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Abstract—Cyber-Physical systems (CPSs) are exposed to cyber-
physical attacks, i.e., security breaches in cyberspace that ad-
versely affect the physical processes of the systems.

We define two probabilistic metrics to estimate the physical
impact of attacks targeting cyber-physical systems formalised in
terms of a probabilistic hybrid extension of Hennessy and
Regan’s Timed Process Language. Our impact metrics estimate the
impact of cyber-physical attacks taking into account: (i) the sever-
ity of the inflicted damage in a given amount of time, and (ii) the
probability that these attacks are actually accomplished, accord-
ing to the dynamics of the system under attack. In doing so, we
pay special attention to stealthy attacks, i.e., attacks that cannot be
detected by intrusion detection systems. As further contribution,
we show that, under precise conditions, our metrics allow us to
estimate the impact of attacks targeting a complex CPS in a
compositional way, i.e., in terms of the impact on its sub-systems.

Index Terms—Cyber-physical attacks, impact metrics, timed
and hybrid models

I. INTRODUCTION

Cyber-Physical Systems (CPSs) are physical and engineered
systems whose operations are monitored, coordinated, con-
trolled, and integrated by a computing and communication
core [1]. The growing connectivity and integration of these
systems has triggered a dramatic proliferation of cyber-physical
attacks [2], i.e., security breaches in cyberspace to bring the
physical plant into a state desired by the attacker. Some notori-
ous examples are: (i) the STUXnet worm, which reprogrammed
PLCs of nuclear centrifuges in Iran [3]; (ii) the CRASHOVER-
RIDE attack on the Ukrainian power grid, otherwise known as
Industroyer [4]; (iii) the recent TRITON/TRISIS malware that
targeted a petrochemical plant in Saudi Arabia [5].

Cyber-physical attacks tamper with both the cyber and
the physical layer, as they may manipulate both the sensor
measurements and the controller commands:
• attacks on sensors consist of reading and possibly replac-

ing genuine sensor measurements with fake ones;
• attacks on actuators consist of reading, dropping and

replacing controller commands with malicious ones.
According to [6], the possible goals of cyber-physical

attacks can be classified into three main groups: (i) equipment
damage, such as overstress of equipments, to reduce their
expected life cycle, or violation of safety limits; (ii) production
damage, in order to compromise product quality, product rate or
operating costs; (iii) compliance violations, such as increasing
of environmental pollution.

A clear understanding of both attacker’s goals and the
severity of the damages inflicted when such goals are achieved,
is fundamental to conduct a risk assessment which ranks

vulnerabilities that may be used by the attacker to achieve
its goals. Motivated by the risk assessment application, the
objective of this paper is to define formal probabilistic metrics
to estimate the impact of cyber-physical attacks taking into
account both (i) the severity of the inflicted damage in a given
amount of time, and (ii) the probability that these attacks
are actually accomplished, according to the dynamics of the
CPS under attack. In doing so, we pay special attention to
stealthy attacks, i.e., attacks that cannot be detected by intrusion
detection systems (IDSs) which typically monitor sensor signals,
control commands, and network communications. In fact, to
remain stealthy, attacks would have to closely follow the
physical behaviour of the system, causing damage that can be
negligible in the short term, but devastating in the long run.

Contribution: First of all, we introduce a formal language
to specify both CPSs and cyber-physical attacks. For this
very purpose, we resort to process calculi, a successful
and widespread formal approach in concurrency theory for
representing complex systems such as concurrent, distributed
and mobile systems [7], [8], and used in many areas, including
verification of security protocols [9] and security analysis of
cyber-physical attacks [10].

In Section II, we propose a hybrid probabilistic process
calculus, inspired by the calculi appeared in [10], [11], and
with a clearly-defined probabilistic behavioural semantics [12].
In our calculus, cyber-physical systems are represented by
making a clear distinction between the physical component
(also called plant) describing the physical process, and the
logical component describing the cyber devices (i.e., controllers,
IDS, supervisors, etc.) governing the physical process as well
as the interaction with other cyber devices. At the logical
level, our calculus allows us to specify also (MITM) malicious
activities targeting physical devices. In particular, we can model
integrity attacks on both sensor measurements and actuator
commands, as well as drops of actuator commands.

In this formal setting, we design two probabilistic metrics
to estimate the impact of (possibly stealthy) cyber-physical
attacks. As in Urbina et al. [13], we assume attacks with a
complete knowledge of the system under attack, i.e., they know
the physical model, the goals in terms of damage that can be
inflicted, and the thresholds selected to raise alerts via IDSs.

Our impact metrics are very general, and do not depend on
the definition of our calculus, as they rely on the following
notions associated to an arbitrary CPS equipped with an IDS:
• a timed and probabilistic labelled transition semantics [12]

to formally describe the dynamics of both physical and

20
21

 IE
EE

 3
4t

h 
C

om
pu

te
r S

ec
ur

ity
 F

ou
nd

at
io

ns
 S

ym
po

si
um

 (C
SF

) |
 9

78
-1

-7
28

1-
76

07
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
SF

51
46

8.
20

21
.0

00
40



logical components of (possibly compromised) CPSs;
• a set I of weighted attacker’s goal indicators whose

runtime values denote how close is the attacker to reach
each of these goals; we assume that IDSs know such
indicators (and their associated severities) but they cannot
access their values at runtime;

• a detection policy P that given an alert signal (raised by
the IDS) and a goal indicator in I returns a statically-
determined estimate of the progresses of the detected
attack in achieving the goal denoted by that indicator.

Based on these concepts, in Section III we define two
probabilistic impact metrics, FNn

I,P and FPnI,P , to measure
the average false negatives and the average false positives,
respectively, faced by a CPS under attack, in the first n instants
of time, according to a weighted attacker’s goal indicators I
and a detection policy P associated to the CPS.

Intuitively, given a (possibly compromised) CPS M , the val-
ues FNn

I,P(M) ∈ [0, 1] and FPnI,P(M) ∈ [0, 1] represent the
average effectiveness and the average precision, respectively,
in detecting attacks that reach goals in I, raising alert signals
(via the IDS of M ) which are interpreted by the detection
policy P to estimate the severity of the damages inflicted by
those attacks, in the first n time instants.

Thus, for instance, when FNn
I,P(M) = 0 the detection pol-

icy is very effective in detecting all possible attacks achieving
goals in I . On the other hand, high values of FNn

I,P(M) tell us
that the detection policy of M underestimates the progresses of
the attacker in achieving the goals represented via the attacker’s
goal indicators I (high number of false negatives).

This metric does not say anything about the precision of the
detection: there can be plenty of false positives, thus, apparently,
it might seem that a certain attack has inflicted a severe damage,
when actually that damage is negligible with respect to I.

The average precision of the detection is measured using the
metric FPnI,P . Thus, for instance, when FPnI,P(M) = 0 the
detection policy P is very accurate in signalling true attacks
achieving goals in I . Whereas, high values of FPnI,P(M) tell
us that the detection policy overestimates the progresses of the
attacker in achieving the goals represented via the attacker’s
goal indicators I (high number of false positives).

True positive rates and false positive rates have been widely
used in the literature to derive metrics, such as ROC curves,
for classifying the accuracy of IDSs in terms of the intrusion
detection capability, the Bayesian detection rate, and expected
cost, which are all multi-criteria optimisation problems between
these two rates [14]. In this paper, we take a different point
of view. In fact, our metrics will not be used to compare
IDSs, but instead for a formal estimation of the impact of
(possibly stealthy) cyber-physical attacks, in terms of the
physical inflicted damages represented via the attacker’s goal
indicators I , and the logical signals raised by the IDS to detect
attacks reaching such goals, according to the detection policy P .

As a further contribution, we show that, under precise
conditions, our metrics allows us to estimate the impact of
cyber-physical attacks on a complex CPS in a compositional
manner, i.e., in terms of the impact on its sub-systems. In this

respect, our process calculus supports features to compose
CPSs in such a way as to avoid interference on physical
and/or control variables. Basically, we build up composite CPSs
putting together smaller sub-systems whose physical processes
remain under the exclusive control of their associated logical
components (controllers, IDSs, etc). Thus, interactions between
logical components of different sub-systems are always possi-
ble, whereas interactions between physical processes may only
occur if the corresponding logical components agree on when
and how that should happen. Examples of this kind of CPSs
can be found in several domains, such as: (i) manufacturing
robotic applications (painting, welding, assembly, etc), in which
different robotic arms are handled by different, but coordinated,
controllers; (ii) drone swarms, where a fleet of drones explores
and analyses physical perimeters; (iii) enrichment nuclear
facilities, in which series of nuclear centrifuges work under
the exclusive control of their programmable logic controllers.

In Section IV, we use our metrics to estimate the impact
of four different, carefully chosen, cyber-physical attacks that
target a non-trivial use case, consisting of two supervised self-
coordinating refrigerated engine systems simulated in MAT-
LAB [15]. Two out of four attacks are actually stealthy attacks.

In Section V, we draw conclusions and discuss related work.

II. A CALCULUS FOR CPSs AND ATTACKS

In this section, we define our Probabilistic Calculus of Cyber-
Physical Systems and Attacks, called pCCPSA, a formal abstract
language to specify both physical and logical components
of CPSs, as well as cyber-physical attacks. The calculus is
inspired by the process calculi appeared in [10], [11]. Unlike
those calculi, for the sake of simplicity, we abstract away from
physical devices (sensors and actuators) by allowing the cyber
components to directly access observable physical variables
and control variables. We also represent unobservable physical
variables, that cannot be accessed by cyber components.

Let us start with some preliminary notations.

Notation 1. We use v, w ∈ V for variables, partitioned in
observable physical variables y, yk ∈ Y, unobservable physical
variables x, xk ∈ X, and control variables a, ak ∈ A. Moreover
we use c, d ∈ C for communication channels. Values, ranged
over by m,m′ ∈ M, are built from basic values, such as
integers and real numbers. Given a set of variables V, we
write RV to denote the set of functions assigning a real value
to each variable in V. For ξ ∈ RV, v ∈ V and r ∈ R, we
write ξ[v 7→ r] to denote the function ψ ∈ RV such that
ψ(w) = ξ(w), for any w 6= v, and ψ(v) = r. Given ξ1 ∈ RV1

and ξ2 ∈ RV2 such that V1 ∩V2 = ∅, we write ξ1 ] ξ2 for the
function in RV1∪V2 such that (ξ1 ] ξ2)(v) = ξ1(v), if v ∈ V1,
and (ξ1 ] ξ2)(v) = ξ2(v), if v ∈ V2.

As pCCPSA is a probabilistic process calculus, we provide
the necessary mathematical machinery for its formal definition.

Definition 1. A discrete probability distribution over a set of
objects O is a function γ : O → [0, 1] with

∑
o∈O γ(o) = 1.

The support of γ is the set supp(γ) = {o ∈ O : γ(o) > 0}.



With D(O) we denote the set of all finite-support probability
distributions over O. For any o ∈ O, the point distribution at o,
written o, assigns probability 1 to o and 0 to all other objects.

In our language, cyber-physical systems consist of two
components: (i) the physical component, also called physics,
describing the physical process, and (ii) the logical component,
also called logics, that interacts with the physics and supports
communications between logical sub-components. The physics
has two sub-components: the evolution law, which describes
the time-dependent evolution of the physical process, and the
state of the system, which is supposed to change at runtime.

Definition 2 (Physics). Let V be a set of variables. The physics
of a CPS defined on V is a pair 〈ε, ξV〉, where:
(a) ε denotes the evolution law represented as a function of

type RV → D(RV);
(b) ξV ∈ RV is the state function recording the current state

of the variables in V.

