
Fixing the Achilles Heel of E-Voting:

The Bulletin Board

Lucca Hirschi∗

Inria & LORIA

Nancy, France

lucca.hirschi@inria.fr

Lara Schmid∗

DFINITY†

Zurich, Switzerland

lara.schmid@dfinity.org

David Basin

ETH Zurich

Zurich, Switzerland

basin@inf.ethz.ch

Abstract—The results of electronic elections should be ver-
ifiable so that any cheating is detected. To support this, many
protocols employ an electronic bulletin board (BB) for publishing
data that can be read by participants and used for verifiability
checks. We demonstrate that the BB is itself a security-critical
component that has often been treated too casually in previous
designs and analyses. In particular, we present novel attacks on
the e-voting protocols Belenios, Civitas, and Helios that violate
some of their central security claims under realistic system as-
sumptions. These attacks were outside the scope of prior security
analyses as their verifiability notions assume an idealized BB.

To enable the analysis of protocols under realistic assumptions
about the BB, we introduce a new verifiability definition appli-
cable to arbitrary BBs. We identify a requirement, called final-
agreement, and formally prove that it is sufficient and, in most
cases, necessary to achieve verifiability. We then propose a BB
protocol that satisfies final-agreement under weak, realistic trust
assumptions and provide a machine-checked proof thereof. Our
protocol can replace existing BBs, enabling verifiability under
much weaker trust assumptions.

I. INTRODUCTION

Physical bulletin boards are used to publish announcements,

for example at the town hall. An electronic bulletin board,

henceforth referred to as BB, has a similar purpose, but can be

accessed remotely, e.g., by publishing its content on a website.

While BBs are deployed in various contexts, they are partic-

ularly important for electronic voting (e-voting) protocols.

For e-voting to be trustworthy, the participants must be

convinced that the election result is correctly computed from

all eligible voters’ ballots. To this end, the participants must be

able to verify that all e-voting authorities behaved as specified,

even when some of them are not trustworthy. For most e-voting

protocols, verifiability is achieved by voters and auditors

performing checks on data published on a BB. In this paper,

we focus on those BBs that are used for verifiability checks,

where readers read their content and check the data they read.

For instance, a voter may check that her ballot was recorded

correctly after casting it. Also, auditors or voters may check

that all ballots were processed correctly by the authorities.

a) State of the Art: For verifiability checks to be

meaningful, the BB must provide some guarantees. However,

to the best of our knowledge, no prior work has studied

which precise (minimal) guarantees must be satisfied by a BB

∗Both authors contributed equally to this research.
†Work was done while author was employed at ETH Zurich.

for verifiability to hold and which attacks are possible when

the guarantees are not satisfied. All verifiability definitions

surveyed in [1] and most e-voting protocols that are formally

proven to provide verifiability [2]–[4] make the overly

conservative assumption of an idealized BB such as a shared,

universally accessible memory, a broadcast channel, or even

a storage mechanism where a single content is published and

subsequently remains unchanged. Even prior works that claim

to consider “malicious” BBs [5]–[10], where the BB’s content

is under adversarial control, still consider an idealized BB.

Some researchers regard the realization of BBs satisfying

such strong requirements as an orthogonal problem to

designing voting protocols [3], [4], [11]. Thus, it is unclear

how and whether these assumptions can be met in practice.

Other researchers have proposed concrete BB designs. For

instance, Civitas [12] proposes a signed BB, Helios [13]

suggests that BB contents are (re)posted by several auditors,

[14] makes use of a Byzantine Fault Tolerant (BFT) protocol,

and [10], [15]–[17] suggest to use the BB protocol presented

in [18]. Whereas these designs do not aim to realize

an idealized BB, we shall see that they fail to provide

sufficiently strong guarantees for verifiability. We shall also

see why solutions based on distributed ledgers are unsuitable.

Idealized BBs are fine in theory but not in practice. Indeed,

reference implementations of the state-of-the-art systems

Belenios, Civitas, and Helios [3], [12], [13], that have been

extensively used, notably in academia (e.g., UCLouvain,

Princeton, ACM, IACR), as well as the currently running

web-based deployments of Belenios and Helios [19], [20]

use BBs with too weak guarantees. Therefore, we shall see

that the centralized entity running the BB must actually be

trusted for verifiability to hold in practice. However, this

assumption is unreasonable and at odds with the recent,

substantial efforts to minimize the required trust assumptions

in e-voting designs and proofs [5], [11], [21].

Thus, whereas e-voting designs make too strong assump-

tions about the BB, actual deployments provide too weak guar-

antees for them. This mismatch and the imprecise treatment of

the BB in prior works call for a thorough analysis of the BB’s

role with respect to verifiability and raise the following ques-

tions. How does a BB that is under adversarial control impact

verifiability in practice? What requirements must be satisfied

by a BB for verifiability to hold? Can a concrete BB protocol

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
16

achieve such requirements under realistic assumptions?

b) Contributions: We make four contributions. First,

we demonstrate that there is a mismatch between BB

assumptions in verifiability claims and proofs and actual

BB realizations. By considering idealized BBs like those

mentioned above, prior works fall short of capturing realistic

use cases and deployments. In particular, a malicious BB can

provide, independently of its current state, different readers

different contents; we call this equivocation, inspired by the

terminology used for distributed systems [22], [23]. This

opens even well-designed protocols to serious attacks.

In particular, we present novel and practical attacks on the

state-of-the-art e-voting systems Belenios [3], Civitas [12],

and Helios [13]. In our attacks, the BB equivocates contents,

but never the election result (i.e., number of votes for each

candidate/choice) to readers. We thereby show that these

systems fail to provide verifiability (and privacy) under the

threat models for which they are claimed to be secure. As ver-

ifiability has previously only been proven with some idealized

BB, these attacks were missed in prior formal analyses.

While many prior works mention BB assumptions that

imply that readers are provided with consistent contents, only

few of them explicitly identify equivocation as a potential

threat [12], [24]–[26] and none describes concrete attacks. In

contrast, we describe seven such attacks that are novel and

exploit six different forms of equivocation. We account for the

detailed specifications, assumptions, and usability constraints

in the attacked protocols, which is key to estimating the

risk associated with attacks in practice. As we shall see,

our attacks support our thesis that the threat of equivocation

was overlooked or underestimated. The Belenios designers

acknowledged our attacks and their effectiveness in a scenario

with a motivated, malicious voting server.

Second, we propose a new verifiability definition that

accounts for malicious BBs. Consequently, our definition

covers realistic scenarios that include our attacks, as opposed

to previous work assuming idealized BBs. We base our defini-

tion on the generic verifiability definition of [1] that subsumes

all of the definitions surveyed in [1], which all assume an

idealized BB. However, in stark contrast to [1], our new

definition verifiability+ is also suitable for malicious BBs. As

expected, verifiability+ does not hold for arbitrary BBs, which

motivates our analysis of which BB properties are actually

needed for the entire e-voting system to satisfy verifiability+.

Third, we identify a new BB property, called Final-

Agreement (FA for short), that is weaker than conventional

BB requirements, yet sufficient to achieve verifiability+. FA

requires that any content read from the BB at some point in

time is also contained in a distinguished final version of the

BB, wherein the election result is published. Furthermore, all

readers agree on this final content. FA does not, however, im-

pose any relation between the writes and the reads or between

different reads performed on non-final BB contents. We for-

mally show that, in most e-voting protocols, FA is the weakest

BB requirement that suffices to achieve verifiability+. Also, we

prove that any protocol satisfying verifiability with an ideal-

ized BB, satisfies verifiability+ for a BB satisfying FA, which

requires weaker trust assumptions that can be met in practice.

Finally, we propose a BB protocol that satisfies FA. Similar

to other approaches [14], [27], [28], we assume that the BB is

implemented using multiple peers signing BB contents, only

some of which must be trusted. However, in contrast to prior

BB protocols that fail to provide FA, we explain how FA is en-

forced with carefully designed policies that peers must check

prior to signing. Since such proofs are subtle, we formalize

our protocol and the FA property as an event-based model and

provide a machine-checked proof that the protocol satisfies FA.

Our protocol requires weaker trust and system assumptions

than previous BB approaches based on BFT such as [14].

Overall, our results show that the unrealistically strong

BBs used in designs and verifiability proofs can be replaced

by our BB protocol and that verifiability is still (provably)

satisfied. We thereby effectively and substantially weaken the

required trust assumptions in e-voting protocols.

c) Outline: In Section II, we present our system model,

our threat model, and the specification language we use. In

Section III, we review previous verifiability definitions and

propose improvements to account for possibly malicious BBs.

We then show in Section IV how existing e-voting systems can

be attacked by a malicious BB. We define the FA property in

Section V and explain why it is sufficient and, in many cases,

necessary for verifiability. We then present our BB protocol

and formally establish that it satisfies FA in Section VI. In

Sections VII and VIII we discuss related work, including those

solutions based on distributed ledgers, and draw conclusions.

II. BULLETIN BOARD (BB) MODEL

A. Setup, System, and Threat Model

1) Functionalities: BBs are used to store information that

others can read. A BB therefore provides, at a minimum,

functionalities (what users can do) for writing and reading

content to and from it. For e-voting and other scenarios, the

BB’s content evolves in phases and is intended to reach a final

state where the final content contains the result of the process

that the BB tracks. For instance, in e-voting the BB can be

updated, corresponding to a new phase, whenever a batch of

ballots is received or when the ballots have been tallied and

the final content includes the election’s result. We shall see

that for e-voting, the guarantees required when reading the

final content are different from the guarantees required when

reading non-final contents. The former guarantees are strictly

stronger and include a strong form of agreement between

readers, whereas the latter may be relaxed.

Given the previous considerations, we distinguish two a pri-

ori different reading functionalities: Read-final for reading the

BB’s final content(s) and Read-nonFinal for reading any BB

content, including non-final ones. With both functionalities, a

reader can either read the full BB content or only a partial BB

content such as a single ballot retrieved by a voter to check

its inclusion on the BB. The third functionality is Write.

E-Voting Authorities

Bulletin

Board

Voter Check

Auditor Check

Write
Read-nonFinal

Read-final

Fig. 1. Typical BB setup in e-voting. The BB functionalities are depicted
by solid lines, the verifiability checks by dotted lines, and the remaining
architecture by dashed lines.

2) Setup: We focus on the interactions between the BB and

verifiability in e-voting. Thus, we consider BBs that are solely

used to store election-relevant data and to retrieve data to

check for verifiability. Checking verifiability intuitively entails

checking that all participants followed their specification and

the election’s result is thus trustworthy. In this setting, it

is common that writers are voting authorities and readers

are auditors and voters (or their machines), who carry out

some verifiability checks on the BB’s content. A typical BB

architecture for e-voting is depicted in Figure 1.

3) System Model: A concrete BB can be realized by a

single role (e.g., [18]) or by several (equal or different) roles,

which we call peers, that run a protocol together (e.g., [14]).

The system model states assumptions on which communica-

tion channels are available between readers, writers, and peers.

We note that reader-interconnectivity would allow for

BB solutions based on BFT protocols run by the readers,

for example where readers cross-checking their views of

the BB. However, reader-reader communication is a very

strong assumption that is unrealistic for e-voting at scale,

i.e., medium and large scale elections where all voters can be

readers. Indeed, this would require an infrastructure such as

a Public Key Infrastructure (PKI) that voters use to identify

and authenticate other genuine, eligible voters. Moreover,

sufficiently many voters must be online at all times with

sufficient bandwidth and storage (the BB content can be very

large as it may contain large zero-knowledge proofs (ZKP)

for many voters, see Section IV-B4). Finally, BFT would

require that a given percentage of the voters’ platforms are

trusted and non-compromisable, which specifically contradicts

the assumptions of protocols that rely on specialized devices

to protect against voters’ malicious platforms [21], [24], [29],

[30]. In conclusion, as such assumptions are unrealistic for

e-voting systems, we exclude reader-reader communication

from our system model. Since readers cannot directly

communicate with each other to synchronize their BB

views, they must rely on trusted third parties, which may be

centralized or decentralized (see Section VI).

