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Abstract—Fault-tolerant distributed systems move
the trust in a single party to a majority of parties
participating in the protocol. This makes blockchain
based crypto-currencies possible: they allow parties
to agree on a total order of transactions without a
trusted third party. To trust a distributed system, the
security of the protocol and the correctness of the
implementation must be indisputable.
We present the first machine checked proof that

guarantees both safety and liveness for a consensus
algorithm. We verify a Proof of Stake (PoS) Nakamoto-
style blockchain (NSB) protocol, using the foundational
proof assistant Coq. In particular, we consider a PoS
NSB in a synchronous network with a static set of
corrupted parties. We define execution semantics for
this setting and prove chain growth, chain quality, and
common prefix which together imply both safety and
liveness.

I. Introduction

A Byzantine Agreement [LSP82] (BA) protocol allows
a group to agree on a decision, even when some of its
members behave dishonestly. Such a protocol is required
to satisfy
Safety all honest parties reach the same decision;
Liveness a decision is reached eventually.

This problem naturally extends to agreeing multiple times
(multi-shot-consensus or just consensus). Until 2008, the
main algorithmic approach for achieving consensus was
to collect a majority of votes on a decision before taking
the next decision. We will refer to protocols based on this
design as quorum-based protocols.
In 2008 Nakamoto’s Bitcoin protocol [Nak08] revolu-

tionized the field by introducing a fundamentally different
approach for solving the problem. Instead of letting parties
agree on each step of progress by multiple rounds of
communication between them, Nakamoto introduced a
simple protocol where parties probabilistically take turns
making individual progress and disseminating this to all
other parties. If parties often enough have time to see
what other parties have disseminated before they make
progress, this protocol guarantees safety and liveness up
to a negligible probability of failure.
The protocol works by letting all parties maintain an

order-preserving data-structure over previous decisions (a
block tree) and run a “lottery” to decide who is allowed to
append the next block to an existing chain in the block tree.
Whenever there is a winner of the lottery, they produce

a block and disseminate it to all other parties. Parties
receiving a block will perform a series of checks to guarantee
that the block is valid and that the party that produced the
block actually won the lottery; if all the checks are correct,
the parties should append the new block to their local
block tree. A party will consider a slightly pruned version
of their current longest valid chain to be the ordering
of blocks agreed upon. We call a protocol with a similar
shape, regardless of lottery mechanism, a Nakamoto-style
Blockchain (NSB).

For an NSB there are three main properties that together
ensure both liveness and safety [GKL15]. These are chain
growth, chain quality and common prefix. Chain growth
says that the length of the best chain of an honest party
increases over time. Chain quality says that within a
sufficiently large consecutive chunk of blocks of a best
chain some of them must be honest. Common prefix says
that the best chains of honest parties will be a prefix of
each other if we remove some blocks from the chain.
Because parties probabilistically make individual

progress without waiting for a quorum, the lottery needs
to be configured in such a way that the time between
winners of the lottery must be long enough for blocks
to propagate between parties. NSBs are therefore only
secure in a synchronous network [DLS88], where an upper
bound on the time it takes to deliver a message is known.
Traditional quorum-based algorithms can be designed such
that they are secure in either a synchronous network or a
partially-synchronous network [DLS88] where there exists
an unknown upper bound on message delivery time. The
latter requires stronger honesty assumptions.

Nakamoto’s original protocol was based on a lottery
that assumes that the majority of the computing power
participating in the protocol behaves honestly. The lottery
functions by requiring that for a message (block) to be
considered valid, the hash of the message needs to be less
than a certain threshold. To participate in the lottery
parties will, therefore, try to append different numbers
to the messages they want to send, until they find a
number which when appended to the message gives a hash
which is less than the threshold. Such a lottery is called a
Proof of Work lottery (PoW). Unfortunately, this design
comes with a high power consumption to provide a secure
protocol, as honest parties need to “mine” more valid
messages than dishonest parties to ensure safety. This
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problem is solved by the introduction of a Proof of Stake
(PoS) lottery, where parties instead can prove that they
have the right to create a message for a particular round
with their signature. This construction requires that the
majority of stake (for some deterministic calculation of
“stake”) in the system behaves honestly.

