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Abstract—State-separating proofs (SSP) is a recent method-
ology for structuring game-based cryptographic proofs in a
modular way. While very promising, this methodology was pre-
viously not fully formalized and came with little tool support. We
address this by introducing SSProve, the first general verification
framework for machine-checked state-separating proofs. SSProve
combines high-level modular proofs about composed protocols,
as proposed in SSP, with a probabilistic relational program logic
for formalizing the lower-level details, which together enable
constructing fully machine-checked crypto proofs in the Coq
proof assistant. Moreover, SSProve is itself formalized in Coq,
including the algebraic laws of SSP, the soundness of the program
logic, and the connection between these two verification styles.

1 Introduction
Cryptographic proofs can be challenging to make fully pre-
cise and to rigorously check. This has caused a “crisis of
rigor” [17] in cryptography that Shoup [50], Bellare and
Rogaway [17], Halevi [32], and others, proposed to address
by systematically structuring proofs as sequences of games.
This game-based proof methodology is not only ubiquitous
in provable cryptography nowadays, but also amenable to full
machine-checking in proof assistants such as Coq [9, 44] and
Isabelle/HOL [16]. It has also led to the development of spe-
cialized proof assistants [13] and automated verification tools
for crypto proofs [12, 15, 22]. There are two key ideas behind
these tools: (i) formally representing games and the adversaries
against them as code in a probabilistic programming language,
and (ii) using program verification techniques to conduct all
game transformation steps in a machine-checked manner.

For a long time however, game-based proofs have lacked
modularity, which made them hard to scale to large, composed
protocols such as TLS [47] or the upcoming MLS [8]. To
address this issue, Brzuska et al. [23] have recently introduced
state-separating proofs (SSP), a methodology for modular
game-based proofs, inspired by the paper proofs in the miTLS
project [20, 21, 30], by prior compositional cryptography
frameworks [24, 40], and by process algebras [41]. In the SSP
methodology, the code of cryptographic games is split into
packages, which are modules made up of procedures sharing
state. Packages can call each other’s procedures (also known as
oracles) and can operate on their own state, but cannot directly
access other packages’ state. Packages have natural notions
of sequential and parallel composition that satisfy simple
algebraic laws, such as associativity of sequential composition.

This law is used to define cryptographic reductions not only
in SSP, but also in the The Joy of Cryptography textbook [49],
which teaches crypto proofs in a style very similar to SSP.

While the SSP methodology is very promising, the lack
of a complete formalization makes it currently only usable for
informal paper proofs, not for machine-checked ones. The SSP
paper [23] defines package composition and the syntax of a
cryptographic pseudocode language for games and adversaries,
but the semantics of this language is not formally defined, and
the meaning of their assert operator is not even clear, given
the probabilistic setting. Moreover, while SSP provides a good
way to structure proofs at the high-level, using algebraic laws
such as associativity, the low-level details of such proofs are
usually treated very casually on paper. Yet none of the existing
crypto verification tools that could help machine-check these
low-level details supports the high-level part of SSP proofs:
equational reasoning about composed packages (i.e., modules)
is either not possible at all [9, 32, 44, 53], or does not exactly
match the SSP package abstraction [13, 36] (see §6 for details).

The main contribution of this work is to introduce SSProve,
the first general verification framework for machine-checked
state-separating proofs. SSProve brings together two different
proof styles into a single unified framework: (1) high-level
proofs are modular, done by reasoning equationally about
composed packages, as proposed in SSP [23]; (2) low-level de-
tails are formally proved in a probabilistic relational program
logic [9, 13, 44]. Importantly, we show a formal connection
between these two proof styles in Theorem 1.

SSProve is a foundational framework, fully formalized in
Coq. To achieve this, we define the syntax of crypto pseu-
docode in terms of a free monad, in which external calls
are represented as algebraic operations [45]. This gives us a
principled way to define sequential composition of packages
based on an algebraic effect handler [46] and to give machine-
checked proofs of the SSP package laws [23], some of which
were treated informally on paper. Moreover, we make precise
the minimal state-separation requirements between adversaries
and the games with which they are composed—this reduces
the proof burden and allows us to prove more meaningful
security results, that do not require the adversary’s state to
be disjoint from intermediate games in the proof.

Beyond just syntax, we also give a denotational semantics
to crypto code in terms of stateful probabilistic functions
that can signal assertion failures by sampling from the empty
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probability subdistribution. Finally, we prove the soundness
of a probabilistic relational program logic for relating pairs of
crypto code fragments.

For this soundness proof we build a semantic model based
on relational weakest-precondition specifications. Our model is
modular with respect to the considered side-effects (currently
probabilities, state, and assertion failures). To obtain it, we
follow a general recipe by Maillard et al. [38], who recently
proposed to characterize such semantic models as relative
monad morphisms, mapping two monadic computations to
their canonical relational specification. This allows us to first
define a relative monad morphism for probabilistic, potentially
failing computations and then to extend this to state by sim-
ply applying a relative monad transformer. Working out this
instance of Maillard et al.’s [38] recipe involved formalizing
various non-standard categorical constructs in Coq, in an
order-enriched context: lax functors, lax natural transforma-
tions, left relative adjunctions, lax morphisms between such
adjunctions, state transformations of such adjunctions, etc.
This formalization is of independent interest and should also
allow us to more easily add extra side-effects and F?-style
sub-effecting [53] to SSProve in the future.

We have already started reaping the benefits of formalizing
SSP in a proof assistant: our recently completed SSProve
formalization of the KEM-DEM case study presented in [23]
has led us to find—in conjunction with the authors of [23]—
an error in the originally published proof. The authors of [23]
have since proposed a revised version of their theorem, which
we have adapted and fully proved in SSProve. We will describe
this case study in a future publication.

Outline. The remainder of this paper is structured as fol-
lows. §2 illustrates the key ideas of how to use SSProve
on two simple crypto proofs, showing semantic security of
ElGamal and PRF-based encryption. In §3 we formalize
the SSP methodology: cryptographic pseudocode, packages,
sequential and parallel composition, and the algebraic laws
they satisfy. In §4 we introduce the rules of our probabilistic
relational program logic and use them to prove Theorem 1,
which formally connects SSP to this program logic. In §5 we
outline the effect-modular semantic model we use to prove the
soundness of the program logic. Finally, §6 discusses related
work and §7 future directions.

The full formalization of SSProve and of the examples from
this paper (circa 20K lines of Coq code including comments)
are available under the MIT open source license at https:
//github.com/SSProve/ssprove/tree/csf-paper.

2 Using SSProve: Key Ideas and Examples
Formalizing the SSP methodology for high-level proofs allows
us to formally link it to the methodology of probabilistic rela-
tional program logics for low-level proofs. In this section, we
begin with a brief introduction to SSP (§2.1). Then, we present
our new theorem connecting SSP to a probabilistic relational
program logic (§2.2). Finally, by way of two examples, we
show how the two methodologies are used together to obtain
fully formal security proofs. The first example looks at a

package: P
mem: n : nat

X(b):
if b then

return 1
else

return Z(n)

Y():
return 5

Figure 2. Possible pseudocode implementation for P .

symmetric encryption scheme built out of a pseudo-random
function (§2.3), while the second looks at ElGamal, a popular
asymmetric encryption scheme (§2.4).

2.1 An introduction to SSP

We begin by introducing (our variant of) the SSP method-
ology of Brzuska et al. [23]. The main concept behind this
methodology is the package, which is a collection of pro-
cedure implementations that together manipulate a common
piece of state, and that may depend on a set of external
procedures. We refer to the set of external procedures on
which the package can depend as the imports of the package.

X

Y
Z

P

Figure 1. Package P .

In Figure 1, we can see a high-level
picture of a package P : it implements
and exports the procedures X and Y,
and it imports the external procedure
Z. The arrows indicate the direction
of calls. We use import(P ) to de-
note the set of procedure names the

package P imports, and export(P ) to denote the names of
the procedures it exports. The term interface is used to refer to
such a set of procedure names.1 While the import and export
interfaces of a package tell us where it can be used, in the
SSP papers, the package implementations are usually given in
separate figures, which describe, in pseudocode, each of the
procedures exported by the package. For example, a possible
pseudocode implementation corresponding to the package P
can be found in Figure 2. We refer to the code of the procedure
X exported by package P as P.X.

Package algebra. Packages can be combined as algebraic
objects. We can build complex packages out of simpler ones
using the following composition operations.2

• Sequential composition: given two packages P1 and P2

with import(P1) ⊆ export(P2), then P1◦P2 is obtained
by inlining procedure definitions, each time P1 calls a
procedure in P2.

• Parallel composition: given two packages P1 and P2 such
that export(P1) and export(P2) are disjoint, then P1 ‖
P2 is the union of P1 and P2: it provides the procedures
from both P1 and P2.

1In SSProve the procedure names within interfaces are also associated with
argument and result types, but we omit this detail until §3.1.

2In the SSProve formalization, composition can actually be performed on
arbitrary packages, but the obtained packages are guaranteed to be valid only
when the requirements stated here are met, as detailed in §3.3.
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...
...