A state function ξV returns the current value associated to
each variable in V. For V = X∪Y∪A, we will abbreviate (ξV)|X
with ξX, (ξV)|Y with ξY, and (ξV)|A with ξA. An evolution law ε
models the evolution of the physical system, in which changes
on the control variables A may reflect on both observable
variables Y and unobservable ones X. Notice that, given a state
ξV, ε(ξV) returns a probability distribution over all possible
next states to model the presence of uncertainty in our models.

Example 1 (Physics of a refrigerated engine system). We
provide a running example (inspired from [10]), called Eng ,
in which the temperature of a simple engine is maintained
within a specific range by means of a cooling system.

The set of variables V = X∪Y∪A of the system consists of:
(i) an observable variable temp ∈ Y recording the temperature
of the engine and with initial value 95; (ii) six unobservable
variables pastk ∈ X, for 1 ≤ k ≤ 6, recording the temperatures
in the last 6 time instants, and all initially set to 95; (iii) an
unobservable variable stress ∈ X denoting the level of stress
of the engine, due to its operating conditions, with initial value
0 and maximal value 1; (iv) a control variable cool ∈ A to
turn on/off the cooling system, with initial value off; (v) a
control variable speed ∈ A to set the engine speed, ranging
over values in the set {slow, half, full}; in normal conditions
the engine runs at half power.

Thus, the state function ξV is defined as ξV = ξX ] ξY ] ξA,
for V = X ∪ Y ∪ A, and X = {past1, . . . , past6, stress},
Y = {temp} and A = {cool , speed}; for the sake of simplicity,
we assume ξA to be a mapping where ξA(cool) ∈ {on, off}
and ξA(speed) ∈ {slow, half, full} such that ξA(cool) = off
when ξA(cool) ≥ 0, ξA(cool) = on when ξA(cool) < 0,
ξA(speed) = slow when ξA(speed) < 0, ξA(speed) = half
when ξA(speed) = 0 and ξA(speed) = full when ξA(speed)>0.

The evolution law ε affects both the observable variables in
Y and the unobservable variables in X as follows: (i) when the
cooling system is active the temperature decreases by a value
chosen in the real interval [0.8, 1.2] according to a discrete
probability distribution with granularity 10−1; (ii) when the

cooling system is inactive the temperature increases by a value
m determined according to a discrete probability distribution
with granularity 10−1, and depending on the engine speed:
thus, when the speed is slow the value m is chosen in the real
interval [0.1, 0.3], when the speed is half then m is chosen in
the real interval [0.4, 0.7], when the speed is full then m is
chosen in the real interval [0.8, 1.2]; the reader may notice
as the uncertainty of the temperature increase grows with the
speed of the engine; (iii) the variables pastk, for k ∈ 1 . . . 6,
are updated to record the last six temperatures of the system;
(iv) the variable stress remains unchanged if the temperature
was in the interval [50, 100] for at least 3 of the last 6 time
instants; otherwise, the variable is increased (reaching at most
the value 1) by a constant stress incr = 1

50 .
Formally, given a state ξV = ξX ] ξY ] ξA, the application

ε(ξV) returns a distribution γ such that, for any ξ′X and ξ′Y
with γ(ξ′X ] ξ′Y ] ξA) > 0, it holds that:
• If ξA(cool) = on (active cooling), then γ(ξ′X]ξ′Y]ξA) = 1

5
and ξ′Y(temp) = ξY(temp) +m, where m ∈ {−1 + k ·
10−1 : k ∈ Z ∧ −2 ≤ k ≤ 2};

• If ξA(cool) = off (no cooling) and ξA(speed) = slow, then
γ(ξ′X ] ξ′Y ] ξA) = 1

3 and ξ′Y(temp) = ξY(temp) + m,
where m ∈ {0.2 + k · 10−1 : k ∈ Z ∧ −1 ≤ k ≤ 1};

• If ξA(cool) = off (no cooling) and ξA(speed) = half, then
γ(ξ′X ] ξ′Y ] ξA) = 1

4 and ξ′Y(temp) = ξY(temp) + m,
where m ∈ {0.5 + k · 10−1 : k ∈ Z ∧ −1 ≤ k ≤ 2};

• If ξA(cool) = off (no cooling) and ξA(speed) = full, then
γ(ξ′X ] ξ′Y ] ξA) = 1

5 and ξ′Y(temp) = ξY(temp) + m,
where m ∈ {1 + k · 10−1 : k ∈ Z ∧ −2 ≤ k ≤ 2};

• ξ′X(past1) = ξY(temp) and ξ′X(pastk) = ξX(pastk−1),
for 2 ≤ k ≤ 6;

• ξ′X(stress) = ξX(stress) if |{k : ξX(pastk) ∈ [50, 100] ∧
1 ≤ k ≤ 6}| ≥ 3, and ξ′X(stress) = min(1, ξX(stress) +
stress incr), otherwise.

As regards the formalisation of the logics of CPSs in
pCCPSA, we build on Hennessy and Regan’s Timed Process
Language (TPL) [16]. We extend TPL with two constructs to
read and write variables in Y ∪ A. In this manner, we will
model both honest and malicious activities on variables.

Definition 3 (Logics). Logical processes are defined as follows:
P,Q ::= nil

∣∣ tick.P
∣∣ P ‖ Q

∣∣ bπ.P cQ∣∣ [b]{P}, {Q}
∣∣ P\c

∣∣ X
∣∣ recX.P

π ::= read y(z)
∣∣ write a〈m〉

∣∣ readAll (z̃)∣∣ read a(z)
∣∣ write y〈m〉

∣∣ rcv c(z)
∣∣ snd c〈m〉

We write nil for the terminated process. The process tick.P
sleeps for one time unit and then continues as P . P ‖ Q denotes
the parallel composition of concurrent threads P and Q. The
process bπ.P cQ denotes activities under timeout, meaning that
either the activity π succeeds and the process evolves into
P , in the current time unit, or the process timeouts and it
evolves into Q, in the next time unit. Prefix read y(z), for
y ∈ Y, models a read of the observable physical variable y;
whereas the prefix write a〈m〉, for a ∈ A, represents a write
on the control variable a. These prefixes are executed by the



controller. We also assume a prefix readAll (z̃), executed by
IDSs, to read at once all observable physical variables and
control variables. Prefixes rcv c(z) and snd c〈m〉 model input
and output activities on channel c, respectively. Furthermore,
prefixes of the form read a(z) and write y〈m〉, with a ∈ A and
y ∈ Y, denote (MITM) malicious activities targeting physical
devices. In particular, with read a(z) we model a drop of
an actuator command associated to the control variable a;
while write y〈m〉 represents an integrity attack on the sensor
associated to the physical variable y.

Remark 1. Notice that neither honest nor malicious code may
access to unobservable physical variables in X.

The process [b]{P}, {Q} is the standard conditional, where
b is a decidable guard. The process P\c is the standard channel
restriction operator. Sometimes we write P\{c1, c2, . . . , cn}
to mean P\c1\c2 · · · \cn. In processes of the form tick.Q and
bπ.P cQ, the occurrence of Q is said to be time guarded. The
process recX.P denotes (time-guarded) recursion. As further
notation, we write T{m/v} for the substitution of the variable
v with the value m in any expression T . Similarly, in T{P/X}
the process variable X is replaced with the process P .

In the rest of the paper we use the following abbreviations.

Notation 2. We write π.P for the process recX.bπ.P cX ,
where X does not occur in P . We write snd c and rcv c, when
channel c is used for pure synchronisation.

Everything is in place to define our cyber-physical systems.

Definition 4 (Cyber-physical system). A cyber-physical system
with variables V = Y ∪ X ∪ A is given by two components:
(a) a physical component 〈ε, ξV〉;
(b) a logical component P that may access only observable

physical variables and control variables in Y∪A, and can
communicate, via channels, with other logical components.

We write 〈ε; ξV〉onP to denote the whole CPS, and use M and
N to range over CPSs. Sometimes, when the evolution law ε
is clearly identified, we write ξV onP instead of 〈ε; ξV〉onP .
CPSs of the form ξV onP are called evolution-free. Finally, we
write M for the set of all possible CPSs in our calculus.

Example 2 (A refrigerated engine system). Let us complete
the formalisation of our running example Eng in pCCPSA, by
defining its logical component. In Example 1, we already said
that the temperature of our engine system is maintained by its
controller, Ctrl , within a specific range by means of a cooling
system. Furthermore, the system is equipped with an IDS that
is in charge of checking whether the cooling system is active
whenever the temperature is above a certain threshold. If this
condition is violated then the IDS tries to mitigate the damages.

The whole system is represented in pCCPSA as follows:

Eng = 〈ε; ξV〉on (Ctrl ‖ IDS )\{ins}

where the evolution law ε and the state function ξV have been
already defined in Example 1, while ins is a private channel
for transmitting instructions on the speed of the engine.

Thus, the logical component of the engine consists of two
parallel processes: Ctrl that models the controller activity, and
IDS that implements intrusion detection together with a mild
form of mitigation.

Intuitively, at each scan cycle the process Ctrl first checks
the temperature and then waits for instructions to change the
regime of the engine. When the sensed temperature is above 100
degrees, the controller activates the coolant; the cooling activity
is maintained for 5 consecutive time instants. Otherwise, if the
temperature is not above the threshold 100 then the controller
turns off the cooling system. In both cases, before re-starting
its scan cycle, the controller waits for instructions/requests to
change the engine regime, coming from either its local IDS, via
channel ins , or other IDSs, via channel req in. In particular,
if the controller receives instructions from its local IDS to
slow down the engine (because of an anomalous overheating)
then it will command so by changing speed . Otherwise, if the
local IDS does not see any anomaly, while the IDS of another
system is requesting the controller to work at full power, then
the process Ctrl will command so by acting on variable speed .

The process IDS checks whether the cooling system is active
when the temperature is above 100 degrees. If this safety
condition is violated then: (i) it signals at supervisory level
the presence of an overheating anomaly at engine ID, via a
channel warn; (ii) it sends the controller instructions to slow
down the engine, via a channel ins; (iii) it requests to other
engine systems to run at full power, via a channel reqout, to
compensate the lack of performance of its own engine. Of
course, such a request of compensation addressed to other
engine systems may be accepted or not, depending whether
the engine receiving the request is in condition to run at full
power or not. However, if the IDS realises that the overheating
anomaly is resolved then it asks (both local and external)
controllers to reset their engines at half power. Formally, Ctrl
and IDS are defined as follows:

Ctrl = recX.tick.read temp(z).[z > 100]{Cooling},
{write cool〈off〉.Check}

Cooling = (write cool〈on〉.tick)5.Check
Check = rcv ins(z).rcv req in(r).[z = slow]{write speed〈z〉.X},

{write speed〈r〉.X}
IDS = recY.readAll (z̃).[ztemp > 100 and zcool = off]

{sndwarn〈ID, hot〉.snd ins〈slow〉.snd reqout〈full〉.Y },
{sndwarn〈ID, ok〉.snd ins〈half〉.snd reqout〈half〉.Y }

In process Cooling , with a small abuse of notation, we write
(. . .)5.Check to denote that the process between brackets is
repeated 5 consecutive times.

We remark that, for the sake of simplicity, our IDS is quite
basic: for instance, it does not check whether the temperature
is too low. However, it is straightforward to replace our IDS
with a more sophisticated one, containing more informative
tests on process variables and/or on control variables.