Because consensus protocols are distributed, they are
notoriously difficult to prove correct. In fact, some protocols
were claimed to be both safe and live and passed peer
review, but were later found to be either only safe or only
live [AGGM+17].
Our work establishes both safety and liveness of a PoS

NSB. To make our proofs indisputable we model a PoS NSB
protocol with an abstract lottery, provide precise execution
semantics for this, and reduce our proofs of safety and
liveness for this protocol all the way to the axioms of
mathematics using the Coq proof assistant [Tea20]. The
formalization can be found at

https://github.com/AU-COBRA/PoS-NSB.
The formalization uses Coq 8.11.2 with mathcomp
1.11.0 [GM10], finmap 1.5.0 and coq-equations 1.2.2 [SM19].
The mathematical components (mathcomp) library has
been used to formalize large parts of mathematics. It
introduces a particular proof style that scales well to large
developments and revolves around small-scale-reflection,
which we also use for this formalization.

A. Contributions
We implement the behavior of honest parties partici-

pating in a PoS NSB with an abstract lottery in Coq.
We use this to define the semantics of the execution of
the protocol in a synchronous network accounting for the
case when a static subset of parties behaves dishonestly.
We prove that the protocol is both safe and live assuming
appropriate conditions on the hash-function and the lottery,
and restrictions on an adversary’s capability to produce
honest signatures. We use the methodology of abstract
specification from programming languages. This allows us
to focus on the core combinatorial arguments that are used
in the theory of secure distributed systems. To enable this
we make some simplifications about signature-schemes that
are reminiscent of symbolic cryptography. However, our
analysis is not a consequence of a series of rewrite rules,
but instead we leverage Coq to discover and generalize
non-trivial induction-invariants.

In particular, we contribute with the following:
1) We provide the first formalization of any consensus

algorithm that ensures both safety and liveness in a
Byzantine setting. Specifically, we verify that a PoS
NSB protocol with an abstract lottery and a symbolic
signature scheme ensures consensus. In order to do
so, we provide precise semantics for executions of
distributed protocols with statically corrupted parties
in a synchronous network. As we treat the lottery
and signature scheme abstractly, we do not achieve

computational security guarantees, but instead focus
on the combinatorial arguments which is common in
distributed systems. We use the semantics to formally
prove both chain quality, chain growth and common
prefix. Our theorems for chain growth and chain
quality only requires an honest majority (> 1

2 ) of stake
which matches the bounds of earlier non-mechanized
proofs whereas, for common prefix, our proof requires
an honest super-majority (> 2

3 ).
2) In addition to the formalization, we develop a method-

ology for verifying protocols by abstract functional in-
terfaces, rather than specific non-optimized implemen-
tations. This may seem to increase the gap between
our formalized proof and a running implementation.
However, by using a precise abstract interface we
clearly distinguish the correctness of performant code
and that of the protocol. We only focus on the latter
and isolate the core combinatorial arguments. As a side
benefit our proof also works for a protocol that allows
participants to run different concrete implementations
of this abstract interface. This is a realistic scenario
for a blockchain protocol where different parties might
participate with different devices. This methodology
applies both to pen-and-paper proofs as well as
formalizations.

B. State of the Art
To provide context for this work, we give an overview of

the state of the art. First, we provide an overview of analysis
of NSBs and next an overview of existing mechanized
proofs for consensus algorithms. In Section VI we provide
a broader comparison to other related work.
1) NSB Analysis: The first cryptographic analysis of a

PoW NSB [GKL15] proved that the protocol underlying
Bitcoin satisfies both safety and liveness. In order to do so
they introduced the properties chain quality, chain growth
and common prefix, which together imply both safety and
liveness. Their foundational analysis has been extended in
several directions: The security has been analyzed in the
UC-model [BMTZ17] and the analysis has been modified
to cover variations of how the best chain is selected with
improved properties [KMM+20]. Ren [Ren19] simplifies the
original analysis.
In a PoW lottery, a winning event is tied to a specific

block, which means that only the particular block that
with a hash lower than the threshold will be considered
valid by honest players. In PoS, however, a winning event
corresponds to a party being able to sign a block that will
be considered valid, which means that nothing prevents
an adversary from signing multiple different blocks. Due
to this attack vector a PoS protocol is inherently more
difficult to analyze.

