
On Compositional Information Flow Aware
Refinement

Christoph Baumann∗, Mads Dam†, Roberto Guanciale†, Hamed Nemati‡

∗Ericsson Research Security †Department of Computer Science ‡Helmholtz Center for
Kista, Sweden KTH Royal Institute of Technology Information Security (CISPA)

christoph.baumann@ericsson.com Stockholm, Sweden Saarbrücken, Germany
{mfd, robertog}@kth.se hnnemati@cispa.saarland

Abstract—The concepts of information flow security and refine-
ment are known to have had a troubled relationship ever since the
seminal work of McLean. In this work we study refinements that
support changes in data representation and semantics, including
the addition of state variables that may induce new observational
power or side channels. We propose a new epistemic approach to
ignorance-preserving refinement where an abstract model is used
as a specification of a system’s permitted information flows, that
may include the declassification of secret information. The core
idea is to require that refinement steps must not induce observer
knowledge that is not already available in the abstract model.
Our study is set in the context of a class of shared variable multi-
agent models similar to interpreted systems in epistemic logic.
We demonstrate the expressiveness of our framework through a
series of small examples and compare our approach to existing,
stricter notions of information-flow secure refinement based
on bisimulations and noninterference preservation. Interestingly,
noninterference preservation is not supported “out of the box”
in our setting, because refinement steps may introduce new
secrets that are independent of secrets already present at abstract
level. To support verification, we first introduce a “cube-shaped”
unwinding condition related to conditions recently studied in the
context of value-dependent noninterference, kernel verification,
and secure compilation. A fundamental problem with ignorance-
preserving refinement, caused by the support for general data
and observation refinement, is that sequential composability is
lost. We propose a solution based on relational pre- and post-
conditions and illustrate its use together with unwinding on the
oblivious RAM construction of Chung and Pass.

I. INTRODUCTION

As is well known, refinement and information flow secu-
rity is an uneasy combination [1], the so-called “refinement
paradox”. An abstract system specification of, e.g., a processor
pipeline will leave many implementation details unspecified. A
series of refinement steps will introduce many design decisions
regarding the pipeline structure, for instance, concerning the
number and ordering of pipeline stages and the use of spec-
ulation and out-of-order mechanisms. Each refinement step
will eliminate underspecification and nondeterminism, but may
inadvertently introduce new types of observation, for instance
through caches, that can cause undesired information leaks via
side channels, as seen in the new Spectre family of attacks [2].

Formally, the phenomenon manifests itself in that the dif-
ferent forms of trace inclusion or simulation ordering used in
refinement to account for functional correctness will in general
cause the information content of each observation to increase
as the system becomes more precisely determined.

Yet for the formal analysis of real systems and architectures
a modular approach based on some form of refinement seems
essential, since it would allow to handle different security
threats at different abstraction layers and then to compose the
analysis results to provide security at system level. Among
the minimum set of features we would expect from such an
approach are the following:

REQ1 Support for various forms of structural refinement
including data representation and the addition of new
state variables that may introduce discriminating power
not available at high abstraction level.

REQ2 Allowing reduction of underspecification and nondeter-
minism, where this obeys information flow constraints.

REQ3 Covering the intentional leakage of secret information.
REQ4 The ability to compose refinements component-wise

and in a top-down manner, guaranteeing the desired
information flow constraints.

REQ5 A clear semantic justification in terms of the knowledge
an observer gains from monitoring system runs.

REQ6 Support of effective reasoning methods.

A number of authors have attempted to develop approaches
to information flow aware refinement. In Sect.XI we review
some of the key contributions w.r.t. these requirements.

An essential problem in information flow preserving refine-
ment is that observers learn, i.e., accumulate knowledge, dur-
ing execution. The requirement is that observers do not learn
more at refined level than what they learn when executing at
abstract level, but what is learned is highly context-dependent.
Consider the well-known example of credit card numbers. A
security requirement may be that no more than four digits of
the credit card number may be revealed in sessions involving
third parties. Any implementation revealing no more than four
digits will meet the requirements and be secure when executed
in isolation. On the other hand, implementations that choose to
reveal different digits are insecure when executed in sequence.
This illustrates the challenges posed by underspecification and
nondeterminism (REQ2), but similar phenomena arise in the
context of secret-dependent data and observation refinement.
For instance, consider a one time pad, where a uniformly ran-
dom key provides information-theoretically secure protection
of a secret when used once, but not when used twice.

In this work, we tackle these challenges by identifying
and preserving an attacker’s ignorance of confidential data,

17

2021 IEEE 34th Computer Security Foundations Symposium (CSF)

© 2021, Christoph Baumann. Under license to IEEE.
DOI 10.1109/CSF51468.2021.00010

i.e., their uncertainty about the possible values of secret data,
which refinement must preserve or increase (but not reduce) to
be confidentiality-preserving. While the concept of ignorance
has been studied in the context of information flow [3] and
refinement [4] before, our account of ignorance-preserving
refinement, IPR, is to our knowledge the first to achieve the
goals stated above, using a modular approach that is agnostic
to the information flow policies to be preserved. In particular,
we cover both classical noninterference of sensitive and public
data and the intentional leakage of confidential information.

The key idea is to use observer ignorance in the abstract
model as a specification of the permitted information flow,
and then to ensure that any allowed refinement induces an
upper bound on the corresponding flow in the refined model.
We achieve this using epistemic logic. Our study is cast in
a framework of synchronous multi-agent systems, akin to a
shared-memory version of interpreted systems in the sense
of [5]. We present our modeling framework in Sect. II and
our account of refinement and IPR in Sects. III and IV. We
illustrate the usage of IPR and our modeling framework in
Sect. V through a series of small examples, using a small
modeling language that may have independent interest. Inter-
estingly, IPR does not imply noninterference preservation “out
of the box”. Ignorance-preserving refinement only addresses
secrets that are already represented at abstract level, but a
concrete model may introduce new types of unrelated secrets
that hence are not protected by IPR, as discussed in Sect. VI.
Turning to verification, in Sect. VII we present an unwinding
condition for IPR. The condition is related to “cube-shaped”
unwindings that have been studied in the recent past in
the context of value-dependent noninterference [6], kernel
verification [7, p. 186], and secure compilation [8] and are
discussed thoroughly in Sect. XI. In Sect. VIII we discuss the
problem of compositionality in more detail, and in Sect. IX we
present our solution based on a kind of relational Hoare logic
[9] lifted to refinements. In Sect. X we apply our methodology
to a simplified ORAM design to illustrate the combination
of unwinding and relational verification in an example that
requires extensive use of composition. Finally, we survey
related work in the area (Sect. XI) and conclude (Sect. XII).

II. BASICS, MODELS, EPISTEMICS

The models we consider in this work are extended transition
systems equipped with a synchronous multi-process struc-
ture, a shared store, and an observation function. A model
M = (S0, S,→,Obsp) is a transition system with S the set
of states, S0 ⊆ S the set of initial states, → ⊆ S × S the
transition relation, and Obsp an observation function, where
the components are structured as follows:
• States s ∈ S are pairs (c, d) ∈ C ×D of a control state
c and a store, d. We generally use the notation s.c and
s.d for the left and right projections on s.

• A control state is a mapping c ∈ C = PId → PC
of process (thread) identifiers p ∈ PId to thread control
states pc ∈ PC .

• A store is a mapping d ∈ D = Var → Val of variables
from set Var to values in set Val .

• An initial state s0 ∈ S0 = {(init , d0) | d0 ∈ D} is a
pair where init ∈ C is a designated, i.e., unique, starting
control state. Computations may start with any store.

• A final state is any state s in which no transition starts,
i.e., for which no s′ exists such that s→ s′.

• An observation function Obsp : S → Op returns the
observations Op a process p can make in a given state.

In what follows we restrict our attention to scenarios where a
process p may observe a subset of variables VarObs(p) ⊆ Var
along with its current control state, i.e., Op = (VarObs(p)→
D)×PC . Thus, p’s observation in state s is a pair Obsp(s) =
(λx ∈ VarObs(p). s.d(x), s.c(p)). We let α, β range over
observations and write s→αp→s′, if Obsp(s

′) = α and s→ s′.
Models as defined above describe synchronously evolving

collections of processes that operate on a single shared state.
Each transition represents a synchronous round of compu-
tation, with each such round a collection of atomic state
transitions, one for each process. Besides the processes’ local
control, transitions are conditioned on, and affect, a shared
global state. This provides a very general setting in which to
model a wide variety of computational phenomena including
time, asynchrony, and multi-way synchronization at different
levels of abstraction, cf. the use of three-way synchronization
in the abstract model of Example 1 below. By decoupling
observations from state transitions we also make it easy to,
for instance, add a passive process to represent an external
synchronous observer of a selected set of state variables.

For model description we use a process pseudo-language
with |> as a round separator and ordinary multi-assignments
separated by ; to build the component atomic transitions.
These multi-assignments are required to be terminating, and
write-write and read-write race free, in order to preserve the
per-round atomicity abstraction. The synchronous processes
are composed in parallel via ||. In our examples we restrict
attention to static process configurations, however our under-
lying semantics allows to model dynamic process networks as
well, e.g., through an explicit thread management process.

This model is a variant of the interpreted systems model
of Fagin et al [5]. Interpreted systems have agents (threads)
with local states that can be affected by other agents through a
global transition relation, as here. As for interpreted systems,
adversaries can in our framework be modeled as nondeter-
ministic environment processes with prescribed observability
properties. Models as used in this paper adds to the interpreted
systems model a shared store, and an explicit observation
function. The former is convenient for the types of applications
we address. Observation functions Obsp allow to encode both
statically determined sets of variables observed by process p
and dynamically varying notions of observability.

Example 1 (Three Party Protocol Specification). In Fig. 1 we
show an abstract specification of a three-party additive shared
secret protocol. The protocol operates over natural numbers
modulo some n. Each process receives as parameter the sum
of the other processes local variable z and uses this to compute
the sum of the z’s while keeping the value of the process’s
local z private. The initial value of each z (and res) is an
unknown element of Val = {0, . . . , n− 1}.

18

1 system three_party_spec
2 type Val = [0..n-1]
3 process proc(sum : Val)
4 var z, res : Val
5 do res := z + sum |>
6 configuration
7 pid0 = proc(pid1.z + pid2.z) ||
8 pid1 = proc(pid2.z + pid0.z) ||
9 pid2 = proc(pid0.z + pid1.z)

Fig. 1. Abstract specification of three-party additive secret sharing protocol.

Local variables are always observable to the process in
which they are declared. In general, observability of vari-
ables is regulated by a special “observability” declaration.
Unobservability, however, does not necessarily mean that the
variable cannot be read. This is commonly used in specifi-
cations to implement ideal functionality such as here where
each process reads (here: receives as parameter) the sum of
the other processes z variables without actually observing
them individually. Evidently, one key goal of refinement is
to produce concrete models that do not appeal to such ideal
functionality for their realization.

The system operates in a standard synchronous fashion: At
the start of each round the state of each variable used as input
for the new round is recorded, then the new values of all state
variables to be updated are computed, and after this the actual
update takes place. Thus, the model in Fig. 1 executes exactly
one round after which the processes terminate.

We explain how to convert the specification in Fig. 1 to
a model. Formally, the protocol has processes p0, p1, p2,
each with two local control states, say pc0, pcend where
pc0 is initial and pcend is final. The initial store for each
process has res and z initialized to some value in Val, say
s0.d(p0.z) = 4, s0.d(p1.z) = 7, and s0.d(p2.z) = 5. These
variables cannot be directly observed by the other processes,
as explained above. For the transition relation the pi execute
the assignments synchronously in parallel and terminate. For
the sake of the example let modulus n = 9 and observation
α = ([p2.z 7→ 5][p2.res 7→ 7], pcend). Since p2’s local
variables z and res are the only variables observable to p2
we obtain that s0→αp2→s1 with s1.d(pi.res) = 7 for all i.