A. Composing cyber-physical systems

In Example 2, we have modelled an engine system that could
be a component of a larger CPS. In this section, we describe
how we can safely compose CPSs to build up larger systems



avoiding interferences on physical and/or control variables.
The basic idea is the following: we can put together different
CPSs provided that their physical components remain under
the exclusive control of the corresponding logical components
(controllers, IDSs, etc). Said in other words, in a composite
system, any possible interaction between physical processes
must be “filtered” by the associated logics.

Thus, we will say that two CPSs are physically-disjoint if
their physics have unrelated variables, whereas their logics
may share logical channels to support communications among
them. This means that in physically-disjoint CPSs logical
components may communicate with each other, whereas
(indirect) interactions between physical processes may only
occur if the associated logical components agree on when and
how that should happen.

Definition 5 (Physically-disjoint CPSs). Let Mj =
〈εj ; ξVj 〉onPj , for j ∈ {1, 2} be two CPSs. We say that
M1 and M2 are physically-disjoint if V1 ∩ V2 = ∅. In
this case, we write M1 ] M2 to denote the CPS defined
as 〈(ε1 ] ε2); (ξV1

] ξV2
)〉on (P1 ‖ P2), where ε1 ] ε2 is

the evolution law ε such that ε(ξV1 ] ξV2)(ξ
′
V1
] ξ′V2

) =
ε1(ξV1)(ξ

′
V1
) ·ε2(ξV2)(ξ

′
V2
). The generalisation M1] . . .]Mn

to n CPSs is straightforward.1

Another possible interference-free way of composing sub-
systems is to allow interactions between a CPS M and a
pure-logical component Q, that is a process acting only on
communication channels and not on variables. This is the
case of supervisory components interacting with lower-level
controllers on (possibly private) communication channels.

Definition 6 (Parallel composition and restriction). Let M =
〈ε; ξV〉onP , Q a pure-logical process, c a channel. We write
M ‖ Q for 〈ε; ξV〉on (P ‖ Q), and M \c for 〈ε; ξV〉on (P \c).

Notice that in the composite system M ‖ Q, the process Q
cannot interfere with the physical evolution of M , although it
can definitely interact with M via communication channels,
eventually affecting its physical behaviour.

Figure 1 provides an example of what kind of CPS architec-
tures can be represented in pCCPSA by composing sub-systems
via the three operators ], ‖ and \.

Example 3 (A simple supervised self-coordinating engine sys-
tem). We provide a simple supervised self-coordinating engine
system consisting of two engines, a left engine, EngL, and a
right one, EngR, interacting with a supervisory component
that checks the correct functioning of the two engines. The
composite system is defined as follows:

Sys =
(
(EngL ] EngR) ‖ Supervisor

)
\{warn}

where both the left and the right engines are properly re-labeled
in order to: (i) embed the identities (L or R) of the engines,
(ii) distinguish the corresponding variables of the two engines,
(iii) fix the channels reqL and reqR for requesting full power
of the engines L and R, respectively. Formally,

1We refer the reader to Notation 1 for the definition of ξV1
] ξV2

.

Figure 1. A CPS
(
(Sys1 ] . . .]Sysn) ‖ SCADA ‖ HMI ‖ Hist

)
\{statei}

• EngL = Eng {L/ID}{reqL/reqin}{
reqR/reqout}{

vL/v}, for any v ∈ V;

• EngR = Eng {R/ID}{reqR/reqin}{
reqL/reqout}{

vR/v}, for any v ∈ V.
The pure-logical process Supervisor is defined as follows:

recX.rcvwarn(u1, z1).rcvwarn(u2, z2).[z1 = z2 = ok]
{snd okay .tick.X}, {[z1 = ok]{snd fail〈u2 , z2 〉.tick.X},
{[z2 = ok]{snd fail〈u1 , z1 〉.tick.X}, {snd alarm.tick.X}}}

Intuitively, if both engines get in a warning state then an alarm
signal is sent, otherwise, if only one engine is facing a warning
then the supervisor yields a failure to signal which engine is
not working properly. Finally, if both engines are working fine
then an okay signal is transmitted.

B. Probabilistic labelled transition semantics

We start recalling the definition of probabilistic labelled
transition system (pLTS) [12] over a generic set of terms.

Definition 7 (pLTS [12]). A probabilistic labelled transition
system, or pLTS for short, is a triple (T ,A,−→), where: (i) T
is a countable set of terms, (ii) A is a countable set of action
labels, and (iii) −→⊆ T ×A×D(T ) is a transition relation.

A classical LTS [17] is a special case of a pLTS where all
transitions take to point distributions over terms.

Now, we provide the dynamics of pCCPSA in two steps:
First, we give a pretty standard LTS for logical processes, then
we build up a pLTS for CPSs by lifting transition rules from
processes to CPSs, to deal with the probability distributions
occurring in evolution laws.

In Table I, we provide the labelled transition seman-
tics for logical components; here, transition rules have the
form P

λ−−→ Q, where λ ranges over actions in the set
{tick, τ, cm, cm, v?m, v!m, (z̃)} denoting: passage of time,
unobservable interaction, channel-based transmission/reception,
read/write on observable physical variables and/or control
variables, respectively, and supervisory read of all variables in
Y∪A. Rules (Rcv), (Send) and (Comm) model standard channel
communication on some channel c. Rule (Read), for v ∈ Y,
models the read of the observable physical variable v; whereas
(Write), for v ∈ A, represents the write on the control variable v.
However, for v ∈ A, rule (Read) models a malicious attempt of
dropping an actuator command acting on the control variable v.
Similarly, when v ∈ Y, rule (Write) expresses an integrity attack



Table I
LTS FOR LOGICAL PROCESSES

(Rcv)
−

brcv c(z).P cQ cm−−−→ P{m/z}
(Snd)

−

bsnd c〈m〉.P cQ cm−−−→ P
(Comm)

P
cm−−−→ P ′ Q

cm−−−→ Q′

P ‖ Q τ−−→ P ′ ‖ Q′

(Read)
v ∈ Y ∪ A

bread v(z).P cQ v?m−−−−→ P{m/z}
(Write)

v ∈ Y ∪ A

bwrite v〈m〉.P cQ v!m−−−−→ P
(Attack)

P
v?m−−−−→ P ′ Q

v!m−−−−→ Q′

P ‖ Q τ−−→ P ′ ‖ Q′

(ReadAll)
−

breadAll (z̃).P cQ
(z̃)
−−−→ P

(TimeNil)
−

nil
tick−−−→ nil

(Sleep)
−

tick.P
tick−−−→ P

(TimeOut)
−

bπ.P cQ tick−−−→ Q

(Then)
JbK = true P

λ−−→ P ′

[b]{P}, {Q} λ−−→ P ′
(Else)

JbK = false Q
λ−−→ Q′

[b]{P}, {Q} λ−−→ Q′
(Res)

P
λ−−→ P ′ λ 6∈ {cv, cv}

P\c λ−−→ P ′\c

(Rec)
P{recX.P/X}

λ−−→ P ′

recX.P
λ−−→ P ′

(Par)
P

λ−−→ P ′ λ 6= tick

P ‖ Q λ−−→ P ′ ‖ Q
(TimePar)

P1
tick−−−→ P ′1 P2

tick−−−→ P ′2

P1 ‖ P2
tick−−−→ P ′1 ‖ P ′2

on (the sensors which reads) the physical variable v. Thus,
in rule (Attack), if P is a malicious agent then we model the
successful dropping of an actuator command emitted by Q;
whereas if the malicious agent is Q then the same rule denotes
the transmission of a fake value to the agent P reading the ob-
servable physical variable v. Rule (ReadAll) denotes the reading
of all observable physical variables and control variables. Rules
(TimeNil), (Sleep) and (TimeOut) model the passage of (discrete)
time. Rules (Then), (Else), (Res), (Rec) are standard. Rule (Par)
propagates untimed actions over parallel components, whereas
rule (TimePar) does the same for timed actions. We omit the
symmetric counterparts of (Comm), (Attack) and (Par).

In Table II, we lift the transition rules from logical processes
to evolution-free CPSs, by relying on the following notations.

Notation 3. We adopt the following notation for probability
distributions: given a distribution σ over states and a process P ,
we write σonP to denote the distribution over (evolution-free)
CPSs defined as (σonP )(ξV onP ′) = σ(ξV), if P = P ′, and
(σonP )(ξV onP ′) = 0, otherwise. Moreover, given an evolution
law ε, we write 〈ε;σ〉onP to extend σonP to full CPSs as
follows: (〈ε;σ〉onP )(〈ε′; ξV〉onP ′) = (σonP )(ξV onP ′), if
ε = ε′, and (〈ε;σ〉onP )(〈ε′; ξV〉onP ′) = 0, otherwise.

Transition rules have the form M
α−−→ γ, where M is an

evolution-free CPS and γ is a distribution over (evolution-free)
CPSs. For simplicity, as evolution laws contain only static
information, the resulting transition rules are parameterised on
an evolution law. Thus, Table II provides the transitions rules
for evolution-free CPSs.

In Table II, actions, ranged over by α, are in the set
A = {τ, cm, cm, tick}. These actions denote: internal activities
(τ ), channel transmission (cm and cm), and the passage
of time (tick). Rules (Receive) and (Send) model reception
and transmission on a channel c, respectively. Rule (Tau)
lifts silent actions from processes to systems. This includes
channel communications and attacks addressed to both physical
and control variables. Rule (Read) models the reading of the
observable physical variable y. Notice that the presence of an

attack capable of supplying a fake value (via an action y!m)
may prevent the access to the correct value by the controller
(see rule (Attack) in Table I). Rule (Write) models the writing
of a value m on an control variable a; here, the presence of
an attacker capable of performing a drop action a?m may
prevent the access to the variable (see, again, rule (Attack) in
Table I). Rule (ReadIDS) models a read of the current state
of all observable physical variables and control variables, this
action requires the passage of time as in the next rule, that we
explain in more detail. In Rule (Time) timed actions are lifted
from logical processes to CPSs; here ε(ξV) returns a probability
distribution over possible state functions for the next time slot,
according to the current state ξV and the evolution law ε.

Notice that in our pLTS we defined transitions rules of
the form ξV onP

α−−→ σonP ′, parametric on some evolu-
tion law ε. As evolution laws do not change at runtime,
ξV onP

α−−→ σonP ′ entails 〈ε; ξV〉onP
α−−→ 〈ε;σ〉onP ′, thus

providing the pLTS for (full) CPSs.
Now, having defined the labelled transitions that can be

performed by a CPS of the form 〈ε; ξV〉onP , we can easily
concatenate these transitions to define the possible execution
traces of a CPS M ∈M. Formally,

Definition 8 (Traces, derivates and channel communications).
We write M

α−→ M ′ if there exists a transition M
α−→ γ

such that M ′ ∈ supp(γ). Let t = α1 . . . αn, for n ≥ 0,
a (possibly empty) sequence of actions αi ∈ A \ {τ}. A
trace M t

=⇒M ′ is a (possibly empty) sequence of transitions
M = M1(

τ−→)∗
α1−−→ (

τ−→)∗ . . . (
τ−→)∗

αn−−→ (
τ−→)∗Mn+1 =

M ′. Given a CPS M ∈ M we write der(M) to denote the
set {M ′ ∈ M : ∃ t s.t. M t

=⇒ M ′} of the derivatives of
M . Moreover, we write out(M) to denote the set {cm ∈
A : ∃M ′ ∈ der(M) s.t. M ′ cm−−→ γ} of the signals coming
from the (derivatives of) M , and inp(M) to denote the set
{cm ∈ A : ∃M ′ ∈ der(M) s.t. M ′ cm−−→ γ} of the possible
channel receptions of the (derivatives of) M .