The first analysis made for a PoS NSB, was for a lottery
with a unique winner in each round [KRDO17], which was
followed up by an analysis of a lottery that allowed for
multiple winners in each round and was generalized to a



weaker network model [DGKR18]. Similar analysis have
later been performed in a composable framework [BGK+18]
and the bounds have been improved [BKM+20].
This work formalizes an analysis similar to previous

PoW analysis, but adapts these to work for a PoS lottery.
Our proof roughly follows the proofs in [KMM+20], which
in order to analyze different rules for selecting the best
chain rule, stated their analysis with a clear separation
of necessary conditions on the lottery and combinatorial
arguments. The main difference between our proof and
theirs is in the proof of the common prefix property. This
argument is quite different for PoS than for PoW. Our proof
revolves around the fact that the block corresponding to
an adversarial lottery ticket can appear at most once on
each chain, whereas their proof revolved around that an
adversarial block can appear at most once across all chains.
This implies that our proof for common prefix requires 2

3 of
the stake to be honest. A 1

2 honesty bound can be obtained
for PoS protocols [KRDO17], [DGKR18], [BKM+20] by
more complicated proofs revolving around the notion of
characteristic strings.

2) Formalization of Consensus Protocols: Table I pro-
vides an overview of selected previous formalizations of
consensus algorithms in Coq.

a) Formalization of NSBs: Toychain [PS18] was the
first verification effort towards formal guarantees for any
NSB (in particular a PoW NSB). They defined a relation
on global states and proved basic properties about the
reachable global states. In a partially synchronous network,
they proved that if the system ends up in a state where no
messages are waiting to be delivered, then all clients agree
on the current best chain. Although that is an important
property of the system it is not enough to argue about how
the tree of blocks evolves when the protocol is run, as it
will probably never be the case that there are no messages
in transit (messages sent but not yet delivered). Toychain
did not consider any Byzantine behavior and only focused
on functional correctness.

Our work takes the same approach as taken in Toychain,
by defining a relation on reachable global states and proving
properties for these reachable states. We do, however, model
a synchronous network instead of a partially synchronous
one, in which stronger properties hold.
Toychain has been extracted and connected to OCaml-

code [Pîr19], which provides an executable node with
formal guarantees. Kaizen [KPM+19] extends the state-
ments proven in [PS18] to apply for an actual performant
implementation of a NSB through a series of refinements
and transformations of the original code-base, at the cost
of a slightly larger trusted computing base. This work does,
however, not improve on the statements proven in [PS18].
Probchain [GS19] aims to formalize the analysis

from [GKL15], but they state that their proofs are un-
finished.

b) Formalization of quorum-based consensus: Tra-
ditional (quorum-based) Byzantine fault-tolerant (BFT)

consensus algorithms are also used for blockchains. Velis-
arios [RVVV18] is a general framework for formally prov-
ing quorum-based BFT algorithms secure in Coq. They
prove a safety property of a widely used BFT algorithm,
PBFT [CL99], but do not prove liveness.
A formalization of the Algorand consensus proto-

col [ACL+19] verifies safety of their BFT algorithm. Their
proof revolves around a transition relation on global states,
which models a partially synchronous execution of the
protocol.
Ethereum is planning to use a BFT algorithm as a

finality layer. The Casper finality layer has been formally
proven to achieve its safety property [NJH19] in the Isabelle
proof assistant. In Coq, Casper has been proven to be
both safe and plausible live [PGP+18]. Plausible live is
a weaker form of liveness that ensures the protocol will
never deadlock. This result was extended to also cover the
revised protocol Gasper which works with a dynamic set
of validators [ALP+20]. The results are proven with an
abstract model of quorums on a set of messages without
explicitly defining honest behavior and communication.

