
Efficient Algorithms for
Quantitative Attack Tree Analysis

Carlos E. Budde∗ Mariëlle Stoelinga∗†
∗University of Twente, Formal Methods and Tools, Enschede, the Netherlands.

†Radboud University, Department of Software Science, Nijmegen, the Netherlands.
{c.e.budde,m.i.a.stoelinga}@utwente.nl

Abstract—Numerous analysis methods for quantitative attack
tree analysis have been proposed. These algorithms compute rel-
evant security metrics, i.e. performance indicators that quantify
how good the security of a system is, such as the most likely
attack, the cheapest, or the most damaging one. This paper
classifies attack trees in two dimensions: proper trees vs. directed
acyclic graphs (i.e. with shared subtrees); and static vs. dynamic
gates. For each class, we propose novel algorithms that work
over a generic attribute domain, encompassing a large number
of concrete security metrics defined on the attack tree semantics.
We also analyse the computational complexity of our methods.

I. INTRODUCTION

Attack trees are a popular method in decision making
for security, supporting the identification, documentation and
analysis of cyberattacks. They are part of many system engin-
eering frameworks, e.g. UMLsec [1] and SysMLsec [2], and are
supported by industrial tools such as Isograph’s AttackTree [3].

An attack tree (AT) is a hierarchical diagram to systemat-
ically map potential attack scenarios of a system, see Figs. 1
and 2. The root at the top of the diagram models the attacker’s
goal, which is further refined into subgoals by means of gates:
an AND gate indicates that an attack is successful iff all
children attacks succeed; an OR gate indicates that any single
child suffices. The leaves of the tree are basic attack steps
(BAS), which model indivisible actions such as cutting a wire.

Static vs. dynamic attack trees: Extensions of classic ATs
include the sequential-AND gate (SAND), indicating that
subgoals must succeed in order from left to right [4, 5]. ATs
without SAND gates are called static; those with SANDs
are called dynamic. A formal approach requires different
semantics to these two categories, as we explain below.

Tree vs. DAG attack trees: Despite their name, ATs
are directed acyclic graphs (DAGs) rather than trees, since
subtrees can be shared by several parent nodes—see Fig. 2b.
As elaborated below, DAG-structured ATs are computationally
more challenging than those with a proper tree structure.

AT metrics: Besides learning the essential components and
structure that constitute a feasible attack scenario, a vast
number of algorithms have been developed to compute a
wide range of security metrics. These metrics comprise key

We thank Sebastiaan Joosten for his help with the proof of Theo. 2; also
Lars Kuijpers and Jarik Karsten for collaborations that led to our definition of
ordering graphs and Algo. 3 resp. This work was partially funded by NWO
project 15474 (SEQUOIA), and ERC Consolidator Grant 864075 (CAESAR).

Figure 1: Nodes
in an attack tree.

performance indicators (KPIs) that quantify relevant security
features, such as the time, cost, and likelihood of different
attack scenarios. KPIs serve several purposes, e.g. allowing to
compare different design alternatives w.r.t. the desired security
features; compute the effectiveness of defensive measures;
verify whether a solution meets its security requirements; etc.

AT analysis: Numerous algorithms have been proposed to
compute security metrics. These include methods to compute
the cost and probability of an attack [6, 7], the time it takes
[8, 9, 10], as well as Pareto analyses that study trade offs
between different attributes [8, 11]. Such algorithms exploit
a wide plethora of techniques, for instance Petri nets [12],
model checking [5], and Bayesian networks [13]. While these
algorithms provide good ways to compute metrics, they also
suffer from several drawbacks: (1) Many of them are geared
to specific attributes, such as attack time or probability, while
the procedure could extend to other metrics; (2) Several
algorithms do not exploit the acyclic structure of the AT,
specially approaches based on model checking; (3) Since
their application is mostly illustrated on small examples, it
is unclear how these approaches scale to larger case studies.

Approach: We provide efficient and generic algorithms to
compute AT metrics, by tailoring them to our 2-dimensional
categorisation: static vs. dynamic ATs, and proper trees vs.
DAG-structured ATs. These algorithms demand different
semantics (that we provide) for dynamic attack trees.

Our algorithmic results are summarised in Table I. An
elaborate comparison with related work is provided in Sec. IX.

Static trees: We start with the simplest category: static attack
trees (SATs) with proper tree structure. As shown in a seminal
paper by Mauw & Oosdijk [14], metrics can be computed for
tree-structured SATs in a bottom-up fashion. This algorithm
propagates values from the leaves to the top, using appropriate
operators O and M resp. for the OR and AND gates in the
tree. We show this as Algo. 1. A key insight in [14] is that this
procedure works whenever the algebraic structure (V ,M,O)
constitutes a semiring. In particular, M must distribute over O.

1

20
21

 IE
EE

 3
4t

h
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
41

Metric Static tree Dynamic tree Static DAG Dynamic DAG

min cost BU [14, 15, 16] BU [4] MTBDD [17] C-BU [18] PTA [8]

min time BU [14, 19] APH [9] BU [4] Petri nets [12] PTA [8]

min skill BU [14, 20] BU [4] C-BU [18] —

max damage BU [14, 19, 20] BU [4] MTBDD [17] DPLL [7] PTA [8]

probability BU [6, 19] APH [9] BDD [21] DPLL [7] I/O-IMC [5]

Pareto fronts BU [22, 19] OPEN PROBLEM C-BU [11] PTA [8]

Any of the above Algo. 1: BUSAT Algo. 5: BUDAT Algo. 2: BDDDAG OPEN PROBLEM

k-top metrics BU-projection [14] OPEN PROBLEM Algo. 3: BDD shortest_paths OPEN PROBLEM

Table I: Efficient algorithms to compute security metrics on different AT classes (details in Sec. IX)

We provide an alternative proof of correctness for this res-
ult: while [14] deploys rewriting rules for attack trees, we
work directly on the syntactic AT structure. Furthermore, we
propose new classes of attribute domains, which extend the
application of the bottom-up algorithm to compute popular
security metrics, including stochastic and Pareto analyses.

Static DAGs: It is well-known that static attack trees with
DAG structure cannot be analysed via a bottom-up procedure
[21, 23]. Several algorithms have been devised to tackle with
such ATs, mostly geared to specific metrics [5, 17, 12, 7, 18].
A key contribution of this paper is a generic algorithm
(Algo. 2) that works over any semiring attribute domain
(V ,O,M), i.e. where M distributes over O.

Concretely, we exploit a binary decision diagram repres-
entation (BDD) of the attack tree. Our algorithm visits each
BDD node once and is thus linear in its size. The caveat is that
BDDs can be of exponential size in the number of BAS, but
one cannot hope for faster algorithms: as we show, computing
a minimal attack is an NP-hard problem. Moreover, BDDs
are known to be compact in practice [24], and allow parallel
traversals [25], making them an overall efficient choice.

Dynamic trees: A challenge to compute metrics for dynamic
attack trees (DATs) is to define them formally based on their
semantics. Usually metrics are decoupled from semantics, and
defined either on the syntactic AT structure, or ad hoc for the
selected computation method [4, 8, 26, 18]. A main obstacle
is to choose semantics for DATs in a way that supports
a proper definition of metric, i.e. that is compatible with
the notion of metric of static ATs, and that is generic as
the attribute domains from [14]. In particular, the interaction
among multiple SAND gates is nontrivial, because they may
impose conflicting execution orders on the BAS of the tree.
One of our key contributions is to define a notion of well-
formedness that rules out conflicting requirements.

We give semantics to well-formed DATs in terms of
partially ordered sets (posets). Each poset 〈A,≺〉 represents
an attack scenario, where A collects all attacks steps to be
performed, and a ≺ b indicates that step a must be completed
before step b starts. This set up enables us to define a notion

of metric for DATs based on their semantics. We then show
that tree-structured DATs are analysable by extending the
bottom-up algorithm with an additional operator (see Algo. 5).
Concretely, we use attribute domains with three operators: O,
M, B, where B distributes over O and M, and M over O. We
prove this algorithm correct in our formal semantics. Note that
earlier algorithms do not provide explicit correctness results
in terms of semantics. Our result is non-trivial, because the
metrics are formally defined on the (poset) semantics of a
DAT, while the algorithm works on its syntactic AT structure.
Dynamic DAGs: Efficient computation of metrics for DAG-
structured DATs is left as future research challenge. A naïve,
inefficient algorithm would enumerate all posets in the se-
mantics. Instead, one could extend BDD-algorithms for static
DAGs to dynamic ATs. This is non-trivial: BDDs ignore
the order of attack steps. Thus, efficient analysis of DAG-
structured dynamic ATs is an important open problem.

Contributions: In summary, our contributions are:
1. An efficient and generic BDD-based algorithm for DAG-

SATs, working for semiring attribute domains (V ,O,M);
2. A theorem proving that computing a minimal successful

attack is NP-hard;
3. An algorithm to compute the k-top best attacks;
4. A novel and intuitive poset semantics for dynamic attack

trees that better matches the order behavior of SANDs;
5. A bottom-up algorithm for tree-structured DATs;
6. Future directions to analyse DAG-DATs efficiently

(identified as an open problem).
We place ourselves in the literature in Table I and Sec. IX.

Paper structure: We introduce all essential concepts and
our formal syntax of attack trees in Sec. II. Secs. III to V
study static ATs, and Secs. VI to VIII study dynamic ATs.
The paper concludes in Sec. IX, revising related work.

II. ATTACK TREES

A. Attack tree models
Syntactically, an attack tree is a rooted DAG that models

an undesired event caused by a malicious party, e.g. a security

2

Get PIN

cryptoattack

pilfer
notebook

n

intercept
transactions

t

use (weak)
plain RSA

p

(a) A static-tree AT: Ts

Pick pocket

skill luck

fastest
fingers

ff

walk next
to victim

w

car crash
right there

cc

(b) A dynamic-DAG AT: Td

Figure 2: Attack tree models

breach. ATs show a top-down decomposition of a top-level
attack—the unique root of the DAG—into simpler steps. The
leaves are basic steps carried out by the attacker. The nodes
between the basic steps and the root are intermediate attacks,
and are labelled with gates to indicate how its input nodes
(children) combine to make the intermediate attack succeed.
Basic Attack Steps: The leaves of the AT represent indivis-
ible actions carried out by the attacker, e.g. smash a window,
decrypt a file by brute-force attack, etc. These BAS nodes can
be enriched with attributes, such as its execution time, the cost
incurred, and the probability with which the BAS occurs. We
model attributes via an attribution function α : BAS → V .
Gates: Non-leaf nodes serve to model intermediate attacks
that lead to the top-level attack (TLA). Each has a logical gate
that describes how its children combine to make it succeed:
an OR gate means that the intermediate attack will succeed if
any of its child nodes succeeds; an AND gate indicates that
all children must succeed, in any order or possibly in parallel;
a SAND gate (viz. sequential-AND) needs all children to
succeed sequentially in a left-to-right order.