...P1 P2

P1

P2

...

...
...

...

Figure 3. Sequential and parallel composition.

• Identity package: given an interface I , we have a package
that simply forwards all calls in this interface. We refer to
it as the identity package on the interface I , written IDI ,
and we have that import(IDI) = export(IDI) = I .

These operations have graphical counterparts which we
show in Figure 3. Moreover, there are natural algebraic laws
that hold between these operators. For example, sequential
composition is an associative operator. Such laws are con-
venient for cryptographic proofs, since they allow the com-
positional structure of a package to be manipulated without
having to look at all at the implementation of its procedures.

Games and distinguishers. A package with no imports
is called a game. A game pair contains two games that
export the same procedures, i.e. a tuple (G0, G1) such
that export(G0) = export(G1) and import(G0) =
import(G1) = ∅. A distinguisher for a game pair is a package
D with import(D) = export(G0) = export(G1) and
export(D) = {run}, where run is an entry-point procedure
that can call the procedures exported by the games and returns
a boolean value: true or false. When a game G (so without
imports) exports a single procedure run : unit → bool as
above, we denote by Pr [b← G] the probability that G.run
returns the boolean value b when running on initial memory.
We can quantify how much a distinguisher can distinguish the
two packages in a game pair:

Definition 1 (Distinguisher advantage). The advantage of a
distinguisher D against a game pair G = (G0, G1) is

α(G)(D) =
∣∣Pr[true← D ◦G0

]
− Pr

[
true← D ◦G1

]∣∣
Reasoning about advantage. Next, we review the two main
results used for equational-like reasoning about advantage
against games in SSP:

Lemma 1 (Triangle Inequality). Let G0, G1 and G2 be games,
we have that for every distinguisher D,

α(G0, G2)(D) ≤ α(G0, G1)(D) + α(G1, G2)(D).

Proof. By unfolding Definition 1 we have
α(G0, G2)(D)

=
∣∣Pr[true←D ◦G0

]
− Pr

[
true←D ◦G2

]∣∣
= |Pr

[
true←D ◦G0

]
− Pr

[
true←D ◦G1

]
+ Pr

[
true←D ◦G1

]
− Pr

[
true←D ◦G2

]
|

≤
∣∣Pr[true←D ◦G0

]
− Pr

[
true←D ◦G1

]∣∣
+
∣∣Pr[true←D ◦G1

]
− Pr

[
true←D ◦G2

]∣∣
= α(G0, G1)(D) + α(G1, G2)(D)

In general, we want to bound the advantage to distinguish
G0 and Gn (i.e., the advantage α(G0, Gn)(D) against game
pair (G0, Gn)). In order to do so, by repeatedly apply-
ing Lemma 1, it is enough to exhibit a chain of games
G0, G1, G2, . . . , Gn so that a bound for α(G0, Gn)(D) can
be given by

α(G0, G1)(D) + α(G1, G2)(D) + . . .+ α(Gn−1, Gn)(D).

Lemma 2 (Reduction).
Let (G0, G1) be a game pair and let M be an arbitrary
package. Then, for every distinguisher D, we have

α(M ◦G0,M ◦G1)(D) = α(G0, G1)(D ◦M).

Proof. By unfolding Definition 1 and applying the associativity
law of sequential composition, we have

α(M ◦G0,M ◦G1)(D)
=
∣∣Pr[true← D ◦ (M ◦G0

)]
− Pr

[
true← D ◦

(
M ◦G1

)]∣∣
=
∣∣Pr[true← (D ◦M) ◦G0

]
− Pr

[
true← (D ◦M) ◦G1

]∣∣
= α(G) (D ◦M)

As its name indicates, Lemma 2 is used to reduce the
advantage of the distinguisher over a composed game (M◦Gb),
to the advantage over part of the game (M ), for which we
know a bound. We will use both these SSP lemmas in §2.3.

One difference in SSProve with respect to the SSP papers
is that up to this point we made no “state separation” assump-
tions. We proved instead in Coq that the algebraic laws for
package composition as well as the two lemmas above hold
even when the involved packages share state.

Adversaries. State separation is, however, still crucial for
defining adversaries against game pairs. Formally, an adver-
sary A for a game pair is a distinguisher whose state is disjoint
from the state of each game in the pair.

Perfect game indistinguishability. We say that the games
G0 and G1 of a game pair are perfectly indistinguishable
when α(G0, G1)(A) = 0 for every adversary A. Perfect
indistinguishability is a form of observational equivalence and
states that no adversary can learn any information about which
game in the pair it is interacting with.

2.2 Proving perfect indistinguishability steps in a
probabilistic relational program logic

We now present a novel result brought by SSProve. The SSP
laws above deal only with the high-level structure of composed
packages. However we often also need to show that two con-
crete games are equivalent with respect to what an adversary
can learn from using them, i.e. perfect indistinguishability.
In SSProve we formally verify this kind of equivalence by
reducing it to proving a family of semantic judgments in
a probabilistic relational program logic. The logic we use
is a variant of pRHL, a probabilistic relational Hoare logic
introduced by Barthe et al. [9]. Judgments of this logic are of
the form

� {{{(m0,m1). φ}}} c0 ∼ c1 {{{((m′0, a0), (m′1, a1)). ψ}}},

3



and intuitively mean that after separately running the two code
fragments c0 and c1 on the corresponding component of a
pair of memories m0,m1 satisfying a precondition φ, the final
memories m′0,m

′
1 and results a0, a1 satisfy the postcondition

ψ. In this paper write as p.M a function that binds p and
has body M (usually denoted by λp.M in the functional
programming community). This notation will be handy for
writing postconditions, which depend on final memories and
on final results. We adopt the convention that the variables
m0 and m1 stand for the state associated to c0 and c1 in
preconditions, and m′0,m

′
1 stand for the corresponding state

in postconditions. We will omit them from judgments when
no ambiguity can arise.

We now state the main theorem of SSProve:

Theorem 1. Let G = (G0, G1) be a game pair with respect to
export interface E = export(G0) = export(G1). Moreover,
assume that ψ is a stable invariant that relates the memories
of G0 and G1, and that it holds on the initial memories.

If for each provided procedure f : A → B ∈ E , we have
that for all a ∈ A,

� {{{ψ}}} G0.f(a) ∼ G1.f(a) {{{(b0, b1). b0 = b1 ∧ ψ(m′0,m′1)}}}
then we can conclude that α(G0, G1)(A) = 0 for any A.

Intuitively, we ask that both procedures, run on memories
satisfying ψ, yield results drawn from the same distribution
and memories still satisfying ψ. We leave the precise definition
of stable invariants and how this theorem is proved to §4.2,
but the main idea behind this invariant is that it keeps track of
a relation between the memories of G0 and G1, and that this
relation is preserved as different procedures from the interface
are called during the execution. We illustrate how this theorem
is used in the examples from the next two subsections.

2.3 Security proof of PRF-based encryption in SSProve
We first illustrate the key ideas of SSProve on a crypto proof
by Brzuska et al. [23] that we have verified in Coq using our
framework. In this proof, reasoning about composed packages
(using Lemmas 1 and 2 above) allows for a high level of
abstraction that drives the proof argument. Some steps of this
proof are, however, justified by perfect indistinguishability
between games, which involves inspecting the procedures of
the games and applying program transformations to show the
equivalence. In the previous paper proof [23] these steps were
only justified informally by code inspection. Instead, we have
formally verified these steps too, using Theorem 1 and our
relational program logic.

Brzuska et al. [23] show how to construct a symmetric
encryption scheme out of a pseudo-random function (PRF)
and use the SSP methodology to reduce security of the en-
cryption scheme to the security of the PRF, expressed as being
indistinguishable from a package doing random sampling.

The scheme assumes a PRF, with the following signature,

prf : {0, 1}n × {0, 1}n → {0, 1}n

where {0, 1}n represents the set of n-bit sequences. It is
possible to formalize and quantify the security of PRF as the

package: PRF0

mem: k : option KEY

EVAL(x):
if k = ⊥ then

k <$ uniform {0, 1}n
return prf(k, x)

package: PRF1

mem: T : map [KEY -> KEY]

EVAL(x):
if T[x] = ⊥ then

T[x] <$ uniform{0, 1}n
return T[x]

Figure 4. Packages PRF0 and PRF1.

enc(k, m):
r <$ uniform {0, 1}n
pad ← prf(k, r)
c ← m xor pad
return (r, c)

kgen():
k <$ uniform {0, 1}n
return k

dec(k, (r, c)):
pad ← prf(k, r)
m ← c xor pad
return m

Figure 5. Algorithms for prf-based encryption scheme.

probability for an adversary to distinguish it from a package
that samples from an uniform distribution (real vs random
paradigm [49]). Formally, given the packages PRF0 and PRF1

as in Figure 4, the security of PRF, α(PRF)(A) is defined using
Definition 1 as the advantage of an adversary for the game pair
PRF = (PRF0, PRF1):

α(PRF)(A) =
∣∣Pr[true← A ◦ PRF0]− Pr

[
true← A ◦ PRF1

]∣∣
The three basic algorithms constructing a symmetric encryp-
tion scheme out of prf are given in Figure 5. These are not
packages themselves, but rather code used inside packages.
The security property proposed for this encryption scheme
is defined as the advantage on a game pair that captures
indistinguishability under chosen-plaintext attack (IND-CPA).
We refer to this game pair as (IND-CPA0, IND-CPA1), and the
packages involved are introduced in Figure 6. Notice that
in procedure IND-CPA1.ENC the argument m is never used,
the encryption procedure is run on a random m’. Therefore
the advantage of an adversary w.r.t. the game (IND-CPA0,
IND-CPA1) represents the probability that the adversary is able
to distinguish the encryption of m from the encryption of a
random bit-string. The security of the encryption procedure
with respect to an adversary A is then α(IND-CPA)(A).