In the context of a given transition system, a run ρ ∈ R(M)
is a finite sequence s0 · · · sn such that s0 ∈ S0 and si−1 → si
for all i > 0 for which si is defined. The i’th state of ρ, ρ(i),
is si, and |ρ| ∈ N is the length of ρ. A complete run is one that
cannot be extended, i.e. there is no s such that ρ(|ρ|−1)→ s.
In that case lst(ρ) = ρ(|ρ| − 1) is final.

The notions of observation trace, observation equivalence,
and the epistemic notions of knowledge and its dual, igno-
rance, are standard. First, two states s1, s2 are observationally
equivalent as seen by process p, s1 ∼p s2, if p has the same
observations in the two states, Obsp(s1) = Obsp(s2). A p-
observation trace is the sequence of observation of some run ρ,
i.e. Obsp(ρ) = Obsp(ρ(0)) · · ·Obsp(ρ(|ρ| − 1)). A complete
trace is a trace of a complete run, and the runs ρ1 and ρ2 are p-
observation equivalent ρ1 ∼p ρ2, if p’s observations in ρ1 are
the same as p’s observations in ρ2, i.e. Obsp(ρ1) = Obsp(ρ2).

In the context of a given modelM we view a property as a
set φ ⊆ R(M) representing the set of runs that are consistent
with the observations made so far in the computation. This
allows to define the standard epistemic modality Kpφ of
perfect recall knowledge and its De Morgan dual Ipφ of
“ignorance” on properties φ in the following way:
• ρ ∈ Kpφ, if for all ρ′ ∈ R(M), if ρ′ ∼p ρ then ρ′ ∈ φ.
• ρ ∈ Ipφ, if there is ρ′ ∈ φ such that ρ′ ∼p ρ.

The set Ipφ is the set of runs ρ that are “compatible” with some
ρ′ in φ in the sense that p cannot tell ρ′ from ρ. Accordingly,
we call a set φ a p-ignorance set, or just ignorance set if p is
understood from the context, if φ is closed under ∼p. Dually,
if ρ ∈ Kpφ then φ includes all runs ρ′ for which ρ ∼p ρ′, i.e.
it is inconceivable for p as a perfect recall observer that ρ does
not occur in φ. The Kp operator is the standard S5 epistemic
modality of knowledge. From the definition we immediately
obtain standard modal K and S5 properties like φ ⊆ Ipφ,
Ip(φ ∪ ψ) = Ipφ ∪ Ipψ, T : Kpφ ⊆ φ, B : φ ⊆ Kp(Ipφ), 4 :
Kpφ ⊆ Kp(Kpφ), as well as the monotonicity of ignorance:
φ ⊆ ψ ⇒ Ipφ ⊆ Ipψ.

Since Ip is closed under ∼p and distributive w.r.t. ∪, to
compute the ignorance of an observer p, it suffices to consider
only the cases φ = {ρ} for some representative ρ of a given
observation trace. Still, we stick to the general case below.

Example 2. Let ρ be the run s0s1 of Example 1. Then Ip2{ρ}
is the set of all runs ρ′ that agree with ρ on the initial state
assignments to p2.z and p2.res, and the final state assignment
to p2.res. On the other hand, Kp2{ρ} is empty, and Kp1φ
is nonempty only if φ is closed under any substitution that
preserves the initial and final state assignments of the local
variables of p1, and in particular keeps the sum p0.z+p1.z+
p2.z constant (modulo n).

III. REFINEMENT

We now compare two models, an abstract model Ma with
states s ∈ S, runs Ra, and transition relation →a, typically
used to predicate the desired behavior, and a concrete, or
implementation model Mc, with states t ∈ T , runs Rc, and
relation→c, that is used to describe how the abstract behavior
is realized. We write ρ, φ for (sets of) abstract runs and σ,
ψ for concrete ones. The two models are connected by a
refinement relation s ⇓ t, or function dte = s, which for each
concrete state t produces one or more abstract states s, which
t is intended to refine. We refer to refinement relations of the
latter form as functional. In this section we set out the basic
properties we assume of refinements before, in Section IV, we
turn to information flow preservation.

A large section of work in the refinement domain is based
on the notion of simulation, cf. [10, 11, 12], which in the
present synchronous setting can be cast as follows.

Definition 1 (Simulation, Observation Preservation).
1) The refinement relation ⇓ is a simulation of→c by→a, if

s ⇓ t →c t
′ implies s →a s

′ ⇓ t′ for some s′. Moreover,
if s ⇓ t, then s is initial or final if and only if t is.

2) The relation ⇓ preserves p-observations, if whenever
s ⇓ t it holds that Obsp(t) = Obsp(s).

19

In the functional case the equivalent condition to 1.1 is
that t → t′ implies dte → dt′e. The simulation property
1.1 allows abstractions to be point-wise extended to runs
by ρ = s0 · · · sn ⇓ t0 · · · tn = σ if si ⇓ ti for all
i : 0 ≤ i ≤ |ρ| = |σ| = n+ 1 and for sets φ, ψ, φ ⇓ ψ, if for
all ρ ∈ φ there is σ ∈ ψ such that ρ ⇓ σ, and vice versa, for
all σ ∈ ψ there is ρ ∈ φ such that ρ ⇓ σ. In the functional case
we define ds0 · · · sne = ds0e · · · dsne for abstracting concrete
runs. Moreover, we denote by ⇑ the direct image of ⇓−1, i.e.,
ψ⇑ = {ρ | ∃σ ∈ ψ. ρ ⇓ σ} and obtain:

Corollary 1. If ⇓ is a simulation of the concrete model, then
1) φ ⇓ ψ ⇒ φ ⊆ ψ⇑ and 2) (ψ⇑) ⇓ ψ. 2

For functional correctness, refinement usually requires both
simulation and observation preservation. In this work we rely
on the simulation condition as the crucial hook needed to relate
computations at abstract and concrete level. Preservation of
observations in the sense of 1.2 is used, e.g., in [13] but its
necessity appears less clear. For ignorance preservation the
key issue is preservation of observable distinctions and not
necessarily the observations themselves. Indeed, as we show
in this paper it is perfectly possible to conceive of meaningful
refinement-like relations that preserve observation distinctions
but not the observations themselves.

The key is to shift attention from preservation of obser-
vations to preservation of distinctions. In particular we dis-
tinguish observational equivalence relation ∼p on the abstract
model from its counterpart (written ≈p) on the concrete model.
This motivates the following well-formedness condition:

Definition 2 (Well-formedness). The refinement relation ⇓ is
well-formed, if s1 ⇓ t1 ≈p t2 and s2 ⇓ t2 implies s1 ∼p s2.

For functional refinement relations this becomes the condi-
tion that t1 ≈p t2 implies dt1e ∼p dt2e.

Well-formedness reflects the expectation that information
content of models should generally increase under refinement.
Then, if two abstract states are observationally distinct, we
should expect this discriminating power to be preserved to
concrete level. On the other hand, reflecting the increasing
information content we should not necessarily expect indistin-
guishability to be preserved. We obtain:

Proposition 1. Suppose that the simulation ⇓ is well-formed.
Then:

1) If ρ1 ⇓ σ1 ≈p σ2 and ρ2 ⇓ σ2 then ρ1 ∼p ρ2.
2) Suppose φ ⇓ ψ, then Ipφ ⊇ (Ipψ)⇑.

Proof. 1) Follows immediately from Def. 2. 2) If ρ ∈ (Ipψ)⇑
then we find σ ∈ Ipψ such that ρ ⇓ σ and a σ′ ∈ ψ such
that σ ≈p σ′. By φ ⇓ ψ there is ρ′ ∈ φ with ρ′ ⇓ σ′ and by
well-formedness ρ ∼p ρ′. But then ρ ∈ Ipφ.

In other words it follows directly from well-formedness
and the simulation property that ignorance is preserved from
concrete to abstract level. We define:

Definition 3 (Refinement). The refinement relation ⇓ is a
refinement, if ⇓ is well-formed and a simulation.

1 system three_party_impl {
2 type Val = [0..n-1]
3 process proc(in : Val)
4 var x, y, out, res: Val
5 do
6 out := y |>
7 out := in + x + y |>
8 out := in + x + y |>
9 res := in + x |>

10 configuration
11 pid0 = proc(pid1.out) ||
12 pid1 = proc(pid2.out) ||
13 pid2 = proc(pid0.out)

Fig. 2. Three-party protocol implementation.

IV. IGNORANCE PRESERVATION

While Prop. 1.2 is useful, our interest, however, is in
preservation of ignorance in the opposite direction. To arrive at
a suitable definition we first introduce a Chaum-style additive
secret sharing implementation [14] of the three party protocol.

Example 3 (Three Party Protocol Implementation). The con-
crete version of Example 1 is shown in Fig. 2. At concrete level
each pi splits z into shares x, y such that z = x+y modulo n.
In addition the configuration of the processes causes the local
variable out for each pi to be bound “counterclockwise” to
the local parameter in of pi−1. The protocol starts with p0,
p1, p2 in their initial control states, and with arbitrary data
state assignments. Each process then executes its program in
synchronous rounds, separated by |>.

We show that there is a refinement according to Def. 3
relating the abstract and concrete models. The refinement is
as should be expected. The abstraction represents each z as
x+ y for some choice of x and y, and res at abstract level
as itself at concrete level. Initial states at concrete level are
mapped to initial states at abstract level. For the transitions,
each round at abstract level corresponds to four rounds at
concrete level, achieved simply by deriving from the concrete
transition relation→c the relation→4=→c ◦ →c ◦ →c ◦ →c.
Observations of process pi on concrete level are the concate-
nation of pi’s local variable assignments for each of the four
transitions, including the inputs.

Well-formedness is easy to check. For instance for initial
states s1, s2, t1, t2 and i ∈ {0, 1, 2} we get:

s1(pi.z) = t1(pi.x) + t1(pi.y) (if s1 ⇓ t1)
= t2(pi.x) + t2(pi.y) (if t1 ≈pi t2)
= s2(pi.z) (if s2 ⇓ t2)

and similarly for res. The same argument applies for the
final states, since x, y, z are assigned at neither abstract nor
concrete level. For the simulation property let s ⇓ t, s → s′,
and t = t0 → · · · t4. Let also inj,i = tj(pi.in) and similarly
for xj,i, yj,i, resj,i. Similarly, let zi = s(pi.z) and res ′i =
s′(pi.res). To establish the simulation, it suffices to show
that res ′i = res4,i for all i ∈ {0, 1, 2} (cf. Fig. 2).

res4,i = in3,i + x3,i = in3,i + x0,i

= y0,i + zi−1 + zi+1 + x0,i = zi + zi+1 + zi−1 = res ′i

20

From the point of view of confidentiality preservation the
problem with the above argument is that it does not address
information flow. In particular, it does not show if some
information is leaked in some intermediate state. One key idea
for confidentiality preservation, proposed by Morgan [4], is
to compare ignorance at abstract with ignorance at concrete
level: If the ignorance at concrete level is “at least as high as”
(in [4]: a superset of) the ignorance at abstract level, no more
information is learned by executing the protocol at concrete
level than what is learned by executing the ideal functionality.

However, ignorance at abstract and concrete levels is not
readily comparable, as in our setting (as opposed to [4]) the
state spaces related by the refinement are different. In general,
refinement will reduce nondeterminism and add observational
power by implementation choices, e.g., for data representation.
For instance, in Example 3, pi learns the value of pi+1.y
in round 1. Nevertheless, reflecting our view of the abstract
model as specifying the desired information flow properties,
all information relevant for the analysis of information flow
preservation is available already at abstract level. Thus we
can use the refinement relation to push epistemic properties
between the abstract and concrete levels, as follows:

Definition 4 (Ignorance-Preserving Refinement, IPR). The
refinement ⇓ is p-ignorance-preserving, if ⇓ is a well-formed
simulation such that φ ⇓ ψ implies Ipφ ⇓ Ipψ.