4) Threat Model: We assume that all communication is

over an insecure network controlled by the adversary. Addi-

tionally, some participants can be malicious, i.e., the adversary

knows all of their secrets and controls them. We allow for

static and dynamic compromise, i.e., agents can be compro-

mised before or during the voting protocol’s execution. All

nonmalicious agents are honest and follow their specification.

B. Formal Specifications in Event-B

1) Event-B Definitions: We use an event-based model

based on Event-B [31] to formally describe protocols.

First, we introduce standard notation and definitions for

Event-B specifications; we also provide a tutorial in [32]

for interested readers. We shall use standard mathematical

notation and functional programming concepts such as typed

values, types as sets of values, ≡ for the equality between

values, and , for the equality between types. We denote by

r = Lx1 = t1, . . . , xn = tnM a record that respectively stores

the value ti with the label xi, i.e., r.xi ≡ ti. For a set S, P(S)
denotes the powerset of S. · denotes a vector, and {ai}i∈J

denotes a set of elements ai indexed by elements in the set J .

Definition 1 (Specifications). A transition system is a tuple

T = (Σ,Σ0,→), where Σ is the state space, Σ0 ⊆ Σ is the

set of initial states, and → ∈ (Σ×Σ) is the transition relation.

A behavior σ of T is a sequence of states σ = s0.s1. · · · .sn
such that s0 ∈ Σ0 and ∀i ∈ [0, n), (si, si+1) ∈ →. Be(T)
denotes the set of all behaviors.

A specification is a transition system where states are

defined by records and transition relations by events (defined

below). Formally, a specification is given by a list of typed

state variables, initial values thereof, and a set of events.

We denote a state whose state variables v1, v2, ... have the

(well-typed) values a, b, ... by the record Lv1 = a, v2 = b, . . .M.
Σ is the set of all such records.

Events are of the form Ev(x) ≡ {(s, s′) | G(x, s)∧ s′.v :=
f(x, s)}, where Ev is the event name, x are the event’s

parameters, v are the state variables, G(x, s) is a conjunction

of guards, and s′.v := f(x, s) are actions with the update

functions f . The guards are first-order formulae over s.v
and x and determine when the event is enabled. If the event

is enabled, the actions s′.v := f(x, s) assign values to state

variables in the state s′. The set of all events defines a transi-

tion relation corresponding to applications of the events with

arbitrary event parameters. We assume that all specifications

implicitly include the event Skip() ≡ {(s, s′) | s′.v := s.v},
which models stuttering steps. We denote by V (S) the set of

state variables of a specification S.

Two specifications S1 and S2 can be combined into a new

specification, denoted by S1 ∪ S2, by taking the union of the

events, state variables, and their initial values. (The initial val-

ues of the shared state variables in S1 and S2 must be equal.)
2) E-voting Protocol and BB Specification Framework:

a) Parameterized BB Contents: For the sake of

generality, we impose some minor restrictions on the contents

that may be written to and read from the BB that allow us to

work with a lattice structure. Formally, we assume given an

uninterpreted set W of all possible BB contents with a relation

⊑b that form a lattice whose join and meet are respectively

written as ∪b and ∩b. We also assume a bottom element B⊥.

The relation ⊑b expresses inclusion between BB contents. The

set W abstractly represents contents and does not necessarily

match with the BB’s actual internal representation (e.g., list).

Furthermore, W may contain partial BB contents. We establish

π S

A
wr

w cr

nfc

fc

Fig. 2. Abstract representation of the interactions between the BB (π) and an
e-voting specification (S) using dedicated state variables (in squares). Write
actions for an agent A are depicted with red, solid arrows and check actions
with blue, dashed arrows. Green dotted arrows denote interactions that we
abstract away: respectively the construction of BB contents from writes (on
the left) and the sending of BB contents to readers (on the right).

our results in this general setting; but for intuition one can

also work with the following lattice: the power set of a given

set I of items that the BB contents may contain. Namely,

W := P(I), ⊑b:= ⊆, ∪b := ∪, ∩b := ∩, and B⊥ := ∅.

Recall from Section II-A1 that BB contents can be published

in different phases. We model phases by positive integers

acting as counters. Each B ∈ W has a phase that is defined

by the function ps : W → N
+ and ps(B⊥) = 1.

b) Our Framework, the Big Picture: Our definitions

model the BB’s role in verifiability in e-voting and thus focus

on the interactions between e-voting entities, the BB, and

verifiability checks. The rest is abstracted away. We therefore

formalize a protocol as the combination of two specifications,

modeling the BB and the rest of the e-voting system, which

can produce write and verifiability check requests. We

describe how these two specifications interact through shared

state variables, as explained next and depicted in Figure 2.

An agent A accessing the Write functionality, shown in

solid, red arrows in Figure 2, is modeled by the written

content being added to the state variable wr (write requests).

Depending on the BB’s specification, the BB may then add

this content to the state variable w (writes). Hence, the state

variables wr and w respectively record the set of write requests

sent to and actually processed by the BB. The BB content

associated to such a set is the meet (∪b) thereof, e.g., ∪bw.

To evaluate a verifiability check on some BB data, an

agent A sends check requests to access one of the BB’s two

read functionalities. We distinguish a subset of verifiability

checks, called final-only checks, that can only be evaluated

on BB contents obtained by the Read-final functionality. An

agent A evaluating a final-only verifiability check is modeled

in two steps: (1) A’s check is added to a set of check requests

cr, and (2) depending on the BB specification, the BB may

process this request and provide A with some content, which

is stored with the original request in the fc (final-checks)

state variable (depicted with dashed, blue arrows in Figure 2).

We abstract away the actual reads (green dotted arrows on

the right of Figure 2) and only keep track of check requests

that were processed. Non-final check requests are similar,

except that the processed check requests are stored in nfc

(non-final-checks) rather than in fc. Finally, the e-voting

specification has a state variable agents (not shown in

Figure 2) that keeps track of all honest and malicious agents.

c) Protocol and BB Specifications: We now formalize

the above in Event-B. We respectively denote by A and M
the uninterpreted sets of possible agents and messages, and by

C the set of possible verifiability checks. A verifiability check

C ∈ C is a predicate of the form C(B, x) that represents

a property checked on the BB’s content B ∈ W , possibly

with additional data x ∈ M∗ in the checker’s possession. We

assume some Cf ⊆ C containing all the final-only verifiability

checks, and let Cnf = C\Cf . We describe verifiability checks

further in Section III-A. The check requests recorded in cr are

of the form (C, x, a) and denote that an agent a ∈ A wants

to read the BB, obtain some B, and check C(B, x). With this,

we can formalize the e-voting specifications explained above.

Definition 2 (S). An e-voting specification S is a specification

whose state variables contain cr : P(C ×M∗ ×A) (storing

the check requests), wr : P(W) (storing the write requests),

and agents : P(A)×P(A) (storing the honest and malicious

agents). Moreover, cr and wr are initially empty and they are

monotonically increasing; for example, for cr, ∀(σ.s.σ′.s′) ∈
Be(S), s.cr ⊆ s′.cr.

We define BB specifications similarly. The state variables fc

and nfc record checks of the form (C, x, a,B), where B is the

content that the BB produced for some check request (C, x, a)
in cr respectively through Read-final and Read-nonFinal.

Definition 3 (π). A BB specification π is a specification

containing the state variables cr and wr as in Definition 2,

fc : P(C × M∗ × A × W), nfc : P(Cnf × M∗ × A × W),
and w : P(W) such that cr,wr, fc, nfc, and w are initially

empty and are monotonically increasing. π has write access to

neither cr nor wr, i.e., their values can only be used in guards.

Note that fc may contain checks of the form (C, x, a)
with C /∈ Cf since checks that are not final-only can also

be evaluated on BB contents obtained by the Read-final

functionality. For a state s, checksA(s) denotes the set of all

checks that have been actually processed (answered to) by

the BB, namely {(C, x, a) | (C, x, a,B) ∈ (s.fc∪ s.nfc)}. For

a set of checks c, we denote by readB(c) the set of all read

BB contents, i.e., {B | ∃(C, x, a,B) ∈ c}.

Example 1. Consider the BB specification πper defined below.

πper models a perfect BB that acts as a shared variable: it

returns all previously written messages for all check requests

(Rnf,Rf) and is updated (Write) by all write requests until a

final check is processed whereby the content is frozen.

Σ,Lwr,w, cr,fc, nfcM, Σ0≡{Lwr,w, cr, fc, nfc = ∅M}
Write(Bw)≡{(s, s′) | s.fc = ∅ ∧ Bw ∈ s.wr

∧s′.w = s.w ∪ {Bw}}
Rnf(C, x, a,B)≡{(s, s′) | s.w = s.wr ∧ (C, x, a) ∈ s.cr

∧C ∈ Cnf ∧ B = ∪bs.w ∧ s′.nfc := s.nfc ∪ {(C, x, a,B)}}
Rf(C, x, a,B)≡{(s, s′) | s.w = s.wr ∧ (C, x, a) ∈ s.cr

∧B = ∪bs.w ∧ s′.fc := s.fc ∪ {(C, x, a,B)}}

Next, consider πtru, which is like πper but without the guard

s.w = s.wr in the actions Rnf and Rf and without the guard

Bw ∈ s.wr in the action Write. πtru models a trustworthy

BB that has insecure and unreliable channels with writers (w

and wr can be unrelated), but always provides readers with

the previous received writes and stops accepting new writes

once a final check is processed.

We define a protocol by combining an e-voting and a BB

specification, where the checks nfc ∪ fc must correspond to

check requests cr, i.e., the BB only processes requested checks.

Definition 4 (Protocol). A protocol is the union S ∪ π
of an e-voting specification S and a BB specification

π. We also require that (1) π and S only interact

through cr and wr, that is V (S) ∩ V (π) ⊆ {cr,wr},

and (2) ∀(σ.s) ∈ Be(S ∪ π), checksA(s) ⊆ s.cr. We write

P (S, π) for S ∪ π, where these two conditions hold.

Finally, we shall define several BB properties in this paper,

all of which can be formalized as predicates.

Definition 5. Let T be a predicate over behaviors. For a

behavior σ, we write σ ⊢ T when T is satisfied on σ|Vb

(i.e., σ restricted to the state variables in Vb), where Vb =
{cr,wr,w, fc, nfc}. We require that T holds for σ = s0, where

the values of the record (s0)|Vb
are empty sets. A BB specifica-

tion π satisfies a predicate T , denoted by π ⊢ T when, for all

S such that P (S, π) is a protocol, ∀σ ∈ Be(P (S, π)), σ ⊢ T .

Example 2. The written-as-requested predicate War denotes

that all write requests were processed before reading, i.e., σ ⊢
War when for any prefix of σ of the form σ0.s.s

′, if s′.nfc ∪
s′.fc 6= s.nfc∪ s.fc, then s.wr = s.w. Also, the read-as-written

predicate RaW denotes that read contents are identical to the

previously written contents and that no writes are made once

a final check has been processed. That is, σ ⊢ RaW when

for any prefix σ0.s.s
′ of σ, the two following conditions hold:

(1) ∀(C, x, a,B) ∈ ((s′.fc∪s′.nfc)\(s.fc∪s.nfc)), B = ∪bs.w
and (2) s.fc 6= ∅ ⇒ s′.w = s.w.

We call a BB that satisfies RaW trustworthy, as assumed

by e.g., Alethea [4]. We call it perfect if it also satisfies

War, as assumed by e.g., Belenios security proofs [33] (see

Section IV-C3a). It is easy to see that πper (respectively πtru)

from Example 1 is a perfect (respectively trustworthy) BB.

III. VERIFIABILITY AND THE BB

Verifiability requires that voters and auditors can verify the

election’s integrity by performing checks on data that is, in

most protocols, stored on the BB. Hence, verifiability depends

on the BB’s properties. We investigate now the relationship

between verifiability and BBs.