Example 1. Fig. 2a shows a static attack tree, Ts, that models
how a PIN code can be obtained by either pilfering a notebook,
or via a cryptographic attack. The pilfering is considered
atomic, while the cryptoattack consists of two steps which
must both succeed: intercepting transactions, and abusing
weak RSA encryption. Note that Ts has a plain tree structure.
Instead, Fig. 2b shows a dynamic attack tree, Td, with a DAG
structure. Its TLA is to pick a pocket, which is achieved either
by having “skill” or “luck.” In both cases the attacker must
walk next to the victim, so these gates share the BAS child
w, making Td not a tree. In the case of “luck” the order of
events matters: if the attacker first walks next to the victim
and then a traffic accident happens, the pick-pocket succeeds.
Thus, this intermediate attack is modelled with a SAND gate.
Instead, “fastest fingers” is an inherent attacker flair that is
always present. It is thus meaningless to speak of an order
w.r.t. the attacker-victim encounter, so an AND gate is used.

Security metrics: A key goal in quantitative security ana-
lysis is to compute relevant security metrics, which quantify
how well a system performs in terms of security. Typical
examples are the cost of the cheapest attack, the probability of
the most likely one, the damage produced by the most harmful

one, and combinations thereof. Security metrics for ATs
are typically obtained by combining the attribute valuations
α(a) ∈ V assigned to the BAS. For example, the cheapest
attack is the attack where the sum of the cost of the BAS is
minimal. The key topic of this paper is to compute a large class
of security metrics in a generic and efficient way. For this we
give different (formal) semantics to static and dynamic ATs,
and introduce algorithms based on these semantics and the AT
structure. We begin by formalising the notion of AT model.

B. Attack tree syntax

ATs are rooted DAGs with typed nodes: we consider types
T = {BAS, OR, AND, SAND}. For Booleans we use B = {1, 0}.
The edges of an AT are given by a function ch that assigns
to each node its (possibly empty) sequence of children. We
use set notation for sequences, e.g. e ∈ (e1, . . . , em) means
∃i. ei = e, and we denote the empty sequence by ε.

Definition 1. An attack tree is a tuple T = (N, t , ch) where:
• N is a finite set of nodes;
• t : N → T gives the type of each node;
• ch : N → N∗ gives the sequence of children of a node.

Moreover, T satisfies the following constraints:
• (N,E) is a connected DAG, where

E =
{
(v, u) ∈ N2 | u ∈ ch(v)

}
;

• T has a unique root, denoted RT :
∃!RT ∈ N. ∀v ∈ N. RT 6∈ ch(v);

• BAST nodes are the leaves of T :
∀v ∈ N. t(v) = BAS⇔ ch(v) = ε.

We omit the subindex T if no ambiguity arises, e.g. an
attack tree T = (N, t , ch) defines a set BAS ⊆ N of basic
attack steps. If u ∈ ch(v) then u is called a child of v, and
v is a parent of u. Moreover we write v = AND(v1, . . . , vn)
if t(v) = AND and ch(v) = (v1, . . . , vn), and analogously for
OR and SAND. We denote the universe of ATs by T and
call T ∈ T tree-structured if ∀v, u ∈ N. ch(v) ∩ ch(u) = ε;
else we say that T has DAG structure.

III. ANALYSIS OF STATIC ATTACK TREES

In the absence of SAND gates the order of execution of
the BAS is irrelevant. This allows for simple semantics given
in terms of a Boolean function called structure function. The
computation of security metrics, however, crucially depends
on whether the AT structure is a tree or a DAG.

A. Semantics for static attack trees

The semantics of a static attack tree (SAT) is defined by
its successful attack scenarios, in turn given by its structure
function. First, we define the notions of attack and attack suite.

Definition 2. An attack scenario, or shortly an attack, of a
static AT T is a subset of its basic attack steps: A ⊆ BAST .
An attack suite is a set of attacks S ⊆ 2BAST . We denote by
AT = 2BAST the universe of attacks of T , and by ST = 22

BAS

the universe of attack suites of T .

3

Intuitively, an attack suite S ∈ S represents different ways
in which the system can be compromised. From those, one
is interested in attacks A ∈ S that actually represent a threat.
For instance for Ts in Example 1 one such attack is {t, p}.
In contrast, {t} is an attack that does not succeed, i.e. it
cannot cause a TLA. The structure function fT (v, A) indicates
whether the attack A ∈ A succeeds at node v ∈ N of T .

Definition 3. The structure function fT : N × A → B of a
static attack tree T is given by:

fT (v, A) =

1 if t(v) = OR and ∃u ∈ ch(v). fT (u,A) = 1,

1 if t(v) = AND and ∀u ∈ ch(v). fT (u,A) = 1,

1 if t(v) = BAS and v ∈ A,
0 otherwise.

We let fT (A)
.
= fT (RT , A). An attack A is called successful

if fT (A) = 1, i.e. it makes the TLA of T succeed; if moreover
no proper subset of A is successful then A is a minimal attack.

SATs are coherent [27], meaning that adding attack steps
preserves success: if A is successful then so is A∪{a} for any
a ∈ BAS. Thus, the suite of successful attacks of an AT is
characterised by its minimal attacks. This was first formalised
in [14], and is called multiset semantics in [28]:

Definition 4. The semantics of a static AT T is its suite of
minimal attacks: JT K = {A ∈ AT | fT (A) ∧ A is minimal}.

Example 2. The static AT in Example 1, Ts (Fig. 2a), has
three successful attacks: {n}, {t, p}, and {n, t, p}. The first
two are minimal, so we have: JTsK = {{n}, {t, p}}.

An alternative characterisation of this semantics for tree-
structured SATs is shown as Lemma 1, which also provides
the key argument for correctness of the bottom-up procedure
(Algo. 1 in Sec. IV). Lemma 1 can be used to compute the
semantics of Def. 4 by recursively applying cases 1)–3) to
JRT K .

= JT K. However, BDD representations provide more
compact encodings of this semantics (see Sec. V).

We formulate Lemma 1 for binary ATs; its extension to
arbitrary trees is straightforward but notationally cumbersome.
The proof uses induction on the structure of an AT, whose root
is the node v in each left-hand side JvK of cases 1)–3). Case 4)
is trivial by the tree-structure. We give the full proof in [29].

Lemma 1. Consider a SAT with nodes a ∈ BAS, v1, v2 ∈ N ,
that has a proper tree structure. Then:

1) JaK = {{a}};
2) JOR(v1, v2)K = Jv1K ∪ Jv2K;
3) JAND(v1, v2)K = {A1 ∪ A2 | A1 ∈ Jv1K ∧ A2 ∈ Jv2K};
4) In cases 2) and 3) the JviK are disjoint, and in case 3)

moreover the Ai are pairwise disjoint.

B. Security metrics for static attack trees

Lemma 1 allows for qualitative analyses, i.e. finding the
minimal sets of BAS that lead to a TLA. To enable quant-
itative analyses, i.e. computing security metrics such as the
minimal time and cost among all attacks, all BAS are enriched
with attributes. We thus define security metrics in three steps:

first an attribution α assigns a value to each BAS; then a
security metric α̂ assigns a value to each attack scenario; and
finally the metric qα assigns a value to each attack suite.

Definition 5. Given an AT and a set V of values:
1) an attribution α : BAS → V assigns an attribute value

α(a), or shortly an attribute, to each basic attack step a;
2) a security metric refers both to a function α̂ : AT → V

that assigns a value α̂(A) to each attack A;
and to a function qα : ST → V that assigns a value qα(S)
to each attack suite S .

We write qα(T) for qα(JT K), setting the metric of an AT to the
metric of its minimal attack suites.

Example 3. Let V = N denote time, so that α(a) gives
the time required to perform the basic attack step a. Then
the time needed to complete an attack A can be given by
α̂(A) =

∑
a∈A α(a), and the time of the fastest attack in a

suite S is qα(S) = minA∈S α̂(A). If instead V = [0, 1] ⊂ R
denotes probability, then the probability of an attack is given
by α̂(A) =

∏
a∈A α(a), and the probability of the likeliest

attack in a suite is qα(S) = maxA∈S α̂(A).

Def. 5 gives a lax notion of metric. For a more concise
definition—that enables computation for static ATs, but does
not depend on their tree/DAG-structure—one must resort to
the semantics. For this we follow an approach similar to that of
Mauw and Oostdijk [14]. Namely, we define a metric function
qα : T → V that yields a value for each SAT based on its
semantics, an attribution, and two binary operators O and M.

Definition 6. Let V be a set:
1) an attribute domain over V is a tuple D = (V ,O,M),

whose disjunctive operator O : V 2 → V , and conjunctive
operator M : V 2 → V , are associative and commutative;

2) the attribute domain is a semiring1 if M distributes over
O, i.e. ∀x, y, z ∈ V . x M (y O z) = (x M y) O (x M z);

3) let T be a static AT and α an attribution on V . The metric
for T associated to α and D is given by:

qα(T) =
h

A∈JTK︸ ︷︷ ︸
qα

i

a∈A︸ ︷︷ ︸
α̂

α(a).

Example 4. Consider the static AT Ts = OR
(
n,AND(t, p)

)
from Fig. 2a, and recall that JTsK = {{n}, {t, p}}. Let V = N
denote time as in Example 3, and consider an attribution
α = {n 7→ 1, t 7→ 100, p 7→ 0}. Then the metric for the fastest
attack time is given by the attribute domain (V ,min,+):

qα(Ts) =
h

A∈{{n},{t,p}}

i

a∈A
α(a)

= α(n) O
(
α(t) M α(p)

)
= 1 min (100 + 0) = 1,

where min has infix notation, i.e. xmin y = min(x, y). For
probability, let V ′ = [0, 1] and α′ = {n 7→ 0.07, p 7→ 0.01,

1Since we require M to be commutative, D is in fact a commutative
semiring. Further, rings often include a neutral element for disjunction and
an absorbing element for conjunction, but these are not needed in Def. 6.

4

t 7→ 0.95}. Then the attribute domain (V ′,max, ∗) allows
to compute the probability of the likeliest attack: qα′(Ts) =
α′(n) O′

(
α′(t) M′ α′(p)

)
= 0.07 max (0.95 ∗ 0.01) = 0.07.