C. Paper Outline
The remainder of the paper is organized as follows. Sec-

tion II describes our notation and conventions. Section III
describes how a PoS NSB functions. In Section IV we
will introduce the formal setting for our protocol, present
the requirements for an implementation of a blocktree,
define honest and adversarial behavior, and finally define
reachable global states. Section V will present our general
results including both the formal theorems and intuition
behind the formal proofs. Section VI will relate this work to
previous work on formalizing distributed systems. Finally,
Section VII concludes.

II. Notation
The set of natural numbers is denoted N = {0, 1, 2, . . . }

and boolean values are denoted B = {>,⊥}. We adopt
conventions from mathcomp and let eqType be a type
with decidable equality and finType be a type with a
finite duplicate free enumeration.

A record type with the fields a and b of type N is defined
by NatPair := {a : N, b : N}.

seq T is the type of lists of type T . [::] denotes the
empty sequence, [:: x] the list with the single element x
and ++ the concatenation operator. We overload standard
set notation for filtering and cardinality of sets to also
apply to sequences. We adopt notation from mathcomp.
We write =i to denote that two sequences have the same
members. We write s1 ⊆ s2 to denote that each member
in the sequence s1 also in s2.
We will use teletypefont for functions and variable

names and small capitals for types.
CamelCase (capitalized) names are used for parameters

of the formalization and types whereas snake_case is used
for constructs explicitly defined within the formalization.



Formalization Type Network Safety Liveness
Toychain [PS18] PoW NSB Partially synchronous (−) −
Velasarios [RVVV18] Quorum-based Partially synchronous X −
Algorand [ACL+19] Quorum-based Partially synchronous X −
Gasper [ALP+20] Quorum-based No execution semantics X (−)
This work PoS NSB Synchronous X X

Table I: Overview of previous formalizations in Coq. The formalization of Gasper does not provide execution semantics
for the protocol, and so no network-model appears in their formalization. By (−) we indicate that only very weak
results has been proven about the property. In particular, [PS18] only proves functional correctness and [ALP+20] only
proves plausible liveness.

term_name are clickable links that directs to the formal
definition of the described concept.

III. The Protocol

We consider a static stake PoS NSB protocol similar to
the one in [DGKR18]. This section provides an informal
description of the protocol, such that the description of
the formal model and the exact behavior of honest parties
presented in Section IV can be guided by intuition.

We discretize time into slots which we assume to be
totally ordered: Slot , N. Each party has access to a
clock they can query for the current slot, a flooding network
they can use to flood messages to each other, and a lottery
functionality they can query to check if they are the winner
of a slot. We say that a party that wins the lottery for a
slot is a baker of this slot. Blocks contain a slot number,
a hash of the predecessor, a identifier of the baker, and a
signature. These are the content of messages send through
the flooding network in the protocol.
Each party maintains a block tree that initially only

contains a single block called the Genesis Block. When a
block b is added to the block tree it will be added as a
successor to the block in the tree with a hash that matches
the predecessor of b. A path originating at the Genesis
Block in a block tree is called a chain.

The protocol proceeds in slots where each party will do
the following for a slot:
1) Collect all previous blocks that they have received

since the last round through the flooding network and
add these to their block tree if the signature is valid
and the identifier of the block corresponds to a winning
party for the round.

2) Evaluate the lottery to check if they are a winner of
this round. If they win this slot they will:
a) Calculate what their current longest chain is (disre-

garding blocks with a higher slot number than the
current slot)1. If there are multiple longest chains
of equal length they will use a tie-breaker of their
choice to determine the one they consider the best2.

1Adversarial parties might choose to evaluate the lottery ahead of
time and send these to honest parties.

2This tie-breaker is insignificant for the security of the protocol.

b) Create a new block that will include a hash to
the head of their best chain, the current slot, their
identity, and their signature.

c) Flood this new block using the flooding network.
The protocol ensures that the participants of the protocol

will agree on the current longest chain when removing
a few blocks from the head of this chain. It is for the
chains calculated in this way we wish to ensure both
safety and liveness. Specifically, we want to ensure that the
best chain of any party grows (chain growth), that honest
blocks regularly are appended to this chain (chain quality),
and that this chain is both consistent among parties and
persistent when the protocol progresses (common prefix).