Remark 2 (Absence of zeno behaviours). Since recursion is
always timed guarded and all timed transitions of CPSs are



Table II
PLTS FOR CPSS ξV onP PARAMETRIC ON THE EVOLUTION LAW ε

(Receive)
P

cm−−−→ P ′

ξV onP cm−−−→ ξV onP ′
(Send)

P
cm−−−→ P ′

ξV onP cm−−−→ ξV onP ′
(Tau)

P
τ−−→ P ′

ξV onP τ−−→ ξV onP ′

(Read)
V = X ∪ Y ∪ A y ∈ Y P

y?m
−−−−→ P ′ ξV(y) = m

ξV onP τ−−→ ξV onP ′
(Write)

V = X ∪ Y ∪ A a ∈ A P
a!m−−−−→ P ′

ξV onP τ−−→ ξV[a 7→ m]onP ′

(ReadIDS)
P

(z̃)
−−−→P ′ P

tick−−−→ P
y?m
−−−−→6 P

a!m−−−−→6 m̃ = ξV(Y ∪ A)

ξV onP tick−−−→ ε(ξV)onP ′{m̃/̃z}
(Time)

P
tick−−−→ P ′ P

α−−→6 α ∈ {(z̃), y?m, a!m}

ξV onP tick−−−→ ε(ξV)onP ′

inherited from timed transitions of their logical components
(rules (ReadIDS) and (Time)), it follows that the number of
untimed transitions between two timed ones is always bounded.

III. TWO PROBABILISTIC IMPACT METRICS

As said in the Introduction, the two impact metrics FNn
I,P

and FPnI,P that we are going to define will be based on
the following concepts: (a) a timed and probabilistic labelled
transition semantics [12] to formally describe the probabilistic
dynamics of (possibly compromised) CPSs; (b) a set I of
weighted attacker’s goal indicators whose runtime values
denote how close is the attacker to reach each of these goals;
(c) a detection policy P that given an alert signal α ∈ A (raised
by the IDS) and an attacker’s goal indicator in I returns a
statically-determined estimate on the progresses of the detected
attack in achieving that goal.

In Table II, we already provided a pLTS to formalise the
semantics of CPSs and attacks. Now, let us formally define
the two parameters I and P for a given CPS M ∈M.

The set of weighted attacker’s goal indicators is defined as
I = {(i1, r1), . . . , (ik, rk)}, where ij is a function of type
der(M) → [0, 1] and rj ∈ [0, 1], for 1 ≤ j ≤ k. Each
pair (i, r) ∈ I focuses on some specific attacker’s goal
to compromise the CPS M under examination and all its
derivatives in der(M). Intuitively, for any M ′ ∈ der(M),
i(M ′) returns a dynamic quantification of how close is the
attacker injected in M ′ to reach the goal i, whereas the weight r
provides us with a static information about the damage inflicted
by an attack achieving the goal represented by the indicator i.
Thus, when i(M ′) = 0 the physical state of M ′ is uncorrupted
with respect to the attacker’s goal indicator i (e.g., the runtime
values of the stress variable of the system of Example 2 are
close to 0), while i(M ′) = 1 denotes full corruption of the
physical state with respect to the goal indicator i (e.g., our
stress variable reaches values close to 1); intermediate values
tell us to which extent the physical state of the system M ′ is
corrupted. In the following, we will write I−={i1, . . . , ik} to
denote the set of (pure) attacker’s goal indicators.

The detection policy P : out(M) × I− → [0, 1] statically
associates alert signals α ∈ out(M) and goal indicators i ∈ I−
to weights that denote an estimate of the progresses of the
detected attack, associated to the signal α, in achieving the
goal with indicator i. Thus, for example, when P(α, i) = 1

the presence at runtime of the alert signal α says to system
engineers that the attacker’s goal denoted by the indicator i has
been fully achieved by the attacker; whereas, when P(α, i) = 0
the attack detected via the alert signal α has not done any
progress in the achievement of the goal represented by i. In
case of intermediate values, the presence of the signal α says
to which extent the attacker’s goal i has been achieved.

As an example, let us define the weighted attacker’s goal
indicators and the detection policy for the CPS of Example 2.

Example 4 (Attacker’s goal indicators and detection policy for
Eng). The set of weighted attacker’s goal indicators for Eng
is defined as follows: IE = {(stress, 1)}. This means that the
attacker’s goal indicator stress is a critical indicator whose
variations denote critical attacks. Here, the only attacker’s goal
indicator coincides with the unobservable physical variable
stress .2 The detection policy PE : out(Eng) × I−E → [0, 1]
is defined as follows: PE(warn〈ID, hot〉, stress) = 1 and
PE(α, i) = 0, otherwise. This means that the presence of the
signal warn〈ID, hot〉 emitted by the IDS provides an estimate
that the attacker fully achieved the goal of affecting the stress
of the engine system. On the other hand, transmissions at
communications channel reqout are considered irrelevant from
the point of view of the attacker’s goal indicators I−E .

In order to define our impact metrics FNn
I,P and FPnI,P , we

define a new probabilistic transition M
q1,...,qk−−−−−→P γ summing

up “attacker’s progresses” associated to execution traces
spanning over a single time slot, according to the detection
policy P . Intuitively, the weights qj ∈ [0, 1], for j ∈ {1, . . . , k},
sums up estimated progresses achieved by the attacker in one
time slot with respect to each attacker’s goal indicators ij ,
according to the alert signals emitted by the IDS. Formally,

Definition 9. Let M ∈ M be a CPS with an associated
set of weighted attacker’s goal indicators I, such that I− =
{i1, . . . , ik}, and detection policy P . We write M

q1,...,qk−−−−−→P γ
if M t

=⇒M ′, for a sequence of untimed actions t = α1 . . . αn,3

with α1, . . . , αn ∈ A\{τ,tick}, such that M ′ tick−−→ γ and qj =
min(1,

∑n
l=1,αl∈out(M) P(αl, ij)), for j ∈ {1, . . . , k}.4

2We recall that physical variables can be seen as functions that given the
current state of the CPS return the current value of the variable.

3We recall that untimed actions always lead to point distributions.
4By Remark 2 the number of untimed actions preceding a tick is always finite.



Table III
DEFINITIONS OF THE METRICS FNn

I,P(M) AND FPnI,P(M) FOR n > 0.

FNn
I,P(M) = min

(
1, max

M
q1,...,qk−−−−→Pγ

∑k
j=1 rj ·max(0 , ij(M)−qj) + (n−1)·

∑
M′∈supp(γ) γ(M

′)·FNn−1
I,P (M ′)

n

)
FPn

I,P(M) = min
(
1, max

M
q1,...,qk−−−−→Pγ

∑k
j=1 rj ·max(0 , qj−ij(M)) + (n−1)·

∑
M′∈supp(γ) γ(M

′)·FPn−1
I,P (M ′)

n

)

Now, we are ready to define the two metrics FNn
I,P :M→

[0, 1] and FPnI,P :M→ [0, 1] to measure the average effective-
ness and the average precision, respectively, of the detection
mechanism of a (possibly compromised) CPS M ∈ M in
recognising attacks achieving goals in I , by raising alert signals
(via the IDS) that are interpreted by the detection policy P to
estimate the severity of the damages inflicted by those attacks,
in the first n time instants.

Basically, for each (probabilistic) execution trace leading
from a system M to a system M ′ in at most n time instants, the
metric FNn

I,P measures the effectiveness of the detection by
computing the average (weighted) deviation between the actual
damage inflicted by attackers with goals indicators ij ∈ I−,
and the estimate returned by the policy P of those damages.
Such a deviation is weighted using both the severity rj of the
damage associated to ij and the probability to reach M ′ from
M . Thus, for example, high values of FNn

I,P(M) tell us that
the detection mechanism underestimates the progresses of the
attacker in achieving the attacker’s goal indicators represented
in I (high number of false negatives). The definition of FNn

I,P

is by induction on the time n ∈ N. Precisely, FN0
I,P(M) = 0,

while, for n > 0, the definition is given in Table III and relies
on all derivatives M ′ of M , reached in at most n time instants.

As for the metric FPnI,P , for each (probabilistic) execution
trace leading from a system M to a system M ′ in at most n
time instants, FPnI,P measures the precision of the detection
by computing the average (weighted) deviation between the
estimate provided by the policy P of the damage inflicted
by attackers with goals in I, and the actual damage achieved
by the attackers, according to each weighted attacker’s goal
indicator (ij , rj) ∈ I . Such a deviation is weighted using both
the severity rj of the damage associated to the indicator ij
and the probability to reach M ′ from M . Thus, for example,
high values of FPnI,P(M) tell us that the detection mechanism
overestimates the progresses of the attacker in achieving the
attacker’s goal indicators represented in I (high number of
false positives). The definition of FPnI,P is by induction on
the time n ∈ N. Precisely, FP0

I,P(M) = 0, while, for n > 0,
the definition is given in Table III and relies on all derivatives
of M , reached in at most n time instants.

As an example, we can apply our metrics to formally state
that the detection policy of the engine system Eng of Example 2
is effective and precise, i.e., there are neither false negatives
nor false positives, with respect to the attacker’s goal indicators
IE and the detection policy PE, as defined in Example 4.

Proposition 1.FNn
IE,PE

(Eng) = 0 and FPnIE,PE
(Eng) = 0.

We conclude this section with a remark on how our metrics
deal with nondeterministic behaviours.

Remark 3 (Worst-case approach). Although both metrics
work probabilistically, when dealing with nondeterministic
behaviours of the compromised system (e.g., a possible drop
of an actuator command achieving one of the goals in I)
the metrics adopt a worst-case approach. More precisely, the
metric FNn

I,P chooses the behaviour of the system that most
underestimate the attacker’s progress; whereas the metric
FPnI,P chooses the behaviour that most overestimate the
attacker’s progress.

A. Composing the impacts on CPS sub-systems

In Section II-A, we described how to compose larger
CPSs putting together physically-disjoint components and pure-
logical ones. In this section, we describe how to compute the
impact of an attack on a composite CPS in terms of the impacts
on its sub-systems. In doing so, we have to understand how to
compose the attacker’s goal indicators and the detection policies
of sub-components. For instance, when putting together two
physically-disjoint components M1 and M2 we must define
how to compose their corresponding attacker’s goal indicators
I1 and I2 and the detection policies P1 and P2, according
to some notion of security clearance associated to the each
component. Intuitively, the security clearance of a physically-
disjoint CPS component should denote the importance of that
component from a security point of view (e.g., in an airplane,
securing the engine control system may be more critical than
securing the air conditioning system).

Definition 10 (Distributing I and P over ]). Let M1 and
M2 be two physically-disjoint CPSs, with disjoint weighted
attacker’s goal indicators I1 and I2, and detection policies
P1 and P2, respectively. Let p1, p2 ∈ [0, 1] be the security
clearances associated to M1 and M2, respectively. Then, the
CPS M1 ]M2 has attacker’s goal indicators p1 · I1 ] p2 · I2,
and detection policy p1 · P1 ] p2 · P2, where:
• p1 ·I1 ] p2 ·I2 =

⋃
(i,r)∈I1(i, p1 ·r)∪

⋃
(i,r)∈I2(i, p2 ·r);

• p1 · P1 ] p2 · P2 is such that (p1 · P1 ] p2 · P2)(α, i) =
P1(α, i), if i ∈ I−1 , and (p1 ·P1]p2 ·P2)(α, i) = P2(α, i),
if i ∈ I−2 .

The generalisation to CPSs as M1]. . .]Mn is straightforward.