We relativize ignorance preservation to the processes p since
this allows to use different abstraction functions for each p,
reflecting the potentially different views each process may
have of the refinement. It becomes clear that Def. 4 is the
desired property if we consider an equivalent formulation:

Proposition 2. The refinement ⇓ is p-ignorance-preserving, iff
φ ⇓ ψ implies Ipφ = (Ipψ)⇑.

Proof. By Cor. 1.1, Ipφ ⇓ Ipψ implies Ipφ ⊆ (Ipψ)⇑ and
by well-formedness (Prop. 1.2) Ipφ = (Ipψ)⇑. The other
direction follows directly via ((Ipψ)⇑) ⇓ Ipψ by Cor. 1.2.

Thus, IPR means that we have the same ignorance for
observer p on both levels, when viewed in terms of the
abstract model. In particular, a concrete model observer p
cannot distinguish more behaviors than possible on the abstract
model, when “re-abstracting” the set of indistinguishable con-
crete runs. The following is a useful sufficient and necessary
condition for ignorance-preserving refinement:

Definition 5 (Paired Refinement). The refinement ⇓ is paired,
if for all ρ, ρ′, σ′:

If ρ ∼p ρ′ ⇓ σ′ then exists σ s.t. ρ ⇓ σ ≈p σ′. (∗)

Proposition 3. The paired refinement condition (∗) holds for
refinement ⇓ if, and only if, ⇓ is p-ignorance-preserving.

Proof. The implication IPR⇒ (∗) follows directly from Ipφ ⇓
Ipψ for φ = {ρ′} and ψ = {σ′}. For direction (∗) ⇒ IPR,
assume that φ ⇓ ψ for the refinement ⇓. For any ρ ∈ Ipφ we
find ρ′ ∈ φ such that ρ ∼p ρ′ and a σ′ ∈ ψ such that ρ′ ⇓ σ′.
By (∗) we find σ s.t. ρ ⇓ σ and σ ≈p σ′, i.e. σ ∈ Ipψ.
Conversely, if σ ∈ Ipψ then we find σ′ ∈ ψ such that σ ≈p σ′

1 system abstract // concrete
2 observable observe : nat
3 process p
4 var h : nat
5 do observe := random(nat) |> // ... := h
6 configuration p

Fig. 3. Example: Confidentiality nonpreservation.

and then a ρ′ ∈ φ such that ρ′ ⇓ σ′. By the simulation property
we find ρ such that ρ ⇓ σ and then by well-formedness, ρ ∼p
ρ′, i.e. ρ ∈ Ipφ, as desired.

Intuitively, (∗) requires that for each pair of indistinguish-
able abstract runs, if one of them is implemented, so is the
other one and the corresponding concrete runs are indistin-
guishable as well.

For Example 3, s ⇓ t if the abstract state s and the concrete
state t for each pi agree on their assignments to x, y, z (such
that z = x + y), and res, and that z, resp. x and y are
constant in either system. At abstract level, ρ ∼pi ρ′ if for
pi, at each state the local assignments to z and res agree,
and pi−1.z + pi+1.z agree. At concrete level, σ ≈pi σ′ if,
for pi, the initial assignment to the local variables agree, and
the values of pi+1.y, pi+1.x + pi−1.y, and pi−1.x are the
same in both runs, as the latter terms can be observed from
(subtracting) the inputs received during the different rounds.

We see that if ρ ∼p ρ′ ⇓ σ′ then by suitably adjusting
pi+1.x and pi−1.y we can construct σ such that ρ ⇓ σ ≈pi σ′.
But then it follows directly from Prop. 3 that:

Theorem 1. The refinement for the three-party secret sharing
protocol is pi-ignorance-preserving.

Finally, for the sake of completeness, we point out that
not all refinements are ignorance-preserving. Consider the
classic insecure refinement in Fig. 3 where a random choice
is replaced with leaking a secret variable h. The observability
declaration in Fig. 3 can be viewed as shorthand for an ad-
ditional process env containing the local variable observe,
which in the single round of the example is assigned a random
number in the abstract specification and h in the concrete.
Let the refinement ⇓ be the identity on h and observe.
It is trivial to see that ⇓ satisfies the simulation and well-
formedness conditions and that it fails (∗). This does not mean
that no IPR from abstract to concrete exists: If ⇓ only
relates observe by identity, this is a valid IPR but not a very
useful one, as it does not implement the abstract secret h.

V. EXAMPLES

We show some basic examples to illustrate different aspects
of ignorance-preserving refinement.

Example 4 (A trivial top specification). Figure 4 shows an
abstract specification of a trivial system topSpec with a sin-
gle control state and no local variables. The system topSpec
lacks secrets altogether. From the point of view of ignorance-
preservation it is therefore degenerate: There is no ignorance
to preserve under refinement. The fact that for implLeak, x
is private and leaked to the environment through the variable

21

1 system topSpec
2 process p
3 repeat skip |>
4 configuration p
5
6 system implLeak
7 observable observe : nat
8 process p
9 var x : nat

10 repeat observe := x |>
11 configuration p

Fig. 4. Example: A trivial top specification.

observe is irrelevant, as x is not correlated with any infor-
mation present at abstract level. But then any system, including
for instance implLeak, should be considered a legitimate
refinement. To show that implLeak is an IPR of topSpec
let dte = s where s is the unique state of the abstract model.
The abstraction is trivially well-formed and the simulation
condition holds (but not observation preservation). Finally, if
ρ1 ∼p ρ2 = dσ2e then also ρ1 = dσ2e, which shows ignorance
preservation, i.e., IPR allows to pick an indistinguishable run
that leaks the same value of x.

In other words, for an information flow constraint to be
guaranteed by IPR at concrete level, the constraint must be
represented in some form already in the abstract model.
Nevertheless, it may be necessary for a refinement step to
introduce additional secrets in the concrete model. Whether
IPR guarantees the confidentiality of such secrets depends on
their relationship to the secrets on the abstract level and the
observations. We will come back to this issue in Sect. VI.

Example 5 (Scheduler). The next example illustrates reduc-
tion of nondeterminism. An abstract nondeterministic sched-
uler of processes p(0), p(1), p(2) is given in Fig. 5. The
processes take turns updating a shared (observable) variable
v, using a global random seed k that should be hidden from
the environment which observes the sequence of v’s produced.
The concrete version (not shown) is a round-robin scheduler
obtained from Fig. 5 by replacing the random assignment
in sched with active := (active + 1)%3. As in the
earlier examples the processes execute synchronously in par-
allel, either an assignment or a guard, and the only observable
variable is v. Thus, an abstract observation trace for the
abstract scheduler will be a trace of the form v0v1 . . . vn . . .
where vi+1 = work(vi, ki) and ki is the i’th random number
generated globally.

The refinement ⇓ relates variables s.v to t.v, s.k to t.k, and
s.active to any t.active. It is clear that the simulation
and well-formedness conditions hold for ⇓, and for ignorance
preservation it suffices to see that a trace of v’s can be
produced at abstract iff it can be produced at concrete level.

Example 6 (Asynchronous Communication with One Time
Pad). We consider a simple asynchronous producer-consumer
system with communication protected using a one time pad.
The ideal protocol specification (Fig. 6) uses the asynchronous
sequencing operator |>> defined using the delay operator:

• delay(c ; p) = delay(p)

1 system scheduler(range : nat)
2 var active, k : nat
3 fun work() : nat =
4 (do_something(v, k), random(range))
5 observable v : nat
6
7 process p(i : nat)
8 repeat
9 if active = i

10 then (v, k) := work(v, k) |>
11 else skip |>
12
13 process sched(n : nat) =
14 repeat active := random(n) |>
15
16 configuration
17 p(0) || p(1) || p(2) || sched(3)

Fig. 5. Abstract scheduler.

1 system asynchIdealProtocol
2 observable count : nat init 0
3
4 process sender
5 var s : byte stream
6 var put : byte
7 repeat
8 put := hd(s) ; s := tl(s) ; count++ |>>
9

10 process receiver
11 var get : byte
12 repeat get := sender.put |>>
13
14 configuration sender >> receiver

Fig. 6. Asynchronous ideal protocol model.

• delay(c |>>) = delay(c |>) = skip |>
• delay(c |> p) = skip |> delay(p)
• p >> q = (p ; delay(q)) || (delay(p) ; q)

The sender contains an unbounded byte stream s, element-
wise passed to the receiver (using variable put), where
an external observer may count the number of transactions
(represented explicitly in the ideal model by history variable
count). The expression sender >> receiver signifies
that both processes take turns executing a single synchronous
step each. The abstract delay operation can be implemented
using a simple binary semaphore, which is toggled by the
sender and reset by the receiver for flow control.

At concrete level (Fig. 7) the input bytes are encrypted
(XOR-ed) using a random key r fetched from a key gen-
erator key_gen in each round by both sender and re-
ceiver. The observable state at concrete level is the round
count along with the transmitted ciphertext. The refinement
s ⇓ t relates the receivers with each other, and sender
at abstract level with key_gen >> sender at concrete
level. For the variables, relation ⇓ acts as the identity on
sender.s, sender.count, receiver.get, and re-
quires t.sender.put ⊕ t.key_gen.r to be identical to
s.put, where ⊕ is XOR. Then well-formedness holds trivially
and preservation of ignorance follows from the security of
one time pad. Given a sequence of values v, encrypted on
the concrete level using key sequence r, then for any other
sequence v′ we can always find r′ such that v ⊕ r = v′ ⊕ r′.

22

1 system asynchOnetimepadProtocol
2 observable put : byte, count : nat = 0
3
4 process key_gen
5 var r : byte = 0
6 repeat r := randomByte() |>>
7
8 process sender
9 var s : byte stream

10 repeat
11 put := key_gen.r xor hd(s) ;
12 s := tl(s) ; count++ |>>
13
14 process receiver
15 var get : byte
16 repeat get := key_gen.r xor sender.put |>>
17
18 configuration
19 key_gen >> sender >> receiver

Fig. 7. Asynchronous one time pad protocol.

VI. CONSERVATIVITY

Viewed from afar there are two established approaches
in the literature to prove ignorance preservation, either by
appealing to some sort of behavioral equivalence or preorder
in the sense of process algebra, or by restricting attention to
prior established confidentiality properties.

In this section we cover examples of both approaches,
namely bisimulation and noninterference, NI. We first address
bisimulation, adapted to the present setting by assuming that
the variables at abstract and concrete levels are the same.

Definition 6 (Bisimulation). The refinement ⇓ is a bisimula-
tion (for p) if whenever s ⇓ t then

1) Obsp(s) = Obsp(t) (denoted s 'p t).
2) If s→αp→s′, then there is t′ such that t→αp→t′ and s′ ⇓ t′.
3) if t→αp→t′, then there is s′ such that s→αp→s′ and s′ ⇓ t′.

Proposition 4. If ⇓ is a bisimulation then ⇓ is an IPR.

Proof. Using Prop. 3, if ρ0 ∼p ρ1 ⇓ σ1, then ρ1 'p σ1 by 6.1,
hence also ρ0 'p σ1. By 6.2 we find σ0 with ρ0 ⇓ σ0, hence
ρ0 'p σ0 by 6.1. Thus σ0 ≈p σ1 and (∗) holds.

For noninterference, a reasonable account of NI in the
present state-based setting is the following:

Definition 7 (Noninterference). A model M is noninterferent
for process p if for all runs ρ0 ∈ R(M), if ρ0(0) ∼p s1 then
there exists a ρ1 ∈ R(M) such that ρ1(0) = s1 and ρ0 ∼p ρ1.

In other words, in a noninterferent model any two indis-
tinguishable initial states have the same observation traces. A
suitable interpretation of conservativity in this context is that
NI is preserved under ignorance-preserving refinement:

Definition 8 (NI Preservation). Suppose Ma ⇓ Mc is igno-
rance preserving and Ma is noninterferent. Then ⇓ preserves
noninterference if Mc is noninterferent as well.