Brzuska et al. [23] use a sequence of game-hops to bound
α(IND-CPA) in terms of (a linear function of) α(PRF). This
technique of game-hops follows the style of inequality rea-

package: IND-CPA0

mem: k : option KEY

ENC(m):
if k = ⊥ then

k <$ uniform {0, 1}n
(r,c) ← enc(k, m)
return (r,c)

package: IND-CPA1

mem: k : option KEY

ENC(m):
if k = ⊥ then

k <$ uniform {0, 1}n
m’ <$ uniform {0, 1}n
(r,c) ← enc(k, m’)
return (r,c)

Figure 6. Packages IND-CPA0 and IND-CPA1.
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package: MOD-CPA0

mem:

ENC(m):
r <$ uniform {0, 1}n
pad ← EVAL(r)
c ← m xor pad
return (r, c)

ENC EVAL
MOD-CPAb PRFi

package: MOD-CPA1

mem:

ENC(m):
m’ <$ uniform {0, 1}n
r <$ uniform {0, 1}n
pad ← EVAL(r)
c ← m’ xor pad
return (r, c)

Figure 7. Packages MOD-CPAb import EVAL from PRFi

soning chains from §2.1 (Lemma 1 in particular), where each
step involves establishing the advantage on a game pair, and
as a result we obtain a bound on the advantage of the game
consisting of the initial and final game.

In this example, IND-CPAb is shown equivalent to a variant,
MOD-CPAb, that gets the secret key through the PRF, i.e., with
a call to EVAL of the package PRF0 or PRF1 (see Figure 7).
By repeatedly applying Lemma 1, we bound α(IND-CPA)(A)
by

α(IND-CPA0, MOD-CPA0 ◦ PRF0)(A)+
α(MOD-CPA0 ◦ PRF0, MOD-CPA0 ◦ PRF1)(A)+
α(MOD-CPA0 ◦ PRF1, MOD-CPA1 ◦ PRF1)(A)+
α(MOD-CPA1 ◦ PRF1, MOD-CPA1 ◦ PRF0)(A)+
α(MOD-CPA1 ◦ PRF0, IND-CPA1)(A)

By observing that α(IND-CPA0, MOD-CPA0 ◦ PRF0)(A) = 0,
and α(MOD-CPA1 ◦ PRF0, IND-CPA1)(A) = 0, and by using
Lemma 2 twice, we reduce this bound to

α(PRF)(A ◦ MOD-CPA0) + εstat.(A) + α(PRF)(A ◦ MOD-CPA1).

where εstat.=α(MOD-CPA0 ◦ PRF1, MOD-CPA1 ◦ PRF1). The ad-
vantage of an attacker w.r.t MOD-CPA0 and MOD-CPA1 is usually
referred to as statistical gap—a polynomial function of the
number of calls from the adversary (see [23, appendix A]).

It remains to justify the two perfect indistinguishabilities
stated above. These steps involve replacing an informal argu-
ment [23] by a fully formal one, moving to our probabilis-
tic relational program logic, as such we will detail one of
them: α(IND-CPA0, MOD-CPA0 ◦ PRF0)(A) = 0. The other one
α(MOD-CPA1 ◦ PRF0, IND-CPA1)(A) = 0 is analogous.

In order to prove this equivalence, Brzuska et al. [23] notice
that the ENC procedures of IND-CPA0 and MOD-CPA0◦PRF0 (see
Figure 8) return the same ciphertext when called on the same
m. The two procedures are obtained by “inlining” the code of
PRF0.EVAL inside MOD-CPA0, and by “unfolding” the code of
enc.

The only difference between the left and the right side
is in the case k = ⊥ and w.r.t. k <$ uniform {0,1}n that
on the left is the first command to be executed and on
the right only comes after r <$ uniform {0,1}n, another
independent random sampling. Here Brzuska et al. [23] con-
clude informally that independence allows to “swap” the two
operations. We instead use Theorem 1 to formally reduce

IND-CPA0.ENC(m)
if k = ⊥ then

k <$ uniform {0, 1}n
r <$ uniform {0, 1}n
pad ← prf(k,r)
c ← m xor pad
return (r, c)

(MOD-CPA0 ◦ PRF0).ENC(m)
r <$ uniform {0, 1}n
if k = ⊥ then

k <$ uniform {0, 1}n
pad ← prf(k,r)
c ← m xor pad
return (r, c)

Figure 8. ENC procedures expanded

KeyGen ():
sk <$ uniform {0,..n-1}

pk ← gsk

return (pk , sk)

Enc(A, M):
b <$ uniform {0,..n-1}

B ← gb

return (B, M * Ab)

Dec(a, (B, X)):

return X * (Ba)-1

Figure 9. Algorithms for ElGamal encryption scheme.

α(IND-CPA0, MOD-CPA0 ◦ PRF0)(A)=0 to showing the equiv-
alence of the two ENC procedures from Figure 8. In our
probabilistic relational program logic, this comes down to
proving the following judgment for all plaintext messages m,

� {{{m0 = m1}}}
IND-CPA0.ENC(m) ∼

(
MOD-CPA0 ◦ PRF0

)
.ENC(m)

{{{(c0, c1).m′0 = m′1 ∧ c0 = c1}}}.
This judgment intuitively states that encrypting m with the
same initial memories “m0 = m1”, terminates still in
memories and ciphertexts drawn from the same distribution,
“m′0 = m′1 ∧ c0 = c1”. We use the following instance of the
swap rule from Figure 13, to formally justify this swapping:

� {{{m0 = m1}}} k <$ uniform {0,1}n ∼ r <$ uniform {0,1}n {{{m′0 = m′1 ∧ c0 = c1}}}
� {{{m0 = m1}}} r <$ uniform {0,1}n ∼ k <$ uniform {0,1}n {{{m′0 = m′1 ∧ c0 = c1}}}

� {{{m0 = m1}}}
k <$ uniform {0,1}n ; r <$ uniform {0,1}n ∼
r <$ uniform {0,1}n ; k <$ uniform {0,1}n

{{{m′0 = m′1 ∧ c0 = c1}}}

2.4 Security proof of ElGamal in SSProve

We also illustrate the key ideas of SSProve on a security proof
for the ElGamal public-key encryption scheme inspired by The
Joy of Cryptography textbook [49, Chapter 15.3]. ElGamal is
parameterized by a multiplicative cyclic group (G, *) with n
elements and generated by g, usually denoted by 〈g〉 = G.
Plaintexts are elements M ∈ G and ciphertexts are pairs
of group elements C = (C1, C2) ∈ G × G. Secret keys
are elements of Zn, while public keys are group elements
once again, A ∈ G. The key generation algorithm (KeyGen
in Figure 9) generates a secret key that is a random number
a ∈ {0, . . . , n − 1} and a public key that is ga. Encryption
and decryption (Enc and Dec Figure 9) involve the group
operation (_*_), exponentiation (_)_ and the multiplicative
inverse (_)-1.

Under the Decisional Diffie–Hellman (DDH) assumption
for the group G, i.e. DDH0 and DDH1 from Figure 10 are
computationally indistinguishable, one can prove that an ad-
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package: DDH0

mem:
pk : option PUBKEY
a : option SECKEY

QUERY()
a <$ uniform {0,..n-1}
b <$ uniform {0,..n-1}
pk ← ga

return (ga,gb,gab)

package: DDH1

mem:
pk : option PUBKEY
a : option SECKEY

QUERY()
a <$ uniform {0,..n-1}
b <$ uniform {0,..n-1}
c <$ uniform {0,..n-1}
pk ← ga

return (ga,gb,gc)

Figure 10. The DDH assumption states that DDH0 and DDH1

are computationally indistinguishable.

package: CPA0

mem:
pk : option PUBKEY
sk : option SECKEY
counter : nat

ENC(M):
assert counter = 0
(pk , sk) ← KeyGen ()
(B, C) ← Enc (pk, M)
counter ++
return (B, C)

package: CPA1

mem:
pk : option PUBKEY
sk : option SECKEY
counter : nat

ENC(M):
assert counter = 0
(pk , sk) ← KeyGen ()
(B, C) <$ uniform GxG
counter ++
return (B, C)

Figure 11. Packages CPA0 and CPA1 in ElGamal.

versary cannot distinguish messages encrypted with the El-
Gamal scheme from ciphertexts that are randomly sampled
(CPA). Our formalization only considers the case in which the
adversary can see a single ciphertext (one-time CPA, written
OT-CPA), as it is known that this suffices for public-key
encryption schemes to satisfy CPA [49, Claim 15.5]. We leave
the formalization of this last result as future work and discuss
hereafter our proof of OT-CPA in SSProve.