A similar definition is necessary for both channel restriction
and parallel composition between CPSs and pure-logical pro-
cesses (we recall that we use pure-logical processes to represent
supervisory components interacting with lower-level controllers



on communication channels). Note that we have not associated
yet attacker’s goal indicators and detection policies to pure-
logical processes. However, as in a system M ‖ Q the pure-
logical process Q may communicate with M , it is reasonable
to assume that it may emit signals about the indicators of M .

Definition 11 (Distributing I and P over ‖ and restriction).
Let M ∈M be a CPS with attacker’s goal indicators I and
detection policy P . Let Q be a pure-logical process with the
following detection policy PQ : out(Q)× I− → [0, 1], wrt I,
such that for any (α, i) ∈ dom(P) ∩ dom(PQ) it holds that
P(α, i) = PQ(α, i). Let c be a channel. Then,

• M ‖ Q has weighted attacker’s goal indicators I and
detection policy P ‖ PQ, where (P ‖ PQ)(α, i) =
P(α, i), if (α, i) ∈ dom(P); (P ‖ PQ)(α, i) = PQ(α, i),
otherwise, and

• M\c has weighted attacker’s goal indicators I and
detection policy (P\c), where (P\c)(α, i) = P(α, i) if c
does not occur in α, and (P\c)(α, i) = 0, otherwise.

Example 5 (Attacker’s goal indicators and detection policy
for the system of Example 3). Let’s define the attacker’s goal
indicators ISys and the detection policy PSys for the composite
system Sys of Example 3. We derive them from the components
EngL, EngR and Supervisor (for brevity, here, we will call
it Super ). The security clearances of the two engine systems
are: p1 = p2 = 0.7 (we assume equal criticality). Thus, ISys =
0.7 · IL ] 0.7 · IR and PSys = ((0.7 · PL ] 0.7 · PR) ‖ PSuper) \
{warn}, where: (i) the goal indicators IL and IR for EngL

and EngR, respectively, are obtained from the goal indicators
IE in Example 4, in the obvious manner; (ii) the same holds
for the two policies PL and PR; (iii) the detection policy PSuper

is defined as follows:

• PSuper(alarm, stressL) = PSuper(alarm, stressR) = 1;
• PSuper(fail〈L, ·〉, stressL)=PSuper(fail〈R, ·〉, stressR)=1;
• PSuper(fail〈L, ·〉, stressR)=PSuper(fail〈R, ·〉, stressL)=0;
• PSuper(okay , stressL) = PSuper(okay , stressR) = 0;
• PSuper(α, i)=0, otherwise.

Now, everything is in place to formally state in which terms
our impact metrics are compositional with respect to the notion
of compositionality given in Definitions 5 and 6 of Section II-A.

We start by computing our metrics on composite systems
consisting of physically-disjoint CPSs, under the hypothesis that
channel communications among those CPSs do not carry any
information on the achievement of attacker’s goal indicators,
unlike alert signals that are addressed to the supervisory level.

Basically, the numeric values of the impact metrics of a com-
posite system of the form M1 ] . . .]Mk are obtained through
a weighted sum of the impacts on the single components.

Theorem 1 (Compositionality w.r.t. ]). Let Mi ∈ M, for
i ∈ {1, . . . , k}, be k physically-disjoint CPSs, with security
clearances pi ∈ [0, 1], disjoint attacker’s goal indicators Ii,
and detection policies Pi, respectively, such that for any i, j ∈
{1, . . . , k}, i 6= j, whenever cm ∈ out(Mi) and cm ∈ inp(Mj)
it holds that Pi(cm, h) = 0, for any h ∈ I−i . Then,

1) FNn
I,P(M1 ] . . . ]Mk) = min(1, p1 · FNn

I1,P1
(M1) +

. . .+pk ·FNn
Ik,Pk

(Mk)), when I = p1 · I1] . . .]pk · Ik
and P = p1 · P1 ] . . .] pk · Pk and

∑
(i,r)∈Ij r ≤ 1, for

any j ∈ {1, . . . , k};
2) FPnI,P(M1 ] . . . ]Mk) = min(1, p1 · FPnI1,P1

(M1) +
. . .+pk ·FPnIk,Pk(Mk)), when I = p1 · I1] . . .]pk · Ik
and P = p1 · P1 ] . . .] pk · Pk and

∑
(i,r)∈Ij r ≤ 1, for

any j ∈ {1, . . . , k}.

When composing CPSs with pure-logical processes (up to
eventual channel restrictions) we get, in general, a weaker
result. This is because the introduction of a parallel pure-logical
process potentially increases the number of (observable) alert
signals, whereas channel restriction, in general, reduces their
number as it makes signals non-observable.

Proposition 2 (Compositionality w.r.t. ‖ and restriction). Let
M ∈ M be a CPS with attacker’s goal indicators I, and
detection policy P . Let Q be a pure-logical process with
detection policy PQ over goal indicators I such that whenever
cm ∈ out(M) and cm ∈ inp(Q) then P(cm, h) = 0, for any
h ∈ I−. Let c be a channel. Then,

1) FNn
I,P′(M ‖ Q) ≤ FNn

I,P(M), for P ′ = (P ‖ PQ);
2) FPnI,P′(M ‖ Q) ≥ FPnI,P(M), for P ′ = (P ‖ PQ);
3) FNn

I,P′(M\c) ≥ FNn
I,P(M), for P ′ = (P\c);

4) FPnI,P′(M\c) ≤ FPnI,P(M), for P ′ = (P\c).

However, in a composite system, when all alert signals
A ⊆ out(M) coming from a CPS M in a single time slot
are intercepted by a supervisor (logical-process) Sup which
analyses and aggregates those signals, converting them in
alert signals B ⊆ out(Sups) in the same time slot, then we
can strengthen the results of Proposition 2. As an example,
suppose that P and PSup are the detection policy of M
and Sup, respectively, with respect to the same set I of
attacker’s goal indicators. And suppose that at each time slot
the detection policy of the supervisor amplifies the estimate
of the attacker’s progress made by the detection policy of M ,
i.e., min(1,

∑
β∈B PSup(β, i)) ≥ min(1,

∑
α∈A P(α, i)), for

any i ∈ I , abbreviated PSup ≥ P .5 Then, we can prove that the
detection policy of the supervised system (M ‖ Sup)\chn(A)6

is at least as aggressive as the detection policy P of the CPS
M . As expected, the increased aggressiveness of the detection
policy results in (a possibly) smaller number of false negatives
and in (a possibly) greater number of false positives in the
composite supervised system. More generally,

Theorem 2 (Compositionality on supervised systems). Let
M ∈ M be a CPS with attacker’s goal indicators I, alert
signals A ⊆ out(M), and detection policy P . Let Sup be
a pure-logical process, with detection policy PSup , collecting
all alert signals in A and converting them in alert signals in
B ⊆ out(Sup), on fresh7 communication channels. If PSup ∼ P ,
where ∼ is an operator among {≤,=,≥}, then:

5The reader is referred to the appendix for a formal definition of detection
policy comparison, such as PSup ≥ P , PSup = P or PSup ≤ P .

6Here, chn(A) denotes the set of channels occurring in the actions of A.
7Here, “fresh” means that the channels used in B do not occur elsewhere.



1) FNn
I,P(M) ∼ FNn

I,P′((M ‖ Sup) \ chn(A)), for P ′ =
(P ‖ PSup) \ chn(A)

2) FPnI,P′((M ‖ Sup) \ chn(A)) ∼ FPnI,P(M), for P ′ =
(P ‖ PSup) \ chn(A).

Based on the compositionality results stated in Theorem 1
and Theorem 2, we can lift the result of Proposition 1 to our
composite system Sys of Example 3.

Proposition 3. Let ISys and PSys be as defined in Example 5.
Let I = ISys and P = PSys . Then, FNn

I,P(Sys) = 0 and
FPnI,P(Sys) = 0, for any n ∈ N.

IV. OUR IMPACT METRICS AT WORK

In this section, we analyse four attacks targeting the Eng
system given in Example 2, and aiming at causing either
overstress of the engine [6] and/or deception of the IDS
(increasing the false positives) in a possibly stealthy manner.

In order to test the (computational) feasibility of our
metrics FPnI,P and FNn

I,P , we simulate in MATLAB [15]
the Eng system together with the four attacks mentioned
above, computing their impacts during attack windows whose
duration varies between 300 and 500 time instants. We rely on
the compositionality results of Theorem 1 and Theorem 2 to
estimate the impact of each attack, for the same attack window,
on the composite system Sys of Example 3.

Our analyses are conducted on a notebook with the following
set-up: 2.8 GHz Intel i7 7700 HQ, with 16 GB memory (plus 48
GB for swap), and Ubuntu 20.04 LTS OS. For each attack, the
computation of the two metrics required at most 14 hours. The
source files of both the Eng system and the attacks, together
with analysis results and scripts to reproduce them, can be
found at: https://bitbucket.org/formal projects/impact metrics/.

The first attack is an integrity attack to the actuator of the
Eng system. It consists of forging fake actuator commands to
turn off the cooling system. Formally,

Att1 = recX.read temp(y).[y ≤ 99.5]{write cool〈off〉.tick.X},
{tick.X}

Here, the attacker turns off the cooling system as soon as the
temperature reaches 99.5 degrees, even before the completion
of the 5-ticks cooling cycle. In this manner, the temperature of
the engine rises quickly above the threshold 100, accumulating
stress in the system, and requiring continuous activations of the
cooling system. This is a stealthy attack (i.e., undetected by our
IDS) as it keeps the system close to the threshold 100 without
ever exceeding it; only the attacker’s goal indicator stress
keeps track of the physical damage inflicted by the attack.

The impact of the attack in the first 500 time instants is
represented in Figure 2. As the reader can see, the average
number of false negatives of the Eng system under attack,
i.e., FNn

IE,PE
(Eng ‖ Att1), grows with the size of the attack

window. Thus, after 500 time instants the metric FNn
IE,PE

approaches the value 0.6, meaning that, in average, the attack
achieves around 60% of its goals, according to IE, i.e., the
goal indicator stress . Notice that this attack does not affect
the false positives at all.
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Figure 2. Impact of the first attack on the Eng system.

Now, we move to our composite system Sys of Example 3,
and suppose that the attack Att1 tampers with the left engine
only. By relying on the compositionality results of our metrics
we can infer the following result:

Proposition 4 (Impact of Att1 on Sys when attacking EngL).
Let Sys be the system defined in Example 3 with attacker’s
goal indicators ISys and detection policy PSys , as defined
in Example 5. Let I = ISys , P = PSys and AttL1 be
Att1{tempL/temp}{coolL/cool}. Then,
• FNn

I,P(Sys ‖Att
L
1 ) = 0.7 · FNn

IL,PL
(EngL ‖ AttL1 )

• FPnI,P(Sys ‖Att
L
1 ) = 0.7 · FPnIL,PL

(EngL ‖ AttL1 ).

Proposition 4 says that, after 500 time instants, the metric
FNn

I,P of the composite system approaches the value 0.7·0.6 =
0.42. As expected, the attack does not affect the false positives,
i.e., FPnI,P(Sys ‖Att

L
1 ) = 0.

The second attack is an integrity attack to the sensor of the
temperature of the Eng system. The attack adds a negative
offset 0.6 to the temperature detected by the controller:

Att2 = recX.read temp(y).write temp〈y−0.6〉.tick.X

In this attack, we have a different situation as the IDS raises an
alert each time we have 100 < temp ≤ 100.6 and cool = off.
As a consequence, this attack is not stealthy.