A. Defining Verifiability for Malicious BBs

We formally define verifiability in our framework. First,

we explain that most prior verifiability definitions assumed a

trustworthy or even a perfect BB and we formalize these in

our framework. Then, we generalize verifiability by relaxing

the restrictions on the BBs found in prior works and by

allowing BBs to be malicious.

The Big Picture. Verifiability enables voters and auditors to

detect any malicious behavior by the election authorities. The

time
election’s start

vote IV check

election’s end

UV+EV checks

Voters Auditors

Fig. 3. Election timeline for which the verifiability checks satisfy Vote&Go.

core property is end-to-end verifiability, which states that the

election’s result has been correctly computed based on all eli-

gible voters’ votes [1], [9]. Some authors, e.g., [4], [34], [35],

divide this into sub-properties targeting steps of the election

process. For instance, Individual Verifiability (IV) states that

when a voter checks that his ballot is in the list of recorded

ballots (on the BB), then his ballot is indeed recorded correctly

and will be considered when computing of the election result.

Universal Verifiability (UV) states that when auditors or voters

verify checks on the end result (on the BB), such as verifying

given ZKPs, then the election result was correctly computed

from the recorded ballots. Finally, Eligibility Verifiability (EV)

ensures that the election result is only computed from eligible

voters’ votes and contains at most one vote from each voter.

More generally, verifiability states that, when the

verifiability checks hold for a given execution, then this

execution, along with the corresponding final BB content

(including the election result), meet some verifiability

goal [1]. This goal can be quantitative or qualitative. In our

work, we focus on qualitative definitions in the possibilistic

setting, where agents may perform verifiability checks and

where goals are expressed with respect to the set of agents

who perform these checks. However, it should be possible to

generalize our definitions to the probabilistic and quantitative

case; we leave this task as future work.

Usability requirements. For verifiability to succeed in practice,

the checks required must be easy to carry out. If verifiability

checks are impractical (e.g., too time-consuming or complex),

then few voters will actually perform these checks (correctly).

One prominent requirement is Vote&Go [36], which requires

that voters can perform the IV checks right after voting

and need not perform UV checks. Hence, verifiability is not

jeopardized by human voters who are no longer active in the

election process after voting; see Section IV-B4. A timeline

for an election with verifiability checks that satisfies Vote&Go

is depicted in Figure 3. Another important requirement

mentioned in Section II-A3 is the absence of voter-voter

communication, implying that voters are unable to effectively

compare their views of the BB. We will ensure that our

verifiability definition is expressive enough to capture such

requirements, should one wish to consider them.

Verifiability for Honest BBs. To formally define verifiability,

we first formalize verifiability checks and goals.

Definition 6. A verifiability check is a predicate C : P(W ×
M∗) ∈ C over bulletin board content and messages. C is

final-only when C ∈ Cf ⊆ C. We require that all verifiabil-

ity checks that are not final-only are monotonic in B, i.e.,

∀B,B′, x, C(B, x) ∧ B ⊑b B
′ ⇒ C(B′, x).

Monotonicity may appear restrictive. However, as we argue

next, it only excludes verifiability checks that cannot be

meaningfully evaluated on non-final contents. Fortunately,

these verifiability checks are therefore final-only and need

not be monotonic. Monotonicity essentially states that a

verifiability check cannot be violated by extending the BB

content by adding additional items. The lack of monotonicity

means that verifiability checks evaluated on non-final contents

provide no guarantees about the final BB content containing

the election result. For instance, the check that at most one

ballot has been registered per voter is not monotonic. To

provide meaningful guarantees such checks must therefore

be evaluated on the final, full contents only and are thus

final-only. Monotonicity is typically met by IV checks, as

they express that the BB content contains specific items like

a ballot. UV must usually be checked on the final, full BB

content and thus these checks are typically final-only.

A goal’s satisfiability may depend not only on the final BB

content, but also on which checks have been performed and on

additional information about the agents’ intended choices and

honesty. We assume a partial function that returns the intended

choice of a given voter. We then define a goal as a predicate

over the final BB content, the set of all checks that the BB

has responded to, and the sets of honest and malicious agents.

Definition 7. A verifiability goal τ is a predicate over W ×
P(C ×M∗ ×A)× (P(A)× P(A)) that is satisfied for B⊥.

We next present a generic verifiability definition that is

inspired by [1], where different verifiability notions are cast in

the same framework. All the verifiability properties analyzed

in [1] are only defined for protocols that assume a trustworthy

or perfect BB (see Section VII-B), such as πtru or πper from

Example 1, which we formally characterize by the RaW

predicate. For any protocol P (S, π) such that π ⊢ RaW and

for any (σ.s) ∈ Be(P (S, π)), we define the final BB content

in s as the union of all writes, that is finalB(s) = ∪bs.w.

Definition 8 (Verifiability). A protocol P (S, π) with π ⊢ RaW

provides verifiability for a verifiability goal τ when

∀(σ.s) ∈ Be(P (S, π)),
∧

(C,x,a,B)∈(s.fc∪s.nfc)

C(B, x)

⇒ τ(finalB(s), checksA(s), s.agents).

Note that verifiability relies on the BB in two ways. First,

the verifiability checks are performed on data read from the

BB. Second, the verifiability goal is evaluated with respect

to the final BB content, i.e., the content of the final BB must

satisfy some properties. Whereas the read and the final BB

contents are well-defined for BB specifications satisfying

RaW (through finalB(·) for the final content), this is not the

case for arbitrary, possibly malicious BBs. These BBs can, for

example, provide different readers completely different (final)

BB contents (equivocation), possibly unrelated to previous

writes. Thus, the above verifiability definition cannot be used

for malicious BBs. Hence we next propose a more generic

definition thereof, called verifiability+.

Verifiability for Malicious BBs. Intuitively, even when the BB

is under adversarial control, we would like checks performed

on the BB contents provided by the malicious BB to guarantee

that a goal holds with respect to the final content. First, note

that for this to be well-defined, the final BB must be well-

defined and unique. That is, we can only define verifiability for

BBs that present the same content to all readers using Read-

final. We thus define the predicate final-consistency (FC for

short), which holds for a behavior σ.s when |readB(s.fc)| ≤ 1.

(Note that RaW strictly implies FC). Any BB specification

π satisfying FC never provides two final check requests

with two different BB contents, but it can behave arbitrary

otherwise. In particular, it can provide different contents to

two readers using Read-nonFinal or provide readers with a

final BB that is totally unrelated to the writes (to both s.w and

s.wr). For specifications satisfying FC, we define the unique

final content in a state s, denoted by finalB+(s), as either B⊥

when s.fc = ∅ (no one has read the final BB), or Bf , where

readB(s.fc) = {Bf}, otherwise (when at least one reader has

read the final BB). Given this, we define verifiability+ as a

variant of verifiability suitable for any BB that is FC.

Definition 9 (Verifiability+). A protocol P (S, π) with π ⊢ FC

provides verifiability+ for a verifiability goal τ when

∀(σ.s) ∈ Be(P (S, π)),
∧

(C,x,a,B)∈(s.fc∪s.nfc)

C(B, x)

⇒ τ(finalB+(s), checksA(s), s.agents).

In Section IV, we show how verifiability+ can be violated

by a malicious BB in real-world e-voting protocols. We then

propose a BB requirement that is sufficient for verifiability+

to hold in Section V.

IV. PRACTICAL ATTACKS WITH MALICIOUS BBS

We now investigate the security impact of malicious BBs.

First, we present two attacks on a mock e-voting protocol

based on equivocation and illustrate why such attacks are

effective. Afterwards, we present attacks on Civitas [12],

Belenios [3], and Helios [13] taking into account the spec-

ifications and assumptions made in each of these protocols.

The attacks use different forms of equivocation and differ in

what contents are equivocated, towards whom, and when.

A. Two Examples of Equivocation

We consider a simplified, mock e-voting protocol with three

voters V1, V2, and V3, an election authority EA, an external

auditor Au, and a BB. Each voter Vx, x ∈ {1, 2, 3} chooses a

candidate cx ∈ {A,B}, encrypts this choice using EA’s public

key k, denoted by enc(cx, k), and sends the resulting ballot

bx = enc(cx, k) to the BB, who records it. At the election end,

the BB sends all recorded ballots to EA, who decrypts them

and computes the result, e.g., using homomorphic encryp-

tion [3] or a mix-net [12]. Next, EA publishes on the BB the

list of all recorded ballots, the election result, i.e., the number

of votes for each candidate, and a proof that the result was

computed correctly. For authentication, EA signs the proof.

For verification, each voter Vx requests a (possibly partial)

BB content after casting his ballot and checks that bx is in the

list of already recorded ballots (IV). Also, after the election

Au V1 V2 V3 BB+EA

b1 = enc(A, k) b2 = enc(B, k) b3 = enc(B, k)
b1
b1

IV
b2
b2

IV
b3
b3

IV
election’s end

b1, b2; A:1,B:1; p

UV
b1, b2; A:1,B:1; p

UV/IV
b1, b2; A:1,B:1; p

UV/IV
b1, b3; A:1,B:1; p′

UV/IV

Fig. 4. A malicious BB and election authority (EA) change the election
result. p and p′ are respectively the proofs that the result A:1,B:1 was
correctly computed from the lists of ballots b1, b2 and b1, b3. These proofs
are signed by EA. The BB reads and the verifiability checks specified in the
protocol are depicted in blue. This attack is neither detected by the voters’
(Vi) and the auditor’s (Au) checks nor by (unspecified) additional checks of
motivated voters, shown in gray.

Au V1 V2 V3 BB EA

b1 b2 b3
b1
b1

IV
b2

b1, b2

IV
b3

b1, b3

IV
election’s end

b1, b3
tt = b1, b3; A:1,B:1; p

UV

Fig. 5. A malicious BB changes the election result and violates IV (for V2).
p is the proof that the result A:1,B:1 was correctly computed from b1, b3,
signed by EA.

end, auditors and possibly some motivated voters read the

full, final BB and check that the election result was correctly

computed from the recorded ballots by verifying the published

proofs (UV). (Thus, voters are not mandated to check UV.

We will explain in Section IV-B4 why this is important.)

Assume now that V1 votes for candidate A, while V2 and

V3 vote for B. Thus, the true election result is A:1,B:2. We

next present two attacks showing that the election result can be

maliciously modified to A:1,B:1, i.e., the result is a tie rather

than a victory for B, without being detected by any of the

checks specified in the protocol, thus violating verifiability. For

more than three voters, similar attacks can change the winner.

1) Equivocating Final BB Contents With a Malicious BB

and EA: Figure 4 shows how a malicious BB and EA can

change the election result. When the voters read the BB to

check IV, they are provided with a list containing their ballot.

For simplicity, we assume here that the list contains only this

ballot. When Au reads the BB to check UV, the BB (with

the help of EA) provides Au with the ballots b1, b2, the result

A:1,B:1, and a proof of the correct decryption of b1, b2, signed

by EA. Despite the fact that the result has been changed, all

checks succeed: each voter can verify that their previously

cast ballot is in the list of recorded ballots (IV) and the auditor

can check the proof of correct decryption (UV). Note that

this even holds if some motivated voters additionally perform

an UV (or IV) check at the election end, as shown in gray in

Figure 4. For example, when V1 reads the BB to check UV, he

is shown the same BB content as the auditor. However, when

V3 does so, he is shown the ballots b1, b3, the election result

A:1,B:1, and a signed proof of correct decryption of b1, b3.

In a scenario with many voters and ballots, the adversary

could first choose his desired election result and a set of

ballots that yield this (fixed) result when processed correctly.

When an auditor requests the BB to check UV, the adversary

could include in the answer the selected ballots and all

required proofs showing that they lead to the chosen result.

If a motivated voter checks UV, the attacker could choose

a possibly different set of ballots that yields the same result

when tallied but also contains the voter’s ballot. Even though

a malicious BB and EA is a strong adversary, verifiability

has been (wrongly) claimed to hold for similar threat models;

e.g., in Belenios, Helios, and Civitas as shown below.