OT-CPA is expressed in terms of the advantage against
game pair (CPA0, CPA1) in Figure 11. Both packages return
a ciphertext only if the counter is 0—as expressed by the use
of assert—so the adversary can only see one ciphertext. Both
packages call KeyGen to generate public and private keys, but
while CPA0 effectively encrypts the message provided by the
adversary with the public key through Enc (pk, M), CPA1

returns a randomly sampled ciphertext ( B, C) <$ uniform GxG,
i.e. a pair of group elements sampled uniformly at random
from G × G.

The OT-CPA proof reduces the advantage of adversary A

package: Aux
mem: counter : nat

ENC(M):
assert counter = 0
(A, B, C) ← QUERY()
counter ++
return (B, M * C)

ENC QUERY
Aux DDHb

Figure 12. Package Aux imports QUERY from DDHb.

against (CPA0, CPA1) to the advantage of A ◦ Aux against
(DDH0, DDH1), with the auxiliary package Aux listed in Fig-
ure 12:

α(CPA)(A) ≤ α(DDH)(A ◦ Aux).

We once again obtain this result by first repeatedly applying
Lemma 1 to bound α(CPA)(A) by

α(CPA0, Aux ◦ DDH0)(A)+
α(Aux ◦ DDH0, Aux ◦ DDH1)(A)+
α(Aux ◦ DDH1, CPA1)(A)

We will see that the first and last advantages are null by prov-
ing the packages perfectly indistinguishable, and the remaining
advantage is equal to α(DDH)(A ◦ Aux) by simple application
of Lemma 2. It now remains to show the equivalences below:

Step α(CPA0, Aux ◦ DDH0)(A)=0: We apply Theorem 1
and reduce the goal to a relational judgment between
CPA0.ENC(M) and (Aux◦DDH0).ENC(M) for a generic plaintext
M, and where the invariant ψ is equality of memories. Inlining
the code of QUERY provided by DDH0 inside Aux and unfolding
one realizes the two code fragments coincide and the judgment
holds by application of the reflexivity rule in Figure 13.

Step α(Aux◦DDH1, CPA1)(A)=0: This step is quite similar to
the one above. After inlining however the two code fragments
are not exactly the same, since in particular CPA1 completely
ignores M and returns a random ciphertext, while Aux ◦ DDH1
returns M*gc for a random c. To have equality of memories as
invariant ψ, we show that in G, multiplication by g^(_) acts
like a one time pad, which is a standard result [9, Section 6.2].

3 Formalizing State-Separating Proofs
We separate the programming language and thus the reasoning
into two strata: code and packages. We define the syntax of
code (§3.1), relate it to the notation used in §2.1, and explain
its semantics (§3.2). We then give a formal description of
packages (§3.3) and the algebraic laws they obey (§3.4).

3.1 Syntax for cryptographic code (free monad)
The language of the Coq system, Gallina, is a dependently
typed, purely functional programming language. As such, we
can directly express functional code in Gallina, but not code
with side-effects such as reading from and writing to memory,
probabilistic sampling, or external procedure calls. We thus
represent cryptographic code via a combination of the ambient
language Gallina and a monad of effectful computations.
Monads constitute an established way of adding effects to a
purely functional language [42, 54]. Free monads in particular
allow to separate the representation (syntax) of an embedded
language from its interpretation (semantics).

Raw code We use a hybrid approach [44] of embedding
the pure fragment of our cryptographic programming language
shallowly in Coq, and embedding the effects deeply via a free
monad. This free monad is defined as an inductive type:

Inductive raw_code A : Type :=
| ret ( x : A)
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| call ( p : opsig) ( x : src p)
(κ : tgt p → raw_code A)

| get ( ` : Location) (κ : type ` → raw_code A)
| put ( ` : Location) ( v : type `) (κ : raw_code A)
| sample ( op : Op) (κ : Arit op → raw_code A).

This type of raw code comes equipped with an induction
principle, which is used for instance in the proof of Theorem 1,
in Theorem 2, and in the definition of the bind operation and
sequential composition of packages by recursion over code.

Some more explanations about raw_code are in order. The
type parameter A indicates the result of a computation. The
first clause of the above definition lets us inject any pure
value x of type A into the monad as ret x. Calls to external
procedures are represented via call p x κ, where p : opsig

specifies the name of the procedure, the type of its argument
(src p), and its return type (tgt p). The last argument κ
is the continuation of the program, awaiting the result of
the call to p. The get and put operations take a (typed)
location ` as argument, respectively read from and write to
that location, and continue with the continuation κ. Finally, we
may sample from a collection of probabilistic subdistributions
Op. Subdistributions constitute the base of our code semantics
and are further discussed in §3.2. The type Op is a parameter
of the language that can be instantiated by the user. Sampling
a subdistribution op on type Arit op can be composed with a
matching continuation κ (continuations are explained below).

We will use the following two pieces of code as running
examples to explain different aspects of the definition.

get ` (λ x` . put ` (x` + 1) ( ret x`)) (1)
sample ( uniform {0, 1}n)

( λ y . call prf ( y, 101010) ( λ z . ret z)) (2)

The code in (1) increments the value stored at location ` and
returns the value before the increment. The code in (2) draws
a random bit-string y of length n, calls an external procedure
prf with arguments y and 101010, and returns the result.

Valid code Raw code is merely a representation of syntax.
To record which probabilistic sampling operations, imported
procedures, and locations are used, we introduce a notion
of valid code. Validity is defined relatively to a collection
of sampling operations Op, a set of locations L, and fi-
nally an import interface I which is a set of procedure
signatures (opsig) consisting of a name, an input type and
an output type. Concretely, the code in (1) is valid with
respect to {` : nat} and the empty import interface, while
(2) is valid with respect to the empty set of locations
and the interface {prf : nat × nat → nat}, assuming fur-
ther that uniform {0, 1}n : Op is a valid sampling operation.
The type code is then simply defined as valid raw code,
i.e. codeL,I A = { c : raw_code A | is_valid c L I }, where
in the paper we sometimes omit the set of locations and the
interface. Thanks to the use of tactics and Coq’s type classes,
proofs of validity for well-scoped user-written code are con-
structed automatically without requiring user intervention.

Continuations A continuation is a suspended computation
awaiting the result of an operation, intuitively corresponding

to the rest of the program. Consider for instance the code (1).
The get operation performs a memory lookup at the location
`, and its continuation is a Coq function ( λ x` . put ...) of
type ( type ` → raw_code nat) which receives the value stored
at ` as its parameter x`. The continuation in turn performs a
put operation, storing the value x` + 1 at memory location
`, and returns the value x`. The code thus corresponds to the
expression commonly written as `++.

Variables As demonstrated in example (1), we draw a strict
distinction between a location `, which can be accessed and
updated via get and put, and the value stored in memory at
location `. In (1), this value is available in the continuation
of get ` (λ x` . put ...) as x`. Formally speaking, x` is an
immutable Coq variable, and in (1) the location ` itself is a
Coq variable of type Location.

Monadic bind The bind operation of the monad, with type
code A → (A → code B) → code B, allows the composition of
effectful code. Take for instance the following pieces of code.

Definition c : code nat :=
sample ( uniform bool) ( λb. if b then ret m1 else ret m2)
Definition κ : nat → code nat := λm. put ` m (ret 0)

We would like to use c as an argument to κ, but the types
don’t match: κ expects a value of type nat as argument,
not a computation of type code nat. We define a standard
bind operation that achieves this by traversing the code of
c, applying κ when a returned value is encountered, and
recursively pushing κ into any other continuations.

Fixpoint bind ( c : code A) (κ : A → code B) : code B :=
match c with
| ret a ⇒ κ a
| call p x κ’ ⇒ call p x (λ p . bind (κ’ p) κ)
| get l κ’ ⇒ get l (λ v . bind (κ’ v) κ)
| put l v κ’ ⇒ put l v (bind κ’ κ)
| sample op κ’ ⇒ sample op (λ a . bind (κ’ a) κ)
end

An easy structural induction over code allows us to prove that
bind satisfies the expected monad laws.

Loops We do not have syntax for loops in code. However,
since we are embedding in Coq we take advantage of its
recursion mechanisms to write terminating loops. The most
basic construction we can write is a “for i := 0 to N do c”
loop that repeats (n+1)-times a command c, providing to c

the value of the index i:

Fixpoint for_loop (N : nat)
( c : nat → code unit) : code unit :=

match N with
| 0 ⇒ c 0
| S m ⇒ bind (for_loop m c) (λ _ . c N)
end.