IV. COMPUTATIONS FOR TREE-STRUCTURED SATS

Example 4 illustrates how to compute metrics for static ATs
using Def. 6. However, this method requires to first compute
the semantics of the attack tree, which is exponential in the
number of nodes |N |—see Theo. 2 in Sec. V, or [18].

A key result in [14] is that metrics defined on attribute
domains (V ,O,M) that are semirings, can be computed via
a bottom-up algorithm that is linear in |N | as long as the
static AT has a proper tree structure. We repeat this result
here, giving a more direct proof of correctness, and extending
it to dynamic attack trees in Sec. V.

A. Bottom-up algorithm

First we formulate the procedure as Algo. 1, which propag-
ates the attribute values from the leaves of the SAT to its root,
interpreting OR gates as O and ANDs as M. This algorithm
is clearly linear in |N | since each node in the tree T is visited
once. Algo. 1 can be called on any node of T : to compute the
metric qα(T) it must be called on its root node RT .

Input: Static attack tree T = (N, t , ch),
node v ∈ N ,
attribution α,
semiring attribute domain D = (V ,O,M).

Output: Metric value qα(T) ∈ V .

if t(v) = OR then
return

`
u∈ch(v) BUSAT(T , u, α,D)

else if t(v) = AND then
return

a
u∈ch(v) BUSAT(T , u, α,D)

else // t(v) = BAS

return α(v)

Algorithm 1: BUSAT for a tree-structured SAT T

We state the correctness of Algo. 1 in Theo. 1, whose proof
relies on Lemma 1, and therefore works by structural induction
on the (binary) tree T—we provide the full proof in [29].
This result was proven in [14] via rewriting rules for ATs
with a slightly different structure denoted “bundles.” Our result
concerns attack trees in the syntax from Def. 1, which is more
conforming to the broad literature [15, 16, 6, 7, 30, 17, 8].

Theorem 1. Let T be a static AT with tree structure, α an
attribution on V , and D = (V ,O,M) a semiring attribute
domain. Then qα(T) = BUSAT(T , RT , α,D).

B. Metrics as semiring attribute domains

Many relevant metrics for security analyses on SATs can
be formulated as semiring attribute domains. Table II shows
examples, where [0, 1]Q = [0, 1] ∩Q, and N∞ = N ∪ {∞}
includes 0 and ∞. For instance “min cost” can be formulated
in terms of (N∞,min,+), which is a semiring attribute
domain because + distributes over min, i.e. a+ (bmin c) =

METRIC V O M

min cost N∞ min +
min time (sequential) N∞ min +
min time (parallel) N∞ min max
min skill N∞ min max
max challenge N∞ max max
max damage N∞ max +
discrete prob. [0, 1]Q max ∗
continuous prob. R→ [0, 1]Q max ∗

Table II: SAT metrics with semiring attribute domains

(a+ b) min (a+ c) for all a, b, c ∈ N∞. Also, attribute do-
mains can handle SAND gates providing that the execution
order is irrelevant for the metric. This works for example with
min skill and max damage.
Non-semiring metrics: Nevertheless, some meaningful met-
rics do fall outside this category. For instance and as observed
in [14], the cost to defend against all attacks is represented by
(N∞,+,min), but since min does not distribute over + (i.e. in
general amin (b+ c) 6= (amin b) + (amin c)) then this met-
ric cannot be computed via Algo. 1. Less well-known is that
the total attack probability—given by qα(T) =

∑
A∈JTK α̂(A)

where α̂(A) =
(∏

a∈A α(a)
)
·
(∏

a6∈A(1 − α(a))
)
—can

neither be formulated as an attribute domain. The problem
is that α̂(A) does not have the shape

a
a∈A α(a). Interestingly

though, this probability can still be computed via a bottom-up
procedure by taking qα(AND(v1, v2)) = qα(Jv1K)∗qα(Jv2K) and
qα(OR(v1, v2)) = qα(Jv1K) + qα(Jv2K)− qα(Jv1K ∩ Jv2K).
Stochastic analyses: Semirings are closed under finite and
infinite products [31]: this allows to propagate not only tuples
of attribute values, but also functions over them. In partic-
ular, cumulative density functions that assign a probability
t 7→ P [X 6 t] constitute a semiring [9]. Such functions are
useful, e.g. to consider attack probabilities, cost, or damage,
as functions that evolve on time.
Pareto analyses: Moreover, Pareto frontiers can be formu-
lated as semirings. Pareto analysis is a cornerstone in multi-
parameter optimisation, that seeks the dominant (i.e. best-
performing) solutions over multiple attributes. A solution is
called Pareto-efficient if it is not dominated by any other
solution in the ordering relation [32]. For example consider
three attack scenarios: A1 that takes 2 time units and has cost
3; A2 with time 1 and cost 3; and A3 with time 2 and cost
1. Then attack A1 is not Pareto-efficient because A2 is faster
at same cost. On the other hand, A2 and A3 are incomparable
because the former is faster while the latter is cheaper. So
among these three attack scenarios, A2 and A3 are in the Pareto
frontier. Pareto frontiers are sets of Pareto-efficient solutions:
for AT metrics these are cross-products of semiring attribute
domains, which preserve the semiring property [31].

V. COMPUTATIONS FOR DAG-STRUCTURED SATS

Attack trees with shared subtrees cannot be analysed via a
bottom-up procedure on its (DAG) structure, as we illustrate
next in Example 5. This is a classical result from fault tree
analysis [33], later rediscovered for attack trees e.g. in [18].

5

a b c

Let: α(a) = 3 V = N∞
α(b) = 1 O = min

α(c) = 4 M = +

D

The cheapest attack is {b}: α̂({b}) = 1.

Figure 3: Metrics cannot be computed bottom-up on ATs with
DAG structure. For min cost in this static AT, Algo. 1 yields:
BUSAT(T , RT , α,D) = (3min 1) + (1min 4) = 2 6= 1 = qα(T).
The miscomputation stems from counting α(b) twice.

Various methods to analyse DAG-structured ATs have been
proposed: see Table I for contributions over the last 15 years,
including [5, 17, 12, 7, 18]. These methods are often geared
towards specific metrics, e.g. cost, time, or probability [6, 7, 9].
Others use general-purpose techniques of high complexity and
low efficiency, such as model checking [12, 8].

We present a novel algorithm based on a binary decision
diagram (BDD) representation of the structure function of the
static AT. BDDs offer a very compact encoding of Boolean
functions, and are heavily used in model checking [34, 35, 36],
as well as for probabilistic fault tree analysis [21, 37].

Our BDD-based approach works for semiring attribute
domains (with neutral elements for the operators O and M)
regardless of the AT structure. It thus extends the generic
and efficient result of [14]—that works for tree-structure SATs
only—to include DAG-structured SATs as well.

Our algorithm traverses the BDD bottom-up, which makes
it linear in its size. BDDs, however, can be exponential in the
tree size [38]. Below, we show that the problem of computing
metrics is NP-hard, so no asymptotically-faster algorithms
can be found. Moreover, BDDs are among the most efficient
approaches in terms of practical performance [24, 17].

A. Computational complexity

We first show why the bottom-up procedure fails to compute
metrics for ATs that have shared subtrees.

Example 5. Fig. 3 shows how the bottom-up approach can fail
when applied to DAG-structured attack trees. Intuitively, the
problem is that a visit to node v in Algo. 1—or any bottom-
up procedure that operates on the AT structure—can only
aggregate information on its descendants. So, the recursive
call for v cannot determine whether a sibling node in the AT
(i.e. any node v′ which is not an ancestor nor a descendant
of v) shares a BAS descendant with v. As a result, recursive
computations for both v and v′ may select a shared descendant
b ∈ BAS, and use α(b) in (both) their local computations. This
causes the miscomputation in Fig. 3.

Workarounds to this issue include keeping track of the BAS
selected at each step by the metric [18], and operating on the
AT semantics [14]. In all cases the worst-case scenario has
exponential complexity on the number of AT nodes: for [18]
this is in the input of the algorithm, i.e. determining the sets
of necessary and optional clones; for [14] and our Def. 6 the
complexity lies in the computation of the semantics.

In general, one cannot hope for faster algorithms: Theo. 2
shows that the core problem—computing minimal attacks of
DAG-structured attack trees—is NP-hard even in the simplest
structure: plain attack trees with AND/OR gates. The proof
(provided in full in [29]) reduces the satisfiability of logic
formulae in conjunctive normal form, to the computation of
minimal attacks in general SATs.

Theorem 2. The problem of computing the smallest minimal
attack of a DAG-structured static AT is NP-hard.

Note that the attribute domain (N∞,min,+) allows for
an attribution α, s.t. the BAS that constitute the resulting
metric can be extracted in polynomial time from its value. This
observation underpins the following corollary of Theo. 2:

Corollary 1. Computing a metric for an attribute domain in
a DAG-structured SAT is NP-hard.

B. Binary decision diagrams

BDDs offer an extremely compact representation of
Boolean functions, whose size can grow linearly in the number
of variables, i.e. the BAS of the AT [24]. Although this
depends on the variable ordering, and there exist functions
where every BDD is of exponential size, DAG-structures that
represent Boolean functions—such as fault trees and ATs—
often have small BDD encodings [17, 38].

A BDD is a rooted DAG Bf that, intuitively, represents a
Boolean function f : Bn → B over variables Vars = {xi}ni=1.
The terminal nodes of Bf represent the outcomes of f : 0 or 1.
A nonterminal node w ∈ W represents a subfunction fw of f
via its Shannon expansion. That means that w is equipped with
a variable Lab(w) ∈ Vars and two children: Low(w) ∈ W ,
representing fw in case that the variable Lab(w) is set to 0;
and High(w), representing fw if Lab(w) is set to 1.

Definition 7. A BDD is a tuple B = (W,Low ,High,Lab)
over a set Vars where:
• The set of nodes W is partitioned into terminal nodes

(Wt) and nonterminal nodes (Wn);
• Low : Wn → W maps each node to its low child;
• High : Wn → W maps each node to its high child;
• Lab : W → {0, 1} ∪ Vars maps terminal nodes to

Booleans, and nonterminal nodes to variables:

Lab(w) ∈

{
{0, 1} if w ∈ Wt ,

Vars if w ∈ Wn .

Moreover, B satisfies the following constraints:
• (W,E) is a connected DAG, where

E = {(w,w′) ∈ W 2 | w′ ∈ Low(w) ∪High(w)};
• B has a unique root, denoted RB:

∃!RB ∈ W. ∀w ∈ Wn . RB 6∈ Low(w) ∪High(w).