2) Equivocating non-Final BB Contents With a Malicious

BB: Under a much weaker threat model where only the BB is

malicious, verifiability is still violated. As shown in Figure 5,

the BB can equivocate its contents read for checking IV such

that V2’s ballot b2 is not considered in the final result although

V2 successfully checks IV. Note that, in contrast to the previous

attack, V2’s ballot is not included in any of the final BB

contents, which are authenticated by the honest EA. Thus, the

adversary can only equivocate non-final BB contents.

B. Practicality of the Attacks

We next make some key observations regarding the above

attacks that also hold for the attacks introduced in Sec-

tion IV-C. In particular, although the above cheating may leave

some evidence, we shall see that it is not detected by the

checks specified in the protocol and thus constitutes an attack.

Moreover, the checks that could be added to the protocol

specification that could in theory detect some of these attacks

are either too weak or impractical and thus are ineffective in

practice.

1) Equivocation with Consistent Election Result: For all

our attacks (presented in Sections IV-A and IV-C), all BB

readers are provided the same election result. Thus, different

readers may see different final BB contents but never different

results, e.g., in Figure 4, V2 sees the ballots b1, b2 and V3

sees b1, b3, but both see the result A:1,B:1. This is crucial as

in real elections the (low-entropy) result is often published

over various channels such as television or newspapers.

2) Equivocation Towards Voters: The attacks in Figures 4

and 5, as well as most of the attacks that we will subsequently

present, equivocate towards the voters. That is, some voters

are provided with equivocated BB contents, but all auditors

are provided with the same BB content.

In practice for an election with n voters, the attacker can

remove from the tally k ballots of k ≤ n targeted voters

without being detected by verifiability checks, thus defeating

verifiability. In particular, as we shall see in Section IV-B4,

the attacker can target voters for which the probability p that

they do not detect the attack is overwhelmingly close to 1 in

such a way that the probability that at least one voter detects

the attack, namely 1 − pk, is kept low1. Even though the

attacker may not learn the content of these k ballots when

selecting them, she can still manipulate the end result with

non-negligible probability, for example by also targeting users

based on their likely political inclinations, which might be

inferred using IP-based localization for instance.

3) Protocol vs. Ceremony: Both attacks above leave some

evidence. For example, the attacks in Figures 4 and 5 could

respectively be detected if V2 and V3 both checked UV and

compared their read BB contents and if V2 and Au compared

their read contents. However, this does not invalidate our

attack as these additional cross-checks are not part of the

protocol specification. That is, even though some of our

attacks may leave some evidence, they are not detected by

the specified verifiability checks even when the protocols’

respective BB auditing mechanisms are used. Hence they will

remain unnoticed and verifiability is therefore violated.

To help emphasize this important point, it is useful to

distinguish between the protocol and the larger ceremony in

which the protocol is executed. The distinction we wish to

underscore is that the protocol consists of all explicitly defined

steps, including a precise description of what the human voters

and auditors must do. In contrast, the ceremony may include

additional steps or suggestions that voters take, but are either

not made explicit or are too imprecise to be unambiguous.

In our security analysis, we focus on the protocol itself for

two reasons. First, the ceremony is not precise enough for

formal analysis. That is, if one were to formalize the ceremony,

one often realizes that for the described scenarios to work,

additional steps or assumptions are required. As pointed out

by [38] in this regard, “The devil is always in the details”

(see also other user studies [39], [40]). Second, in practice,

users are unlikely to perform checks that they are not explicitly

instructed to do [41]. Therefore, we should not assume that

checks unspecified by the protocol are performed.

4) Detectability: The attack in Figure 5, as well as some

of our attacks on existing protocols introduced below, could

have been prevented by changing the protocol and mandating

additional checks and communication. However, such counter-

measures are not equally practical for all attacks. For instance,

an extra check that a single auditor must perform to prevent

an attack is far more practical than requiring that all voters

cross-check their views of the BB contents. To reflect these

differences, we distinguish two types of attacks.

a) Attacks Without Practical Detection: These are at-

tacks that can only be prevented by substantial additional effort

from the voters, who are the only agents capable of detecting

the cheating. Both the attacks in Figure 4 and 5 are of this type.

1Depending on the election, k need not be large. For example, this is the
case when the tally is computed separately for different voting precincts. If
some of these precincts contain only a small number of voters, a few changed
votes may change the result, e.g., see the concrete examples from [37].

Cross-checking. First, the attack in Figure 4 can only be

detected if all voters cross-check their BB views (and check

UV). As mentioned in Section II-A3, relying on voter cross-

checking is impractical from a usability point of view and

would require substantial additional steps and assumptions

on the system; for example one must define which pairs of

voters should compare their views, how this communication

can be realized given the voters’ limited availability, and how

they would authenticate themselves. Even if some motivated

voters would do so, the attacker could still target specific

voters (i.e., only equivocating contents towards them), e.g.,

voters using voting platforms suggesting non tech-savvy users

(old OSs, low resolution displays, or old hardware) who are

unlikely to correctly perform optional checks and audits.

Tracking, Vote&Go, UV. The attack in Figure 5 can only be

detected if the specific, targeted voter V2 either (i) cross-checks

his BB view with others (already discussed), (ii) accesses the

BB at the election end without being recognized as V2 by the

BB to additionally check IV, or (iii) performs additional UV

and IV checks at the election end. We consider these checks

to be impractical for several reasons.

First, voters often, and in particular in Belenios and Helios,

receive an email after casting, with an invitation to check IV

on the BB with a dedicated URL (user studies show this is

the typical user journey [39], [41]), which could very well

be customized, and would make tracking possible, i.e., defeat

(ii). In Civitas deployments, voters are invited to check IV

right after casting, also using a dedicated URL [24].

Second, the attacker does not necessarily need to single out

and track voters, but just needs to cluster them into groups

in such a way that a voter accessing the BB multiple times,

possibly from different devices, will stay in the same group

of readers. The attacker could, for example, cluster readers in

large geographical regions based on their IPs or their language

preferences (in multilingual countries). This way, the attacker

can avoid being caught by not equivocating contents towards

users of the same group, even when they use different devices.

Third, extra checks such as with (ii) and (iii) would violate

the Vote&Go-paradigm introduced in Section III-A and

thereby greatly weaken the protocol’s usability. As already

argued and supported by numerous user studies [39]–[43],

this usability cost translates to a security loss. The Belenios

designers also agree [44] that “It would be illusory to think

that voters will really come back at the end of the election to

check for IV, even more so for UV.”

Finally, it is unrealistic to assume that all voters have the

computational power, bandwidth, and memory to perform the

full UV checks (as in (iii)) for medium to large scale elections,

also noted by [26]. For instance, checking the integrity of

the ballot box takes 4 hours for 500 ballots in Helios [13]

and requires downloading ca. 400MB of data for 20,000

ballots in Belenios. (This also shows why verifiability checks

should require voters to only inspect partial and non-final

BB contents.) Moreover, while some voters might have the

ability to perform UV checks in some ceremonies, it is not

explicitly mentioned in the specification of the protocols we

studied and [3], [10], [20], [43], [45] even state the contrary.

In stark contrast, we shall see that verifiability holds when

using a BB with FA (like our BB protocol) even when voters

check IV only right after casting and none checks UV.

b) Attacks With Practical Detection: These could be

defeated by adding extra checks to the specification, which

do not substantially increase the efforts required from voters.

For example, attacks that can be prevented by an additional

check by an authority or an auditor, which was not specified

in the original protocol, are of this type.

5) Equivocation with Signatures: The fact that proofs

are signed (here by EA) does not prevent our attacks.

As illustrated by the attack in Figure 4, different signed

contents can be shown to different readers if EA is malicious.

Moreover, as shown in Figure 5, even when EA is honest,

the BB may provide different readers with different non-final

contents, e.g., if non-final contents are not signed or if

different items are signed individually and can thus be

selectively removed by the BB.

C. Practical Attacks on State-of-the-Art Protocols

Next, we present several novel and practical attacks on the

e-voting systems Civitas [12], Belenios [3], and Helios [13],

where an adversary controlling the BB can manipulate the

election without being detected. Moreover, all our attacks can

be carried out with respect to threat models under which these

schemes were claimed to be secure [3], [12], [13], thus refuting

these claims. We summarize our attacks, their underlying

threat models, the properties they violate, and their type in

Figure 6. Moreover, we discuss additional attacks arising from

a lack of agreement on initial data (e.g., public keys) and argue

why this is an independent issue in [32].

Many of our attacks and the lessons we learn from them

also apply to other schemes. Our attacks demonstrate that the

BB in e-voting is often the weakest link for realistic threat

scenarios, which has been largely overlooked in the design

and analyses of e-voting protocols. For instance, Civitas [12]

and Helios [13] explicitly consider a malicious BB but greatly

underestimate its impact on security, resulting in security

claims that our attacks directly refute. The security proofs for

Belenios [33] assume a perfect BB, which is too strong an

assumption as discussed earlier. In [3], it is then claimed that

the (supposedly secure) BB can be realized by a (possibly)

malicious BB together with BB auditing mechanisms. We

show that these mechanisms are too weak and thus refute these

claims too. Recall that verifiability may include some form of

IV, UV, and EV. Our attacks fundamentally violate verifiability

independently of its specific definition in that they manipulate

the election result without being detected by verifiability

checks. Therefore, we consider verifiability informally here

and refer to [12] and [3] for the formal definition of verifia-

bility (and its sub-properties) used in Civitas and Belenios.

1) Civitas: Civitas [12], [46] builds on JCJ [2] and is de-

signed to achieve coercion-resistance. This means that a voter

cannot prove to the adversary whether or how he voted, even

when collaborating with the adversary. The protocol includes a

Threat Model Violate Equivocation (content, reader) PD?

C.1 none (hon. tellers) IV possible candidates, voters
C.2 none (hon. tellers) IV, UV (public) credentials, TTs
C.3 tabulation tellers IV, UV ballots on final BB, voters
C.4 none (hon. tellers) IV, UV blocks on final BB, final readers
C.5 none (hon. tellers) EV, CR per-block credentials, TTs

B.1 decryption trustees IV, UV ballots on final BB, voters
B.2 none IV ballots on non-final BB, voters

Fig. 6. Summary of attacks on Civitas [12] (C.1-C.5) and Belenios [3]
(B.1-B.2) (also affecting Helios [13]). Each attack violates at least one
security claim from [3], [12] under the same Threat Model (TM). We denote
by basic threat model, the weakest adversary considered in [12] and [3].
The 2nd column denotes the assumed threat model, excluding the dishonest
BB. It shows, compared to the basic threat model (none), which additional
entities must be malicious (shown in red) and which entities may additionally
be honest (hon.). The 3rd column denotes the properties violated by the
attacks, the 4th column explains what BB contents are equivocated in the
attack and with respect to which BB readers (credentials refer to authorized
credentials), and the 5th column denotes the attack’s type (see Section IV-B4)
by specifying whether there is a fix that does not substantially increase the
efforts of the voters and thus makes the attack practically detectable (PD).

supervisor, who manages the BB, registration tellers (RTs) that

produce anonymous credentials for voters using secret sharing,

tabulation tellers (TTs) that share the election’s secret key, and

ballot boxes that collect the ballots. We explain the protocol

next, enumerating its main steps for reference.

At the protocol’s setup, (s1) the supervisor publishes the

election parameters on the BB and (s2) the RTs produce

private anonymous credentials for all voters and post on the

BB their public counterpart, i.e., their encryption under the

election’s public key. To vote, a voter (v1) obtains a private

credential from the RTs and (v2) computes a ballot containing:

the encrypted vote, the encrypted private credential, and a

ZKP of well-formedness. All encryptions are computed with

the election’s public key. The voter then (v3) sends the ballot

to at least one ballot box over an anonymous channel.