Unfortunately, NI preservation does not hold in general.
This can be easily seen for Example 4, where the addition of
an unrelated secret variable breaks noninterference on the con-
crete level. Moreover, certain IPRs that reduce nondeterminism

by increasing the state space do not preserve noninterference
in the sense of Def. 8.

Example 7. Assume an abstract model with runs s1→α→s3 and
s2→α→s4 for α ∈ {a, b}. An ignorance-preserving refinement
is given by runs ta1→a→ta3 , tb1→b→tb3, ta2→a→ta4 , and tb2→b→tb4,
where si ⇓ tαi for all i and α. Let all initial states be indistin-
guishable, then clearly the abstract model is noninterferent.
However, for ta1 ≈ tb2 no indistinguishable runs exist, i.e.,
NI does not hold on the concrete level unless we refine the
observation equivalence relation to distinguish tai from tbj .

Note however, that the example is still secure, in the sense
that a concrete observer cannot tell whether s1 or s3 were
the initial state of a corresponding abstract computation. This
is exactly the sense of confidentiality that IPR is preserving,
as it is intentionally defined to prevent an observer from
gaining knowledge about confidential information in terms of
the abstract model.

More precisely, consider the following alternative definition
of noninterference as a closure property on ignorance sets I .

PNI ,p(I) ≡ ∀ρ0 ∈ I, s1. ρ0(0) ∼p s1 ⇒ ∃ρ1 ∈ I. ρ1(0) = s1

Obviously, requiring PNI ,p(Ip{ρ0}) for all ρ0 ∈ R(M) is
equivalent to Def. 7. In fact, it is well known that a plethora
of information flow policies can be expressed as closure
properties of the set of indistinguishable runs of a system
[15]. As IPR guarantees Ipφ = (Ipψ)⇑ if φ ⇓ ψ, for
any closure property P that holds on Ipφ, we immediately
get P ((Ipψ)⇑), i.e., the information policy is preserved by
the indistinguishable runs of the concrete model, when “re-
abstracting” them w.r.t. ⇓. Thus a concrete observer does
not gain any more information about the confidential abstract
behaviors and values than allowed by the abstract specification.

We argue that this sense of confidentiality preservation is
sufficient in most cases. Still, for certain refinements IPR can
also preserve information flow policies in the traditional sense.

Proposition 5. Consider a system that is partitioned into dis-
joint sets H of secret and L of observable variables. Moreover
assume that the refinement relation induces a bijection ↔ on
secret variables such that s ⇓ t implies s.d|H ↔ t.d|H . For
such systems, IPR preserves NI in the sense of Def. 8.

Proof. For any run σ0 let σ0(0) ≈p t1. By the simulation
property and well-formedness, we find ρ0 ⇓ σ0 and s1 ⇓ t1
such that ρ0(0) ∼p s1. By abstract level noninterference we
find a run ρ1 ∈ R(Ma) such that ρ1(0) = s1 and ρ1 ∼p ρ0.
Then by (∗), we find σ1 such that ρ1 ⇓ σ1 and σ1 ≈p σ0,
in particular σ1(0).d|L = σ0(0).d|L = t1.d|L. For the secret
variables, we have σ1(0).d|H ↔−1 s1.d|H ↔ t1.d|H . Thus
t1 = σ1(0) and σ1 is the desired noninterferent run.

A special case of the above type of system is when we
have the same secret variables in abstract and concrete model
(cf. Example 5). Clearly the proof above fails if the concrete
model introduces unrelated secret variables H ′ in the initial
states such that no bijection can be built, because then we
cannot show that run σ1 obtained from IPR starts in t1.
Noninterference then has to be proved separately for the

23

abstract model

concrete model

Fig. 8. (a) Partitioning of concrete states. For simplicity, we only consider
the functional case of ⇓−1, i.e., A ∩ B = ∅. (b) Simulation cube. Black
relations are assumed, red ones must be shown.

additional variables H ′, but the proof can be simplified by
assuming that the original secrets H are observable.

Example 8. (Secure Compiler) Assume we have proved IPR
for a secure compiler such that a binary implementation does
not leak the values of secret variables H when the source
program does not. If the compiler represents variables in
a unique fashion, by Prop. 5 we obtain NI w.r.t. concrete
relation ≈H which keeps H unobservable. Additionally the
compiler randomizes the binary’s memory layout to protect
against ROP attacks. Naturally, we would like to keep seed
H ′ of the random layout secret, i.e., establish NI w.r.t. a
corresponding relation ≈H′ , however there is no notion of
this implementation detail at the source code level. Hence,
IPR holds for a relation ≈H,H′ , covering the intersection of
observable variables for ≈H and ≈H′ , even if the compiler
introduces a vulnerability that leaks H ′. However, if we prove
NI w.r.t. ≈H′ separately (disregarding H) and rule out such
leakage, then adding NI for ≈H from IPR yields NI for
≈H,H′ via a simple transitive argument: Assume two states
t1 ≈H,H′ t2 with secret values t1.d(H,H ′) = (h1, h

′
1) and

t2.d(H,H
′) = (h2, h

′
2). We can construct a state t3 with

t3.d(H,H
′) = (h2, h

′
1) such that t1 ≈H t3 ≈H′ t2. Using

the NI results for ≈H and ≈H′ we obtain NI for ≈H,H′ .

VII. AN UNWINDING CONDITION FOR IPR
We present an unwinding condition for ignorance preserva-

tion. The idea is similar to standard unwinding or bisimulation
equivalences used in literature to establish certain information
flow policies (e.g., [16]), except that the focus here is instead
on preserving the given indistinguishable behavior of the
abstract level when refining to the concrete one.

Definition 9 (IPR Unwinding Relation). A symmetric relation
R ⊆ T × T is a p-unwinding relation, if s0 ⇓ t0, s1 ⇓ t1,
s0 ∼p s1 and t0 R t1 implies:

1) t0 ≈p t1.
2) If t0→βp→t′0, s0→αp→s′0, s1→αp→s′1, and s′0 ⇓ t′0 then

exists t′1 with t1→βp→t′1 , s′1 ⇓ t′1, and t′0 R t′1 (thus
also t′0 ≈p t′1).

Figure 8.a illustrates the idea of relation R partitioning
the concrete states. On the left side we see that for one

abstract state the refinement may introduce distinguishable
representatives. Relation R now partitions the ≈p-equivalence
classes into indistinguishable subsets that may R-relate to
concrete representatives of other indistinguishable abstract
states (right side). The unwinding condition requires that such
pairs of concrete states stay in R after each step (and thus
remain indistinguishable) if their abstract counterparts do. A
corresponding simulation “cube” [6, 8] is shown in Fig. 8.b.

Definition 10 (Partition Preserving Refinement). The refine-
ment relationM1 ⇓ M2 is p-partition preserving, if there is a
p-unwinding relation R such that, if s0, s1, t0 are start states
such that s0 ⇓ t0 and s0 ∼p s1 then there is t1 such that
s1 ⇓ t1 and t0 R t1.

In the simplest case, we have R ≡ ≈p. It is easy to show that
such a p-partition preserving refinement holds for Examples 5
and 6 with p = env . However, there are more complex cases:

Example 9 (Three Party Unwinding). We show that R has
to be more restrictive to be p-partition preserving for the
refinement of Example 3. Given a process pi, i ∈ {0, 1, 2},
we choose R such that for the states in relation it ensures
observational equivalence w.r.t pi (≈pi) as well as equality
for the values of yi+1, yi−1 + xi+1, and xi−1 which pi
can distinguish as noted before. Let s0 ⇓ t0 R t1, and
s0 ∼pi s1 ⇓ t1 be initial states. We get sj .zk = tj .xk+ tj .yk,
for j ∈ {0, 1} and k ∈ {i−1, i, i+1} as well as s0.zi = s1.zi
and the equivalences on t0 and t1 given by R.

Condition 9.1 is trivial to show. For 9.2 we know that pi
observes the terms xi, yi, and [yi+1,yi−1+zi+1,yi+zi−1+
zi+1] where the list contains the inputs pi receives during
the protocol. We assume t0 → t′0, s0 → s′0, s1 → s′1, and
s′0 ∼pi s′1 as well as s′0 ⇓ t′0. Therefore, we obtain t′0.res =
s′0.res = s′1.res, thus s0.zi−1+s0.zi+1 = s1.zi−1+s1.zi+1.
It is easy to check that then any step t1 → t′1 will produce
the same observations as t0 → t′0 for pi, if the initial states
also agree on xi, yi, yi+1, yi−1+xi+1, and xi−1 as assumed.
Since the system is deterministic, simulation gives s′1 ⇓ t′1. As
the x and y do not change, and the same result is computed,
i.e., t′1.res = s′1.res = t′0.res, we have t′0 R t′1.

We show that partition preservation is a sufficient condition
for ignorance preservation as it implies paired refinement (∗).

Proposition 6. If refinement ⇓ is p-partition preserving then
⇓ is p-ignorance preserving.

The converse of Prop. 6, i.e., that ignorance preservation
entails the existence of a p-partition preserving refinement,
does not hold. This is due to the linear time nature of ignorance
preservation vs. the branching time nature of unwinding.
Figure 9 adapts the classical example: Clearly, the refinement
is ignorance-preserving, but not p-partition preserving. If it
were, we would need to find an IPR unwinding relation R
such that t1 R t5, hence also t2 R t6. But then, since t2→e→t4,
dt2e→b→dt4e, and dt6e→b→s6, we need to find some t such that
t6→e→t, dte = s6, and t4 R t. But such a t does not exist.

24

Fig. 9. IPR does not require p-partition preservation.

VIII. COMPOSITIONALITY

In this section we begin to study ways of combining
refinements. At a minimum, two types of composition, vertical
and sequential, must be considered. Vertical composition is
essential for stepwise refinement, and sequential composition
is a prerequisite for scalability.

For vertical composition, first, assume modelsMi, 0 ≤ i ≤
2, and assume we have p-ignorance-preserving refinements ⇓i,
i ∈ {1, 2} fromMi−1 toMi. Then the relational composition
⇓1 ◦ ⇓2 from M0 to M2 should be p-ignorance-preserving,
too. The simulation property and well-formedness properties
are easily checked, it remains to show that a vertically com-
posed refinement is an IPR if its component refinements are:

Proposition 7. If the refinements ⇓1 and ⇓2 are p-ignorance-
preserving then so is ⇓ = ⇓1 ◦ ⇓2.

Proof. Let φ ⇓1 ψ ⇓2 ξ. Using (∗), assume ρ0 ∼p ρ1 ⇓ τ1.
We find σ1 such that ρ1 ⇓1 σ1 ⇓2 τ1. By (∗) there is σ0 with
ρ0 ⇓1 σ0 ≈p σ1. Applying (∗) again for σ0 ∼p σ1 ⇓2 τ1, we
obtain τ0 with ρ0 ⇓ τ0 ≈p τ1 and conclude via Prop. 3.

We present a version of sequential composition, adapted to
the multi-threaded models introduced in Sect. II. Given models
M1, M2 we define their sequential composition M1 .M2

with parameters S, C, D, etc., using indices i for those of
Mi, and we assume that PId1 = PId2, D1 = D2, and (for
simplicity) Op,1 = Op,2. In other words, modelsM1 andM2

are required to have the same threads and identically shaped
stores and observations. We let PC = PC 1+PC 2, the disjoint
sum of PC 1 and PC 2 with corresponding injection functions
PC1, PC2, and . For s = (c, d) ∈ S1 we define:

before(c, d) = (λp.PC1 c(p), d)

after(c, d) = (λp.PC2 c(p), d)

injecting a state in M1, resp. M2, into the state space of
M1 .M2. Then S0 = {before(s0) | s0 ∈ S10} and s→ s′ if:
• s = before(s1), s′ = before(s′1), and s1 →1 s

′
1, or

• s = after(s2), s′ = after(s′2), and s2 →2 s
′
2, or

• s = before(s1), s′ = after(s2), s1 is final in M1, s2 is
initial in M2 such that s2.c = init2 and s2.d = s1.d.