Reduced ordered BDDs: We operate with reduced ordered
BDDs, simply denoted BDDs. This requires a total order <
over the variables. For Def. 7 this means that:

• Vars comes equipped with a total order, so Bf is actually
defined over a pair 〈Vars, <〉;

6

• the variable of a node is of lower order than its children:
∀w ∈ Wn . Lab(w) < Lab(Low(w)),Lab(High(w));

• the children of nonterminal nodes are distinct nodes;
• all terminal nodes are distinctly labelled.

This has the following consequences in the BDD:
• there are exactly two terminal nodes: Wt = {⊥,>}, with

Lab(⊥) = 0 and Lab(>) = 1;
• the label of the root node RB has the lowest order;
• in any two paths from RB to ⊥ or >, the variables appear

in the same (increasing) order.
Encoding static ATs as BDDs: The key idea behind
BDDs is that evaluating a Boolean function f on an input
x = (x1, . . . , xn) ∈ Bn is equivalent to following the corres-
poning path from RB to a terminal node: when visiting node
w ∈ Wn with xi = Lab(w), the path goes to the child Low(w)
if xi = 0 in x; else it goes to High(w). The result f(x) ∈ B
is the label of the terminal node reached.

This is used to encode fault trees as BDDs via their structure
function [21], and extends to ATs by letting BAS = Vars .
Technically, this exploits the Boolean function x 7→ fT (Ax),
where the attack Ax contains the BAS in whose position
(determined by the total order <) the input x is 1.

Finally and importantly, since the metrics are defined on
the set of minimal attacks of an AT T , the BDD BT must ex-
clusively represent the minimal attacks in T . This is achieved
by using a variant of the Shannon expansion of the structure
function fT [38], which evaluates to 1 only when including the
BAS which are essential for the current attack under consider-
ation. Formally: x 7→

(
x1∧f(x1)∧¬f(x1)

)
∨
(
¬x1∧f(x1)

)
,

where one has x1
.
= (1, x2, . . . , xn) and x1

.
= (0, x2, . . . , xn).

Example 6. Let n < t < p in Ts from
Example 1: the resulting BDD (BTs) is il-
lustrated to the right. As usual, the children
of a node appear below it (so the root node
is on top), and a dashed line from w to a
child w′ means that w′ = Low(w), and a
solid line means that w′ = High(w).

0 1

t

n

p

C. BDD-based algorithm for DAG-structured SATs

Algo. 2 computes metrics for DAG-structured trees given an
attribute domain D? = (V ,O,M, 1O, 1M), where 1O, 1M ∈ V are
neutral elements for O and M: ∀x ∈ V . 1O O x = 1M M x = x.
Also and just like BUSAT, Algo. 2 requires (V ,O,M) in D? to
be a semiring attribute domain.

It is common for semiring definitions to require the presence
of neutral elements [31]: they are needed for DAG-structured
SATs, although not for tree-structured SATs. Examples of
neutral elements in Table II are 1O = ∞ and 1M = 0 for min
cost, and 1O = 0 and 1M = 1 for (max) discrete probability.
The algorithm: The idea behind Algo. 2 is to traverse the
BDD top-down (or, equivalently, bottom-up), accumulating
via M the values of the BASs included in the attack under
consideration. For that, at each node w visited in the BDD
BT , BDDDAG recursively computes the metric value qα(Tw) for
the AT whose BDD BTw is the sub-BDD of BT with root w.

So, starting at the root RB of the BDD BT , algorithm BDDDAG
considers the only two possible types of attack:
• Those that include Lab(RB) = v ∈ BAS:

– the metric for this suite of attacks is computed in a
recursive call of BDDDAG on the child High(RB) = h;

– these attacks use v ∈ BAS so their metrics use α(v) ∈ V ,
accumulated via M (which distributes over O);

– the result is qα(Th)Mα(v) ∈ V , where BTh represents the
suite of attacks of T that require v to succeed.

• Those that exclude Lab(RB):
– the metric is computed by recursion on Low(RB) = `;
– these attacks exclude v and therefore do not use α(v);
– the result is qα(T`) ∈ V , where BT̀ represents the suite

of successful attacks of T that exclude v.
• The final metric for T is the disjunction of these the two

recursive calls: qα(T`) O
(

qα(Th) M α(v)
)
.

• The base cases of the recursive calls are the BDD leaves:
– Lab(⊥) = 0 is given the neutral element 1O ∈ V ;
– Lab(>) = 1 is given the neutral element 1M ∈ V .

The pseudocode of this procedure is given as Algo. 2.

Input: BDD BT = (W,Low ,High,Lab),
node w ∈ W ,
attribution α,
semiring attribute domain D? = (V ,O,M, 1O, 1M).

Output: Metric value qα(T) ∈ V .

if Lab(w) = 0 then
return 1O

else if Lab(w) = 1 then
return 1M

else // w ∈ Wn

return BDDDAG(BT ,Low(w), α,D?) O(
BDDDAG(BT ,High(w), α,D?) M α(Lab(w))

)
Algorithm 2: BDDDAG for a DAG-structured SAT T

Example 7. For the DAG-structured SAT
shown in Fig. 3, the order b < a < c of its
BAS yields the BDD to the right. To com-
pute the min cost (like in Fig. 3) we employ
the attribution α = {a 7→ 3, b 7→ 1, c 7→ 4}
and the domain (N∞,min,+). Moreover, to
use Algo. 2, we choose the neutral elements

0 1

a:3

b:1

c:4

1O = ∞ for min and 1M = 0 for +, i.e. we use the attribute
domain D? = (N∞,min,+,∞, 0). Let the nonterminal nodes
of the BDD BT be Wn = {wa, wb, wc}. For w ∈ W let
BU(w) = BDDDAG(BT , w, α,D?), then we compute the metric:

BU(RB) = BU(wa) min
(
BU(>) + α(b))

= BU(wa) min
(
1M + 1)

= BU(wa) min 1

=
(
BU(⊥) min (BU(wc) + α(a))

)
min 1

=
(
1O min (BU(wc) + 3)

)
min 1

=
(
BU(wc) + 3

)
min 1

7

=
(
(BU(⊥) min (BU(>) + α(c))) + 3

)
min 1

=
(
(1O min (1M + 4)) + 3

)
min 1

= (4 + 3) min 1 = 1.

To compute instead the (max) discrete probability we use
the attribution α′ = {a 7→ 0.1, b 7→ 0.05, c 7→ 0.6} and the
attribute domain D′? = ([0, 1]Q,max, ∗, 0, 1). Then compu-
tations are as before until the last line, which here becomes:
(α′(c) ∗ α′(a)) max α′(b) = (0.6 ∗ 0.1) max 0.05 = 0.06.

Theo. 3 states the correctness of Algo. 2, i.e. that it yields
the metric for a static AT given in Def. 6 regardless of its
structure. We prove Theo. 3 in [29], by induction in the number
of levels of the BDD BT : this is the cardinality of its set of
nodes W , whose labels are the BASs of T . Our proof relies
on the fact that the leaf > in BT cannot be the Low child
of a node, and analogously ⊥ cannot be a High child. The
intuition behind this is that visiting Low(w) symbolises the
act of excluding the node Lab(w) ∈ BAS from an attack.
Since static ATs are coherent, excluding a BAS cannot make
an attack succeed. Therefore, taking the Low child of w cannot
lead to >; the reasoning for ⊥ and High is analogous.

Theorem 3. Let T be a static AT, BT its BDD encoding over
〈BAS, <〉, α an attribution on V , and D? = (V ,O,M, 1O, 1M)
an attribute domain with neutral elements resp. for O and M.
Then qα(T) = BDDDAG(BT , RBT

, α,D?).

BDDs to compute semantics: The BDD encoding of a static
AT T can also be used to compute JT K. Consider a path π =
a1a2 · · · a` from the root of BT to its >-leaf: ai (resp. ai)
denotes that π goes to the High (resp. Low) child of the BDD
node labelled with ai ∈ BAS. Then π represents a successful
attack A

.
= {ai ∈ BAS | ai appears positive in π} ∈ AT .

To compute all successful attacks: 1) find all distinct paths
{πj}nj=1 in the graph of BT , from its root node to its >-leaf;
2) let Aj = {positive BAS in πj}. Providing that BT encodes
minimal attacks only, the result is {Aj}nj=1 = JT K.

D. Computing the k-top metric values

The approach described above can be extended to efficiently
compute the k-top values for a given metric. This problem asks
not only the min/max value of the metrics from Table II, but
also the next k − 1 min/max values, e.g. the cost of the k
cheapest attacks, or the probability of the k most likely ones.

Such k-top values can be computed by weighing the High
edges of the BDD with their corresponding (source-) BAS
attributes, and finding the k-shortest-weighted paths from the
root of the BDD to its >-leaf. We present this idea as Algo. 3.

Algo. 3 relies on an implementation of shortest_paths:
the k-shortest-paths algorithm for DAGs. This is a well-
known extension of the Dijkstra (or Thorup) algorithm [39,
40]. For a DAG G with edges weighted by the matrix Q,
shortest_paths(G,Q, s, t, k, ◦) returns the weight of the k-
shortest paths from a (source) node s of G, to a (target) node
t, using operator ◦ to accumulate weight.

Algo. 3 works for O ∈ {min,max}, using a sign change to
compute max-top values, in which case the implementation

Input: BDD BT = (W,Low ,High,Lab),
number of values to compute k ∈ N,
attribute domain D = (V ,O,M),
attribution α.

Output: k-top metric values of T for α and D.

Q := 0-filled |W | × |W | matrix
if O = min then sgn := 1 else sgn := −1; // O = max

foreach nonterminal node w ∈ Wn do
Q[w][High(w)] := sgn ∗ α(Lab(w))

return sgn ∗ shortest_paths(BT , Q, RBT
,>, k,M)

Algorithm 3: k_top metric values for a SAT T

of shortest_paths must support negative weights. The
correctness of the algorithm is a direct consequence of the
(correct) encoding of the minimal attacks of T by the BDD
BT , and the shortest_paths algorithm.