Finally, the TTs compute the election result as follows. (t1)

They retrieve the ballots from the ballot boxes and eliminate

those that are not well-formed or contain duplicate credentials,

using Plaintext Equivalence Tests (PETs), (t2) they retrieve the

list of authorized (public) credentials (from (s2)) from the BB,

(t3) they shuffle the lists of authorized credentials and ballots

in a mix net and only keep the ballots whose credential is in

the list of authorized credentials (checked by PETs), and (t4)

they decrypt the remaining ballots and post the result on the

BB, as well as ZKPs showing that they followed the protocol.

It is assumed that a voter trusts his voting platform, at least

one of the ballot boxes he sends his ballot to, and at least

one RT. Voters should verify that their ballots were correctly

recorded by checking that they are contained in the list of

ballots stored on the BB and taken as input by the TTs. Under

these assumptions, Civitas claims to achieve verifiability [12].

Furthermore, it is claimed that, under the additional assump-

tion that at least one TT is honest, coercion-resistance holds.

2) The BB in Civitas: It is stated that the BB is an

“insert-only” storage realized by writers signing the messages

they write to the BB and the BB signing read contents. The

BB is managed by the supervisor, who is not assumed to be

honest. We thus consider a malicious supervisor and hence a

malicious BB. In particular, [12, p.6] explains that the BB can

delete messages but that only availability can be attacked this

way. We refute this claim by presenting attacks that violate

verifiability and are not detectable by the checks specified

in the protocol (see Section IV-B3). Note that the original

formal proof [2] (for JCJ) considers an honest BB and is thus

too weak to back up the aforementioned security claims.

a) Attack C.1: The information published by the supervi-

sor at Step (s1) includes a list of ciphertexts C = (c1, . . . , cn)
associated with the choices vi that voters can select. According

to [46, p.46], a voter reads this list from the BB at Step (v2)

and then computes the ballot by re-encrypting the ci corre-

sponding to her choice vi and produces a ZKP proving that

the underlying ci is contained in C. At Step (t1), the TTs also

read C from the BB and discard those ballots that do not have a

valid ZKP with respect to C. In the attack C.1, when a targeted

voter A requests a BB content for casting a vote, a malicious

BB can provide A with a BB content containing a tampered

list C ′ 6= C. A will then compute and cast a ballot (v2-v3)

using C ′. The TTs discard A’s ballot at Step (t1) since the

wellformedness proof for this ballot cannot be verified against

C and also produce ZKPs showing that they followed the

protocol. As the ZKPs are correct, the UV checks are verified.

Moreover, A’s specified IV check holds as A only checks that

bA is in the list of ballots processed by the TTs, which is the

case. (The list of discarded ballots remains secret to achieve

coercion-resistance.) Therefore, even though no verifiability

checks are violated, the announced result does not account for

A’s ballot. This attack thus violates IV. It can be carried out by

a malicious BB (and hence a malicious supervisor) even when

all other entities are honest. Note though that this attack could

be detected by additionally mandating the voters to check that

the C received matches C ′ once it is published and signed by

the TTs, and is thus an attack with practical detection.

b) Attack C.2: When the TTs retrieve the credentials at

Step (t2), a malicious BB can provide them with a content

from which a selected voter A’s public credential has been

deleted. The BB does not delete this credential from the

contents read by A or the RTs. As a consequence, the TTs

will discard A’s ballot bA at Step (t3), since bA has no

matching authorized public credential, and produce valid

ZKPs showing that they followed the protocol. As for C.1,

no verifiability checks are violated, yet, the announced

result does not account for A’s ballot. Note that this attack

violates IV and UV, as a valid recorded ballot is not included

in the computation of the result. This is an attack with

practical detection as an additional check could verify that the

credentials used by the TTs in Step (t3) match the credentials

that the RTs have previously published. Note that in the

reference implementation of Civitas, the RTs post and sign

the full list of public credentials on the BB, which defeats

our attack. The Civitas specification is more ambiguous; for

instance, [46, p.12] instructs the RTs to post and sign public

credentials individually, making C.2 hypothetically possible.

c) Attack C.3: It is claimed that verifiability is satisfied

when all TTs and RTs are malicious. But when all TTs are

malicious, there is no honest entity authenticating the set

of ballots considered for computing the result. Therefore,

similarly to the attack in Figure 4, the malicious BB and TTs

can violate verifiability by showing different final contents

to some voters. All auditors and most of the voters can be

provided with the same BB content. Only some carefully

selected and targeted voters are provided with a different

content (e.g., voter V3 in Figure 4). This attack can only be

prevented if all voters compare their BB views and check

UV, which is impractical as discussed in Section IV-B4.

Therefore, this is an attack without practical detection.

Note that even when votes are assumed to be sent over

anonymous channels (which is a prerequisite for providing

coercion-resistance), voters can be targeted in the threat model

under which Civitas was claimed to provide verifiability.

Indeed, if at least one RT is malicious, the (malicious) TTs

can decrypt the ballots, obtain the private credential and the

associated public credential by performing some PETs, and

the malicious RT can then identify the voter.

d) Attacks C.4 and C.5: Due to performance issues,

ballots are processed in small batches of voters (ca. 100),

called blocks. Each ballot is bound to a block identifier and

all TTs independently compute Steps (t2)–(t5) for each block.

All block identifiers and the assignment of voters to blocks are

published on the BB. We briefly present two attacks that ex-

ploit the blocks and we refer to [32] for a detailed description.

C.4: Although somewhat vague in this regard, the

specification [46, p.47] seems to indicate that verifiability

checks must be carried out per block. Indeed, all ZK proofs,

which are checked by UV, are produced by the TTs in the

protocol Tabulate, which is carried out independently for each

block. In an implementation following this interpretation of the

specification, a malicious BB could selectively show only a

subset of blocks and associated proofs and results and thereby

change the overall election result. This is similar to the attack

from Figure 4 except that it only requires a malicious BB

and that the BB equivocates the selected blocks instead of the

selected ballots. This attack is not detected by per-block UV

checks. It is an attack with practical detection as an additional

UV check, that is global instead of per-block, could detect it.

C.5: Public credentials are not cryptographically bound

to block identifiers but are delivered to voters by RTs upon

checking the inclusion of the voters in the block. A ballot

computed by a voter contains a block identifier but no single

entity can extract either this identifier or the voter’s identity

to check the eligibility of the voter in the block. This and a

malicious BB allow a coerced voter to successfully vote in

a different block. Indeed, the coerced voter can build a valid

ballot for the wrong block and the malicious BB can redirect

the associated public credential to this block. We give details

in [32] on how this can defeat coercion-resistance, which is

a central goal of Civitas, the RTs’ per-block authorization

mechanism at setup (v1) [46, p.45], and EV in some scenarios

(e.g., when blocks correspond to precincts whose local election

results matter), which is not an explicit goal. Finally, this attack

allows a voter to collude with a malicious BB to vote multiple

times in different blocks. This defeats EV as multiple votes

are counted for a single eligible voter. C.5 is an attack with

practical detection, even though no specified checks detect it.

e) Authorities as BB Readers: The attacks C.2 and

C.5 rely on a malicious BB equivocating towards e-voting

authorities (registration tellers and TTs). The BB is used here

as a broadcast channel between authorities. Even though this

is not the use case we focus on in this paper (we focus on

BBs used for verifiability) and will not be covered by our FA

property, the BB protocol that we will propose in Section VI

would nevertheless prevent these attacks.

3) Belenios: We now discuss Belenios [3], [47], which

builds upon Helios [13]. For space reasons, we focus here on

Belenios and explain in [32] why variants of our attacks on

Belenios also apply to Helios [13], despite specific features

such as the BB re-posting and Benaloh challenge mechanisms.

Belenios improves Helios by providing voters with creden-

tials to avoid ballot stuffing, where the adversary adds illegiti-

mate ballots to change the election result. These improvements

aim to achieve security under weaker trust assumptions [5],

namely when the ballot box is malicious. Our attacks reveal

that Belenios’ security still crucially relies on the BB’s hon-

esty. This assumption seems as strong as the ballot boxes’

honesty in the current implementation, where the BB and the

ballot box are managed by the same entity.

The main parties in Belenios are the registrar who creates

and delivers the voters’ credentials to the voters (private part)

and to the BB (public part), the decryption trustees (DTs) who

collectively compute the shared election’s secret key, and the

voting server who maintains the BB, receives the voters’ bal-

lots (in the ballot boxes), and communicates with the DTs. To

vote, a voter encrypts her vote with the election’s public key,

computes a ZKP that the vote is in the allowed set of votes, and

signs the ciphertext with her (private) credential. This ballot

is sent to the voting server, which adds it to the current BB

content. The DTs collectively compute the election result from

the ballots on the BB as follows: they check the correctness of

all ZKPs and the ballots’ signatures, they use homomorphic

encryption to aggregate all ballots and then decrypt this value

yielding the election result, and they compute ZKPs that prove

they followed the protocol, which are all published on the BB.

a) The BB in Belenios: Belenios’ security proofs [33]

assume a perfect BB (as it is modeled as a shared variable),

but this assumption is not always explicit and not met by prac-

tical deployments. In contrast to this assumption, [3] claims

that, when the voting platform and the registrar are honest,

verifiability holds, even when the DTs and the voting server

are compromised. Since the BB is maintained by the voting

server [3], we shall consider a malicious BB and see that this

claim is refuted by the attacks B.1 and B.2. In particular, we

show next that the BB auditing mechanism fails to prevent

such attacks. [3] also considers a “degraded mode”, where a

centralized entity implements the registrar, the DTs, and the

voting server, and claims that, even when this centralized entity

is malicious, IV holds, which our attacks also refute.

When discussing the BB in practice, [3] acknowledges that

the current implementation as a web page (delivered by the

voting server) yields the requirement for “enough parties [to]

monitor [the BB], so that it is consistent.” The monitoring

tools that are proposed (i) check ⊑b between two snapshots

and (ii) verify all signatures and ZKPs in the BB’s content.

However, such BB monitoring and auditing is insufficient since

it is not suggested that voters must cross-check their views.

As auditing tools only verify that the successive local views of

the BB are append-only, they do not guarantee any agreement

on the BB contents obtained by different readers. This leaves

Belenios exposed to the attacks we describe next.

b) Attack B.1: When the BB and all DTs are malicious,

an attack very similar to the attack C.3, itself based on

Figure 4, violates IV and UV. As previously explained, this

is an attack without practical detection.

c) Attack B.2: We now consider a much weaker and

more realistic threat model where a threshold or even all

of the DTs are honest but the BB is malicious. In this

scenario, at most one valid final BB can be produced, as

this is authenticated by the DTs. Therefore, all readers that

successfully perform UV checks see the same BB content.

However, this is not true for the IV checks. Indeed, Belenios

only requires for IV that voters check that their ballots are

in the ballot box [3], [20], which should be published on the

BB. Therefore, when a voter reads the BB to perform an IV

check, the BB may provide her with content that contains

her ballot but then drop this ballot when displaying the set of

ballots to the DTs or the auditors checking UV as in Figure 5.

Hence, the voter’s ballot is not counted in the election result

although the voter has successfully checked IV (even when

checked at the election end), which violates IV. As argued in

Section IV-B4, this is an attack without practical detection.

As a countermeasure, the specification could be modified

to mandate that voters must perform UV checks and that they

do so simultaneously with performing IV checks on the same

final BB content, which would be impractical as discussed in

Section IV-B4. We suggest using a secure BB instead.

4) Conclusion: Even though Civitas signs, Belenios mon-

itors, and Helios reposts BB contents, these mechanisms do

not prevent BB cheating, in particular by equivocation. We

conclude that, as currently specified and deployed, Civitas,

Belenios, and Helios all fail to provide verifiability under the

threat models under which they were claimed to be secure.

(Note that we can thus deduce that privacy is also violated

since [48] shows that a lack of IV with a dishonest ballot box

allows an attacker to compromise ballot privacy.) We recom-

mend that they explicitly consider realistic BB requirements

(see Section V) and use a secure BB protocol like ours (see

Section VI) that meets these requirements even without trust-

ing a central BB entity. Finally, our work also demonstrates

that e-voting protocol specifications should explicitly describe

which verifiability checks must be carried out, by whom, and

when. This would turn a possible ceremony into an unambigu-

ous protocol specification that can be modeled and verified.