The impact of our second attack in the first 300 time instants
is represented in Figure 3. The effects of this attack are recorded
in the goal indicator stress; the false negatives grow with the
size of the attack window, reaching the value 0.18 after 300
time instants. As regards the false positives, as soon as the
attack begins, the metric FPnIE,PE

reaches the value 0.1 and
then stabilises. This indicates that, in average, the system under
attack experiences 10 false positives every 100 time units, due
to unjustified alert signals at channel warn .

The relatively low number of false negatives is basically due
to the mitigation activity of the IDS (consisting in slowing down
the engine) that delays the effects of the attack. In fact, without
that mitigation the average number of false negatives would
have been significantly higher, as depicted in Figure 4. Of
course, a smarter attacker that would also drop the controller’s
command to slow down the speed (control variable) would
cancel the mitigation efforts of the IDS.
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Figure 3. Impact of the second attack on the Eng system.

Now, we move to our composite system Sys of Example 3,
and suppose that the attack Att2 tampers with the right engine
only. By relying on the compositionality results of our metrics
we can infer the following result:

Proposition 5 (Impact of Att2 on Sys when attacking EngR).
Let Sys be the system defined in Example 3 with attacker’s
goal indicators ISys and detection policy PSys , as defined in
Example 5. Let I = ISys and P = PSys . Let AttR2 be the attack
Att2{tempR/temp}. Then,
• FNn

I,P(Sys ‖Att
R
2 ) = 0.7 · FNn

IR,PR
(EngR ‖AttR2 )

• FPnI,P(Sys ‖Att
R
2 ) = 0.7 · FPnIR,PR

(EngR ‖AttR2 ).

The false negatives of the composite system under attack
reach the value 0.7 · 0.18 = 0.126. The false positives reach
the value 0.7 · 0.1 = 0.07, and then stabilises.

Our third attack is a DoS/integrity attack on the actuator
driving the cooling systems. The attacker tampers with the con-
trol variable cool to possibly drop two consecutive commands
sent by the controller to turn on the cooling system. Once
dropped, these commands are replaced with commands to turn
off the cooling system. Formally, the attack is the following:

Att3 = recX.tick5.DropForge
DropForge = recY.read cool(y).[y = on]

{write cool〈off〉.OnceMore},
{write cool〈off〉.tick.Y }

OnceMore = tick.read cool(y).write cool〈off〉.tick.X

The attack repeatedly alternates between a stand-by phase,
lasting 5 time units, and a drop-and-forge phase, lasting 2 time
units, in which an integrity attack on the variable cool may
occur once or twice, depending whether the controller transmits
one or two (consecutive) commands to turn on the cooling
system. Here, the goal indicator stress gets increased as the
attacker may suddenly turn off the cooling system, reducing
the 5-ticks cooling cycle. Thus, either the temperature remains
just above the threshold 100 or the temperature drops below
100, but then it rapidly rises above that threshold.

The impact of this attack in the first 300 time instants is
represented in Figure 5. The number of undetected and/or
underestimated situations of overstress recorded by the goal
indicator stress rapidly grows with the duration of the attack.
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Figure 4. Impact of the second attack with detection but no mitigation.

After only 80 time instants the metric FNn
IE,PE

reaches already
the value 0.8; after 300 time instants it reaches the value 0.9.
As regards the false positives, there is a small peak in the first
time instants of malicious activity as the IDS raises alarms
which are not related to increased overstress of the system.
Thereafter, the average number of false positives quickly drops
to 0. From the magnitude of false negatives it follows that
the IDS misses most of the attacks targeting the stress of the
system; as a consequence, basically, this is a stealthy attack.

Now, we move to our composite system Sys of Example 3,
and suppose that the attack Att3 tampers with the right engine
only. By relying on the compositionality results of our metrics
we can infer the following result:

Proposition 6 (Impact of Att3 on Sys when attacking EngR).
Let Sys be the system defined in Example 3 with attacker’s
goal indicators ISys and detection policy PSys , as defined
in Example 5. Let I = ISys and P = PSys . Let AttR3 be
Att3{coolR/cool}. Then,
• FNn

I,P(Sys ‖Att
R
3 ) = 0.7 · FNn

IR,PR
(EngR ‖AttR3 )

• FPnI,P(Sys ‖Att
R
3 ) = 0.7 · FPnIR,PR

(EngR ‖AttR3 ).

Here, after 300 time instants, the metric FNn
I,P of the system

Sys reaches the value 0.7 · 0.9 = 0.63. As expected, after a
short transitory phase, false positives drops to 0.

Finally, we might think of a fourth attack Att4 = AttL1 ‖
AttR2 consisting of two colluding attacks focusing on the two
engines, respectively: Att1 tampering with the left engine, and
Att2 operating on the right engine. In this case, as expected, we
would have both false negatives and false positives. However,
the attacker’s goal indicators of the two engines will let us
know where these false alert signals are actually coming from.

Proposition 7 (Impact of Att4 on Sys when attacking EngL

and EngR). Let Sys be the system defined in Example 3 with
attacker’s goal indicators ISys and detection policy PSys , as
defined in Example 5. Let I = ISys and P = PSys . Let n = 300
and Att4 be the attack AttL1 ‖ Att

R
2 . Then,

• FNn
I,P(Sys ‖ Att4) = min(1, (0.7 · FNn

IL,PL
(EngL ‖

AttL1 ) + 0.7 · FNn
IR,PR

(EngR ‖ AttR2 )))
• FPnI,P(Sys ‖ Att4) = min(1, (0.7 · FPnIL,PL

(EngL ‖
AttL1 ) + 0.7 · FPnIR,PR

(EngR ‖ AttR2 ))).
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Figure 5. Impact of the third attack on the Eng system.

Here, after 300 time instants, the average false negatives
approaches the value 0.7 · 0.5 + 0.7 · 0.18 = 0.476, due to the
malicious activity on the left engine EngL. Furthermore, the
average false positives reaches the value 0.7 · 0.1 = 0.07 (and
then stabilises), due to the malicious activity on EngR.

V. CONCLUSIONS AND RELATED WORK

We defined two probabilistic metrics, FNn
I,P and FPnI,P ,

to estimate the impact of (possibly stealthy) cyber-physical
attacks in terms of the average false negatives and the average
false positives generated by an arbitrary IDS. Our metrics build
on the following concepts: (i) a timed probabilistic labelled
transition semantics to formally describe the dynamics of
(possibly compromised) CPSs; (ii) a set I of weighted attacker’s
goal indicators whose runtime values denote how close is the
attacker to reach these goals (equipment or production damage,
compliance violations); (iii) a detection policy P that, given an
alert signal (raised by the IDS) and an attacker’s goal indicator
in I , returns a statically-determined estimate on the progresses
of the detected attack in achieving the goal with that indicator.

Our impact metrics can be computed in a compositional
manner on those CPSs whose sub-systems may physically
interact only if the associated logical components agree on
when and how that interaction should happen. Examples of
such kind of systems have beed discussed in the Introduction.

We showed the computational feasibility of our metrics
with the help of a non-trivial use case and four significant
cyber-physical attacks, both implemented in MATLAB [15].

As future work, we plan to improve the computational
efficiency of our metrics by selecting execution traces of the
CPS under analysis via Monte Carlo simulation methods [18].
Of course, simulation-based solutions do not ensure results with
a 100% confidence. However, the number of executions that our
simulator should perform to reach a desired confidence can be
determined using well-known statistical techniques [19]. This
will allow us to scale our impact metrics on larger CPSs that
are not necessarily compositional, according to our definitions.

Related Work: Different methodologies for assessing the
impact of attacks targeting CPSs have been proposed. Here,
we discuss and compare the papers closest to our work.

Urbina et al. [13] addressed the problem of detecting greedy
attacks to sensors or actuators, but not both, as we do. Based

on a strong adversary model that is always able to bypass
stateful IDSs (relying on cumulative sums - CUSUM), they
introduced an evaluation metric for attack-detection algorithms
that quantifies the negative impact of stealthy attacks and the
inherent trade-off with false positives. In practice, in order to
define the impact of stealthy attacks the authors select one (or
more) variable(s) of interest in the process they want to control.
Then, the impact of the undetected attack will measure how
much can the attacker drive that value towards its intended
goal per unit of time. More precisely, their metric measures
the tradeoff between the maximum deviation per time unit
imposed by stealthy attacks and the expected time between
false positives. Their metric relies exclusively on observable
physical variables without explicitly addressing equipment
damage, production damage, or compliance violations [6].
We do that by introducing attacker’s goal indicators I to
capture manipulations on (unobservable) physical variables
whose evolution is beyond the control of IDSs.

Umsonst et al. [20] provided the mathematical theory to
expand the analysis of [13] based on CUSUM IDSs. In
particular, they considered attacks that can tamper with both
sensors and actuators at the same time, and can optimise their
malicious patterns over a window of time. However, the works
of [13] and [20] neglect the influence of the uncertainty of the
models and do not propose substitutes for their infinity-norm-
based metrics to be used in stochastic systems.

Huang et al. [21] proposed a risk assessment method that uses
a Bayesian network to model the attack propagation process
and infers the probabilities of sensors and actuators to be
compromised. These probabilities are fed into a stochastic
hybrid system model to predict the evolution of the physical
process being controlled. Then, the security risk is quantified
by evaluating the system availability with the model.

More recently, Milošević et al. [22] overcome the limitations
of the infinity-norm-based metrics of [13], [20] by proposing
two metrics to measure the impact of stealthy cyber-attacks in
stochastic linear networked control systems. The first metric
returns the probability that some of the critical states leave
a safety region; the second metric measures the deviation of
such critical states with respect to the expected values. Their
metrics relies on two tuning parameters: N ∈ N, denoting
the time window over which the impact is estimated (similar
to our parameter n), and ε ≥ 0, i.e., the stealthiness level
based on the Kullback-Leibler divergence. Somehow, these
two metrics together provide an information similar to what
we obtain with our metric FNn

I,P , except for the fact that we
rely on the detection policy P to distill stealthiness instead of
using Kullback-Leibler divergence. Unlike us, the authors do
not take into consideration false positives introduced by the
attacker to mislead system engineers.

Other works on impact evaluation of attacks targeting CPSs
are the following. Genge et al. [23] introduced a methodology,
inspired by research in system dynamics and sensitivity analysis,
to compute the covariances of the observed variables before
and after the execution of specific interventions involving the
control variables. Bilis et al. [24] proposed five metrics derived



from network theory to assess the impacts of cyber attacks
on power systems. Sgouras et al. [25] evaluated the impact of
attacks on a simulated smart metering infrastructure. Sridhar
and Govindarasu [26] evaluated the impact of attacks on wide-
area frequency control applications in power systems.

As regards formal methodologies, Lanotte et al. [11], [10]
defined hybrid process calculi to model both CPSs and cyber-
physical attacks; our calculus is a probabilistic simplification
of theirs. The paper [10] proposes a formalisation of physical
impact of an attack in terms of the potential perturbation that
might be introduced by the attacker during a compromised
execution of the system. However, the model in that paper
does not support probabilities to represent system uncertainty.
Thus, the notion of impact in [10] does not take into account
the attacker’s chances of achieving an attack with that physical
impact/damage: it just looks at the existence of a malicious
execution trace reaching that impact/damage; it says nothing
about the likelihood of such an execution actually taking
place. More recently, Lanotte et al. [27] have used a discrete-
time generalisation of Desharnais et al.’s weak bisimulation
metric [28] to estimate the impact of attacks targeting sensor
devices of IoT systems; however, their impact metric takes
into consideration only the logical effects on (communication
channels of) the IoT system under attack, but not the physical
ones. The objective of this paper is to bring the ideas from
these two papers together by defining impact metrics that take
into account both the physical impact and the likelihood to
successfully completing an attack with that physical impact.