More generally, we can define a “do-while” loop that repeat-
edly executes a loop body while a condition holds, checked
after each iteration. To ensure termination in Coq we add a
natural number N to bound the maximum number of iterations:
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Fixpoint do_while (N : nat)
( c : code bool) : code bool :=

match N with
| 0 ⇒ ret false
| S n ⇒ bind c (fun b ⇒ match b with

| false ⇒ ret true
| true ⇒ do_while n c
end)

end.

At the end, the returned boolean signals whether there was
remaining fuel (i.e. iteration steps) available or not.

Standard subdistributions Probabilistic operations denot-
ing a collection of subdistributions we may sample from are
included in the parameter type Op. Standard subdistributions
including uniform sampling on finite types as well as a
null subdistribution are predefined for convenience. The null
subdistribution in particular allows us to represent assert.

Definition assert (b : bool) : code unit :=
if b then ret tt else sample null ( λ F . ret F)

Here unit stands for the Coq singleton type with a unique
inhabitant tt. If b is true, then assert returns the trivial
value tt, but if b is false, we instead sample from the
null distribution, which assigns probability zero to the tt

values. Sampling from the null subdistribution is similar to
non-termination, and it means that the continuation will never
be called.

Procedure calls A call to an external procedure such as prf

in (2) is represented by the call operation, taking a procedure
name p annotated with type, a value matching the argument
type of p, and a continuation κ matching the return type of p.
In §3.3 we show how an implementation gets substituted for
this placeholder via sequential packages composition.

Notation The use of continuations is pervasive in monadic
code, and to alleviate the presentation we introduce the fol-
lowing more familiar notation.

ret v := ret v

x ← c1 ;; c2 := bind c1 ( λx. c2)
x ← call(p, a) ;; c := call p a ( λx. c)
x ← get ` ;; c := get ` (λx.c)
put ` := v ;; c := put ` v c

x <$ D ;; c := sample D ( λx. c)

Type safety The typing constraints imposed by the raw_code

definition enforce type-safety for user-written code, guaran-
teeing that operations and their continuations are compatible.
For instance, let the continuation of get in (1) be f. Then f

is only compatible with ` if its domain matches the type of `,
i.e. f : type ` → raw_code A for some type A.

To see the full definition in action, we restate the procedure
EVAL(x) from Figure 4 more formally.

Definition EVAL (x : {0, 1}n) : raw_code {0, 1}n :=
val_k_opt ← get k ;;
val_k ← (match val_k_opt with

| ⊥ ⇒ y <$ uniform {0, 1}n ;;

put k := Some y ;;
ret y

| Some val_k’ ⇒ ret val_k’
end) ;;

val_prf ← call(prf, (val_k, x)) ;;
ret val_prf.

Here we freely mix constructors of raw_code with other
Gallina terms such as the match _ with _ ⇒ _ end construct.
The result of the match is made available to the continuation
of the code as val_k via a use of bind.

3.2 Semantics of cryptographic code
When no external procedure calls (call o x k) appear in a
piece of code c : code A, it is possible to interpret c as a
state-transforming probability subdistribution of type

Pr_code c : mem → SD (A × mem)

This semantics is similar to that of Barthe et al. [10]. The type
SD A denotes the collection of all subdistributions over type A.
Generally speaking, a subdistribution is a function d : A→ R
assigning a certain probability d(a) to each a : A in such a way
that

∫
A
d ≤ 1. We use the definition of subdistributions from

mathcomp-analysis [2, 37], a Coq library for real analysis.
The semantics function Pr_code is defined by recursion on the
structure of c. Its definition basically boils down to providing
an effect handler that interprets state and probabilities in the
monad mem → SD(− × mem).

Using this subdistribution semantics, we can formalize the
notation Pr[b← G] from §2.1 as follows: (i) Extract the
run function from G (ii) Apply Pr_code to it (iii) Run it
on the initial memory (iv) Extract the boolean component
(first projection) from the resulting subdistribution. The final
result has type d : SD bool, the type of subdistributions for
booleans, and we precisely define Pr[b← G] = d(b) as the
probability assigned to b by this subdistribution on booleans.

3.3 Packages
A raw package is a finite map from names to raw procedures.
An interface is a finite set of operation signatures (opsig),
each specifying the name, argument type, and result type of
a procedure. A package is then a raw package RP together
with an import interface I, an export interface E , and a set
of locations L, such that each procedure in RP is valid with
respect to L and I, and each procedure name listed in E is
implemented by a procedure in RP of the appropriate type.

package: L
mem: counter : nat

ENC(M):
if counter = 0 then
(A,B,C) ← QUERY()
counter ++
return (B, M * C)

else
return ⊥

Consider for instance the package
L from Figure 12. The memory
used, mem(L), consists of one
location {counter : nat}. the
import interface import(L)
contains a single procedure
{QUERY : unit → G × G × G}.
There is one procedure
implemented by L, yielding an

export interface export(L) = {ENC : G → option (G × G)}.
We define composition of packages, following Brzuska

et al. [23]. Given two raw packages P , Q we may define their
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sequential composition Q ◦ P by traversing Q and replacing
each call by the corresponding procedure implementation in
P . In case P does not implement the searched for procedure,
we use a dummy value instead. If the exports of P match the
imports of Q, i.e. import(Q) ⊆ export(P ), and both pack-
ages are valid, then so is Q◦P , in which case no dummy value
is needed. Concretely, during the traversal each ( call p a κ)
node is replaced by bind ( P. p a) ( λ x . linkP (κ x)) where
linkP stands for the recursive call of the function com-
posing P with the remaining code. Experts will recog-
nize this transformation as an algebraic effect handler, in-
terpreting the free monad for probabilities, state and the
operations imported by P to code in the free monad for
probabilities, state, and the operations imported by Q. We
have mem(Q ◦ P ) = mem(P ) ∪ mem(Q), import(Q ◦ P ) =
import(P ) and export(Q ◦ P ) = export(Q).

Given two raw packages P and Q we may define their
parallel composition P ‖ Q by aggregating the implemen-
tations and delegating calls to the respective package pro-
viding it. This operation is defined even if both packages
have overlapping export signatures, in which case procedures
in P will be given priority. If they are both valid and
their exports are disjoint, i.e. export(P ) ∩ export(Q) =
∅, then this overlap situation does not happen and P ‖
Q is also valid. We have mem(P ‖ Q) = mem(P ) ∪
mem(Q), import(P ‖ Q) = import(Q) ∪ import(P ) and
export(P ‖ Q) = export(Q) ∪ export(P ).

Private state When formalizing composition in SSProve we
do not impose restrictions on the disjointness of the state that
P and Q manipulate. The two lemmas from §2.1 and the SSP
package laws below hold without any such assumptions. The
essence of state separation can be thus viewed as disjointness
of state between the adversary and the games in a pair. We
thus introduce the more economical assumption that only the
adversary has to have disjoint state in our security definitions
(e.g., perfect indistinguishability from §2.1) and corresponding
theorem statements (e.g., Theorem 1).

Thanks to this finer-grained state separation, we not only
remove some of the burden of formally proving disjointness,
but we are also able to prove more meaningful final results. For
instance, in the PRF example, enforcing state separation for
all intermediary packages would mean in particular requiring
the adversary to have disjoint state from PRF1, which is just
an intermediary game used within our proof. In SSProve such
proof internals don’t leak into the final security statements.

3.4 Package laws

We formally proved the algebraic laws obeyed by packages
as stipulated by Brzuska et al. [23]. Sequential composition
is associative and parallel composition is commutative and
associative, so for any packages P1, P2, P3:

P1 ◦ (P2 ◦ P3) = (P1 ◦ P2) ◦ P3

P1 ‖ P2 = P2 ‖ P1

P1 ‖ (P2 ‖ P3) = (P1 ‖ P2) ‖ P3.

We furthermore relate the two package operations with an
interchange law stating

(P1 ◦ P3) ‖ (P2 ◦ P4) = (P1 ‖ P2) ◦ (P3 ‖ P4).

Commutativity of parallel composition only holds if the
packages have indeed disjoint interfaces: export(P1) ∩
export(P2) = ∅. The interchange law will only ask this of
P3 and P4: export(P3) ∩ export(P4) = ∅.

The identity package IDI behaves as an identity for sequen-
tial composition when using the correct interface:

IDexport(P ) ◦ P = P = P ◦ IDimport(P ).

As we have hinted before, these laws do not require dis-
jointness of state, because they are pretty syntactic equalities.
In fact, in SSProve they hold with respect to the syntactic
equality of Coq, without the need to define a separate notion
of “code equality” [23].

4 Probabilistic Relational Program Logic
Some of the SSP proof steps can be carried out at a high-
level of abstraction relying on the package formalism from §3.
The justification of other steps like perfect indistinguishability
requires, however, a finer, lower-level analysis. As already
pointed out in §2.2, we can perform such analyses in a
relational program logic, a deductive system in which it is
possible to show that two pieces of code c0, c1 satisfy a certain
relational specification, e.g. that they are equivalent.