V. FINAL-AGREEMENT (FA)

Our attacks demonstrate that it is crucial to consider

a realistic BB model when making security claims. In

particular, rather than assuming idealized BBs, designers

of e-voting protocols should assume or use BBs providing

requirements that can be met in practice under realistic trust

assumptions. We next introduce such a BB requirement that

is achievable in practice under weak trust assumptions (as

shown in Section VI), but is still sufficient for verifiability.

A. Definition

As explained in Section III-A, verifiability can only be

meaningfully defined if there is one well-defined final BB, i.e.,

the BB must satisfy FC. A BB providing FC also prevents the

attacks C.3, C.4, and B.1 from Section IV. Additionally, we

argued in Sections III-A and IV-B4 that voters should be able

to perform checks right after voting (Vote&Go) and should not

have to read full BB contents. Thus, they should be able to

read non-final, partial BBs. However, the attacks C.2 and B.2

show that a BB that can drop items between non-final reads

and final reads has dramatic security consequences.

To ensure that checks on non-final BB contents provide

meaningful guarantees, we define a BB requirement stating

that, in addition to FC, a BB must ensure that all non-final

BB contents shown to readers are included in the final BB

content (with respect to ⊑b). These two requirements together

also prevent attacks based on the BB showing inconsistent

contents to different readers. We lift ⊑b to sets of BB contents

as follows: Bs ⊑b Bs
′ when ∀B ∈ Bs, ∃B′ ∈ Bs′, B ⊑b B

′.

Definition 10. Final-agreement (FA) holds for σ.s when

(i) σ.s ⊢ FC and (ii) s.fc = ∅ ∨ readB(s.nfc) ⊑b readB(s.fc).

FA neither provides guarantees with respect to the writing

order of data on the BB, relates the successive BB contents that

have been read through different accesses to Read-nonFinal,

nor relates the writes and the reads. Nevertheless, if a BB with

FA was used by Helios, Civitas, and Belenios, then our attacks

would be prevented (except C.2 and C.5; see Section IV-C2e).

We discuss next FA in e-voting and refer to [32] for a

presentation of other scenarios for which FA is also suitable.

B. FA in E-voting

We prove next that any protocol satisfying Definition 8

(verifiability) with a trustworthy or perfect BB as considered

in many prior works, also satisfies Definition 9 (verifiability+)

under a malicious BB satisfying FA. Additionally, we prove the

converse for a large class of checks and goals: it is impossible

to achieve Definition 9 with a BB that does not satisfy FA.

1) FA is Sufficient for Verifiability: Recall πper and

πtru from Example 1. These respectively model a BB

acting as a shared variable and one that is similar, except

that the channels from writers to the BB are insecure and

unreliable. We show that FA is a sufficient BB requirement

for verifiability by proving that any protocol satisfying

verifiability with πper or πtru also satisfies verifiability with

any, possibly malicious BB π, provided that π ⊢ FA. First,

we relate verifiability under πtru with verifiability+ under π.

Second, we relate verifiability under πper with verifiability+

under π with the additional assumptions that (i) writers check

that their messages have been received by the BB π (through

an inclusion verifiability check), and (ii) write requests are

authenticated and, thus, the verifiability checks and goal are

unaffected by malicious write requests. We formally define

these assumptions and prove the following theorem in [32].

Theorem 1. Let S be an e-voting specification, τ a

verifiability goal, and π be an arbitrary BB specification,

which can, in particular, specify a malicious BB. Assume that

P (S, πper), P (S, πtru), and P (S, π) are protocols.

(1) When P (S, πtru) provides verifiability for τ and

π ⊢ FA, then P (S, π) provides verifiability+ for τ .

(2) When P (S, πper) provides verifiability for τ , π ⊢ FA,

and P (S, π) checks all writes and also authenticates write

requests, then P (S, π) provides verifiability+ for τ .

In practice, this means that prior results established with

respect to a trustworthy or a perfect BB can directly be lifted

to the more realistic setting where the BB is only assumed to

provide FA, which in turn can be realized under weak trust as-

sumptions (see Section VI). For instance, Belenios proofs [33]

assumed a perfect BB and Alethea [4] assumed a trustworthy

BB. The formal definition and security claim of verifiability

for Civitas originate from [2] and also assume a perfect BB.

Hence, our results allow weaker, more realistic trust assump-

tions than those currently used for existing e-voting schemes.

2) Necessity of FA for Verifiability: Next, we explain intu-

itively in which cases FA is also necessary for verifiability+

and we refer to [32] for more details and a formalization of

our assumptions and results.

There are protocols, such as CHvote [49], that do not utilize

a BB and for which verifiability relies instead on so-called

verification codes (see [32]). For such protocols, FA is

(obviously) not necessary for verifiability. For those protocols

where verifiability relies on a BB, we have already argued

that FA (i) is necessary, as otherwise the final BB relevant for

defining the goal is not well-defined. A protocol can specify

checks that are critical in that the goal can only hold when

such checks are satisfied, but it might also specify checks

that are noncritical, that is the goal can hold even if these

checks are violated. For the latter, verifiability can be satisfied

even if the BB contents read for these checks do not satisfy

any condition. Intuitively, we prove in [32] that FA (ii) is

necessary for critical checks evaluated on partial, non-final BB

contents. This implies that FA is necessary for many realistic

scenarios, for example for all protocols that specify critical

IV checks that can be performed before the election end.

VI. A PROTOCOL FOR ACHIEVING FA

We now present our BB protocol satisfying FA that could

replace existing BBs that require stronger trust assumptions.

X

. . .P1 Pn

Write

Read-final

Read-nonFinal

Fig. 7. System setup for our BB protocol: the BB peers are depicted by circles,
the proxy peer X by a rectangle, and the communication channels by arrows.

We start by presenting our design rationale.

A. Design Rationale and Generic Protocol

1) Architecture and Threat Model: We propose a decentral-

ized solution as depicted in Figure 7 that uses a parameterized

number n of peers P1, . . . , Pn. In addition, we introduce a

distinguished entity, called the proxy peer X , which can com-

municate with the readers, writers, and all other peers. This

setup is more realistic than setups requiring all readers and

writers to be directly connected to all peers, yet our protocol

can be straightforwardly adapted for such setups. Even though

X is modeled as a single entity, it can be physically replicated

on different servers to avoid a single point of failure. We

assume that each peer Pi has a private signing key ski and all

readers know the peers’ public verification keys pk1, . . . , pkn.

We denote by nh the number of BB peers Pi that are

honest (and are never compromised) and by nm = n − nh

the number of malicious peers. We do not require the proxy

peer X to be honest. Because of this and our assumption

that messages can be dropped by the adversary, it is always

possible that a reader may be unable to read the BB. We will

later give a lower bound on nh that is required to achieve

the BB security goals as a function of how many messages

originating from the peers arrive at a reader (through X),

hence balancing availability and trust assumptions.

2) The Big Picture: In our protocol, each peer locally

stores its current BB view. When peers receive write requests

with new content (forwarded by X), they perform some

validity checks, update their BB view accordingly, and sign

the updated content. The validity checks serve to enforce FA

locally, i.e., on each peer’s local view. The signed contents are

then collected by X . When a reader reads the BB, she only

accepts the read content when she also receives sufficiently

many peers’ signatures on this content, according to a

threshold we describe next. As we shall see, this threshold is

chosen such that FA is enforced globally, i.e., for all readers.

3) BB Peer Role:

a) BB Peers’ Policies: We require that each peer

updates its BB view with new content only if this content

extends its previous view. That is, it updates B to B′ only

if B ⊑b B′. In our protocol, this holds as updates are of the

form B′ = B ∪b Bw, where Bw is the written content.

The peers must each sign at most one final BB. This is

required to achieve FA (i) on their view and to ensure that

two readers obtaining a signature from the same honest BB

peer agree on the final, signed content. To enforce this policy,

we use the notion of phases from Section II-B2, which denote

the different stages when the BB is updated. In particular,

we assume that there is a pre-defined, agreed upon final

- State: current view B (initially B⊥), key ski
- Input: new content Bw (supposedly received by X)
- Output: signed contents {σl}l∈L (to send to X)

If ps(B) = pf then return ∅
B := B ∪b Bw

If ps(B) 6= pf

then {Bl}l∈L := partial(B); return {sign(Bl, ski)}l∈L

else return {sign(Bf , ski)}

Fig. 8. The peers’ specification (Peer Pi).

phase pf ∈ N
+ and require that the readers only accept

BB contents whose phase is pf when using Read-final. To

ensure that peers sign at most one BB content with phase

pf , our protocol specifies that, when a peer obtains a final

content, it updates its view, and afterwards neither accepts

further updates nor signs other contents than its view.

Recall that, when performing non-final checks, readers may

read only a partial BB content (Section IV-B4). For example,

to check IV, a voter can just read his ballot (rather than the

full BB) to check that it is stored on the BB. As long as the

BB content is not final, peers may sign any partial content

Bj of their current view B, i.e., Bj ⊑b B. Since BB updates

are monotone (w.r.t. ⊑b), this locally implies FA(ii).

b) Partial BB Contents: For the above policy on partial

contents to be useful in practice, it must be defined what

partial BB contents are valid and how to compute them.

We introduce an uninterpreted set L whose elements label

contents according to the function partial defined next.

Definition 11 (Partial BB Contents). Let partial : W → (L 7→
W) be a function that computes from a BB content a set of

partial BB contents indexed by a subset of L, which we can

write as partial(B) = {Bl}l∈L for some L ⊆ L. We assume

given a distinguished label f ∈ L corresponding to non-partial

contents and we assume that ∀B ∈ W, partial(B)(f) = B. We

additionally assume that ∀B ∈ W,B′ ∈ partial(B), B′ ⊑b B.

In e-voting, L typically includes the voters’ identities and

partial returns the content associated with a given identity

(e.g., a voter’s ballot). Note that the peers must agree on partial

for the readers to be able to read partial contents with a rea-

sonable success rate, but FA does not rely on this assumption.

c) BB Peers’ Actions: The BB peers’ specification is

depicted in Figure 8. When receiving a new content, a peer

updates and signs new BB contents under the above policies,

thereby also signing all partial BBs, if the BB is not in the

final phase. If a peer Pi was offline e.g., due to connection

problems, when returning online Pi contacts X to ask for the

missed updates. X then sends any new contents to Pi, which

are again processed by Pi according to Figure 8. Based on

this specification, we will prove that honest peers locally

enforce FA, i.e., FA holds from each peer’s perspective.

4) BB Readers’ Role: To request the non-final, possibly

partial, content labeled by l ∈ L in phase p, a reader sends

the pair (p, l) to the proxy X . Then X retrieves all existing

signatures for this phase and label and sends them back to

the reader. The reader then tries to find among them at least γ

many signatures of peers that are all valid and that all sign the

same content Bk whose phase is p. If this succeeds, the BB

content Bk is considered to be successfully read and can be

used to evaluate some verifiability check. Reading a final BB

is similar, except that readers additionally check that p = pf .

5) Threshold γ: We could require that readers only accept

BB contents when they obtain all peers’ signatures on this con-

tent, i.e., choosing γ := n. However, successful reads would

then only be possible if all peers were online and responsive,

and if no response was lost on the insecure network. In prac-

tice, these availability assumptions are likely to be too strong.

Instead, we give a tight lower bound on γ for FA to be

satisfied, which depends on the number nh of honest peers:

γ > n − nh

2 . Intuitively, this bound ensures that when two

readers each read a BB content, the two underlying sets

of peers who signed the contents share at least one honest

peer. Since this honest peer enforces FA locally, we deduce

(with machine-checked proofs) in Section VI-D that FA holds

globally for all readers. We show in [32] that the bound is tight,

i.e., FA is violated otherwise. We thus fix γ := ⌊n− nh

2 +1⌋.

B. Putting Everything Together

The proxy X receives write requests from writers and

forwards them to peers. Upon receiving new content, the

peers produce signatures thereof as specified in Section VI-A3

and Figure 8. These signatures are collected by X .