Example 8. Consider the DAG-structured SAT from Fig. 3,
T = AND

(
OR(a, b),OR(b, c)

)
. To compute its 2 cheapest

attacks under the attribution α = {a 7→ 3, b 7→ 1, c 7→ 4}, let
b < a < c s.t. BT is as in Example 7. The Low edge of the
root b (that encodes “not performing b”) is labelled with cost
0, and the High edge with cost α(b) = 1; the same is done
for a and c. Then the shortest-weight path from the root of
BT to its 1-labelled leaf is π1 = b, which yields the cheapest
attack A1 = {b} with cost α̂(A1) = α(b) = 1. Second to that
we find the path π2 = bac, which yields the second-cheapest
attack A2 = {a, c} with cost α̂(A2) = α(a)Mα(c) = 3+4 = 7.

VI. ANALYSIS OF DYNAMIC ATTACK TREES

In the presence of SAND gates, the execution order of the
BAS becomes relevant. This affects primarily the semantics,
i.e. what it means to perform a successful attack, but also se-
curity metrics become sensitive to the sequentiality of events.

A. Partially-ordered attacks and well-formedness

As for the static case, the semantics of a dynamic attack
tree (DAT) is defined by its successful attack scenarios.
However, DATs necessitate a formal notion of order, because
a sequential gate SAND(v1, . . . , vn) succeeds only if every vi
child is completely executed before vi+1 starts.

Such constructs model dependencies in the order of events.
E.g. in Håstad’s broadcast attack, n messages must first be
intercepted, from which an n-th root (the secret key) may be
computed. In this standard ordered interpretation, an activated
BAS is uninterruptedly completed. This rules out constructs
that introduce circular dependencies such as SAND(a, b, a).2

Therefore, an attack scenario that operates with SAND
gates is not just a set A ⊆ BAS, but rather a partially-ordered
set: a poset 〈A,≺〉, where a ≺ b indicates that a ∈ A must
be carried out strictly before b ∈ A. Incomparable basic attack
steps can be executed in any order, or in parallel.

2 Cf. Kumar et al. (2015), who separates activation from execution of a
BAS and can therefore operate with SAND(a, b, a) [8].

8

Thus, the attack 〈A,≺〉 indicates that all BAS in A must
be executed, and their execution order will respect ≺ . This
succinct construct can represent combinatorially many exe-
cution orders of BAS. For instance 〈{a, b}, {(a, a), (b, b)}〉
allows three executions: the sequence (a, b), and (b, a), and the
parallel execution a‖b. Instead, 〈{a, b}, {(a, a), (b, b), (a, b)}〉
only allows the execution sequence (a, b).

Partial orders are reflexive and transitive, so for in-
stance SAND(a, b, c) gives rise to ≺ = {(a, a), (b, b), (c, c),
(a, b), (b, c), (a, c)}. We use an abbreviated notation that de-
picts their transitive reduction, so the previous case becomes
{a ≺ b, b ≺ c}. This is a textual equivalent to the (unique)
Hasse diagram that represents the poset.

Example 9. Consider the dynamic attack tree from
Fig. 2b: Td = OR

(
AND(ff ,w), SAND(w , cc)

)
. The posets

〈{w , cc}, {w ≺ cc}〉 and 〈{ff ,w},∅〉 are attack scenarios for
Td, where ≺ = ∅ in the latter implies that ff and w can be
executed in any order, even in parallel. So this poset represents
(among others) the BAS execution sequence (w ,ff), which
results in a TLA of Td. Similarly, the poset 〈{w , cc},∅〉
allows the execution sequence (cc,w): this violates the gate
SAND(w , cc) so it cannot be considered a valid attack for Td.

Since successful attacks 〈A,≺〉 must ensure all the sequen-
tial orders imposed by SAND gates, it is possible to express
infeasible requirements. For example, SAND(a, b, a) indicates
that a must precede b, and b must precede a. To rule out these
cases, we operate with well-formed DATs only. A DAT is
well-formed if, for every SAND(v, v′), all the BASs below v
are executed before any of the BASs below v′.

Definition 8 (Well-formedness). The BAS descendants of a
node v ∈ N are BAS(v) = {v} if t(v) = BAS, and
BAS(v) =

⋃
u∈ch(v) BAS(u) otherwise. The ordering graph

of T is the directed graph GT =
(

BAST ,
T
)

s.t. a T b iff there
is a SAND gate v = SAND(v1, . . . , vn) with a ∈ BAS(vi)
and b ∈ BAS(vi+1) for some 0 < i < n. T is well-formed if
GT is acyclic; otherwise T is ill-formed.

Example 10. Fig. 4a presents two ill-formed dynamic ATs: T1
and T2. In contrast, T3 (Fig. 4b) and Td (Fig. 2b) are examples
of well-formed dynamic attack trees.

Our well-formedness criterion can rule out DATs for which
successful sequential attacks do exist. In Fig. 4a, the execution
sequence (a, b) makes the TLA of T2 succeed. But T2 is a
modelling error under our ordered interpretation of SAND
gates, because its subtree SAND(b, a) indicates that b must
be completed to enable a. Nevertheless, such execution makes
sense under an interpretation of the OR gate that allows the
parallel execution of both children, and sees who finishes first.
To cover these cases, future work can relax our assumptions.

B. Semantics for dynamic attack trees

The transitive reduction of the ordering graph GT is a Hasse
diagram, that represents the poset of all BAS nodes and SAND
gates of T . This matches the notion of poset that has been

a b

T1

a b

T2

(a) Ill-formed ATs

a b c

T3

(b) Well-formed AT

, :GT1 GT2 a b a b cGT3

(c) Ordering graphs, with transitive reduction of

Figure 4: Well-formedness of dynamic Attack Trees

intuitively introduced as an attack, and that we formalise in
Def. 9. This definition also lifts the successful and minimal
attacks of SATs to the category of posets. The resulting notion
of dynamic attack, which underpins our DAT semantics, can
thus be seen as an extension of the standard concepts for SATs,
conservative w.r.t. our notion of well-formedness (Def. 8).

Interestingly, well-formedness plus the structure function of
static ATs suffices to define successful attacks in DATs: these
must (1) respect all SAND gates, and (2) be successful in
the corresponding static AT, obtained by transforming SAND
gates into ANDs. As a consequence, we need not introduce a
new structure function for dynamic ATs:

Definition 9 (Attacks in dynamic ATs). Let T be a well-
formed DAT with ordering graph G = (BAS,):
• An attack scenario, or shortly an attack, of T is a poset
〈A,≺〉 s.t. A ⊆ BAS, and ≺ = �A restricts the edge
relation to A, i.e. ∀a, b ∈ A. (a ≺ b)⇔ (a b);

• An attack 〈A,≺〉 is successful if fT ′(A) = 1, where fT ′
is the structure function of the SAT T ′, which is obtained
by replacing every SAND gate in T by an AND;

• A successful attack 〈A,≺〉 is minimal if both A and ≺ are
minimal, i.e. @ successful 〈A′,≺′〉. (A′ (A)∨ (≺ (≺′).

Example 11. The ordering graph of the dynamic attack tree Td
from Fig. 2b has the single edge w cc. Therefore, three suc-
cessful attacks for Td are: 〈{w , cc}, {w ≺ cc}〉, 〈{ff ,w},∅〉,
and 〈{ff ,w , cc}, {w ≺ cc}〉. The first two are minimal attacks.
Instead, the attack 〈{ff , cc},∅〉 is not successful, and the poset
〈{w , cc}, {cc ≺ w}〉 is not an attack since (cc,w) ∈ ≺ \ ,
where \ denotes set difference.

In minimising also over the partial order ≺ , Def. 9 makes
minimal attacks the least restrictive in terms of sequential
dependencies. Moreover, an attack suite S of a dynamic AT
T is a set of attacks, just like for SATs. Also AT denotes the
universe of attacks of T , and ST its universe of attack suites.

Unlike for SATs, however, the execution order imposed by
SAND gates makes dynamic ATs non-coherent in general.
Consider SAND(a,OR(b, c)), where 〈{a, b}, {a ≺ b}〉 is a
successful attack but 〈{a, b, c}, {c ≺ a, a ≺ b}〉 is not, even
though the latter extends the former with c ∈ BAS.

Coherence is a desired property: it means that all successful
attacks of a tree are characterised by its minimal attacks. To
maintain this property in the presence of SAND gates, Def. 9
forces the partial order of an attack 〈A,≺〉 to be a restriction

9

(to A) of the edge relation of the corresponding ordering graph.
Posets that either omit a required execution order (e.g. the last
one in Example 9), or add an invalid execution order (e.g. the
last one in Example 11), are not attacks of T . This restriction
in Def. 9 results in the coherence of DATs:

Proposition 1. A well-formed dynamic AT T is coherent: if
〈A1,≺1〉, 〈A2,≺2〉 ∈ AT and 〈A1,≺1〉 is a successful attack,
then A1 ⊆ A2 implies that 〈A2,≺2〉 is also a successful attack.

Proof. Let 〈A1,≺1〉, 〈A2,≺2〉 ∈ AT . By Def. 9, if 〈A1,≺1〉
is a successful attack of T then fT ′(A1) = 1, where T ′ is the
static AT obtained by transforming all SAND gates of T to
ANDs. Since SATs are coherent: A1 ⊆ A2 ⇒ fT ′(A2) = 1.
Finally by Defs. 8 and 9, ≺2 = T �A2

implies that the
sequences of execution of A2 ⊆ BAS represented by 〈A2,≺2〉
respect the order imposed by the SAND gates of T .

This means that, analogously to static ATs, the semantics
of dynamic ATs can be given by their minimal attacks:

Definition 10. The semantics of a well-formed DAT T ,
denoted JT K ∈ ST , is its suite of minimal attacks.

A price to pay for this result, and for such straightforward
extensions of static concepts, is a strict notion of well-formed
dynamic AT: besides discarding modeling errors such as T2 in
Fig. 4a, it also discards DATs where the children of a SAND
gate share subtrees. To see this let T = SAND(v1, v2) =
SAND

(
AND(a, b),AND(b, c)

)
, whose ordering graph GT

has edges from every descendant BAS(v1) = {a, b} to every
descendant BAS(v2) = {b, c}. But then GT has a self-loop in
the BAS b b, which means that T is ill-formed.

Our semantics also entails a strict notion of (successful) at-
tack, that rules out some interleavings in the execution of high-
level SAND gates. Consider e.g. T ′ = SAND

(
a,AND(b, c)

)
,

where Def. 8 forces a to occur before any of {b, c}. Then b a
is not an edge in GT ′ , so our attacks exclude the order b ≺ a,
even though (b, a, c) is a valid execution sequence in T ′.

To relax this we need a more complex notion of ordering
graph, as we discuss in Sec. IX. However, this work is about
the efficient computation of metrics, and as we show next
these metrics are invariant for the different valid orders of
execution of BAS. Therefore, here we use the stricter but
simpler semantics that stems from Def. 8 of well-formedness.