In §4.1 we present some of the elementary rules constituting
our program logic. We then sketch a proof of Theorem 1, the
link between the high-level reasoning based on the package
laws to the low-level one based on our probabilistic relational
program logic in §4.2.

4.1 Selected rules

Our logic exposes relational judgments of the form �
{{{pre}}} c0 ∼ c1 {{{post}}}, for which a basic intuition is provided
in §2.2. Formally, c0 and c1 denote probabilistic stateful
code with return type A0 and A1 respectively, and the m0 :
mem,m1 : mem ` pre : P is a proposition with free variables
m0 and m1 denoting the initial state of the memory (before
execution of the code). The postcondition m′0 : mem,m′1 :
mem ` post : A0 × A1 → P is a predicate on the values
returned by the executed code, which is parametrized by the
variables m′0 and m′1 representing the final state of the memory
(after execution). The code fragments appearing in a judgment
are drawn from the free monad codeL,I of §3.1, and meet the
further requirement that no oracle calls call o x k appear in
them (exactly as in §3.2). The precondition pre is defined to be
a relation between initial memories (for instance, m0 = m1).
Similarly the postcondition post relates final memories and
final results, intuitively obtained after the execution of ci on
mi. We describe how to assign a formal semantics for such
probabilistic judgments in §5.2. The semantics is based on the
notion of probabilistic couplings, already adopted by Barthe
et al. [14]. In the remainder of this subsection we describe a
selection of our rules, displayed in Figure 13.
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c : code L A
reflexivity

� {{{m0 = m1}}} c ∼ c {{{(a0, a1). m′0 = m′1 ∧ a0 = a1}}}

c0 : code L0 A0 c1 : code L1 A1

κ0 : A0 → code L0 B0 κ1 : A1 → code L1 B1

� {{{pre}}} c0 ∼ c1 {{{ψ}}}
∀a0 a1. � {{{ψ(a0,m0)(a1,m1)}}} κ0(a0) ∼ κ1(a1) {{{post}}}

seq
� {{{pre}}} (a0 ← c0 ; κ0(a0)) ∼ (a1 ← c1 ; κ1(a1)) {{{post}}}

c0 : code L A0 c1 : code L A1

� {{{I}}} c0 ∼ c1 {{{(a0, a1). I ∧ post(a0, a1)}}}
� {{{I}}} c1 ∼ c0 {{{(a1, a0). I ∧ post(a0, a1)}}}

swap
� {{{I}}} c0 ; c1 ∼ c1 ; c0 {{{(a0, a1). I ∧ post(a0, a1)}}}

c0 c
′
0 : code L A0 c1 : code J A1

� {{{pre}}} c0 ∼ c1 {{{post}}} Pr_code c0 = Pr_code c′0
eqDistrL

� {{{pre}}} c′0 ∼ c1 {{{post}}}

c0 : code L A0 c1 : code L A1

� {{{pre(m0,m1)}}} c0 ∼ c1 {{{(a0, a1). post(m′0, a0)(m′1, a1)}}}
symmetry

� {{{pre(m1,m0)}}} c1 ∼ c0 {{{(a0, a1). post(m′1, a1)(m′0, a0)}}}

c0, c1 : N→ code L unit N : N

∀i. � {{{I i}}} c0 i ∼ c1 i {{{I (i+ 1)}}}
for-loop

� {{{I 0}}} for_loopN c0 ∼ for_loopN c1 {{{I (N + 1)}}}

c0, c1 : code L bool N : N

� {{{I(true, true)}}} c0 ∼ c1 {{{(b0, b1). b0 = b1 ∧ I(b0, b1)}}}
do-while

� {{{I(true, true)}}} do_whileN c0 ∼
do_whileN c1 {{{(b0, b1). b0 = b1 = false ∨ I(false, false)}}}

|A|, |B| < ω f : A→ B bijective
uniform

� {{{pre}}} a <$ U(A) ∼ b <$ U(B) {{{(a, b). f(a) = b ∧ pre}}}

b0, b1 : bool
asrt

� {{{b0 = b1}}} assert b0 ∼ assert b1 {{{b0 = true ∧ b1 = true}}}

b : bool
asrtL

� {{{b = true}}} assert b ∼ return () {{{b = true}}}

r : unit→ code L A v : A ` : L
put-get

� {{{m0 = m1}}} put ` v ; x← get `; return x ∼
put ` v ; return v {{{(a0, a1). m′0 = m′1 ∧ a0 = a1}}}

Figure 13. Selected probabilistic relational program logic rules

The rule reflexivity relates the code c to itself when
executed twice on identical initial memories.

The rule seq relates two sequentially composed commands
using bind by relating each of the sub-commands.

The swap rule states that if a certain relation on memories
I is invariant with respect to the execution of c0 and c1, then
the order in which the commands are executed is not relevant.
We used the rule swap in §2.3 to swap two independent
samplings; in that case the invariant I consisted in the equality
of memories.

The rule eqDistrL allows us to replace c_0 by c_0’ if
both codes have the same denotational semantics as defined
by Pr_code, in the sense of §3.2.

The symmetry rule simply states that the symmetric judg-
ment holds if the arguments of the pre- and postconditions are

swapped accordingly.
The for-loop rule relates two executions of for-loops with

the same number of iterations by maintaining a relational
invariant through each step of the iteration. The do-while

rule relates two bounded while loops with bodies c0 and c1.
Every iteration preserves a relational invariant on memories I
that depends on a pair of booleans, and the postcondition also
stipulates that c0 and c1 return the same boolean, i.e. b0 = b1.
This rule follows the pattern of the unbounded do-while rule
defined for simple imperative programs by Maillard et al. [38].
We believe that, with some additional work, their ideas could
be used to also support unbounded loops in SSProve.

The rule uniform relates sampling from uniform distribu-
tions on finite sets A and B that are in a bijective correspon-
dence.

The asrt rule relates two assert commands, as long
as “b0 = b1” holds before the commands, and guarantees
“b0 = true ∧ b0 = true” afterwards. The asrtL rule is
an asynchronous variant of asrt that specifies the behavior
of assert, by relating it with return () when the boolean
involved in the assert is true. Note that if a code frag-
ment c0 is showed equivalent to a failure � {{{True}}} c0 ∼
assert false {{{post}}}, c0 must necessarily contain a failure
statement as well. Indeed the (sound) model of the logic
at hand, devised in §5, extends a total correctness non-
termination semantics: failures only relate to failures.

Finally the put-get rule states that looking up the value at
location ` after storing v at ` results in the value v.

4.2 Proof sketch for Theorem 1

If we denote by mem the type of memories, then a binary
memory predicate

m0 : mem,m1 : mem ` ψ : P

holds on a pair of memories (h0, h1), written (h0, h1) � ψ
if ψ [m0 7→ h0,m1 7→ h1] holds. Moreover, we say that such
predicate is stable on L0 and L1 if for all h0, h1 such that
(h0, h1) � ψ, we have that for all memory locations l, such
that l 6∈ L0 and l 6∈ L1,

1) h0[l] = h1[l].
2) for all v, (h0[l 7→ v] , h1[l 7→ v]) � ψ.
When we want to prove that two packages with the same

interface are equivalent w.r.t. perfect indistinguishability, we
will assume that we have a stable predicate on the locations of
the packages, and moreover, that this predicate is an invariant
on the different operations of the interface. This invariantness
of the predicate is the reason why ψ appears both in the
pre- and postcondition from Theorem 1. Notice that stable
predicates do not condition the intermediate states of each
procedure in the interface of Theorem 1, e.g. two related
procedures could differ in their internal order of updates, as
long as the final results of computations are related.

Before giving the proof sketch for Theorem 1, we postulate
a theorem that is also proved in Coq and relates the probabilis-
tic relational program logic with the probabilistic semantics.
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Theorem 2. Given values a, b, if two pieces of code c0, c1 are
such that

� {{{ψ}}} c0 ∼ c1 {{{(r0, r1). φ(r0, r1)}}},
ψ holds on the initial memories, and for all x, y we have that

φ(x, y) =⇒ (x = a ⇐⇒ y = b) ,

then we have

Pr[a← c0] = Pr[b← c1] .

We are now ready to sketch the proof for Theorem 1.

Proof sketch of Theorem 1. We want to prove that for each
adversary A we have α(G0, G1)(A) = 0, i.e.,

|Pr[true← A ◦G0]− Pr[true← A ◦G1]| = 0.

Using the hypothesis and that the predicate ψ is stable, we
perform an induction on the code of the procedure A.run, to
establish

� {{{ψ}}} (A ◦G0).run() ∼
(A ◦G1).run() {{{(b0, b1). b0 = b1 ∧ ψ}}}.

As the induction proceeds, the rules from §4.1 are used to
prove each case. We illustrate the get case, which after apply-
ing the seq rule with respect to the continuation, and using
the inductive hypothesis, reduces to the following judgment:

� {{{ψ}}} get l ( λx. ret x) ∼
get l ( λx. ret x) {{{(v0, v1). v0 = v1 ∧ ψ}}}

As ψ is stable, we know that the result of get on the left and
on the right will coincide (i.e. m0[l] = m1[l]), because l 6∈ L0

and l 6∈ L1 as l is a location used in the adversary’s code, and
we explicitly asked for the adversary memory mem(A) to be
disjoint from mem(G0) and mem(G1). As the memory was not
changed, the invariant ψ still holds on the final memory.