At any time, a reader can make a read request by sending

to X the requested phase p and label l ∈ L. X then sends all

(previously) collected signatures for that phase and label to the

reader, who processes them as specified in Section VI-A4. We

give a more detailed specification of the protocols for writing

on and reading from the BB in [32].

On availability and scalability. We focus on providing a

simple protocol that achieves the necessary requirements for

security, i.e., verifiability, which were not met by prior BB

protocols (see Section VII). Our protocol does not, however,

provide non-security-related guarantees, such as availability

or scalability. We next discuss how our protocol could be

combined with existing mechanisms to address these.

1) Availability: We provided a tight bound γ that minimizes

the number of peers that have signed the read content, and

were thus online at some point since the read content was

written. Note that for two different reads, the two sets of γ-

many peers that have been online (possibly at different times)

and provided their signature can be completely different.

Nevertheless, it is possible that too few peers agree on the

content to sign and therefore the readers cannot obtain suffi-

ciently many matching signatures to complete read requests.

This is the case, for example, when too many peers are offline

between specific writes and reads or when X sends them dif-

ferent contents Bw to begin with. To improve the BB’s overall

availability, a BFT protocol could be used by the peers to agree

on the new content, prior to signing it. For example, similarly

to [14], X could be omitted and the writers could be connected

with all peers who run a BFT protocol at each writing request

to agree on a BB content before signing it. This would not

impact our security analysis as we already consider arbitrary

write requests, which cover the outcome of any BFT protocol.
2) Scalability: Each peer must produce a large number of

signatures that X and readers must fetch and store. Such a set

of signatures could be efficiently computed and represented

compactly using standard data structures such as hash-trees.

In particular if the number of peers is very large (thousands),

[50] could enhance our minimal signing protocol.

C. Using our BB for E-voting

Our protocol could, for example, be instantiated for e-

voting as follows. The readers could be instantiated by voters

and auditors, the BB peers by independent parties, such as

political parties and NGOs, and the proxy peer by a (possibly

replicated) e-voting web-server as it need not be trusted. The

partial BBs could consist of BBs containing only information

associated with one voter, labeled by the voter’s identity, and

of the full BB, labeled by the distinguished label f. Authorities

could publish the received ballots right after their reception

and voters could read the partial BB containing their ballot

and perform an IV check. Also, at the election end, auditors

can read the final BB and perform all required UV checks.
1) Consequences for Verifiability: As FA requires trusting

some peers and verifiability requires FA (Section V-B2), we

conclude that verifiability requires trust. Looking at the bigger

picture, this is at odds with some prior works’ claims that ver-

ifiability can be achieved with no trust assumptions at all [51]

or no trust assumptions with respect to the BB [3], [5], [6].

Due to the trust assumptions required for FA, another insight

is that UV checks can be outsourced to the BB peers. That

is, even if voters could perform UV checks themselves, they

would need to trust some external entities such as BB peers.

Therefore, as any entity can carry out UV checks, it is possible

to leave these checks to the peers without requiring trust

assumptions beyond those needed anyway. The same holds

for EV checks. Our analysis supports this conclusion as we

are explicit about the BB requirements and the necessary trust

assumptions. Delegating the UV checks also has the practical

advantage that voters need not download the large amount

of data required for these checks (see Section IV-B4). This

enhances flexibility in how the voters access the BB, e.g., it en-

ables the use of specialized trusted devices as discussed next.
2) Practical Considerations: In [32] we further discuss

practical considerations. In particular, voters must trust their

machines in practice to achieve any guarantees and we

explain that our protocol can be used in settings where

this trust is put in specialized devices [4], [21], [24], [29],

[30], which have limited capabilities and connectivity. More

generally, we explain how voters can obtain the public keys

pki and verify the signed messages. Moreover, our BB peers

are distributed servers that must be online during the election

process. We explain that this assumption might be impractical

for low-stake elections and describe the resulting trade-offs.

D. Security Analysis

We use TLA+ [52] to specify our protocol and FA and

formally prove that the former satisfies the latter. TLA+ has

a rich specification language [31] based on Temporal Logic

of Actions (TLA) and Zermelo-Fraenkel set theory with

choice (ZFC) that we use to encode our specifications. Our

protocol model is as general as possible and we make few

assumptions about the adversary. Namely, the adversary is

only forbidden to forge the nh honest peers’ signatures but

can sign any content for the other peers, block any message,

choose the written contents, and control X . For the sake of

generality, we make fewer assumptions about W , ⊑b, and

partial than presented in this paper.

Using the embedded proof system TLAPS [53], we prove

that our protocol satisfies FA. We first establish key invariants

of our protocol: namely that FA is locally enforced by honest

peers and that any read content is associated with at least

γ signatures. We prove the property stated in Section VI-A5

and establish that FA is an invariant of our protocol. All our

specifications and machine-checked proofs (ca. 800 LOC in

total) can be found at [32].

VII. RELATED WORK

There has been extensive prior work on voting and

BB designs in the broad sense, e.g., consensus protocols,

distributed ledgers, etc. Here we focus on the closest related

work and refer the interested reader to [32] for further details.

A. BB Realizations

A BB protocol [14], [54] was designed for the poll-site

voting scheme vVote [27], [55]. It is a distributed BB protocol,

which was later improved in [28]. The main differences to our

protocol are (1) their security goals, which do not explicitly

include agreement among the readers, and thus do not imply

FA, and (2) the consensus mechanism that is leveraged, namely

a BFT protocol that requires strictly stronger trust and system

assumptions than our protocol. Their requirements are not

formally related to verifiability in e-voting and are too weak

for verifiability as there is no agreement on the final content.

The protocol is shown [14], [28] to meet its security goals

when more than two-thirds of the BB peers are honest and

available. In contrast, our protocol meets its security goal with

strictly weaker trust assumptions (shown in detail in [32]).

We achieve this thanks to a more precise security analysis

that identifies which assumptions are required for security and

that distinguishes peers that are malicious from peers that are

unavailable. This is very rarely done in the BFT literature (with

notable exceptions like [56]) as security and liveness are usu-

ally considered together. In general, note too that the consensus

a BFT protocol provides is insufficient to enforce FA.

Some proposed BBs and e-voting systems are built using

distributed ledgers [57]–[61]. Most of them are permissionless

ledgers and readers must either (i) run a full node, which re-

quires too strong assumptions regarding the voters’ capabilities

and trust in their platforms (see Section II-A3 and [62]), or (ii)

trust external full nodes. These solutions crucially rely on eco-

nomic incentives, which are hard to quantify for elections, and

are often not decentralized in practice due to pools [63]. [64]

draws similar conclusions. Other solutions use permissioned

ledgers where (i) some nodes establish a consensus on data that

can be publicly accessed by all nodes or (ii) all e-voting par-

ticipants act as full nodes. Whereas (i) boils down to the BFT

solutions discussed above, (ii) is impractical as argued above.

Finally, the BB proposed in [18] is used in several e-

voting schemes [15]–[17]. However, its stated properties do

not include agreement among readers, the protocol does not

provide FA, and it thus suffers from all the attacks presented in

Section IV. The decentralized variant is only proposed for im-

proving robustness and still requires that all peers are trusted.

B. BBs in E-Voting Protocols

Many e-voting protocols state insufficient requirements for

the BB. Others state wrongly, or with insufficient precision,

how such requirements can be met.

We already discussed Civitas [12], Belenios [3], and

Helios [13] in Section IV. The JCJ e-voting protocol [2]

does not explain how the BB is realized and just assumes

a universally accessible memory that all agents can write to

in an append-only manner (perfect BB). Alethea [4] assumes

a trustworthy BB. Prêt à Voter [15], which is not a remote

but rather a poll-site scheme, does not specify an explicit

BB and refers to [18] instead (see Section VII-A). Building

on [15], vVote [27], [55] (also poll-site) makes use of [14]

(discussed in Section VII-A) for its private BB from which

voters cannot read and assumes given a public BB that is

an authenticated public broadcast channel with memory. To

realize the latter, vVote proposes using radio or newspapers

to broadcast (hashes of) the BB contents. This requires voters

to cross-check information from different media and violates

Vote&Go. Scantegrity [65] only states the append-only

property of the BB and no agreement property with respect

to the final BB, which is too weak to entail FA.

Some e-voting protocol analyses [5]–[11], [35], [37]

consider a BB where the written contents are controlled by

the adversary. Even though some of these works qualify their

BB as “malicious” or “dishonest”, these BBs are still idealized

in that a single content is produced and consistently provided

to all readers at all times, and can thus be modeled as a

trustworthy BB. By making such strong assumptions about

the BB, these prior analyses fall short of capturing realistic,

malicious BB behaviors, such as equivocation or content

modification in between reads, and thus miss our attacks.

[66] proposes a general, parametric notion of verifiability

stating that a goal always holds when a judge is satisfied. This

is instantiated for voting protocols such as Bingo Voting [67]

in [66], Helios [13] in [9], and sElect [68]. All verifiability

definitions for voting protocols based on [66] that we are

aware of, including the instantiations in [9], [66], [68], make

the assumption of an idealized BB in the sense explained

above (even though the BB is called “dishonest” in [9]).

VIII. CONCLUSION

We propose a BB property (FA) that is sufficiently strong

to achieve verifiability in e-voting and sufficiently weak that

it can be achieved in practice under weak trust assumptions.

We propose a concrete BB protocol and formally prove that

it satisfies FA under such weak assumptions. Our protocol

could be deployed in existing e-voting schemes to replace the

current insecure BBs that constitute e-voting’s Achilles heel.

Hence, our work can significantly weaken the required trust

assumptions of entire e-voting systems.

Our work raises several interesting follow-up research

questions. First, to account for malicious BBs, we focused

on the possibilistic setting and adapted the verifiability

definition from [1]. Yet, our modifications appear generic and

we speculate that one can similarly propose a probabilistic

definition. Second, our BB protocol requires that independent

BB peers are available during elections, which is challenging

and costly to deploy in practice. For low-stake elections, where

a weaker threat model is suitable and the deployment costs

are more critical, a simpler BB protocol may be preferable.

We plan to investigate this trade-off between stronger threat

assumptions and weaker system assumptions in future work.

ACKNOWLEDGMENTS

We would like to thank Stephan Merz for his valuable

help regarding TLA+ specifications and proofs and the Bele-

nios team (Véronique Cortier, Pierrick Gaudry, and Stéphane

Glondu) for the fruitful discussions.

REFERENCES

[1] V. Cortier, D. Galindo, R. Küsters, J. Mueller, and T. Truderung, “Sok:
Verifiability notions for e-voting protocols,” in Symposium on Security

and Privacy (SP). IEEE, 2016.

[2] A. Juels, D. Catalano, and M. Jakobsson, “Coercion-resistant Electronic
Elections,” in Towards Trustworthy Elections. Springer-Verlag, 2010.

[3] V. Cortier, P. Gaudry, and S. Glondu, “Belenios: a simple private
and verifiable electronic voting system,” in Foundations of Security,

Protocols, and Equational Reasoning. Springer, 2019.

[4] D. Basin, S. Radomirovic, and L. Schmid, “Alethea: A Provably Secure
Random Sample Voting Protocol,” in Computer Security Foundations

Symposium (CSF). IEEE, 2018.

[5] V. Cortier, D. Galindo, S. Glondu, and M. Izabachene, “Election
Verifiability for Helios under Weaker Trust Assumptions,” in European

Symposium on Research in Computer Security. Springer, 2014.

[6] V. Cortier, J. Lallemand, and B. Warinschi, “Fifty Shades of Ballot
Privacy: Privacy against a Malicious Board,” in Computer Security

Foundations Symposium (CSF). IEEE, 2020.

[7] R. Küsters, T. Truderung, and A. Vogt, “Verifiability, privacy, and
coercion-resistance: New insights from a case study,” in Symposium on

Security and Privacy (SP). IEEE, 2011.