For single process models this construction acts as a sequen-
tial composition in the expected way. For concurrent models
the effect is to impose a global barrier, or synchronization
point in the sense that inM1 .M2 no observation of a thread
in M2 can precede an observation of a thread in M1.

We can define the composition of runs ρ1 .ρ2 as the partial
operation for which the final store of a complete run ρ1 is

identical to the first store of ρ2 (and control suitably injected
into PC 1+PC 2). Then each run ρ ofM1.M2 can be written
as either ρ1 or ρ1 . ρ2 with ρ1 ∈ R(M1) and ρ2 ∈ R(M2).

Example 10. Let M1 be the model of Example 3, and let
M2 be identical to M1 except that pi.x is exchanged in
round 1 instead of pi.y. The composition M1 .M2 has the
same processes executing 8 rounds synchronously in parallel.
In each run of M1 .M2, pi.res = p0.x + p0.y + p1.x +
p1.y+ p2.x+ p2.y for rounds 4 to 8.

We extend sequential composition to sets of runs in the
obvious way: φ1 . φ2 = {ρ1 . ρ2 | ρ1 ∈ φ1, ρ2 ∈ φ2}.
However, this definition leads to a sobering observation about
the composition of ignorance sets:

Proposition 8. Ip(φ1 . φ2) (Ipφ1 . Ipφ2

Proof. For containment we calculate:

Ip(φ1 . φ2) = {ρ′ | ∃ρ ∈ φ1 . φ2. ρ ∼p ρ′}
= {ρ′ | ∃ρ1 ∈ φ1, ρ2 ∈ φ2. ρ1 . ρ2 ∼p ρ′}
⊆ {ρ′1 . ρ′2 | ∃ρ1∈φ1, ρ2∈φ2. ρ1 ∼p ρ′1, ρ2 ∼p ρ′2}
= {ρ′1 . ρ′2 | ρ′1 ∈ Ipφ1, ρ′2 ∈ Ipφ2}
= Ipφ1 . Ipφ2

For strict containment see the proof of Theorem 2 below.

Prop. 8 shows that when observing components in isolation,
composition of runs that are indistinguishable in isolation may
produce runs that can be distinguished when observing the
components in sequence. Specifically, the independent choice
of ρ1, ρ2 in line 3 of the proof does not entail a dependent
choice such that ρ1.ρ2 ∼p ρ′ exists, as the proof of Theorem 2
demonstrates.

In order to define the sequential composition of refinements,
let refinement relations Ma,1 ⇓1 Mc,1 and Ma,2 ⇓2 Mc,2

be given. The composed relation s ⇓1 . ⇓2 t holds if either
s = before(s1), t = before(t1) and s1 ⇓1 t1, or s = after(s2),
t = after(t2) and s2 ⇓2 t2.

There is, however, a complication to resolve for this defini-
tion to make sense. In general, there is no guarantee that the
composability condition at the model boundary holds across
abstraction levels, i.e., there may be states s1 ⇓1 t1 and t2 such
that t1 is final, t2 is initial, and before(t1) →c after(t2) in
the composed model (i.e. such that t1.d = t2.d), but whenever
s2 ⇓2 t2 then s1.d 6= s2.d. This could happen for instance if
some information about a data item at abstract level is carried
by the final control state of Mc,1 at concrete level. Thus the
simulation property may fail for ⇓1 . ⇓2. Accordingly, we
say that ⇓1, ⇓2 are compatible, if for every final s1 in Ma,1,
there exists a unique initial s2 in Ma,2 such that s1.d = s2.d
and whenever t1 is final in Mc,1 with s1 ⇓ t1, and there
is an initial t2 in Mc,2 with t1.d = t2.d, then it holds that
s2 ⇓2 t2. Since there is only one initial control state in Ma,2,
this requires that the initial stores of Ma,2 are a superset of
the final stores of Ma,1 and that ⇓1 in final states agrees on
the mapping of stores with ⇓2 in initial states.

25

Proposition 9. If ⇓1, ⇓2 are compatible well-formed simula-
tions then ⇓1 . ⇓2 is a well-formed simulation.

Unfortunately, compatibility does not give compositionality:

Theorem 2. Ignorance-preserving refinement is not composi-
tional w.r.t. sequential composition.

Proof. LetM be the abstract three-party secret sharing model
of Example 1. As noted in Section IV we obtain a pi-ignorance
preserving refinement for any concreteM1 executing the pro-
gram in Example 3. Symmetrically, we obtain a pi-ignorance
preserving refinement for M2 of Example 10. Note that the
two refinements are indeed compatible, but the composed
refinementM.M ⇓M1.M2 is not pi-ignorance preserving.
To see this, pick runs σ1 in M1 and σ2 in M2 such that
σ1 . σ2 is defined. In the abstract run ρ1 . ρ2 = dσ1 . σ2e
the pi.z and pi.res are determined. By, say, decrementing
pi−1.z and incrementing pi+1.z we obtain an abstract run
ρ′1.ρ

′
2 ∼pi ρ1.ρ2. But ρ′1.ρ

′
2 6= dσ′e for any run σ′ ≈p σ1.σ2.

Otherwise we would find σ′1 ≈p σ1 and σ′2 ≈p σ2 such that
σ′ = σ′1 .σ

′
2, but σ1 determines pi+1.y and pi−1.x for σ′1 and

σ2 determines pi+1.x and pi−1.y for σ′2, whence the composed
run σ1.σ2 determines pi−1.z and pi+1.z for σ′1.σ

′
2. But then

it cannot be the case that dσ′1 . σ′2e = ρ′1 . ρ
′
2.

A correlate of Theorem 2 is the non-compositionality result
of [17], proved in a stochastic setting for a different example.

The root cause of the phenomenon is that an observer is able
to combine knowledge accumulated over composed protocol
runs, to induce knowledge not attainable over separate runs
only. While the IPR condition remains useful as a semantic
condition at the system (end-to-end) level, Theorem 2 shows
that it is not by itself a practical tool to prove ignorance
preservation for sequentially composed systems.

While we have found sufficient and necessary conditions
under which refinements Ipφi ⇓i Ipψi are sequentially com-
posable, these consider pairs of refinements instead of con-
straining each refinement separately. Avoiding this modularity
issue, we pursue a more tractable approach below.

IX. RELATIONAL VERIFICATION

The problem for sequential compositionality is that refine-
ments have too little control over start and end states to ensure
that runs can be composed. In this section we use ideas from
relational Hoare logic [9] to address this.

Definition 11 (Relational Refinement). Given symmetric re-
lations Rpre , Rpost ⊆ T × T , we call the triple {Rpre} ⇓
{Rpost} a p-relational refinement, if ⇓ is a well-formed
refinement fromMa toMc and the following conditions hold:

1) Rpre ⊆ ≈p.
2) If s1 ⇓ t1 are initial states, then given any s1 ∼p s2, we

can find a t2 such that s2 ⇓ t2 and t1 Rpre t2.
3) If t1 Rpre t2, σ1(0) = t1, ρ1 ⇓ σ1, ρ1 ∼p ρ2, ρ2(0) ⇓ t2,

then a run σ2 exists with σ2(0) = t2, ρ2 ⇓ σ2, σ1 ≈p σ2,
and if σ1 is complete, so is σ2 and lst(σ1) Rpost lst(σ2).

Roughly, the triple {Rpre} ⇓ {Rpost} expresses that when-
ever there is a terminating run from a concrete state t1, which

is a refinement of an abstract state indistinguishable from s2,
then it is possible to find a terminating run from some other
concrete state t2, which is a refinement of s2, and such that
the two runs are indistinguishable, Rpre holds on the initial
states of the runs, and Rpost on the final states of the two runs.

By conditioning Rpost on whether σ1 and σ2 are complete,
the definition covers both terminating and diverging programs.
Clearly, the second and third condition imply (∗), thus:

Corollary 2. Any p-relational refinement is an IPR. 2

The main result of this section is to show that re-
lational refinements are compositional. To that end let
before(t1) before(R) before(t2) if and only if t1 R t2 and
similarly for after . Moreover we say that relation R1 can
proceed as relation R2 if whenever t1 R1 t2 for final states
t1, t2 of Mc,1 and t1.d = t′1.d, t2.d = t′2.d for initial states
t′1, t

′
2 of Mc,2, we have t′1 R2 t

′
2. Intuitively, this ensures that

R1 constrains all memory contents on which R2 depends and
that the possible observations of p encoded in R2 are a subset
of those encoded in R1. If {R2} ⇓2 {Rpost} is a p-relational
refinement, then Mc,2 does not reveal any information that
Mc,1 keeps secret. We obtain:

Theorem 3. Suppose {Rpre} ⇓1 {R1} and {R2} ⇓2 {Rpost}
are p-relational refinements such that R1 can proceed as R2

and ⇓1, ⇓2 are compatible. Then {before(Rpre)} ⇓1 . ⇓2
{after(Rpost)} is a p-relational refinement.

It follows by Cor. 2 that if {Rpre} ⇓1 {R1} and {R2} ⇓2
{Rpost} are p-relational refinements, and R1 can proceed as
R2, then the refinement ⇓1 . ⇓2 is p-ignorance preserving.

Note that the unwinding from Sec. VII is a special case of a
p-relational refinement, i.e., it establishes a relational invariant
on the complete runs of a concrete model.

Theorem 4. If ⇓ is p-partition preserving for a relation R
that relates final states only to final states, then {R} ⇓ {R}.

This allows to use unwinding as a powerful tool for se-
quential composition. If unwinding relations can be found
for the different finite components of a system, where one
can proceed as the next one subsequently, we obtain IPR for
the composition via Theorem 3. Indeed we can show: Using
Theorem 4 and the unwinding relation R of Example 9 it
now follows that {R} ⇓ . ⇓ {R} where ⇓ is the three
party refinement of Example 3. Similarly for single rounds
of Examples 5 and 6 we obtain {∼env} ⇓ {∼env}. Below
we also show how Theorems 3 and 4 allow to apply our
approach inductively, splitting the (potentially diverging) runs
of a complex system into complete runs of its components.

X. EXAMPLE: OBLIVIOUS RAM

An Oblivious RAM (ORAM) is a program transformation
which preserves functional behavior and can secure a program
against adversaries capable of observing the accessed memory
addresses; e.g., an attacker which can mount trace-driven
attacks via shared data cache, or inspect the disk sectors
accessed by a database, or observe the accesses performed to a
network storage in a cloud infrastructure. The abstract model

26

1 system oramSpec
2 observable round : nat init 0
3 process p
4 var mem[0..n], add[0..z], res : nat
5 fun read(a:nat) : nat =
6 if random(1) then ret mem[a] else abort
7 repeat res := read(add[round]); round++ |>

Fig. 10. ORAM model.

1 system oramImpl {
2 observable rds, wts: nat list init []
3 observable round : nat init 0
4 process p
5 var mem[0..2m−2] : block
6 var tbl[0..n] : nat
7 var add[0..z], rl[0..z], rp[0..z], res: nat
8 fun fetch(i:nat):nat = rds:=rds++[i];ret mem[i]
9 fun store(i:nat, b:block) =

10 if |b| > k then abort
11 else wts := wts++[i]; mem[i] := b
12 fun read(a:nat) : nat =
13 for i in path-from-root(tbl[a]) do
14 tmp := fetch(i);
15 if a7→(l,v) in tmp then
16 (res’,tmp) := (v, tmp \ [a 7→(l,v)]);
17 store(i, tmp);
18 tbl[a] := rl[round];
19 store(0, fetch(0) + [a 7→(tbl[a],res’)]);
20 ret res’
21 fun push-back() =
22 (leaf, push) := (rp[round], []);
23 for i in path-from-root(leaf) do
24 keep := fetch(i);
25 (push, keep) :=
26 ([a7→(l,v) in push ∪ keep | i 6→[l,leaf]],
27 [a7→(l,v) in push ∪ keep | i →[l,leaf]]);
28 store(i, keep)
29 repeat res := read(add[round]);
30 push-back(); round++ |>

Fig. 11. Implementation of ORAM.

of ORAM (Fig. 10) is secure against these types of attacks by
construction, due to indistinguishability of accessed memory
addresses. Notice that the specification has n+1 memory cells,
accepts random failures of the memory, and that the array of
z + 1 elements add represents the list of addresses accessed
by the process.