As the predicate ψ holds on the initial memories, and the
postcondition b0 = b1 ∧ ψ implies that b0 = true ⇐⇒ b1 =
true, we know from Theorem 2 that

Pr[true← A ◦G0] = Pr[true← A ◦G1] ,

and therefore the advantage is 0.

5 Semantic Model and Soundness of Rules
We build a semantic model validating the rules of the effectful
relational program logic from §4. The construction of the
model follows the effect-modular framework [38], instantiat-
ing it with probabilities, simple failures, and global state. We
first give in §5.1 an overview of the framework of Maillard
et al. [38]. We then explain how we apply it to (1) obtain
modularly a model for a probabilistic relational program logic
in §5.2 and (2) enrich it with state in §5.3.

5.1 Relational effect observation
The aforementioned framework builds upon a monadic repre-
sentation of effects to provide sound semantics to a large class
of relational program logics. As we shall see, this class notably
contains logics for reasoning about cryptographic code: code
that can manipulate state and sample randomly (see Figure 13).

A generic relational program logic rL is a deductive system
with a relational judgment � c0 ∼ c1 { w } asserting that pairs
of effectful code fragments c0, c1 behave according to a given
specification w. The exact shape of code and specifications
appearing in such a judgment can vary depending on what
programming language and logic are considered.

The recipe laid out by Maillard et al. [38] stems from the
realization that not only effectful code can be modeled using
monads, but specifications can too, and we can build semantics
for rL using a so-called relational effect observation in 3 steps:

1) Model the effects involved in the considered left and right
programs as monads M0 and M1.

2) Turn the collection of relational specifications w into
a relational specification monad (A0, A1)7→W (A0, A1)
(RSM) ordered by entailment of specifications.

3) Finally, find an appropriate relational effect observation
θ mapping computations in M0A0 ×M1A1 to specifi-
cations in W (A0, A1), preserving the monadic features
present on both sides.

Once a relational effect observation θ is specified we can
define a semantic judgment for rL as follows :

�θ c0 ∼ c1 { w } ⇐⇒ θ(c0, c1) ≤ w
where ci :MiAi and w :W (A0, A1).

RSM and effect observation. An RSM W maps a pair
of types (A0, A1) to a preorder W (A0, A1) equipped with
operations return and bind at each pair (A0, A1), (B0, B1):
retW : A0 ×A1 →W (A0, A1)
bindW :W (A0, A1)→(A0×A1→W (B0, B1))→W (B0, B1)

Even though RSMs do not fit exactly in the usual presentation
of a monad, they must satisfy laws similar to the usual identity
and associativity monad laws. Moreover, the bind operation
should be monotonic with respect to both of its arguments.

A typical example of an RSM is the relational backward
predicate transformer monad BP(A0, A1) := (A0 × A1 →
P) → P, where P is the type of propositions. Intuitively
a backward predicate transformer w : BP(A0, A1) maps a
relational postcondition φ to a precondition sufficient to ensure
φ on the result of the executions of code fragments c0, c1
respecting w (i.e. for which �θ c0 ∼ c1 { w } for some θ).
Every pre-/postcondition pair can systematically be translated
into a single backward predicate transformer.

A relational effect observation θ between two monads
M0,M1 and a RSM W is a mapping

θ(A0,A1) :M0A0 ×M1A1 →W (A0, A1)

laxly preserving the return and bind operations:

θ (retM0 a0, ret
M1 a1) ≤ retW (a0, a1)

θ (bindM0 m0 f0, bind
M1 m1 f1) ≤

bindW θ (m0,m1) (θ ◦ (f0, f1))
The second inequation can be understood as a semantic
formulation of the
seq rule defined in Figure 13. The validity proof for this

rule in our model relies directly on this inequation.
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In our Coq formalization RSMs and relational effect ob-
servations are defined through the abstract algebraic structure
of order-enriched relative monads and suitable morphism of
such. The description given here can easily be derived from
the abstract structure.

5.2 Effect observation for probabilities and failures

The technique above can be exploited to build a model for a
probabilistic relational program logic. We model probabilistic
code using a free monad over a probabilistic signature noted
FPr, reusing codeL,I mentioned in §3.1, where we require that
only sampling operations are performed. This code can be
assigned a probabilistic semantics using the monad of subdis-
tributions [5, 31], following the track of §3.2, but ignoring
considerations around state. The semantics assignment can in
fact be seen as a monad morphism FPr → SD.

Specifications and effect observation. To model specifi-
cations for probabilistic code we use the backward pred-
icate transformer RSM given by BP(A0, A1) := (A0 ×
A1→P)→P. The relational effect observation θPr is based
on probabilistic couplings as mentioned in §4.1. A coupling
d : coupling(d0, d1) of two subdistributions d0 : SD(A0) and
d1 : SD(A1) is a subdistribution over A0 × A1 such that its
left and right marginals correspond to d0 and d1 respectively.
For ci:FPr(Ai) and di:SD(Ai) the associated subdistributions
(i = 0, 1) we set:

θA0A1
Pr (c0, c1) = λ(φ : A0 ×A1 → P).
∃d : coupling(d0, d1)∀a0a1. d(a0, a1)>0⇒ φ(a0, a1)

If w : BP (A0, A1) is a translated (pre, post) pair, the
obtained judgment holds if one can find a coupling d of d0, d1
whose support validates post whenever pre is valid.

Our probabilistic model �θPr
c0 ∼ c1 { w } validates state-

free accounts of several rules of Figure 13. First, since the
subdistribution monad is commutative (sampling operations
always commute), our semantics validates a state-free variant
of the swap rule. Second, as it is often the case for an arbitrary
effect observation, symmetric rules like uniform involving
similar effectful operations on both sides (here a <$ U(A))
are validated as well. Third, failing assertions at type A can
be modeled using the zero subdistribution on A, and this
interpretation allows us to validate the assert rule in our
model. Fourth, a state-free variant of the reflexivity can be
established by building, for any subdistribution s, a coupling
d : coupling(s, s) of s with itself.

5.3 Adding state

In order to extend this first model to stateful code and state-
aware specifications, we adapt to our setting the classical
notion of state monad transformer [34]. A monad transformer
maps monads M to monads TM and monad morphisms θ
to monad morphisms T θ. Besides, it comes equipped with a
family of liftings ∀M,M → TM . We generalize this, and
build modularly an effect observation θPr,St on top of θPr:

θ′Pr,St := StT θPr : StT(F
2
Pr)(A0, A1)→ StT(BP)(A0, A1)

where (Si is the left or right set of global states):

StT(F2
Pr)(A0, A1) := S0×S1→FPr(A0×S0)×FPr(A1×S1),

StT(BP)(A0, A1) := (A0×S0×A1×S1→P)→S0×S1→P.

To comply with what was done for θPr in §5.2 we further
extend θ′Pr,St by turning its domain into a product of free
monads F2

Pr,St := FPr,St×FPr,St over a stateful and probabilistic
signature. The extension FPr,St, evoked in §3.2, is obtained
from θ′Pr,St by precomposition: θPr,St := θ′Pr,St ◦ Pr_code.

From an abstract point of view, the existence and correctness
of the state monad transformer relies on a delicate piece of
abstract category theory: we can obtain StTm for a j-relative
monad m by simply pasting an adequate 2-cell (∗) induced
by a j-relative adjunction that exists whenever I is cartesian,
C is cartesian closed and j preserves cartesian products.

I C

I C

m

j

S×− jS⇒−

j

ret

(∗)

Because this construction is modular, we can prove that the
final model restricts exactly to the model devised in §5.2
when considering code and specifications not using state.
In other words there is an operation lifting every seman-
tic judgment from the previous model θPr to the current
model θPr,St. This modularity is moreover reflected in the
way θPr,St(c0, c1) evaluates. A first pass converts stateful
operations of c0, c1 and yields state-transforming probabilistic
code. A second pass interprets the remaining sampling op-
erations and yields state-transforming subdistributions. Lastly
a third pass uses θPr and yields the expected specification
θPr,St(c0, c1) : StT(BP)(A0, A1). Finally, θPr,St validates all of
the rules of our relational program logic (including Figure 13).

A substantial amount of work was required for the imple-
mentation of our model in Coq. To establish the existence of
the first layer θPr of the model, we developed a mathematical
theory of couplings and of their interaction with probabilistic
programs. This theory relies internally on the mathcomp-
analysis library [1, 2], particularly on their formalization
of real numbers, subdistributions and discrete integrals. The
custom state transformer we develop for θPr,St is built upon the
formalization of several non-standard categorical constructs in
an order-enriched context: lax functors, lax natural transfor-
mations, left relative adjunctions, lax morphisms between such
adjunctions.