Finally, we wish to underline that formal methodologies are
increasingly used to lay theoretical foundations to reason about
cyber-physical systems and their vulnerabilities (see, e.g., [29],
[30], [31], [32], [33], [34], [35], [36], [37], [38], [39]).
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APPENDIX

A. Proofs of Section III

Proof of Proposition 1. Given a trace M1
α1...αn=====⇒ Mn+1,

with M1 = Eng , for j ∈ 1..n+1, we let tj , cj , spj and
sj denote the value of the variables temp, cool , speed and
stress , respectively, in the physical state of Mj . We recall
that I−E = {stress}, PE(warn〈ID, hot〉, stress) = 1 and
PE(α, stress) = 0, for all α 6= warn〈ID, hot〉. Thus, in
order to derive the result it is sufficient to show that any
trace M1

α1...αn−1
=======⇒ Mn satisfies: 1) αj 6= warn〈ID, hot〉,

for j ∈ 1..n−1; and 2) sj = 0, for j ∈ 1..n. Indeed,
FPnIE,PE

(Eng) = 0 follows by 1), and FNn
IE,PE

(Eng) = 0
follows by 2). We prove these two properties separately.

Case 1). Since warn〈ID, hot〉 can be emitted uniquely by
the process IDS when (ztemp > 100 ∧ zcool = off) is true, it
is sufficient to prove that the condition (tj > 100 ∧ cj = off)
is never satisfied, for any j ∈ 1..n. We know that t1 = 95
and c1 = off. Moreover, the temperature rises by at most
1.2 degrees per time unit. Therefore, at some instant k the
temperature exceeds the threshold, i.e., 100 < tk < 101.2.
The controller Ctrl immediately turns on the cooling system,
which remains active for 5 time instants, namely cj = on
for j ∈ k..k+4. This ensures that (tj > 100 ∧ cj = off)
remains false for j ∈ k..k+4. In this time interval, the cooling
system lowers the temperature by at least 0.8 · 5 = 4 degrees.
As a consequence, we have tk+5 < 97.2. This implies that
(tj > 100 ∧ cj = off) remains false at instant k + 5. The
reasoning can now be reiterated to prove the required result.

Case 2). We will show that for any j ≥ 0 we have: (a) if
tj > 100 then tj+1 ≤ 100 or tj+2 ≤ 100; (b) if tj > 100 and
tj+1 ≤ 100, then tj+1+k ≤ 100 for k ∈ 1 . . . 4. From (a) and
(b) it follows that for any arbitrary time interval i..i+5 at most
two values in {ti, . . . , ti+5} may be above the threshold 100.
This ensures that stress is never incremented and maintains
the initial value 0. In order to show (a), we note that the
temperature cannot rise above 100 + 1.2 = 101.2 degrees.
Hence tj ∈ (100, 101.2]. The cooling system is turned on
implying tj+1 ∈ (100− 1.2, 101.2− 0.8] = (98.8, 100.4] and
tj+2 ∈ (98.8−1.2, 100.4−0.8] = (97.6, 99.6]. This gives (a).
In order to show (b), from tj > 100 and tj+1 ≤ 100 we infer
tj+1 ∈ (100−1.2, 100] = (98.8, 100]. The cooling system
operates for further 4 time units and tj+1+k ∈ (98.8−k ·
1.2, 100− k · 0.8], namely tj+1+k ≤ 100, for k ∈ 1..4.

In order to prove Theorem 1, we need a preliminary result
to formalise the relationship between the attackers’ progresses
associated with the traces of a CPS M1 ] M2, and those
associated with the traces of the two sub-systems M1 and M2.

Lemma 1. Let M1 and M2 be two CPSs with dis-
joint sets of weighted attacker’s goal indicators I1 =
{(i11, r11), . . . , (i1k1 , r

1
k1
)} and I2 = {(i21, r21), . . . , (i2k2 , r

2
k2
)},

and detection policies P1 and P2, respectively. Assume that
for any i, j ∈ {1, 2}, i 6= j, whenever cm ∈ out(Mi) and
cm ∈ inp(Mj) then Pi(cm, h) = 0, for any h ∈ I−i . Then,

for two tuples of reals q1 = q11 , . . . , q
1
k1

and q2 = q21 , . . . , q
2
k2

,
the following two properties are equivalent:

1) M1 ]M2
q1,q2−−−−→P γ, with P = p1 · P1 ] p2 · P2;

2) M1
q1−−→P1

γ1, M2
q2−−→P2

γ2 and γ = γ1 ] γ2,
where γ1 ] γ2 is the distribution over CPSs such that (γ1 ]
γ2)(N1 ]N2) = γ1(N1) · γ2(N2), for all CPSs N1 and N2.

Proof: We show that property 1) implies 2), the other
implication is similar. Let M1 = 〈ε1; ξV1

〉onP1 and M2 =
〈ε2; ξV2

〉onP2, for evolution laws ε1 and ε2, state functions
ξV1 and ξV2 and processes P1 and P2. Let N0 = M1 ]M2.
By Definition 9, the transition in 1) entails:
• N0 α1−−→ . . .

αn−−→ Nn, where αj 6= tick, for j ∈ 1..n

• Nn tick−−→ γ.
All systems N j , with j ∈ 0..n, have the form N j = 〈ε1 ]

ε2; ξV1
] ξV2

〉onP j1 ‖ P
j
2 , for some processes P j1 and P j2 .

The proof of this statement follows by induction on j and by
inspection on the transition rules of Tables I and II. Then, the
transitions N j αj+1−−−→ N j+1, for j ∈ 0..n−1, can be derived
only because P j1 ‖P

j
2

βj+1−−−→ P j+1
1 ‖P j+1

2 , for some βj+1.

The transitions Nn tick−−→ γ can be derived only because
Pn1 ‖ Pn2

tick−−→ Pn+1
1 ‖ Pn+1

2 by the application of either
rule (ReadIDS) or rule (Time). Thus, the distribution γ of the
transition Nn tick−−→ γ has the form γ = γ1 ] γ2, where γ1 =
ε1(ξV1)onPn+1

1 and γ2 = ε2(ξV2)onPn+1
2 , for some processes

Pn+1
1 and Pn+1

2 .
Thus, let N j

1 = 〈ε1; ξV1
〉onP j1 and N j

2 = 〈ε2; ξV2
〉onP j2 ,

for j ∈ 1..n, the transitions of CPSs N j , for j ∈ 0..n, follow
from transitions of the associated processes. There are 4 cases.

Case (i). P j1 ‖ P
j
2

βj+1−−−−→ P j+1
1 ‖ P j+1

2 is derived by an
application of rule (Par) in Table I because P j1

βj+1−−−−→ P j+1
1 and

P j+1
2 = P j2 . Now, whatever is the rule in Table II used to derive

N j αj+1−−−−→ N j+1 from P j1 ‖ P
j
2

βj+1−−−−→ P j+1
1 ‖ P j+1

2 , this rule
allows us to derive N j

1

αj+1−−−→ N j+1
1 as well, from P j1

βj+1−−−→
P j+1
1 . As P = p1 · P1 ] p2 · P2, we have P1(αj+1, i

1
l ) =

P(αj+1, i
1
l ), for αj+1 ∈ out(M1) and l = 1..k1.

Case (ii). P j1 ‖ P
j
2

βj+1−−−−→ P j+1
1 ‖ P j+1

2 is derived by applying
rule (Par) because P j2

βj+1−−−−→ P j+1
2 . Similarly to case (i) we

have P2(αj+1, i
2
l ) = P(αj+1, i

2
l ), for αj+1 ∈ out(M2) and

l = 1..k2.
Case (iii). P j1 ‖ P

j
2

βj+1−−−−→ P j+1
1 ‖ P j+1

2 is derived by rule

(Comm) in Table I because P j1
β1
j+1−−−−→ P j+1

1 and P j2
β2
j+1−−−−→ P j+1

2 .
Without loss of generality, we assume β1

j+1 = cm and β2
j+1 =

cm. By rules (Receive) and (Send), we infer N j
1

α1
j+1−−−−→ N j+1

1

and N j
2

α2
j+1−−−−→ N j+1

2 , with α1
j+1 = β1

j+1 and α2
j+1 = β2

j+1.
Since α1

j+1 = cm ∈ out(M1) and α2
j+1 = cm ∈ inp(M2), by

applying the hypothesis of the lemma we have P1(α
1
j+1, i

1
l ) =

0. Thus, α2
j+1 6∈ out(M2) and αj+1 = τ 6∈ out(M).

Case (iv). Pn1 ‖ Pn2
tick−−→ Pn+1

1 ‖ Pn+1
2 is derived by

an application of rule (Timepar) in Table I because Pn1
tick−−→

Pn+1
1 and Pn2

tick−−→ Pn+1
2 . In this case, we have: Nn

1
tick−−→



γ1 with γ1 = ε1(ξV1
)onPn+1

1 , and Nn
2

tick−−→ γ2 with γ2 =
ε2(ξV2)onPn+1

2 .
Now, from the form of the transitions originating from CPSs

N j
i and Nn

i , for j ∈ 0..n−1 and i ∈ 1..2, we derive the
following five facts:

(a) M1 = N0
1

δ1,1−−−→ . . .
δ1,n1−−−−→ Nn1

1 = Nn
1

tick−−→ γ1;
(b) for all j ∈ 1..n1 and l ∈ 1..r1, either P1(δ1,j , i

1
l ) =

P(αj , i1l ) or both δ1,j 6∈ out(M1) and αj 6∈ out(M);

(c) M2 = N0
2

δ2,1−−−→ . . .
δ2,n2−−−−→ Nn2

2 = Nn
2

tick−−→ γ2;
(d) for all j ∈ 1..n2 and l ∈ 1..r2, either P2(δ2,j , i

2
l ) =

P(αj , i2l ) or both δ2,j 6∈ out(M2) and αj 6∈ out(M);
(e) δ1,j1 6= tick and δ2,j2 6= tick, for j1 ∈ 1..n1, j2 ∈ 1..n2.

From (a) and (e), by applying Definition 9 we derive the

transition M1

r11 ,...,r
1
k1−−−−−−→P1 γ1, with r1l = min(1,

∑n1

j=1 r
1,j
l );

here, r1,jl = P1(δ1,j , i
1
l ) if δ1,j ∈ out(M1), and r1,jl = 0 other-

wise. We recall that by Definition 9, the transition in item 1) of
the hypothesis of the lemma entails q1l = min(1,

∑n
j=1 q

1,j
l ),

where q1,jl = P(αj , i1l ) if αj ∈ out(M1), and q1,jl = 0
otherwise. Hence, by fact (b) it follows that r1l = q1l . This

implies M1
q1−−→P1

γ1, for q1 = q11 , . . . , q
1
k1

. By applying
a similar reasoning, from facts (c), (d) and (e) we derive

M2
q2−−→P2

γ2. The result follows because γ = γ1 ] γ2.
Now, everything is in place to prove Theorem 1.