Finally, Lemma 2 characterises the semantics resulting from
Defs. 8 to 10, analogously to how Lemma 1 does it for
static ATs. This is key to prove the correctness of linear-time
algorithms that compute metrics on tree-structured DATs.

Lemma 2. Consider a well-formed DAT with nodes a ∈ BAS,
v1, v2 ∈ N , that has a proper tree structure. Then:

1) JaK = {〈{a},∅〉};
2) JOR(v1, v2)K = Jv1K ∪ Jv2K;
3) JAND(v1, v2)K = {〈A1∪A2,≺1∪≺2〉 | 〈Ai,≺i〉 ∈ JviK};
4) JSAND(v1, v2)K = {〈A1 ∪ A2 , ≺1 ∪ ≺2 ∪ A1 × A2〉 · · ·

· · · | 〈Ai,≺i〉 ∈ JviK};
5) In cases 2)–4) above the JviK are disjoint, and in cases

3) and 4) moreover the Ai are pairwise disjoint.

We prove this lemma in [29]: just like for Lemma 1, we use
induction in the structure of an AT whose root is the node v on
the left-hand side JvK of the equalities. In particular, cases 1),
2), and 5), are trivial extensions of Lemma 1; case 3) uses the
minimality of the ≺ relation; and case 4) moreover considers
the order requirements imposed by the SAND gate on the
BAS descendants of v1 and v2.

Comparison with literature: The semantics for dynamic
ATs resulting from Defs. 8 to 10 resembles the so-called
series-parallel graphs from [4]. We define dynamic attacks
as posets for a number of reasons:
• they are a succinct, natural lifting of the SAT concepts,

that facilitate the extension of earlier results such as the
characterisation of J·K in Lemma 2;

• metrics can be formally defined on this semantics, decoup-
ling specific algorithms from a notion of correctness;

• in particular, this allows us to define algorithms to compute
metrics regardless of the tree- or DAG-structure of the DAT.

The latter is different for [4], which does not work for DAG-
structured DATs as noted in [18]. This can be illustrated in
T3 = AND

(
SAND(a, b), SAND(b, c)

)
, the AT from Fig. 4b

whose series-parallel graph is SP3 = (a · b) ‖ (b · c). Attrib-
utes and metrics are also defined in [4], choosing operators
for AND and SAND gates which are resp. mapped to ‖ and
· in SP . Let the operator be +, e.g. to compute attack cost,
and consider the attribution α = {a 7→ 1, b 7→ 4, c 7→ 8}: the
metric obtained for SP3 is (1 + 4) + (4 + 8) = 17. But the
expected result is 13, i.e. execute every BAS once.
In contrast, posets entail a formal definition of metric over
DAT semantics—given now in Sec. VI-C—which in particular
yields the expected result even for DAG-structured DATs.

C. Security metrics for dynamic attack trees

The same fundamental concepts of metric for static ATs
work for dynamic ATs: from the attributes of every BAS,
obtain a metric for each attack in JT K, and from these values
compute the metric for T . Thus, the generic notion of metric
given by Def. 5 in Sec. III-B carries on to this section.

However, attribute domains do not suffice for DATs: metrics
such as min attack time are sensitive to order dependencies
among BAS. This requires an additional sequential operator
B : V 2 → V , to compute values of sequential parts in an
attack. Therefore, metric computations gain an extra step:

0) first, an attribution α assigns a value to each BAS;
1) then, a sequential metric ~α uses the operator B to assign

a value to each sequential part of an attack;
2) then, a parallel metric α̂ uses M to assign a value to each

attack, as the parallel execution of all its sequential parts;
3) finally, the metric qα uses O to assign a value to the whole

attack suite, by considering all its constituting attacks.
This can be pictured on the Hasse diagrams that represent

the posets: for every attack 〈A,≺〉 ∈ JT K, its (unique) Hasse
diagram H≺A is the restriction of the ordering graph GT to the
nodes in A ⊆ BAS—see e.g. Fig. 5 for Td from Example 1.
So H≺A is a set of nodes, some of which are connected by

10

ff w

cc

(a) GTd

w

cc

(b) HP1

ff w

(c) HP2

ff w

cc

(d) HP3

Figure 5: Ordering graph and Hasse diagrams of attacks of Td:
ordering graph GTd , attack P1 = 〈{w , cc}, {w ≺ cc}〉, attack
P2 = 〈{ff ,w},∅〉, attack P3 = 〈{ff ,w , cc}, {w ≺ cc}〉

edges and form a connected component C. In the 4-steps
computation described above, this means that:

1) ~α uses B on each connected component {Ci}nA

i=1 of H≺A ,
yielding one value si ∈ V for each Ci;

2) α̂ uses M on {si}nA

i=1, yielding a metric for the attack H≺A ;
3) qα uses O on the metrics of all attacks in JT K, yielding

the metric for the dynamic attack tree T .
We now formalise these concepts, and write qα(T) for the

unique value qα(JT K) of the dynamic AT T , thus mapping
Def. 11 to the generic notion of metric given in Def. 5.
Definition 11. Let O,M,B be three associative and commut-
ative operators over a set V : we call D = (V ,O,M,B) a
dynamic attribute domain. Let T be a well-formed dynamic
AT and α an attribution on V . The metric for T associated to
D and α is given by:

qα(T) =
h

〈A,≺〉∈JTK︸ ︷︷ ︸
qα

i

C∈H≺A︸ ︷︷ ︸
α̂

h

a∈C︸ ︷︷ ︸
~α

α(a)

where H≺A is the Hasse diagram of attack 〈A,≺〉, and a ∈ C
ranges over the nodes of the connected component C of H≺A .

Example 12. The semantics of the dynamic AT from Ex-
ample 1 is JTdK = {〈{w , cc}, {w ≺ cc}〉 , 〈{ff ,w},∅〉}. The
Hasse diagrams of these attacks—which resp. have one and
two connected components—are shown in Figs. 5b and 5c.
To compute the min time metric of Td consider the attribution
α = {ff 7→ 3,w 7→ 15, cc 7→ 1} and the dynamic attribute
domain D = (N,min,max,+). Then the time of the fastest
attack for D and α is:

qα(Td) =
h

〈A,≺〉∈JTK

i

C∈H≺A

h

a∈C
α(a)

=

(i

C∈H∅
{ff ,w}

h

a∈C
α(a)

)
O

(i

C∈Hw≺cc
{w,cc}

h

a∈C
α(a)

)
=
(
α(ff) M α(w)

)
O
(
α(w)B α(cc)

)
= (3 max 15) min (15 + 1) = 15.

In that computation, attack 〈{ff ,w},∅〉 ≡ H∅
{ff ,w} has two

parallel steps: two connected components with one node
each—see Fig. 5c—so operator M has two operands with
one node each: C = {ff } and C′ = {w}. In contrast,
〈{w , cc}, {w ≺ cc}〉 ≡ Hw≺cc

{w ,cc} has one connected component
with two nodes—see Fig. 5b—so operator M has one operand
but B has two: α(w) and α(cc). Finally, the min time of Td is

the O = min of these two metrics: the one for 〈{ff ,w},∅〉.
Now consider the attributes α′ = {ff 7→ 42,w 7→ 10, cc 7→ 0}
of min skill required for each BAS of Td. Min skill is oblivious
of sequential order: the skill needed to perform a task is
independent of whether it must wait for the completion of
other tasks. So, to compute the min skill metric of Td we
use the dynamic attribute domain D′ = (N,min,max,max),
where the operators M and B are the same. This results in:

qα′(Td) =
(
α′(ff) M′ α′(w)

)
O′
(
α′(w)B′ α′(cc)

)
= (42 max 10) min (10 max 0) = 10.

Example 13. Consider the DAG-structured dynamic AT from
Fig. 4b, T3 = AND

(
SAND(a, b), SAND(b, c)

)
, whose order-

ing graph is GT3 = a b c which yields the semantics
JT3K = {〈{a, b, c}, {a ≺ b, b ≺ c}〉}. To compute the min
attack cost let M = B = + and α = {a 7→ 1, b 7→ 4, c 7→ 8}
as in the comparison with [4]. The Hasse diagram of the poset
in JT3K has one connected component with three nodes, so:

qα(T3) =
h

〈A,≺〉∈JT3K

i

C∈H≺A

h

a∈C
α(a)

= α(a)B α(b)B α(c) = 1 + 4 + 8 = 13.

Many metrics are like min skill and cost in Examples 12
and 13: insensitive to the sequentiality of events. Therefore,
reproducing Table II for dynamic ATs will introduce a third
column for operator B which resembles the column for M.
A main relevant exception is min attack time, where B = +
because each BAS in an order-dependency chain must wait for
the completion of its predecessor, whereas M = max yields
the time of the slowest parallel part of the attack.

Note also that the order of execution of the BAS in
the connected components of an attack is irrelevant for the
computation of a metric. This is a direct consequence of the
commutativity of the operator B.

VII. COMPUTATIONS FOR TREE-STRUCTURED DATS

A precondition for our results is that the dynamic ATs are
well-formed as per Def. 8. Algo. 4 checks this by building
the edge relation of the ordering graph G = (BAS,), and
invoking a routine that checks whether G has directed cycles.
Algo. 4 terminates after at most O

(
n2m

)
steps (i.e. additions

of pairs to), where n = |BAS| and m is the number of
SAND gates. Ideally one would operate with the transitive
reduction of , computable in less than O

(
n2.5

)
[41].

Input: Dynamic attack tree T = (N, t , ch).
Output: Whether T is a well-formed DAT.
edges := ∅
foreach SAND(v1, . . . , vn+1) ∈ N do

for i = 1 to n do
edges := edges ∪

(
BAS(vi)× BAS(vi+1)

)
return @ directed cycle in G = (BAS, edges)

Algorithm 4: is_well_formed(T)

11

Earlier in Example 12, the computation of metrics for
dynamic ATs was illustrated using Def. 11, which is worst-
case exponential in the number of nodes. However and as
for SATs, there is a linear bottom-up algorithm to compute
metrics for tree-structured DATs. We present a recursive
version in Algo. 5, and state its correctness in Theo. 4.

To prove the SAND case of the theorem, operator B must
distribute over O and M; the rest are trivial extensions—to
attacks as posets—of the same cases from Theo. 1. In [29] we
give the full proof of Theo. 4 by structural induction on T .

Thus and importantly, besides the tree-structure of the
dynamic AT, the correctness of Algo. 5 requires the presence
of three semiring algebraic structures: not only (V ,O,M) as
in the static case, but also (V ,O,B) and (V ,M,B).

