K2 — if there is a channel W : Y1 → Y2

such that K2(y2|x) =
∑
y1
K1(y1|x)W (y2|y1). In words, a

channel K2 is degraded from K1 when it is the result of
postprocessing the output of K1 by feeding it to another
channel W .

The BSS Theorem was independently proven in QIF within
the g-leakage framework, taking the following form.

Theorem 9 ([34, Theorems 8,9]): Let HG be the set of all
g-entropies with Range(g) ⊂ [0, 1]. Then K1 ≥d K2 ⇐⇒
K1 ≥HG

K2.
This result can immediately be generalised for the wider set
Q.

Theorem 10 (BSS for Q): K1 ≥d K2 ⇐⇒ K1 ≥Q K2.
Proof: Sufficiency follows from Proposition 6, and ne-

cessity follows from Theorem 9, since for all g, Hg ∈ Q.

As an interesting consequence, for any subset of Q the
degradedness relation is some kind of “minimal order” that
implies less information leakage. In particular, we have the
following corollary.

Corollary 3: K1 ≥d K2 =⇒ K1 ≥QMIN
K2.

Incidentally, this problem has been recently studied by
Chatzikokolakis et al. in [9]. Their Theorem 3 states not only
the same result as in Corollary 3, but also proves that the
converse is not true.

A. An Insight Into a Recently Observed Property

An intriguing property of the set QMIN arose in a proof of
a recent paper by Chatzikokolakis et al. [9]. Therein, in the
proof of Theorem 2, it is seen that whenever K1 6≥QMIN

K2 it
is always possible to find a concave function F such that

min
y1∈Y1

F (X|y1) > min
y2∈Y2

F (X|y2). (11)

This is perhaps a unexpected phenomenon: even though the
order is predicated on the set of all quasiconcave functions,
there is always a concave witness whenever the order does not
hold. Why should it be the case that whenever channels are
ordered with regards to all concave entropies in QMIN, they are
also ordered with regards to the whole set?

Theorem 7 provides us a simple answer to this question. If
K1 6≥QMIN

K2, there is H ∈ QMIN such that

min
y1∈Y1

H(X|y1) > min
y2∈Y2

H(X|y2).

As QMIN ⊂ Q, H is the limit of a sequence of entropies
in HEAVG. Thus, the inequality above guarantees that there is
H ′ = (η′, F ′) ∈ HEAVG for which

min
y1∈Y1

H ′(X|y1) > min
y2∈Y2

H ′(X|y2)

⇐⇒ min
y1∈Y1

η′(F ′(X|y1)) > min
y2∈Y2

η′(F ′(X|y2))

⇐⇒ min
y1∈Y1

F ′(X|y1) > min
y2∈Y2

F ′(X|y2).

And thus F ′ is a concave function satisfying (11).



IX. RELATED WORK

Generalising frameworks have a long history in the informa-
tion theory literature. Already in 1961, Alfred Rényi proposed
the Rényi entropy family [14], which generalises Shannon
entropy [17] by relaxing one axiom that characterises it. The
axiomatic approach has been particularly fruitful in the field
of information theory, and these efforts are neatly summarised
in a survey paper by Csiszár [35].

The field of quantitative information flow has been very
active in the last couple of decades, and the intricacies of
the field implied that many different entropy measures were
considered, often in the same work [19], [36], [37]. This
prompted the use of generalising frameworks [5], [20], [21],
which allows one to reason about security of systems in a more
robust sense [34], [38], and design systems that are optimal
for a wide range of entropies [5], [39], [40].

As conditional entropies play a fundamental role in QIF,
an axiomatic approach to these frameworks was considered
by Alvim et al. [2], and later expanded to account for some
entropies not used in QIF, but commonly used in the infor-
mation theory literature [3]. This work builds upon this recent
effort by the community, providing a generalising framework
for conditional entropies that completely generalises those
in [2] and [3], while still being meaningful, in the sense
that all entropies in the generalising family respect some
desirable properties. Incidentally, this framework also overlap
with recent work regarding preorder over channels [9], as
discussed in Section VIII.

Finally, the study of core-concave functions — or, more
specifically, of which quasiconcave functions can be concavi-
fiable — has a vast literature motivated by the field of Microe-
conomics, wherein quasiconcave functions appear naturally as
reasonable tools when studying consumer preference relations
[16, Lecture 4]. In 1949, Bruno de Finetti [6] proved that
not all quasiconcave functions could be concavified — that is,
transformed into a concave function by a increasing function.
Since then, there has been considerable effort into studying
the concavification of preference relations (and hence, of qua-
siconcave functions) [7], [41]–[44]. For a succinct presentation
on the topic, we refer the reader to [12, Chapter 8].

X. CONCLUSIONS AND FUTURE WORK

Several previous axiomatic approaches to information leak-
age have been here unified in a general framework, that of limit
entropies. Limit entropies are based on a limit construction
of core-concave entropies satisfying EAVG, and are shown
to coincide with quasiconcave functions on the unconditional
form, and to subsume different conditional forms in the
literature.

Because of the limit construction several information theo-
retical and information leakage properties can be proven for
quasiconcave entropies, perfect secrecy and a generalization
of Fano inequality. This guarantees that any other entropies
subsumed in this framework, such as the new proposed fam-
ilies of entropies in Section VII with a η-geometric mean
conditional form, will satisfy not only the important DPI

and CRE properties but also all the information theoretical
properties in Section VI.

The limit construction here introduced, based on recent re-
sults — yet a long tradition of research — in microeconomics
and convex analysis, opens the door for further investigations
about possible connections between microeconomics theory,
information leakage and information theory.
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[14] A. Rényi, “On Measures of Entropy and Information,” in Proc. 4th
Berkeley Symposium on Mathematics, Statistics, and Probability, 1961,
pp. 547–561.

[15] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: theory of
majorization and its applications. Mathematics In Science And
Engineering, Academic Press, 1979, vol. 143.

[16] A. Rubinstein, Lecture Notes in Microeconomic Theory: The Economic
Agent, 2nd ed. Princeton University Press, 2012.

[17] C. E. Shannon, “A mathematical theory of communication,” Bell System
Technical Journal, vol. 27, pp. 379–423, 625–56, 1948.

[18] J. L. Massey, “Guessing and entropy,” in Proc. IEEE Int. Symposium
on Information Theory (ISIT), June 1994, p. 204.

[19] G. Smith, “On the foundations of quantitative information flow,” in Proc.
12th Int. Conf. Foundations of Software Science and Computational
Structures (FOSSACS), ser. LNCS, vol. 5504. Springer, 2009, pp. 288–
302.

[20] M. S. Alvim, K. Chatzikokolakis, C. Palamidessi, and G. Smith, “Mea-
suring information leakage using generalized gain functions,” in Proc.
IEEE 25th Computer Security Foundations Symposium (CSF), 2012, pp.
265–279.

[21] M. S. Alvim, K. Chatzikokolakis, A. McIver, C. Morgan, C. Palamidessi,
and G. Smith, “Additive and multiplicative notions of leakage, and
their capacities,” in Proc.IEEE 27th Computer Security Foundations
Symposium (CSF). IEEE, 2014, pp. 308–322.

[22] T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed.
J. Wiley & Sons, Inc., 2006.



[23] A. Teixeira, A. Matos, and L. Antunes, “Conditional rényi entropies,”
IEEE Transactions on Information Theory, vol. 58, no. 7, pp. 4273–
4277, July 2012.

[24] M. Iwamoto and J. Shikata, “Information theoretic security for encryp-
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