The implementation of the ORAM, presented in Fig. 11, is
a simplified version of Chung and Pass’s construction [18].
It uses 2m−1 memory blocks that are logically organized in
a balanced binary tree with depth m and 2m−1 leafs. Each
memory block contains up to k entries of the shape a 7→ (l, v),
where a ∈ {0 . . . n} is an address in the address space of the
ORAM, l ∈ {0 . . . 2m−1−1} is a leaf identifier, and v ∈ N
is a value. The maximum block size depends on a security
parameter and must be small enough to store temporary copies
of a block and the additional temporary variables in hardware
registers. The implementation maps, via the table tbl, each
address of the specification to a single leaf, i.e., the value of the
address is stored in one of the blocks in the path that connect
the tree root to the address’s leaf. Additionally to the list of
addresses accessed by the process, the ORAM implementation
uses two lists of random numbers rl and rp.

Reading from an ORAM address involves reading and
writing the entire tree path that connect the tree’s root to
the address’s leaf. For every node in the path (lines 13-
17): the algorithm reads the corresponding block (line 14),
checks if the block contains an entry for the queried address
and eventually removes it (lines 15-16), and writes back the
updated block (line 17). Finally, the algorithm associates the
address to a new random leaf (line 18), and appends the entry
for the address to the root block (line 19), which is indexed by
0. In order to reduce contention in the root block, the process
performs a push-back procedure, chooses a random leaf and
pushes every entry a 7→ (l, v) in the path of the leaf to the
lowest common ancestor i of l and leaf (written i→ [l, leaf]).
All variables, except memory locations, are stored in hardware
registers, hence the corresponding operations are not visible
to the attacker. Accesses to the memory (i.e., fetch and store)
extend the adversary’s observations with the index of the
accessed block. These observations are collected in the history
variables rds and wts. The mechanism to write into the
ORAM is analogous, with the exception of the usage of a
new value in place of res in line 19.

The following Lemma shows that the ORAM construction
is correct.

Lemma 1. ⇓rORAM is a refinement, where s ⇓rORAM t iff:

1) (s.add, s.res, s.round) = (t.add, t.res, t.round);
2) if a 7→ (l, v) ∈ t.mem[i] then v = s.mem[a], l =

t.tbl[a], and i ∈ path-from-root(l);
3) for every address a exists a unique block i such that

a 7→ (l, v) ∈ t.mem[i]

4) s.round = r

Proof. Let t→ t′ and a = t.add[t.oramRound]. Property (3)
ensures that there is a unique block ia that contains an entry
for a and (2) guarantees that ia ∈ path-from-root(t.tbl[a]). For
these reasons lines (13-17) only modify block ia, removing
from this block the entry for a. Property (2) also guarantees
that res′ = s.mem[a]. Therefore lines (13-17) preserves prop-
erties (2) and (3) for all addresses except a. These properties
are re-established for a by lines (18) and (19), which adds the
entry for a to the root. In fact, the new position of the entry
(i.e., the root) is in the path of all possible leafs. The result
of read is assigned to res, hence t′.res = s.mem[a].

For the push-back operation, note that it does not modify
values of the addresses. Properties (2) and (3) are preserved
by lines (23-28) if we consider push an additional block of
the ORAM. Moreover, during the push procedure push only
contains entries for addresses mapped to descendant of i and
after the last iteration push is empty. Therefore properties
(2) and (3) are re-established at the end of the push-back
procedure.

For property (1) it is sufficient to note that add is never
changed, t′.res = s.mem[a], and t′.round = t.round + 1.
Hence this property can be re-established by the transition
s→ s′ that does not fail.

To show that the ORAM is an ignorance-preserving re-
finement we use relational verification, which allows us to

27

compose sequences of ORAM and other operations. To define
the relation, we introduce the following auxiliary function:

leaf (t, a, i) =

{
t.tbl[a] if A = ∅
t.rl[max A] otherwise

where A = {j | t.round ≤ j < i ∧ t.add[j] = a}

Intuitively, leaf (t, a, i) identifies to which leaf the address a
is mapped after i− t.round steps from t. In fact:

Lemma 2. If t0→t1→j−1tj then leaf (t0, a, j + t0.round) =
leaf (t1, a, j + t1.round− 1) = tn.tbl[a].

Proof. Notice that

j + t0.round = j + t1.round− 1 = tj .round .

We first prove leaf (t0, a, j + t0.round) = leaf (t1, a, j +
t1.round − 1) by cases: (1) a = t0.add[t0.round] and (2)
a 6= t0.add[t0.round].
Case (1) It is enough to show that A0 for t0 is equal to A1

for t1 and that t0.tbl[a] = t1.tbl[a].
Case (2) We notice that max(A1) for t1 is equal to max(A0)
of t0 for any i 6= t0.round+ 1 (i.e., j 6= 1) and A0 6= ∅. For
i = t0.round+1 holds A0 = A1∪{t0.round} and t0.round =
max(A0). Hence, leaf (t0, a, t0.round + 1) = t.rl[t0.round]
and leaf (t1, a, t1.round) = t1.tbl[a]. Line (18) ensures that
t1.tbl[a] = t.rl[t0.round], hence leaf is unchanged.

The proof that leaf (t0, a, j + t0.round) = tj .tbl[a] is by
induction over j, where we use the invariant property for
the inductive argument and the fact that leaf (t, a, t.round) =
t.tbl[a] for the base case.

We use the same pre/post-relations for relational verifica-
tion: t1 R t2 iff (1) t1 ≈ t2 (i.e., rds, wts, and round
are the same), (2) t1.rp = t2.rp, (3) for every i holds
leaf (t1, t1.add[i], i) = leaf (t2, t2.add[i], i), and (4) let dom
be the set of addresses of the entries of a block, Ah = {a ∈
th.add} the addresses accessed by th for h ∈ {1, 2}, and
L be the leaf nodes then (4a) for every node b 6∈ L holds
dom(th.mem[b]) ⊆ Ah and (4b) for every b ∈ L holds
|{a ∈ dom(th.mem[b]) \Ah}|+ |Ah| ≤ k.

Lemma 3. {R} ⇓rORAM {R} is a relational refinement.

Proof. Theorem 4 guarantees that {R} ⇓rORAM {R} is a
relational refinement if ⇓rORAM is p-partition preserving. The
latter is proven by showing that R is a proper unwinding
relation according to Def. 9.

The proof relies on Lemma 1 and 2 The invariant of
the leaf function and condition (3) ensure that the path of
nodes accessed while reading is the same. Condition (2)
guarantees that the path of nodes accessed while pushing back
is the same. Property (4) is a sufficient condition to guarantee
that the ORAM implementation does not fail: it entails that
n ≤ 2m−1 ∗ (k − |Aj |). If one of the two states, say t2,
does not satisfy (4) then it is possible to find an execution
of t1 that succeeds and that forces t2 to fail by choosing
unfortunate sequences for t1.rl and t1.rp. For example, let
t2 access |A2| > k different addresses and let t1 always
access the same address. The sequences rl and rp may be
the repetition of a single leaf l. While t1 may succeed, since

it always moves the same entry to the root and pushes it back
to leaf l, t2 will fail independently of the initial allocation of
the ORAM entries. In fact, t2 is forced within k + 1 steps to
push k + 1 entries into the same leaf l.

In practice, Chung and Pass show that there exists a
negligible function µ(n) such that the probability of overflow
is bounded by µ(n). This allows to relax property (4) for
practical applications.

Theorem 5. ⇓0ORAM . · · · . ⇓nORAM is an IPR.

Proof. The proof shows {R} ⇓0ORAM . · · · . ⇓jORAM {R} by
using induction on j. For ORAM it is straightforward to show
that R can proceed as R, ⇓rORAM and ⇓r−1ORAM are compatible,
and before(R) = R = after(R). Therefore for the inductive
case we can use Lemma 3 to show that {R} ⇓rORAM {R}
and Theorem 3 to obtain {R} ⇓0ORAM . · · · . ⇓rORAM {R}
from {R} ⇓0ORAM . · · · . ⇓r−1ORAM {R}. Finally Corollary 2
guarantees that ⇓0ORAM . · · · . ⇓jORAM is an IPR.

XI. RELATED WORK

Starting with Goguen and Meseguer [24] there is a large
body of work on specifying information flow security policies
using different variations of noninterference. The need to
support communication beyond the multilevel security model
has driven generalizations of noninterference based on some
form of declassification [25, 26, 3, 27, 28, 29, 26], with the
goal of defining specific circumstances under which new flows
of information are allowed. Our objective is fundamentally
different: Rather than devising a specific mechanism for de-
classification we are interested in ways of transferring arbitrary
information flow properties from specification (the abstract
model) to implementation (the refined model). Therefore we
provide a verification strategy that is oblivious to the mecha-
nism used to analyze declassification in the abstract model.

Knowledge-based formulations of information flows have
recently gained popularity [27, 3, 30], often modeling ob-
server knowledge by equivalence relations on input states.
A precursor to our work is the work of Cohen et al. [31]
on abstraction in multi-agent systems. They introduce an
epistemic simulation relation that is essentially a state-based
version of IPR, and use this to show preservation of formulas
in the epistemic temporal logic ACTLK.

Table I compares previous work addressing the problem of
confidentiality-preserving refinement in some form. It summa-
rizes the key features and evaluates the results with respect to
the requirements laid out in our introduction: support for non-
determinism (REQ2); preservation of noninterference; support
for intentional information leakage (REQ3); type of refinement
and composition (REQ4); support for probabilistic models;
and identification of unwinding verification condition (REQ6).
Additionally, in this table we use Santen’s [32] classification
of refinements for a better comparison:
• process refinement (REQ2): reducing nondeterminism,
• data / observational refinement (REQ1): transformation

of data and introduction of observations, and

28

Papers Model Runs Observations Preserves Refinement N
on

de
te

rm
in

is
m

N
on

in
te

rf
er

en
ce

In
te

nt
.l

ea
ka

ge
Pr

oc
es

s
R

ef
D

at
a

/
O

bs
R

ef
A

ct
io

n
R

ef
U

nw
in

di
ng

S
C

om
po

si
tio

n
V

C
om

po
si

tio
n

Pr
ob

ab
ili

st
ic

Graham-Cumming and Sanders [10] State machine Events uninterpreted Indisting. Simulation # G# G# − #

Roscoe et al. [19] CSP Events Low events Obs Det CSP refinement # # # # − #

Mantel [16] Event system Events Low events Unwinding Trace inclusion # # # − #

Heisel et al. [20] CSP Events Window channel Prob Indisting. Trace inclusion G# # #

Santen et al. [17] CSP Events Window channel Prob Indisting. CSP refinement G# #

Alur et al. [13] LTS States, labels uninterpreted Secrecy Trace inclusion # G# G# − #

Seehusen and Stølen [21] Processes Events Low events Policy Trace projection # # − #

Morgan [4] Programs States Low Vars, CF Ignorance Global Var Eq G# # G# #

Van der Meyden and Zhang [11] LTS States, labels Obs function, labels Policy Simulation # # G# − #

Costanzo et al. [12] State machine States Obs function Indisting. Simulation # # − G# − −
Murray, Sison, et al. [6, 22] Programs States Low Vars, Timing Noninterference Simulation # # − # − −
Barthe et al. [8, 23] LTS States, labels CF, Mem Trace Constant-Time Simulation # # − G# − −
This work State machine States Obs function Ignorance Simulation #

CF=Control Flow, Conf=Confidentiality, Det=Determinism, Eq=Equivalence, Indisting.=Indistinguishability, Intent.=Intentional, Mem=Memory,
Obs=Observation, Prob=Probabilistic, Ref=Refinement, S=Sequential, V=Vertical, Var=Variable, =yes, G#=partially, #=no, −=not applicable

TABLE I
COMPARISON OF RELATED WORK ON REFINEMENT WITH INFORMATION FLOW PRESERVATION.