Definition 12. A semiring dynamic attribute domain is a
dynamic attribute domain D = (V ,O,M,B) where operator
B distributes over M and O, and also M distributes over O.

Input: Dynamic attack tree T = (N, t , ch),
node v ∈ N ,
attribution α,
semiring dynamic attr. dom. D = (V ,O,M,B).

Output: Metric value qα(T) ∈ V .

if t(v) = OR then
return

`
u∈ch(v) BUDAT(T , u, α,D)

else if t(v) = AND then
return

a
u∈ch(v) BUDAT(T , u, α,D)

else if t(v) = SAND then
return ` u∈ch(v)

BUDAT(T , u, α,D)

else // t(v) = BAS

return α(v)

Algorithm 5: BUDAT for a tree-structured DAT T

Theorem 4. Let T be a well-formed tree-structured DAT, α an
attribution on V , and D = (V ,O,M,B) a semiring dynamic
attribute domain. Then qα(T) = BUDAT(T , RT , α,D).

VIII. COMPUTATIONS FOR DAG-STRUCTURED DATS

Algo. 5 does not work for dynamic ATs with a DAG-
structure, for the same reasons exposed for static ATs in
Sec. V. Neither is it possible to propose algorithms based on
standard BDD theory: even though the structure function of
SATs was reused in Def. 10, the computation of metrics for
DATs intrinsically needs a notion of order among their BAS,
that is not present in standard BDD-based data types.

As discussed in Sec. I, some earlier general approaches do
exist to compute metrics on DAG-structured DATs [8, 5].
However, these often overshoot in terms of computation com-
plexity. For static ATs and from a procedural (rather than
semantic) angle, [18] proposes a more efficient, ingenious
approach that computes and then corrects a metric value by
traversing the AT bottom-up multiple times. It may be possible
to extend this algorithm to consider SAND gates as well [28].

Alternatively, Def. 11 of metric for DATs could be encoded
into a naïve algorithm. This would enumerate all posets from
JT K, and compute the metric value qα(T) by means of three
nested loops that traverse all these Hasse diagrams. We do not
expect such approach to be computationally efficient.

Instead and as in the static case, we expect that BDD
encodings of the DAT offer better solutions. This requires
BDD structures that are somehow sensitive to variable order-
ings. In that sense, the so-called sequential-BDDs recently
presented for dynamic fault trees seem promising [42]. A
first challenge would be to extend them to attributes other
than failure (viz. attack) probability. Harder to tackle is the
combinatorial explosion, that stems for the different possible
orderings of BAS descendants of SAND gates.

In view of these considerations, we regard the algorithmic
analysis for DAG-structured dynamic attack trees as an im-
portant open problem for future research.

IX. CONCLUSIONS .
This paper presents algorithms to compute quantitative

security metrics on attack trees. Our approach is formal: we
classify AT models based on their structure and components,
and then for each class we: (1) revise and consolidate its
semantics in line with the literature, (2) define metrics gener-
ically on these semantics, (3) present algorithms to compute
them, and (4) show the correctness of our algorithms, as well
as their optimality in terms of computational complexity.

Algo. 2 is a prominent result: it computes metrics efficiently
in DAG-structured static ATs, from a given semiring attribute
domain with neutral elements. Another key contribution is
the poset semantics defined for DATs in Sec. VI: it lifts
the concepts used for SATs in a simple manner, which
nevertheless allows computations on DAG-structured models.

We noted that our DAT semantics rules out some inter-
leavings in the execution of SAND gates, e.g. (b, a, c) for
SAND

(
a,AND(b, c)

)
. To allow such sequences it is necessary

to use formulae—rather than individual BAS—as nodes of an
ordering graph. For the DAT above, this would yield the edge
a (b∧ c), which allows (b, a, c) because the formulae in that
sequence are satisfied in the order “first a, then b ∧ c.”

Interestingly, such formula-based ordering graphs preserve
the coherence of our semantics, because Prop. 1 does not
depend on the objects represented by the nodes: it just requires
that traversing edges on the ordering graph represents valid
execution orders of the children of SAND gates. Therefore,
such ordering graphs are a promising research direction.

Further lines for future work also include: developing
efficient algorithms to compute metrics on DAG-structured
dynamic ATs; extending our AT syntax to include sequential-
OR gates [8, 43]; extending our metrics to consider attacker
profiles; and combining tree and DAG structures in a clever
way, e.g. computing values linearly for the tree components,
and plugging these into the rest of the (DAG) structure.

Related work
Surveys on attack trees are [44, 28]: the latter covers AT

analysis via formal methods, from which we are close to

12

Metric Static tree Dynamic tree Static DAG Dynamic DAG

min cost BU [14, 15, 16] BU [4] MTBDD [17] C-BU [18] PTA [8]

min time BU [14, 19] APH [9] BU [4] Petri nets [12] PTA [8]

min skill BU [14, 20] BU [4] C-BU [18] —

max damage BU [14, 19, 20] BU [4] MTBDD [17] DPLL [7] PTA [8]

probability BU [6, 19] APH [9] BDD [21] DPLL [7] I/O-IMC [5]

Pareto fronts BU [22, 19] OPEN PROBLEM C-BU [11] PTA [8]

Any of the above Algo. 1: BUSAT Algo. 5: BUDAT Algo. 2: BDDDAG OPEN PROBLEM

k-top metrics BU-projection [14] OPEN PROBLEM Algo. 3: BDD shortest_paths OPEN PROBLEM

Table III: Algorithms for metrics on different AT classes (replica of Table I)

BU: bottom-up on the AT structure. APH: acyclic phase-type (time distribution). BDD: binary decision diagram.
MTBDD: multi-terminal BDD. CCC-BU: repeated BU, identifying clones. DPLL: DPPL SAT-solving in the AT
formula. PTA: priced time automata (semantics). I/O-IMC: input/output interactive Markov chains (semantics).

quantitative model checking—cf. simulation studies such as
[12, 45]. Concrete case studies have been reported in [46].

Table III condenses literature references on quantitative
analyses of ATs, classified by the structure and (dynamic)
gates of the ATs where they are applicable. For each metric
and AT class, in this table we cite the earliest relevant
contributions that include concrete computation procedures.

Works [6, 7] are among the first to model and compute
the cost and probability of attacks: their algorithms have
EXPTIME complexity regardless of the AT structure. In
[8, 10] an attack is moreover characterised by the time it takes.
This allows for richer Pareto analyses but introduces one clock
per BAS in the Priced Time Automata semantics: algorithms
have thus EXPTIME & PSPACE complexity [47, 48]. The
current work improves these bounds via specialised procedures
tailored for the specific AT class, e.g. Algos. 1 and 5 resp. for
tree-structured SATs and DATs have LINTIME complexity.

Indeed, all algorithms specialised on tree-structured ATs
implement a bottom-up traversal on its syntactic structure: we
denote these BU in Table III. Pareto analyses are polynomial,
where the exponent is the number of parameters being optim-
ised. Most works are on static ATs, with the relevant exception
of [9, 4] which include sequential AND gates.

For DAG-structured static ATs the algorithmic spectrum
is broader, owing to the NP-hardness of the problem (see
Sec. V-A). Such algorithms range from classical BDD en-
codings for probabilities, and extensions to multi-terminal
BDDs, to logic-based semantics that exploit DPLL, including
an encoding of SATs as generalised stochastic Petri nets. A
prominent contribution is [18, Alg. 1]: after computing so-
called optional and necessary clones, its computations are
exponential on the number of shared BAS (only).

In contrast, the computation of security metrics for dynamic
attack trees is more recent than for SATs: here we find open
problems in the literature, indicated in four cells of Table III.
For tree-structured DATs and to the best of our knowledge,
no work addresses directly the computation of Pareto frontiers.

For this, our Algo. 5 (BUDAT) could be embedded in the static
setting of [22, 19]: the gist would be to carry around pairs of
values instead of only one, removing dominated solutions at
each step. As for k-top metric algorithms, our Algo. 5 could be
extended with priority lists updated during the tree traversal.

We thus propose to tackle two open problems on tree-
structured DATs, by simple combinations or extensions of
other methods (from the literature or introduced in this work).
In contrast, the open problems for DAG-structured DATs are
less easy to overcome. To compute attack probability, [5]
encodes these attack trees as a variant of Markov chains.
For other metrics, [8] encodes the AT as a network of PTA
and solves the resulting cost-optimal reachability problem. As
earlier stated, these very powerful and general approaches are
in detriment of computational efficiency.

A recent related approach encodes dynamic fault trees as so-
called sequential-BDDs, to compute the probability of system
failure [42]. Such safety-oriented works do not map directly
to security analysis such as AT metrics, because: 1) they can
compute probability—and possibly parallel time—only; 2) the
dynamic gates are not the same than those in dynamic ATs;
3) the standard logical gates are interpreted differently. Still,
it might be feasible to adapt [42] to compute AT metrics, e.g.
to compare it against the algorithms here presented. Probably
the main detriment is that sequential-BDDs expand sequence
dependencies of every pair of events, adding a combinatorial
blow-up on top of the already exponential explosion incurred
by BDD representations of DAGs. This leads us to believe
that even the EXPTIME complexity of our Algo. 2 should be
more time-efficient.