The semantic framework of Maillard et al. [38] based
on effect observations is relevant for various effectful con-
texts. In our case, altough the obtained semantic judgment
�θPr,St c0 ∼ c1 { w } can seem abstract at first, it can be shown
logically equivalent to a more direct formulation, such as the
one used by EasyCrypt (briefly reviewed in §6). While a direct
ad-hoc definition of the model is comparatively simpler to
implement, our categorical approach aims to provide more
modularity. Indeed, as pointed out earlier, a model of a solely
probabilistic program logic (§5.2) faithfully embeds into our
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final, stateful model, and we claim that the same configuration
holds for a model of an assertion-only logic. Moreover, it
should be possible to extend our stateful model with other
effects using a similar range of algebraic techniques. However,
as things stand now, incorporating new effects in our relational
program logic and its associated semantics can only be done
on a case by case basis.

6 Related Work
SSProve is the first verification framework for SSP, yet the
formal verification of cryptographic proofs in different styles
has been intensely investigated [6]. In this section we survey
the closest related work in this space.

CertiCrypt [10] is a foundational Coq framework for game-
based crypto proofs. CertiCrypt does not support modular
proofs and is no longer maintained, yet it is seminal work that
has inspired many other tools in this space, such as EasyCrypt,
FCF, etc. The logic we introduce in §4 is also inspired by the
probabilistic relational Hoare logic at the core of CertiCrypt.

FCF [44] is a more recent foundational Coq framework for
crypto proofs that was used to verify the HMAC implementa-
tions in OpenSSL [18] and mbedTLS [56]. In contrast to Cer-
tiCrypt’s (and EasyCrypt’s) deep embedding of a probabilistic
While language, FCF represents code with finite probabilities
and non-termination using a monadic embedding, similar to
the free monad we use for code in §3.1. The advantage of such
an embedding is that code can be both easily manipulated as a
syntactic object (e.g., to define package composition in §3.1)
and easily lifted to a probability monad when needed (§3.2 and
§5.2), all without leaving the internal language of Coq. This
monadic representation of computational effects also paves the
way towards a more modular treatment of programs exhibiting
effects of different nature such as communications with an
external process. We are not aware of any formalization of
SSP on top of FCF, although it seems possible in principle.

EasyCrypt [11, 13] is a proof assistant and verification tool
specifically designed and built from scratch for game-based
crypto proofs. This state-of-the-art tool has been used, for
instance, to prove security for Amazon Web Services’ Key
Management Service [3]. EasyCrypt’s good integration with
automatic theorem provers (e.g., SMT solvers) is helpful for
such large proofs, even if it does come at a cost in terms of
trusted computing base.

EasyCrypt also comes with an ML-style module system [7].
EasyCrypt’s parameterized modules are, however, quite differ-
ent from parameterized games in SSP (parameterized module
instantiation in EasyCrypt has cloning semantics, i.e., each
instance gets a separate copy of the module’s state). Moreover,
EasyCrypt functors—which can to some extent be used to
represent packages with imports—are not first class, so SSP-
style laws cannot even be stated. While none of these is a
showstopper, it leads to a quite different default style for
writing modular proofs.

In very recent work, Dupressoir et al. [28] show that with
enough workarounds they can code up in EasyCrypt the SSP

proof of Brzuska et al. [23] for the Cryptobox [19] KEM-
DEM [27], and discuss the strengths and shortcomings of
EasyCrypt for formalizing SSP-style proofs. Our KEM-DEM
example has similar complexity, but moreover we focus on
providing a general framework for SSP proofs, including
definitions of SSP packages, their composition, and the cor-
responding algebraic laws. SSProve also includes an assert

operation, and a faithful representation of the SSP memory
model, allowing to express SSP proofs more naturally.

EasyUC [25] aims to address the lack of composability
in game-based proofs by formalizing the Universal Com-
posability (UC) framework [24] using EasyCrypt. EasyUC
replaces the interactive Turing machines in UC with EasyCrypt
modules. It was used to prove a secure messaging protocol
composed of Diffie-Hellman and one-time pad. More recent
work develops a DSL [26] on top of EasyUC for hiding
away the boilerplate needed to mediate between procedure-
based communication in EasyCrypt and co-routine-based com-
munication in the UC framework. Barbosa et al. [7] add
automatic complexity analysis to EasyCrypt and use it for
another formalization of UC. SSP was in part inspired by
the UC framework, but focuses on making game-based proofs
more modular and scalable, without targeting simulation-
based security or universal composability. A more precise
comparison between SSP and UC proofs would be interesting.

CryptHOL [16] is a foundational framework for game-
based proofs that uses the theory of relational parametricity
to achieve automation in the Isabelle/HOL proof assistant.
It also makes use of the extensive mathematical libraries
of Isabelle/HOL. More proof engineering and automation
would be needed for SSProve to have a chance at matching
CryptHOL’s formalization of ElGamal or PRF-based encryp-
tion. CryptHOL [36] has been also used to formalize Con-
structive Cryptography [39], another composable framework
that inspired SSP, and the example of a one-time pad. While
there is some similarity between their converters and SSP’s
packages, to our knowledge a more precise comparison has
not yet been undertaken.

ILC [35] is a process calculus modeling some of the
key ideas behind the UC framework, in particular its co-
routine based communication mechanism, while completely
abstracting away from interactive Turing machines. Their work
has not yet been formalized in a proof assistant.

IPDL [43] is another recent Coq framework for crypto
proofs. Although their motivation is similar to SSP and their
interaction sets are reminiscent of packages, the relation to
other composable frameworks has not been worked out.

Packages have been motivated by ML modules [48]. No
specific theory for probabilistic programming languages with
stateful modules seems to be available, but Sterling and
Harper [52] provide a general module system. It would be
interesting to specialize it to probabilistic stateful programs
and compare it to packages.
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7 Future Work
The high-level proofs done on paper in the miTLS project [20,
21, 30] were the main inspiration for the SSP methodology
and it would be an interesting challenge to scale SSProve
to large machine-checked proofs in the future. This would
for a start require more work on proof engineering and
automation. The problem of verifying such large proofs all
the way down to low-level efficient executable code is even
more challenging, also given the extreme scale of a complete
implementation for a protocol like TLS. Achieving this in
Coq would probably require integrating with projects such as
VST [4] or FiatCrypto [29].

An alternative would be to port SSProve to F? [53], where
at least functional correctness can be verified at that scale.
Still many challenges would remain, including extending F?

to probabilistic verification, internalizing F? modules, and ex-
tending the SSP methodology to support type abstraction and
procedures with specifications. In less ambitious recent work
that is still unfinished, Kohbrok et al. [33] have implemented
vanilla SSP packages in F? and attempted to automate state-
separating proofs based on a library for partial setoids.

In the shorter term, we plan to use our formalization of
the KEM-DEM example from [23] to showcase the capacity
of SSProve to combine high-level and low-level reasoning.
KEM-DEM is more interesting than the PRF (§2.3) and
ElGamal (§2.4) examples in several respects. KEM-DEM
uses extensively high level SSP arguments, such as parallel
composition, package identity, and interchange laws, which are
not featured in the two examples of §2. Moreover, it also relies
heavily on our probabilistic relational framework. While the
PRF and ElGamal examples use a simple invariant (equality of
heaps), KEM-DEM compares packages that work on different
memory locations and, thus, some locations need to be ignored
by the invariant. The KEM-DEM invariant also relates in a
non-trivial way different locations of programs by making
sure, for instance, that some stored value must correspond
to the encryption of another stored value, with respect to a
stored key. This has led us to develop tools for idiomatically
reasoning about memory.

We would also like to extend SSProve to extra side-effects
such as non-termination and I/O and also to F?-style sub-
effecting [53]. The effect-modular semantic model from §5
should make this easier, and we hope to be able reuse the
Interaction Trees framework [51, 55], and maybe also take
inspiration from CryptHOL [16].
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Nikolaj Sidorenco, and Ramkumar Ramachandra for their
technical support and for participating in stimulating discus-
sions, and to the anonymous reviewers for their valuable feed-
back. This work was in part supported by the European Re-
search Council under ERC Starting Grant SECOMP (715753),
by AFOSR grant Homotopy type theory and probabilistic com-
putation (12595060), by the Concordium Blockchain Research
Center at Aarhus University, and by Nomadic Labs via a

grant on the Evolution, Semantics, and Engineering of the
F* Verification System. Antoine Van Muylder holds a PhD
Fellowship from the Research Foundation – Flanders (FWO).

References
[1] R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi,

D. Rouhling, and K. Sakaguchi. Competing inheritance
paths in dependent type theory: a case study in functional
analysis. In IJCAR 2020 - International Joint Conference
on Automated Reasoning, 2020.

[2] R. Affeldt, C. Cohen, M. Kerjean, A. Mahboubi,
D. Rouhling, K. Sakaguchi, and P.-Y. Strub. mathcomp-
analysis. Analysis library compatible with Mathematical
Components, 2021.

[3] J. B. Almeida, M. Barbosa, G. Barthe, M. Campagna,
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