[8] B. Smyth, S. Frink, and M. R. Clarkson, “Election Verifiability: Cryp-
tographic Definitions and an Analysis of Helios, Helios-C, and JCJ,”
Cryptology ePrint Archive, Report 2015/233, 2015.

[9] R. Kusters, T. Truderung, and A. Vogt, “Clash attacks on the verifiability
of e-voting systems,” in Symposium on Security and Privacy (SP).
IEEE, 2012.

[10] W. Lueks, I. Querejeta-Azurmendi, and C. Troncoso, “VoteAgain: A
scalable coercion-resistant voting system,” in USENIX Security Sympo-

sium, 2020.

[11] V. Cortier, A. Filipiak, and J. Lallemand, “BeleniosVS: Secrecy and
Verifiability against a Corrupted Voting Device,” in Computer Security

Foundations Symposium (CSF). IEEE, 2019.

[12] M. R. Clarkson, S. Chong, and A. C. Myers, “Civitas: Toward a Secure
Voting System,” in Security and Privacy (SP). IEEE, 2008.

[13] B. Adida, “Helios: Web-based Open-audit Voting,” in USENIX Security

Symposium, 2008.

[14] C. Culnane and S. Schneider, “A Peered Bulletin Board for Robust
Use in Verifiable Voting Systems,” in Computer Security Foundations

Symposium (CSF). IEEE, 2014.

[15] D. Demirel, M. Henning, J. van de Graaf, P. Y. Ryan, and J. Buchmann,
“Prêt à Voter Providing Everlasting Privacy,” in E-Voting and Identify.
Springer, 2013.

[16] P. Y. Ryan, D. Bismark, J. A. Heather, S. A. Schneider, and Z. Xia, “Prêt
à Voter: a Voter-Verifiable Voting System,” Transactions on Information

Forensics and Security, vol. 4, no. 4, pp. 662–673, 2009.

[17] P. Y. Ryan, P. B. Rønne, and V. Iovino, “Selene: Voting with transparent
verifiability and coercion-mitigation,” in International Conference on

Financial Cryptography and Data Security. Springer, 2016.

[18] J. Heather and D. Lundin, “The Append-Only Web Bulletin Board,” in
Formal Aspects in Security and Trust. Springer, 2009.

[19] https://vote.heliosvoting.org/, 2020, accessed: 2020-08-31.

[20] https://belenios.loria.fr/admin, 2020, accessed: 2020-08-31.

[21] S. Bursuc, C.-C. Drăgan, and S. Kremer, “Private votes on untrusted
platforms: models, attacks and provable scheme,” in European Sympo-

sium on Security and Privacy (EuroS&P). IEEE, 2019.

[22] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested
Append-Only Memory: Making Adversaries Stick to Their Word,” in
Symposium on Operating Systems Principles (SIGOPS). ACM, 2007.

[23] T. Ruffing, A. Kate, and D. Schröder, “Liar, Liar, Coins on Fire! Penal-
izing Equivocation By Loss of Bitcoins,” in Conference on Computer

and Communications Security (SIGSAC). ACM, 2015.

[24] S. Neumann and M. Volkamer, “Civitas and the real world: problems and
solutions from a practical point of view,” in International Conference

on Availability, Reliability and Security. IEEE, 2012.

[25] S. Hauser and R. Haenni, “A Generic Interface for the Public Bulletin
Board Used in UniVote,” in 2016 Conference for E-Democracy and

Open Government (CeDEM), May 2016.

[26] C. Burton, C. Culnane, J. Heather, T. Peacock, P. Y. A. Ryan, S. Schnei-
der, V. Teague, R. Wen, Z. Xia, and S. Srinivasan, “Using Prêt à Voter
in Victorian State Elections,” in Electronic Voting Technology Workshop,
2012.

[27] C. Culnane, P. Y. A. Ryan, S. Schneider, and V. Teague, “vvote: a
verifiable voting system (version 4.0),” CoRR, vol. abs/1404.6822, 2014.

[28] A. Kiayias, A. Kuldmaa, H. Lipmaa, J. Siim, and T. Zacharias, “On
the Security Properties of e-Voting Bulletin Boards,” in Security and

Cryptography for Networks, 2018.

[29] G. S. Grewal, M. D. Ryan, L. Chen, and M. R. Clarkson, “Du-
vote: Remote electronic voting with untrusted computers,” in Computer

Security Foundations Symposium (CSF). IEEE, 2015.

[30] R. Haenni and R. E. Koenig, “Voting over the Internet on an Insecure
Platform,” in Design, Development, and Use of Secure Electronic Voting

Systems. IGI Global, 2014.

[31] D. Cansell and D. Mery, “Tutorial on the event-based B method,” https:
//cel.archives-ouvertes.fr/inria-00092846, 2006.

[32] “Companion report and our TLA+ models and proofs,” https://github.
com/LCBH/BulletinBoard-CSF21, 2021, accessed: 2021-01-26.

[33] V. Cortier, C. C. Dragan, F. Dupressoir, and B. Warinschi, “Machine-
checked proofs for electronic voting: privacy and verifiability for Bele-
nios,” in Computer Security Foundations Symposium. IEEE, 2018.

[34] V. Cortier, F. Eigner, S. Kremer, M. Maffei, and C. Wiedling, “Type-
Based Verification of Electronic Voting Protocols,” in Principles of

Security and Trust. Springer, 2015.

[35] S. Kremer, M. Ryan, and B. Smyth, “Election Verifiability in Electronic
Voting Protocols,” in European Symposium on Research in Computer

Security (ESORICS). Springer, 2010.

[36] S. Kremer and P. B. Rønne, “To du or not to du: A security analysis of
du-vote,” in European Symposium on Security and Privacy (EuroS&P).
IEEE, 2016.

[37] V. Cortier and B. Smyth, “Attacking and fixing Helios: An analysis of
ballot secrecy,” Journal of Computer Security, vol. 21, no. 1, 2013.

[38] C. Z. Acemyan, P. Kortum, M. D. Byrne, and D. S. Wallach, “Usability
of Voter Verifiable, End-to-end Voting Systems: Baseline Data for
Helios, Prêt à Voter, and Scantegrity II,” in Usenix Electronic Voting

Technology Workshop (EVT/WOTE), 2014.

[39] F. Karayumak, M. M. Olembo, M. Kauer, and M. Volkamer, “Usability
Analysis of Helios-An Open Source Verifiable Remote Electronic Voting
System.” vol. 11, no. 5, 2011.

[40] F. Karayumak, M. Kauer, M. M. Olembo, T. Volk, and M. Volkamer,
“User study of the improved Helios voting system interfaces,” in
Workshop on Socio-Technical Aspects in Security and Trust, 2011.

[41] C. Z. Acemyan, P. Kortum, M. D. Byrne, and D. S. Wallach, “Usability
of Voter Verifiable, End-to-end Voting Systems: Baseline Data for

Helios, Prêt à Voter, and Scantegrity II,” USENIX Journal of Election

Technology and Systems (JETS), vol. 2, no. 3, p. 31, 2014.

[42] C. Burton, C. Culnane, and S. Schneider, “Secure and Verifiable
Electronic Voting in Practice: the use of vVote in the Victorian State
Election,” arXiv preprint arXiv:1504.07098, 2015.

[43] J. Weber and U. Hengartner, “Usability study of the open audit
voting system helios,” Tech. Rep., 2009. [Online]. Available:
http://www.jannaweber.com/wp-content/uploads/2009/09/858Helios.pdf

[44] Private communication, Véronique Cortier, Pierrick Gaudry, and
Stéphane Glondu. August 28, 2020.

[45] S. Haber, J. Benaloh, and S. Halevi, “The Helios e-Voting
Demo for the IACR,” Tech. Rep., 2010. [Online]. Available:
https://www.iacr.org/elections/eVoting/heliosDemo.pdf

[46] M. R. C. S. C. Andrew and C. Myers, “Civitas: Toward a Secure Voting
System,” Computing and Information Science Technical Report TR, vol.
2081, 2007.

[47] S. Glondu, “Belenios specification,” Version 1.6. http://www.belenios.

org/specification.pdf , 2019.

[48] V. Cortier and J. Lallemand, “Voting: You Can’t Have Privacy without
Individual Verifiability,” in Conference on Computer and Communica-

tions Security (CCS). ACM, 2018.

[49] R. Haenni, R. E. Koenig, P. Locher, and E. Dubuis, “CHVote System
Specification (Version 3.0),” IACR Cryptology ePrint Archive, 2017.

[50] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping authorities ”honest or bust”
with decentralized witness cosigning,” in Symposium on Security and

Privacy (SP). IEEE, 2016.

[51] G. Gallegos-Garcia, V. Iovino, A. Rial, P. B. Roenne, and P. Y. Ryan,
“(Universal) Unconditional Verifiability in E-Voting without Trusted
Parties,” arXiv preprint arXiv:1610.06343, 2016.

[52] L. Lamport, “The TLA+ hyperbook,” 2015, https://lamport.
azurewebsites.net/tla/hyperbook.html.

[53] D. Cousineau, D. Doligez, L. Lamport, S. Merz, D. Ricketts, and
H. Vanzetto, “TLA+ proofs,” in International Symposium on Formal

Methods. Springer, 2012.

[54] C. Culnane and S. Schneider, “A Peered Bulletin Board for Robust Use
in Verifiable Voting Systems,” CoRR, vol. abs/1401.4151, 2014.

[55] C. Culnane, P. Y. Ryan, S. A. Schneider, and V. Teague, “vVote:
A Verifiable Voting System,” ACM Transactions on Information and

System Security (TISSEC), vol. 18, no. 1, pp. 3:1–3:30, 2015.

[56] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “Upright cluster services,” in Symposium on Operating Systems

Principles (SIGOPS). ACM, 2009.

[57] https://followmyvote.com/blockchain-voting-the-end-to-end-process/,
2020, accessed: 2020-08-31.

[58] P. Tarasov and H. Tewari, “Internet Voting Using Zcash,” IACR Cryp-

tology ePrint Archive, 2017.

[59] B. Yu, J. K. Liu, A. Sakzad, S. Nepal, R. Steinfeld, P. Rimba, and M. H.
Au, “Platform-independent secure blockchain-based voting system,” in
International Conference on Information Security. Springer, 2018.

[60] Z. Zhao and T.-H. H. Chan, “How to vote privately using bitcoin,” in
International Conference on Information and Communications Security.
Springer, 2015.

[61] P. McCorry, S. F. Shahandashti, and F. Hao, “A smart contract for board-
room voting with maximum voter privacy,” in International Conference

on Financial Cryptography and Data Security. Springer, 2017.

[62] S. Hauser and R. Haenni, “Modeling a Bulletin Board Service Based
on Broadcast Channels with Memory,” in Financial Cryptography and

Data Security. Springer, 2019.

[63] A. Gervais, G. Karame, S. Capkun, and V. Capkun, “Is Bitcoin a
Decentralized Currency?” IEEE Security & Privacy, pp. 54–60, 2014.

[64] S. Heiberg, I. Kubjas, J. Siim, and J. Willemson, “On trade-offs of
applying block chains for electronic voting bulletin boards,” E-Vote-ID

2018, p. 259, 2018.

[65] D. Chaum, A. Essex, R. Carback, J. Clark, S. Popoveniuc, A. Sherman,
and P. Vora, “Scantegrity: End-to-End Voter-Verifiable Optical-Scan
Voting,” IEEE Security Privacy, vol. 6, no. 3, May 2008.

[66] R. Küsters, T. Truderung, and A. Vogt, “Accountability: definition and
relationship to verifiability,” in Conference on Computer and Commu-

nications Security (CCS). ACM, 2010.

[67] J.-M. Bohli, J. Müller-Quade, and S. Röhrich, “Bingo Voting: Secure and
Coercion-Free Voting Using a Trusted Random Number Generator,” in
E-Voting and Identity. Springer, 2007.

[68] R. Küsters, J. Mller, E. Scapin, and T. Truderung, “sElect: A Lightweight
Verifiable Remote Voting System,” in Computer Security Foundations,
2016.