REFERENCES

[1] Y. Roudier and L. Apvrille, “SysML-Sec: A model driven approach for
designing safe and secure systems,” in MODELSWARD, pp. 655–664.
IEEE, 2015. ISBN 978-989-758-136-6

[2] L. Apvrille and Y. Roudier, “SysML-sec: A sysML environment for the
design and development of secure embedded systems,” in APCOSEC,
2013. [Online]. Available: http://www.eurecom.fr/publication/4186

13

[3] Isograph, AttackTree. [Online]. Available: https://www.isograph.com/
software/attacktree/

[4] R. Jhawar, B. Kordy, S. Mauw, S. Radomirović, and R. Trujillo-Rasua,
“Attack Trees with Sequential Conjunction,” in SEC, ser. IFIPAICT,
vol. 455, pp. 339–353. Springer International Publishing, 2015. DOI:
10.1007/978-3-319-18467-8_23

[5] F. Arnold, D. Guck, R. Kumar, and M. Stoelinga, “Sequential and
Parallel Attack Tree Modelling,” in SAFECOMP, ser. LNCS, vol.
9338, pp. 291–299. Springer International Publishing, 2015. DOI:
10.1007/978-3-319-24249-1_25

[6] A. Buldas, P. Laud, J. Priisalu, M. Saarepera, and J. Willemson,
“Rational choice of security measures via multi-parameter attack trees,”
in CRITIS, ser. LNCS, vol. 4347, pp. 235–248. Springer Berlin
Heidelberg, 2006. DOI: 10.1007/11962977_19

[7] A. Jürgenson and J. Willemson, “Computing exact outcomes of multi-
parameter attack trees,” in OTM, ser. LNCS, vol. 5332, pp. 1036–1051.
Springer Berlin Heidelberg, 2008. DOI: 10.1007/978-3-540-88873-4_8

[8] R. Kumar, E. Ruijters, and M. Stoelinga, “Quantitative Attack Tree
Analysis via Priced Timed Automata,” in FORTE, ser. LNCS, vol.
9268, pp. 156–171. Springer International Publishing, 2015. DOI:
10.1007%2F978-3-319-22975-1_11

[9] F. Arnold, H. Hermanns, R. Pulungan, and M. Stoelinga, “Time-
dependent analysis of attacks,” in POST, ser. LNCS, vol. 8414, pp.
285–305. Springer Berlin Heidelberg, 2014. DOI: 10.1007/978-3-642-
54792-8_16

[10] R. Kumar, S. Schivo, E. Ruijters, B. Yildiz, D. Huistra, J. Brandt,
A. Rensink, and M. Stoelinga, “Effective Analysis of Attack Trees: A
model-driven approach,” in FASE, ser. LNCS, vol. 10802, pp. 56–73.
Springer, 2018. DOI: 10.1007/978-3-319-89363-1_4

[11] B. Fila and W. Wideł, “Efficient attack-defense tree analysis us-
ing Pareto attribute domains,” in CSF, pp. 200–215, 2019. DOI:
10.1109/CSF.2019.00021

[12] Dalton, Mills, Colombi, and Raines, “Analyzing attack trees using
generalized stochastic Petri nets,” in 2006 IEEE Information Assurance
Workshop, pp. 116–123, 2006. DOI: 10.1109/IAW.2006.1652085

[13] M. Gribaudo, M. Iacono, and S. Marrone, “Exploiting Bayesian net-
works for the analysis of combined attack trees,” Electronic Notes
in Theoretical Computer Science, vol. 310, pp. 91–111, 2015. DOI:
10.1016/j.entcs.2014.12.014

[14] S. Mauw and M. Oostdijk, “Foundations of Attack Trees,” in ICISC,
ser. LNCS, vol. 3935, pp. 186–198. Springer Berlin Heidelberg, 2006.
DOI: 10.1007/11734727_17

[15] J. Weiss, “A system security engineering process,” in Proceedings of the
14th National Computer Security Conference, ser. Information System
Security: Requirements & Practices, vol. 249, pp. 572–581, 1991.

[16] B. Schneier, “Attack trees,” Dr. Dobb’s journal, vol. 24, no. 12, pp.
21–29, 1999.

[17] A. Bobbio, L. Egidi, and R. Terruggia, “A methodology for qualitat-
ive/quantitative analysis of weighted attack trees,” IFAC Proceedings
Volumes, vol. 46, no. 22, pp. 133–138, 2013. DOI: 10.3182/20130904-
3-UK-4041.00007

[18] B. Kordy and W. Wideł, “On quantitative analysis of attack–defense
trees with repeated labels,” in POST, ser. LNCS, vol. 10804, pp. 325–
346. Springer International Publishing, 2018. DOI: 10.1007/978-3-319-
89722-6_14

[19] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and B. Weyl,
“Security requirements for automotive on-board networks,” in ITST, pp.
641–646. IEEE, 2009. DOI: 10.1109/ITST.2009.5399279

[20] E. J. Byres, M. Franz, and D. Miller, “The use of attack trees in assessing
vulnerabilities in SCADA systems,” in IISW, pp. 3–10. IEEE, 2004.

[21] A. Rauzy, “New algorithms for fault trees analysis,” Reliability En-
gineering & System Safety, vol. 40, no. 3, pp. 203–211, 1993. DOI:
10.1016/0951-8320(93)90060-C

[22] Z. Aslanyan and F. Nielson, “Pareto efficient solutions of attack-defence
trees,” in POST, ser. LNCS, vol. 9036, pp. 95–114. Springer Berlin
Heidelberg, 2015. DOI: 10.1007/978-3-662-46666-7_6

[23] A. Bossuat and B. Kordy, “Evil twins: Handling repetitions in attack–
defense trees,” in GraMSec, ser. LNCS, vol. 10744, pp. 17–37. Springer
International Publishing, 2018. DOI: 10.1007/978-3-319-74860-3_2

[24] R. E. Bryant, “Graph-based algorithms for Boolean function manipula-
tion,” IEEE Transactions on Computers, vol. C-35, no. 8, pp. 677–691,
1986. DOI: 10.1109/TC.1986.1676819

[25] W. Oortwijn, T. v. Dijk, and J. v. d. Pol, “Distributed binary decision
diagrams for symbolic reachability,” in SPIN, pp. 21–30. ACM, 2017.
DOI: 10.1145/3092282.3092284

[26] Z. Aslanyan, F. Nielson, and D. Parker, “Quantitative verification and
synthesis of attack-defence scenarios,” in CSF, pp. 105–119. IEEE
Computer Society, 2016. DOI: 10.1109/CSF.2016.15

[27] R. E. Barlow and F. Proschan, Statistical theory of reliability and life
testing: probability models, ser. Intl. series in decision processes. Holt,
Rinehart and Winston, 1975. ISBN 0030858534

[28] W. Wideł, M. Audinot, B. Fila, and S. Pinchinat, “Beyond 2014: Formal
methods for attack tree–based security modeling,” ACM Comput. Surv.,
vol. 52, no. 4, 2019. DOI: 10.1145/3331524

[29] C. E. Budde and M. Stoelinga, “Efficient algorithms for quantitative
attack tree analysis,” arXiv e-prints, vol. abs/2105.07511, 2021.
[Online]. Available: https://arxiv.org/abs/2105.07511

[30] B. Kordy, S. Mauw, S. Radomirović, and P. Schweitzer, “Foundations
of attack–defense trees,” in FAST, ser. LNCS, vol. 6561, pp. 80–95.
Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-19751-2_6

[31] S. MacLane, Categories for the working mathematician. Springer-
Verlag New York, 1971. ISBN 0387900357

[32] J. Legriel, C. Le Guernic, S. Cotton, and O. Maler, “Approximating
the Pareto front of multi-criteria optimization problems,” in TACAS, ser.
LNCS, vol. 6015, pp. 69–83. Springer Berlin Heidelberg, 2010. DOI:
10.1007/978-3-642-12002-2_6

[33] W. Lee, D. Grosh, F. Tillman, and C. Lie, “Fault tree analysis, methods,
and applications: A review,” IEEE Transactions on Reliability, vol. R-34,
no. 3, pp. 194–203, 1985. DOI: 10.1109/TR.1985.5222114

[34] H. Hermanns and M. Siegle, “Bisimulation algorithms for stochastic
process algebras and their BDD-based implementation,” in AMAST, ser.
LNCS, vol. 1601, pp. 244–264. Springer, 1999. DOI: 10.1007/3-540-
48778-6_15

[35] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press,
2008.

[36] M. Z. Kwiatkowska and D. Parker, “Advances in probabilistic model
checking,” in Software Safety and Security – Tools for Analysis and
Verification, ser. NATO Science for Peace and Security Series – D:
Information and Communication Security. IOS Press, 2012, vol. 33,
pp. 126–151.

[37] E. Ruijters and M. Stoelinga, “Fault Tree Analysis: A survey of the state-
of-the-art in modeling, analysis and tools,” Computer Science Review,
vol. 15–16, pp. 29–62, 2015. DOI: 10.1016/j.cosrev.2015.03.001

[38] A. Rauzy and Y. Dutuit, “Exact and truncated computations of prime
implicants of coherent and non-coherent fault trees within Aralia,”
Reliability Engineering & System Safety, vol. 58, no. 2, pp. 127–144,
1997. DOI: 10.1016/S0951-8320(97)00034-3

[39] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, vol. 1, no. 1, pp. 269–271, 1959. DOI:
10.1007/BF01386390

[40] M. Thorup, “Undirected single-source shortest paths with positive in-
teger weights in linear time,” Jour. ACM, vol. 46, no. 3, pp. 362–394,
1999. DOI: 10.1145/316542.316548

[41] A. Aho, M. Garey, and J. Ullman, “The transitive reduction of a directed
graph,” SIAM Journal on Computing, vol. 1, pp. 131–137, 1972. DOI:
10.1137/0201008

[42] H. Yu and X. Wu, “A method for transformation from dynamic fault tree
to binary decision diagram,” Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, pp. 1–15, 2020. DOI:
10.1177/1748006X20974187

[43] H. Hermanns, J. Krämer, J. Krčál, and M. Stoelinga, “The value of
Attack-Defence Diagrams,” in POST, ser. LNCS, vol. 9635, pp. 163–
185. Springer Berlin Heidelberg, 2016. DOI: 10.1007/978-3-662-
49635-0_9

[44] B. Kordy, L. Piètre-Cambacédès, and P. Schweitzer, “DAG-based at-
tack and defense modeling: Don’t miss the forest for the attack
trees,” Computer Science Review, vol. 13–14, pp. 1–38, 2014. DOI:
10.1016/j.cosrev.2014.07.001

[45] Y. Wadhawan, A. AlMajali, and C. Neuman, “A comprehensive analysis
of smart grid systems against cyber-physical attacks,” Electronics, vol. 7,
no. 10, 2018. DOI: 10.3390/electronics7100249

[46] M. Fraile, M. Ford, O. Gadyatskaya, R. Kumar, M. Stoelinga, and
R. Trujillo-Rasua, “Using attack-defense trees to analyze threats and
countermeasures in an ATM: A case study,” in PoEM, ser. LNCS, vol.
267, pp. 326–334. Springer, 2016. DOI: 10.1007/978-3-319-48393-
1_24

14

[47] R. Alur and D. L. Dill, “A theory of Timed Automata,” Theoretical Com-
puter Science, vol. 126, no. 2, pp. 183–235, 1994. DOI: 10.1016/0304-
3975(94)90010-8

[48] G. Behrmann, K. G. Larsen, and J. I. Rasmussen, “Priced Timed Auto-
mata: Algorithms and applications,” in FMCO, ser. LNCS, vol. 3657, pp.
162–182. Springer Berlin Heidelberg, 2005. DOI: 10.1007/11561163_8

15