• action refinement (REQ1): transformations of events or
observations that are atomic at one level into composite
ones at the other (cf. Examples 2, 6 and Section X).

Many works, e.g., [19, 33], recognize that noninterference
can be preserved by refinement in the presence of observation
determinism. However, limiting the scope to observation deter-
minism makes it impossible to support intentional information
leakage without explicit treatment of declassification. Other
results, e.g., [21, 11], focus on scenarios where intentional
communication of secret information is not allowed. Several
approaches do not support full data and observation refine-
ment. For instance, Mantel [16] presents a set of refinement
operators which preserve specific information flow properties,
but refinements can only reduce nondeterminism. In Graham-
Cumming and Sanders [10] and Costanzo et al. [12] states
that are indistinguishable on the abstract level must remain
indistinguishable when refined, while we only assume the
converse, i.e., well-formedness. Others allow data refinement
but not refinement of observations, e.g., [13]. These limitations
prevent the analysis of scenarios where the adversary gains
observations at the implementation level (e.g., when the re-
finement must deal with potential cache based side-channels).

Three strands of work are most relevant to our devel-
opment. First, Heisel et al. [20] consider information flow
preservation for a probabilistic version of CSP. While the
treatment of probabilistic information flow is out of scope
for this work, their security condition in fact reduces to
(∗) when considering only the possibilistic case. Since they
allow secret-dependent observation refinement, they encounter
compositionality-related issues [17] that appear to be related
to the ones identified in this paper. However, they do not
provide an unwinding condition, nor a general method to

regain compositionality such as our relational refinement, and
generally leave action refinement out of scope.

Morgan and McIver [4, 34] propose an instrumented shadow
semantics for ignorance-preserving program refinement, con-
structing the ignorance set explicitly for the final values of
hidden variables. Thus they allow to conceal intermediate
leakage of secrets which our approach detects. Moreover,
their refinement requires equality for all global variables,
allowing the introduction of new observations only as local
variables within the scope of the refined program. These
local variables cease to exist after the scope of the program
has ended, hence the approach does not allow for persistent
implementation variables that can carry data between invoca-
tions of different program segments. On one hand this makes
the information-flow-preserving refinement compositional by
construction (a.k.a. monotonicity [35]). However, and more se-
riously, it also rules out many realistic and important scenarios,
e.g., caches clearly are persistent implementation variables of
machine code programs.

Unwinding conditions similar to our Def. 9 have appeared
in the literature before. For instance, Murray et al. [6] in-
troduced a coupling invariant to preserve timing-sensitive
value-dependent noninterference in a refinement “cube“ that
expands on the common “square“ formed by abstract and
concrete transition relations and the simulation relation. The
methodology was later applied to verify information flow
preservation for a compiler for simple concurrent programs
[22]. In [7, p. 186] an unwinding cube similar to [6] is used
to discharge low equivalence at cache-aware level against low
equivalence at cacheless level for a given ARMv7 kernel
routine; a precursory study to the general theory presented
here. Barthe et al. [8] study information flow preservation

29

in the context of compilation and demonstrate how informa-
tion leaks due to control flow and memory accesses do not
increase under several compiler optimizations. A follow-up
paper [23] applies the technique to show that a somewhat
modified version of the CompCert compiler is constant-time
preserving. Our unwinding condition related to their constant-
time simulations, but more permissive. There are important
differences, however, in that 1) their model is deterministic,
2) the definition of leakage does not change in the refinement,
3) their condition lacks an epistemic justification and is “hard-
coded” to enforce constant-time.

One of the features that differentiate the work presented here
from other works referred to above is that IPR supports intro-
ducing secret dependent observations together with sequential
compositionality. The one-time pad Example 6 illustrates this.
There we obtain an IPR even though the attacker gains
observability of r xor hd(s). Similarly, a compiler may
shuffle an array using a random key r and introduce a memory
look-up dependent on r xor hd(s) without compromising
the secrecy of s. This type of refinement is not considered
in [8, 10, 12] because it violates the assumption requiring
that all refined runs of the same abstract state have the same
leakage. Similarly, this is not allowed in [6], since modified
variables must either be private, which is not the case for put,
or have their classification decreased, which would prevent
the direct flow of r xor hd(s) to put. It is allowed in
e.g. [4], but there the scoping of local variables prevents
additional information learned during the execution of one
implementation from being passed to the continuation. This
makes IPR a more permissive condition justifying information-
theoretically secure refinement. Therefore it allows us to
raise the question when it is possible to infer that an entire
implementation is information flow secure in terms of the
information flow security of the specification and the infor-
mation flow preservation of each step.

Finally, several other works focus on secure refinement for
a certain class of programs, e.g., stream processing functions
[36], schedulers [11], cryptographic algorithms [37, 38], or
security protocols [39, 40]. These approaches typically employ
models tailored to their use case and the specific desired
information flow properties. In particular, reasoning about
cryptography is with few exceptions [41] incompatible with a
formal epistemic analysis. Generally, our methodology allows
to show possibilistic information flow preservation for state-
based models, independent of the application scenario.

XII. CONCLUDING REMARKS

We have proposed a new compositional approach to infor-
mation flow preserving refinement, based on observer igno-
rance, explored its properties and limitations, and exposed it to
several examples, some of them non-trivial. Our approach sup-
ports the refinement of nondeterministic synchronous multi-
agent models using well-formed refinement relations. The
synchronicity requirement is no major hurdle, as we showed
how to embed asynchronous models. Refinements that are
not well-formed are benign: they also allow the observer
knowledge of abstract secret behavior to decrease. We ruled

out the phenomenon to simplify our proofs, but it seems not
to be a crucial necessity.

A trickier issue is the requirement that observations occur
with the same granularity at all levels of abstraction, as
changing the atomicity of observable behaviors is challenging
[35], especially for nondeterministic systems. In Example 3
and Sect. X, we avoided the problem by fixing the number
of concrete steps for each abstract step and by accumulating
intermediate observations, respectively. The same trick could
also be applied on the abstract level if a refinement reduces
the number of steps, but a more flexible approach is desirable.

Another topic that needs more work is the application of
our approach in automated relational verification (cf. [42]).
While the theory seems amenable to it, questions remain how
to efficiently build and make use of the abstract information
flow specification when verifying its implementation.

The paper covers sequential composition, but not explicit
concurrency. We have in fact defined a well-behaved syn-
chronous parallel composition that respects IPR and closely
mirrors the “internal” multi-agent structure of our models. This
is left out for lack of space.

A possible extension of this work concerns encryption, since
we do not restrict attackers to be computationally bound.
Reconciling epistemics and cryptography in a computationally
sound manner has been a difficult challenge since the inception
of BAN logic [43], see [41, 44] for some possible approaches.

Nevertheless, the theory presented here is relevant in many
other practical applications including secure compilation, pro-
gram synthesis, and the treatment of hardware side channels.

Acknowledgment

This work partially was supported by grants from the
Swedish Foundation for Strategic Research and the Swedish
Civil Contingencies Agency, as well as the German Federal
Ministry of Education and Research (BMBF) through fund-
ing for the CISPA-Stanford Center for Cybersecurity (FKZ:
13N1S0762).

REFERENCES

[1] J. McLean, “A general theory of composition for a class
of ”possibilistic” properties,” Transaction on Software
Engineering, vol. 22, no. 1, pp. 53–67, 1996.

[2] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz,
and Y. Yarom, “Spectre attacks: Exploiting speculative
execution,” ArXiv e-prints, Jan. 2018.

[3] A. Askarov and S. Chong, “Learning is change in knowl-
edge: Knowledge-based security for dynamic policies,”
in Computer Security Foundations Symposium (CSF).
IEEE, 2012, pp. 308–322.

[4] C. Morgan, “The Shadow Knows: Refinement and se-
curity in sequential programs,” Science of Computer
Programming, vol. 74, no. 8, pp. 629–653, 2009.

[5] R. Fagin, J. Y. Halpern, Y. Moses, and M. Y. Vardi,
Reasoning about knowledge. MIT Press, 1995.

[6] T. C. Murray, R. Sison, E. Pierzchalski, and C. Rizkallah,
“Compositional verification and refinement of concurrent

30

value-dependent noninterference,” in IEEE 29th Com-
puter Security Foundations Symposium, (CSF), 2016, pp.
417–431.

[7] H. Nemati, “Secure system virtualization: End-to-end
verification of memory isolation,” Ph.D. dissertation,
Royal Institute of Technology, Stockholm, Sweden,
2017. [Online]. Available: https://nbn-resolving.org/urn:
nbn:se:kth:diva-213030

[8] G. Barthe, B. Grégoire, and V. Laporte, “Secure com-
pilation of side-channel countermeasures: The case of
cryptographic constant-time,” in IEEE 31st Computer
Security Foundations Symposium (CSF), July 2018, pp.
328–343.

[9] N. Benton, “Simple relational correctness proofs for
static analyses and program transformations,” SIGPLAN
Not., vol. 39, no. 1, p. 1425, Jan. 2004.

[10] J. Graham-Cumming and J. W. Sanders, “On the re-
finement of non-interference,” in Proceedings Computer
Security Foundations Workshop IV (CSFW), 1991, pp.
35–42.

[11] R. Van der Meyden and C. Zhang, “Information flow
in systems with schedulers, Part II: Refinement,” Theor.
Comput. Sci., vol. 484, p. 7092, May 2013.

[12] D. Costanzo, Z. Shao, and R. Gu, “End-to-end verifi-
cation of information-flow security for C and assembly
programs,” in Proceedings of the 37th ACM SIGPLAN
Conference on Programming Language Design and Im-
plementation (PLDI), 2016, pp. 648–664.

[13] R. Alur, P. Cerný, and S. Zdancewic, “Preserving secrecy
under refinement,” in International Colloquium on Au-
tomata, Languages and Programming. Springer, 2006,
pp. 107–118.

[14] D. Chaum, “The dining cryptographers problem: Uncon-
ditional sender and recipient untraceability,” J. Cryptol.,
vol. 1, no. 1, p. 6575, Mar. 1988.

[15] H. Mantel, “Possibilistic definitions of security - An
assembly kit,” in Proc. 13th IEEE Computer Security
Foundations Workshop, CSFW, 2000, pp. 185–199.

[16] ——, “Preserving information flow properties under re-
finement,” in Symposium on Security and Privacy. IEEE,
2001, pp. 78–91.

[17] T. Santen, M. Heisel, and A. Pfitzmann, “Confidentiality-
preserving refinement is compositional - Sometimes,” in
Proceedings of the 7th European Symposium on Research
in Computer Security (ESORICS). Springer-Verlag,
2002, p. 194211.

[18] K. Chung and R. Pass, “A simple ORAM,” IACR Cryp-
tology ePrint Archive, vol. 2013, p. 243, 2013.

[19] A. W. Roscoe, J. C. P. Woodcock, and L. Wulf, “Non-
interference through determinism,” in Proceedings of the
Third European Symposium on Research in Computer Se-
curity, ser. ESORICS 94. Berlin, Heidelberg: Springer-
Verlag, 1994, p. 3353.

[20] M. Heisel, A. Pfitzmann, and T. Santen, “Confidentiality-
preserving refinement,” in Proceedings of the 14th IEEE
Workshop on Computer Security Foundations, ser. CSFW
01. USA: IEEE Computer Society, 2001, p. 295.