Proof of Theorem 1. We give the proof for the metric FP.
The proof for the metric FN is similar. Moreover, we consider
the case k = 2, the extension to k > 2 is straightforward.
We reason by induction on n. The base case, n = 0, is
immediate. We move to the inductive case, n > 0. Let
M = M1 ]M2. Assume I1 = {(i11, r11), . . . , (i1k1 , r

1
k1
)} and

I2 = {(i21, r21), . . . , (i2k2 , r
2
k2
)}. Let q1 denote a tuple of reals

q11 , . . . , q
1
k1

and q2 a tuple of reals q21 , . . . , q
2
k2

. Then, we have:

FPn
I,P(M)

=min

(
1, max

M
q1,q2−−−−→Pγ

∑k1
j=1 p1·r

1
j ·max(0,q1j−i

1
j (M)) +∑k2

j=1
p2·r2j ·max(0,q2

j
−i2
j
(M)) +

(n−1)
∑
M′∈supp(γ) γ(M

′)·FP
n−1
I,P (M′)

n

)

=min

(
1, max
M1

q1−−→P1
γ1

M2

q2−−→P2
γ2

∑k1
j=1 p1·r

1
j ·max(0,q1j−i

1
j (M))+∑k2

j=1
p2·r2j ·max(0,q2

j
−i2
j
(M))+

(n−1)
∑
M′1∈supp(γ1)

M′2∈supp(γ2)

γ1(M′1)·γ2(M′2)·FP
n−1
I,P (M′1]M

′
2)

n

)

=min

(
1, max

M1

q1−−→P1
γ1

M2

q2−−→P2
γ2

∑k1
j=1 p1·r

1
j ·max(0,q1j−i

1
j (M)) +∑k2

j=1
p2·r2j ·max(0,q2

j
−i2
j
(M)) +

(n−1)·
∑
M′1∈supp(γ1)

M′2∈supp(γ2)

γ1(M′1)·γ2(M′2)·

min(1,p1·FP
n−1
I1,P1

(M′1)+p2·FP
n−1
I2,P2

(M′2))

n

)

=min

(
1, max
M1

q1−−→P1
γ1

M2

q2−−→P2γ2

p1·
∑k1
j=1 r

1
j ·max(0,q1j−i

1
j (M1)) +

(n−1)
∑
M′1∈supp(γ1)

γ1(M′1)p1FP
n−1
I1,P1

(M′1) +

p2·
∑k2
j=1

r2
j
·max(0,q2

j
−i2
j
(M2))+

(n−1)
∑
M′2∈supp(γ2)

γ2(M′2)p2FP
n−1
I2,P2

(M′2)

n

)

=min
(
1 , p1 · FPn

I1,P1
(M1) + p2 · FPn

I2,P2
(M2)

)
.

Here, step 1 follows by the definition of FPnI,P(M); step 2 by
an application of Lemma 1; step 3 by inductive hypothesis; step
4 by immediate calculation; last step follows by the definitions
of FPnI1,P1

(M1) and FPnI2,P2
(M2).

It remains to prove both Proposition 2 and Theorem 2. We
focus on the proof of Theorem 2; the proof of Proposition 2
is simpler. First, let us introduce some technical notations.

Notation 4. Given a set of actions A ⊆ A, we write chn(A)
to denote the set {c : cm ∈ A or cm ∈ A} of the channels
used in A. Given an execution trace t, we write restrA(t) to
denote the trace resulting by removing in t all actions which
are not in A. A set of actions A ⊆ out(M) will be called
a set of alert signals for the CPS M if it contains all and
only output actions of M (and its derivatives) on channels
which are never used in input; formally, α ∈ A iff α ∈ out(M)
and chn(α) 6∈ chn(inp(M)). We say that a channel c is fresh
with respect to a CPS M if c is never used in M . Finally,
given a CPS M we define the set of tick-derivatives of M as
dertick(M) = {M ′ :M t

==⇒ tick−−−→M ′} ∪ {M}.

Now, we need a definition to formalise how to compare two
detection policies in term of their aggressiveness.

Let us consider a CPS M and a supervisor process Sup. As-
sume two sets of alert signals A ⊆ out(M ) and B ⊆ out(Sup)
such that the signals in A are used for communications from M
to the supervisor, while those in B are used for communications
from the supervisor to the external observer. We also assume
that the supervisor Sup collects all alert signals of A and
converts them in alert signals of B, on communication channels
fresh with respect to M . More formally,

• for all Ŝup ∈ dertick(Sup), whenever Ŝup t
==⇒ tick−−−→ ̂̂

Sup,
with tick 6∈ t, then t = c1m1 · · · chmhd1m

′
1 · · · dlm′l, for

cjmj ∈ A and dkm
′
k ∈ B; we call this property signal

conversion;
• all channels in chn(B) are fresh with respect to M .
Now, if Sup is able convert all alert signals in A ⊆ out(M)

to fresh alert signals in B ⊆ out(Sup) then we can compare
the detection policies of the CPS M and the supervised CPS
(M ‖ Sup)\chn(A), in terms of their aggressiveness. Formally,

Definition 12 (Detection policy comparison). Let M ∈M be
a CPS with attacker’s goal indicators I, alert signals A ⊆
out(M) and detection policy P . Let Sup be a pure-logical
process, with detection policy PSup , and collecting all alert



signals A converting them in alert signals B ⊆ out(Sup), on
fresh communication channels. Let ∼ be a binary operator to
compare real numbers: ∼ ∈ {≤,=,≥}.

We write PSup ∼ P when for all (M ′ ‖ Sup′)\chn(A) ∈
dertick((M ‖ Sup) \ chn(A)) and tick-derivatives M ′′ of M ′,
for which M ′

t
==⇒ tick−−−→ M ′′, with tick 6∈ t, there is a trace

Sup′
t′
==⇒ tick−−−→ Sup′′, tick 6∈ t′, such that:

• restrA(t) = c1m1 · · · chmh, for some h ∈ N
• t′ = c1m1 · · · chmh · d1m′1 · · · dlm′l, for some l ∈ N
• min(1,

∑l
j=1 PSup(djm

′
j , i))∼min(1,

∑h
j=1 P(cjmj , i))

for all attacker’s goal indicators i ∈ I−.

In order to prove Theorem 2, we need a preliminary result,
stating the relationships between the attackers’ progresses
associated with the traces of a CPS M and those associated
with the traces of (M ‖ Sup) \ chn(A), where process Sup
collects all alert signals in A and converting them in alert
signals in B, on fresh communication channels.

Lemma 2. Let M ∈ M be a CPS with attacker’s goal
indicators I = {(i1, r1), . . . , (ik, rk)}, alert signals A ⊆
out(M), and detection policy P . Let Sup be a pure-logical
process with detection policy PSup , collecting all alert signals
in A and converting them in alert signals in B, on fresh
communication channels. Assume that PSup ∼ P for some
operator ∼∈ {≤,=,≥}. Then, for P ′ = (P ‖ PSup)\chn(A),
the following two properties

1) M
q1,...,qk−−−−−→P γ1

2) (M ‖ Sup)\chn(A) q′1,...,q
′
k−−−−−→P′ γ2

are equivalent when q′m ∼ qm, for m ∈ 1..k, and γ1 and
γ2 are two distributions such that for any CPS M ′ there
exists a pure logical process Sup′ for which it holds that
γ1(M

′) = γ2((M
′ ‖ Sup′) \ chn(A)).

Proof. We prove that 1) implies 2); the proof of the other
implication is similar. By Definition 9, the transition in 1 ) is
derived from a trace of the form M

t
==⇒ tick−−−→ γ1, with t =

α1 · · ·αn and α1, . . . , αn ∈ A\{τ,tick}, such that for all m ∈
1..k we have qm = min(1,

∑n
j=1,αj∈out(M) P(αj , im)). Let

us assume restrA(t) = c1m1 · · · chmh and restr(A\A)(t) =
β1 · · ·βn−h. As PSup ∼ P , it follows that:

1) there is an execution trace Sup
t′
==⇒ tick−−−→ Sup′ such that

t′ = c1m1 · · · chmh · d1m′1 · · · dlm′l;
2) for m ∈ 1..k, we have min(1,

∑l
j=1 PSup(djm

′
j , im)) ∼

min(1,
∑h
j=1 P(cjmj , im)).

Since processes evolve to point distributions, the execu-
tion trace Sup

t′
==⇒ tick−−−→ Sup′ is actually the following:

Sup
t′
==⇒ tick−−−→ Sup′. Thus, from M

t
==⇒ tick−−−→ γ1 we

derive (M ‖ Sup) \ chn(A) t′′
===⇒ tick−−−→ γ2, for a trace t′′

of the form β1 · · · ·βn−hd1m′1 · · · dlm′l, and γ2 satisfying
γ1(M

′) = γ2((M
′ ‖ Sup′) \ chn(A)). Then, by Definition 9

we derive (M ‖ Sup) \ chn(A) q′1,...,q
′
k−−−−−→P′ γ2, for some

q′1, · · · q′k. In order to complete the proof, it remains to prove
that q′m ∼ qm, for all m ∈ 1..k. The result is obtained by an
application of the following algebraic reasoning:

q′m = min(1,
∑l
j=1 P

′(djm
′
j , im) +

∑
βj∈out((M‖Sup)\chn(A))

j=1...n−h

P ′(βj , im))

= min(1,
∑l
j=1 PSup(djm

′
j , im) +

∑
βj∈out(M)

j∈{1,...,n−h}
P(βj , im))

∼ min(1,
∑h
j=1 P(cjmj , im) +

∑
βj∈out(M)

j∈{1,...,n−h}
P(βj , im))

= min(1,
∑

αj∈out(M)

j=1,...,n

P(αj , im))

= qm

where: step 1 follows from t′′ = β1 · · · ·βn−hd1m′1 · · · dlm′l;
step 2 follows because P ′ = (P ‖ PSup) \ chn(A), thus
PSup(djm

′
j) = P ′(djm′j) and P(βj , im) = P ′(βj , im), where

the last equality holds because no βj ∈ out(M) uses channels
in chn(A); step 3 follows by min(1,

∑l
j=1 PSup(djm

′
j , im)) ∼

min(1,
∑h
j=1 P(cjmj , im)); step 4 derives because restrA(t) =

c1m1 · · · chmh and restrA\A(t) = β1 · · ·βn−h; step 5 follows
because t = α1 · · ·αn.

Now, everything is in place to prove Theorem 2.

Proof of Theorem 2. We give the proof for the metric FP. The
proof for the metric FN is similar. We reason by induction on
n ∈ N. The base case, n = 0, is immediate. Let us consider
the inductive step, n > 0. Here, we write N to denote the
CPS (M ‖ Sup) \ chn(A), and N ′ for CPSs of the form
N ′ = (M ′ ‖ Sup′) \ chn(A), where M ′ ∈ der(M) and
Sup′ ∈ der(Sup). The desired result derives from the following
algebraic reasoning:

FPn
I,P′(N)

= min

(
1, max
N

q1,...,qk−−−−−−→P′γ

∑k
j=1 rj ·max(0,qj−ij(N))+

(n−1)·
∑
N′∈supp(γ)γ(N

′)·FPn−1
I,P′ (N

′)

n

)

∼ min

(
1, max
N

q1,...,qk−−−−−−→P′γ

∑k
j=1 rj ·max(0,qj−ij(M))+

(n−1)·
∑
N′∈supp(γ) γ(N

′)·FPn−1
I,P (M′)

n

)

∼ min

(
1, max
M

q1,...,qk−−−−−−→Pγ

∑k
j=1 rj ·max(0,qj−ij(M))+

(n−1)·
∑
M′∈supp(γ) γ(M

′)·FPn−1
I,P (M′)

n

)
= FPn

I,P(M)

where: step 1 follows by the definition of FPnI,P′(N); step 2
follows because ij(M) = ij(N) and by an application of the
the inductive hypothesis; step 3 follows by Lemma 2; step 4
follows by the definition of FPnI,P(M).

B. Proofs of Section IV

The proofs of Propositions 4, 5, 6 and 7 follow from
Theorem 1, Theorem 2 and Proposition 1.