[21] F. Seehusen and K. Stølen, “Information flow security,

abstraction and composition,” IET Information Security,
vol. 3, no. 1, pp. 9–33, March 2009.

[22] R. Sison and T. Murray, “Verifying that a compiler
preserves concurrent value-dependent information-flow
security,” in 10th International Conference on Interactive
Theorem Proving, ITP, ser. LIPIcs, vol. 141, 2019, pp.
27:1–27:19.

[23] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte,
D. Pichardie, and A. Trieu, “Formal verification of a
constant-time preserving C compiler,” Proc. ACM Pro-
gram. Lang., vol. 4, no. POPL, Dec. 2019.

[24] J. A. Goguen and J. Meseguer, “Security policies and
security models,” in Symposium on Security and Privacy.
IEEE, 1982, pp. 11–20.

[25] J. Rushby, “Noninterference, transitivity and channel-
control security policies,” SRI International, Tech. Rep.,
1992.

[26] R. van der Meyden, “What, indeed, is intransitive non-
interference?” in European Symposium on Research in
Computer Security (ESORICS). Springer, 2007, pp.
235–250.

[27] M. Balliu, M. Dam, and G. Le Guernic, “Epistemic tem-
poral logic for information flow security,” in Workshop
on Programming Languages and Analysis for Security.
ACM, 2011, pp. 6:1–6:12.

[28] A. Askarov and A. Sabelfeld, “Gradual release: Unifying
declassification, encryption and key release policies,” in
Symposium on Security and Privacy. IEEE, 2007, pp.
207–221.

[29] S. Chong and A. C. Myers, “Security policies for down-
grading,” in Conference on Computer and Communica-
tions Security. ACM, 2004, pp. 198–209.

[30] F. Besson, N. Bielova, and T. Jensen, “Hybrid monitoring
of attacker knowledge,” in 2016 IEEE 29th Computer
Security Foundations Symposium (CSF), 2016, pp. 225–
238.

[31] M. Cohen, M. Dam, A. Lomuscio, and F. Russo,
“Abstraction in model checking multi-agent systems,”
in Proc. 8th International Conference on Autonomous
Agents and Multiagent Systems (AAMAS), Vol, 2, 2009,
pp. 945–952.

[32] T. Santen, “Preservation of probabilistic information flow
under refinement,” Inf. Comput., vol. 206, no. 24, p.
213249, Feb. 2008.

[33] M. R. Clarkson and F. B. Schneider, “Hyperproperties,”
Journal of Computer Security, vol. 18, pp. 1157–1210,
2010.

[34] A. McIver and C. C. Morgan, “Sums and Lovers: Case
studies in security, compositionality and refinement,” in
Formal Methods. Springer, 2009, pp. 289–304.

[35] C. Morgan, “Compositional noninterference from first
principles,” Formal Aspects of Computing, vol. 24, no. 1,
pp. 3–26, 2012.

[36] J. Jürjens, “Secrecy-preserving refinement,” in Sympo-
sium of Formal Methods Europe. Springer, 2001, pp.
135–152.

[37] C. Fournet and T. Rezk, “Cryptographically sound im-
plementations for typed information-flow security,” in

31

https://nbn-resolving.org/urn:nbn:se:kth:diva-213030
https://nbn-resolving.org/urn:nbn:se:kth:diva-213030

SIGPLAN Notices, vol. 43. ACM, 2008, pp. 323–335.
[38] J. B. Almeida, M. Barbosa, G. Barthe, and F. Dupressoir,

“Certified computer-aided cryptography: efficient prov-
ably secure machine code from high-level implementa-
tions,” in Computer & Communications Security. ACM,
2013, pp. 1217–1230.

[39] B. Blanchet, M. Abadi, and C. Fournet, “Automated ver-
ification of selected equivalences for security protocols,”
in Symposium on Logic in Computer Science. IEEE,
2005, pp. 331–340.

[40] C. Sprenger and D. A. Basin, “Refining security proto-
cols,” Journal of Computer Security, vol. 26, no. 1, pp.
71–120, 2018.

[41] M. Cohen and M. Dam, “A complete axiomatization of
knowledge and cryptography,” in Symposium on Logic in
Computer Science. IEEE, July 2007, pp. 77–88.

[42] M. Balliu, M. Dam, and G. L. Guernic, “Encover:
Symbolic exploration for information flow security,” in
25th IEEE Computer Security Foundations Symposium,
CSF, 2012, pp. 30–44.

[43] M. Burrows, M. Abadi, and R. Needham, “A logic
of authentication,” Transactions on Computer Systems,
vol. 8, no. 1, pp. 18–36, 1990.

[44] J. Y. Halpern, R. van der Meyden, and R. Pucella, “An
epistemic foundation for authentication logics (extended
abstract),” in TARK, ser. EPTCS, vol. 251, 2017, pp. 306–
323.

APPENDIX

A. Proofs

Proposition 6. If refinement ⇓ is p-partition preserving then
⇓ is p-ignorance preserving.

Proof. Let an unwinding relation R be given satisfying the
conditions of Defs. 9 and 10. Following (∗) we assume runs
ρ0, ρ1, σ1 such that ρ0 ∼p ρ1 ⇓ σ1. We construct, by induction
on n ≥ 1, a run σn0 of length n that in the limit meets the
requirements of (∗), i.e., such that for length n prefixes ρn0 ,
ρn1 , σn1 of ρ0, ρ1, σ1, respectively, ρn0 ⇓ σn0 , ρn1 ⇓ σn1 , and
σn0 ≈p σn1 , but additionally σn0 (n) R σn1 (n).

For the base case (n = 1) let ρn0 , ρn1 , σn1 be singleton runs
(i.e., start states) s0, s1, t1 with s0 ∼p s1 ⇓ t1. By Def. 10
we find σn0 = t0 such that s0 ⇓ t0 and t0 R t1. Then by Def.
9.1, t0 ≈p t1.

For the induction step assume we have determined
runs ρn+1

0 , ρn+1
1 , σn+1

0 such that ρn+1
0 ∼p ρn+1

1 ⇓
σn+1
1 . By the induction hypothesis we find σn0 such that
ρn0 ⇓ σn0 ≈p σn1 , and also σn0 R σn1 (n). In that
case, since σn1 (n) = σn+1

1 (n)→βp→σn+1
1 (n+1), and sim-

ilarly ρn+1
1 (n)→αp→ρn+1

1 (n+1), ρn+1
0 (n)→αp→ρn+1

0 (n+1),
and ρn+1

1 (n+1) ⇓ σn+1
1 (n+1), we are, by partition preser-

vation (Def. 9.2), able to extend σn0 to σn+1
0 such that

ρn+1
0 ⇓ σn+1

0 and σn+1
0 (n+1) R σn+1

1 (n+1). But then by
Def. 9.1, σn+1

0 ≈p σn+1
1 , as desired.

Proposition 9. If ⇓1, ⇓2 are compatible well-formed simula-
tions then ⇓1 . ⇓2 is a well-formed simulation.

Proof. Given a run σ = σ1 .σ2, with σi ∈ Rc,i for i ∈ {1, 2}.
By the refinement we get ρ1 ⇓1 σ1. As σ1 is complete, so is
ρ1 and lst(ρ1) is final. By compatibility we know therefore
that lst(ρ1) determines an abstract initial state s2 with s2 ⇓2
σ2(0). By inductive application of the simulation we obtain
an abstract run ρ2 ⇓2 σ2 with ρ2(0) = s2. Hence it exists ρ =
ρ1.ρ2 such that ρ ⇓ σ. Well-formedness follows directly from
the well-formedness of ⇓1 and ⇓2, i.e., if σ1 . σ2 ≈p σ′1 . σ′2
and ρ1 .ρ2 ⇓ σ1 .σ2 as well as ρ′1 .ρ

′
2 ⇓ σ′1 .σ′2, then clearly

σ1 ≈p σ′1 and σ2 ≈p σ′2. By well-formedness, ρ1 ∼p ρ′1 and
ρ2 ∼p ρ′2, hence ρ1 . ρ2 ∼p ρ′1 . ρ′2.

Theorem 3. Suppose {Rpre} ⇓1 {R1} and {R2} ⇓2 {Rpost}
are p-relational refinements such that R1 composes with R2

and ⇓1, ⇓2 are compatible. Then {before(Rpre)} ⇓1 . ⇓2
{after(Rpost)} is a p-relational refinement.

Proof. Let the two relational refinements be given. Clearly
before(Rpre) ⊆ ≈p. Condition 2) follows directly from 2) for
{Rpre} ⇓1 {R1}. As per 3) above, suppose t1 before(Rpre) t2,
σ1(0) = before(t1), ρ1 ⇓ σ1, ρ1 ∼p ρ2, ρ2(0) ⇓ before(t2).

Assume that σ1 completes in Mc,2. Otherwise, the ar-
gument below is easily adapted. Then σ1 = σ1,1 . σ1,2,
σ1,1(0) = before(t1), ρ1 = ρ1,1 . ρ1,2, ρ2 = ρ2,1 . ρ2,2,
ρ1,1 ∼p ρ2,1, ρ1,2 ∼p ρ2,2, ρ1,1 ⇓1 σ1,1, ρ1,2 ⇓2 σ1,2, and
ρ2,1(0) ⇓1 t2.

Let before(t′1) = lst(σ1,1), a final state. By the relational
refinement for ⇓1 we find a run σ2,1 such that σ2,1(0) = t2,
ρ2,1 ⇓1 σ2,1, σ1,1 ≈p σ2,1, and t′1 R1 t

′
2, for a final t′2 such

that before(t′2) = lst(σ2,1).
Let t′′1 = σ1,2(0) and t′′2 = (init2, d

′
2) where init2 is the

initial control state of Mc,2 and d′2 is the store of t′2.
By the definition of sequential composition, we obtain that

before(t′2)→c after(t
′′
2) in Mc,1 .Mc,2 and t′′1 R2 t

′′
2 , as the

relations compose. Also, since ρ2,1 ⇓1 σ2,1 we get lst(ρ2,1) ⇓1
t′2, but then, by compatibility of ⇓1 and ⇓2, since ρ2,2(0) is
uniquely determined by lst(ρ2,1) we obtain ρ2,2(0) ⇓2 t′′2 .

This allows to deploy the relational refinement property
for ⇓2. This yields a complete σ2,2 such that σ2,2(0) = t′′2 ,
ρ2,2 ⇓2 σ2,2 ≈p σ1,2, and lst(σ1,2) Rpost lst(σ2,2), since run
σ1 completes in Mc,2 and thus also σ1,2 is complete.

We have already established that σ2 = σ2,1.σ2,2 composes,
and that σ2(0) = t2. We also have ρ2 ⇓ σ2, σ1 ≈p σ2, and
lst(σ1) after(Rpost) lst(σ2). This concludes the proof.

Theorem 4. If ⇓ is p-partition preserving for a relation R that
relates final states only to final states, then {R} ⇓ {R}.

Proof. Condition 11.1 is immediate by 9.1. Condition 11.2
is immediate by partition preservation. For 11.3, assume that
t1 R t2, σ1(0) = t1, ρ1 ⇓ σ1, ρ1 ∼p ρ2, ρ2(0) ⇓ t2, and
σ1 is complete. If σ1 is a singleton the conclusion follows
directly, noting that if t1 is final, also t2 is by hypothesis.
In the inductive case, let σ1(0)→βp→σ1(1) and σ′1 be the first
suffix of σ1. Since ρ1 ⇓ σ1 we find corresponding suffix ρ′1 and
α such that ρ1(0)→αp→ρ′1(0) and ρ′1 ⇓ σ′1 and ρ′1 ∼p ρ′2 where
ρ′2 is the first suffix of ρ2. By IPR unwinding we then find
t′2 such that t2→βp→t′2, ρ′2(0) ⇓ t′2, and t′1 R t′2. By induction
hypothesis we can then construct the run σ2 called for by
Def. 11.3 and we conclude.

32