IV. Formal Model

We model the protocol described in Section III in a
synchronous network with a static but active adversary.
This section describes in detail how this translates to the
formal setting in which we prove our results. First, we
present the basic constructs and parameters of our protocol.
Next, we introduce the abstraction and specification of the
block tree. Then we move on to describe our specification of
the actual protocol i.e., how honest parties should behave,
the global state of the entire system, and the formalization
of the synchronous network. Finally, we put this together
to define a relation on what state are reachable from the
initial state when running the protocol with a fixed set of
parties and a static but active adversary.

We will use this definition of reachable states extensively
in Section V, as we quantify all of our main statements
over reachable states.

A. Parameters and Basic Constructs
Our model is parameterized by a type Party : finType

that represents a unique identifier for a party3, an equality
type Txs : eqType that represents transactions (i.e.,
content that can be put on the blockchain), and a type
Hash : eqType that represents the co-domain of a hash
function for blocks, HashBlock. A block, Block, is defined
to be a record containing four fields

{pred : Hash, slot : Slot, txs : Txs, bid : Party}.

3We make this a finite type as there as a finite supply of IP-
addresses.



A block contains the predecessor of the block, pred, a
slot number in which the block was created, slot, some
transactions, txs, and a baker-identifier, bid. A chain is a
sequence of blocks Chain , seq Block.

a) Lottery: Our model is further parameterized by
a predicate, Winner : Party → Slot → B, that allows
to check if a particular party has the right to create a
block in a specific slot. This abstraction is intended to
capture a lottery similar to the one proposed in the static-
stake version of Ouroboros Praos [DGKR18]. There it is
determined whether a party wins by evaluating a verifiable
random function (VRF) on the current slot number and
compare it to a threshold depending on that party’s stake.
We do not model that only persons knowing the secret
key can evaluate the lottery. Neither do we model that the
lottery cannot be evaluated far into the future4. We also
do not model signatures.
Instead, we quantify our theorems in Section V by an

appropriate hypothesis on the unforgeability of blocks
produced by honest players (Definition 10).

b) Valid chains: Our protocol has an initial block,
GenesisBlock : Block, that all chains should end in and
which we assume to have an honest baker identifier and
the slot set to 0. Using the lottery abstraction we define a
valid chain.

Definition 1 (Valid chain). valid_chain

We say that a chain is a valid chain if it fulfills the following
three requirements
• All blocks in the chain need to be valid. A block b is
valid if Winner (bid b)(slot b) = >.

• The chain should be linked correctly: the field pred
of a block contains a hash that is equal to that of the
predecessor in the chain and the chain ends in the
GenesisBlock.

• The projection of the fields slot from the chain forms
a strictly decreasing sequence of slots.

We define valid_chain : Chain→ B, as a computable
predicate ensuring these properties are fulfilled.

B. BlockTree
A NSB maintains a correct tree of currently received

blocks, from which the current best chain can be derived.
Previous analysis of NSB protocols [GKL15], [BMTZ17],

[KRDO17], [PS18] provide an explicit algorithm for calcu-
lating the best chain from a set of chains and prove the
security of this construction. Unfortunately, this approach
creates a gap between the security analysis on an easily
verifiable algorithms and the highly optimized code that is
running in typical implementations of such a protocol. The
main performance bottleneck of the extracted implemen-
tation of Toychain [Pîr19] is their blocktree which runs in

4In practice these are both desirable properties. The adversary
should not learn if an honest party wins the lottery before that honest
party has time to send out their block. Neither should the adversary
be able to predict a sequence of slots that the they win.

O(n4)-time. Comparable non-verified implementations run
in ∼ O(n)-time when the cost is amortized.
In this work, we take a different approach and specify

the minimal requirements of a correct blocktree rather than
providing an explicit construction for this data-structure.
Taking this approach, we do not prove correctness of
an efficient implementation. This could be done in two
ways: 1) Either by providing a reference implementation
(as in previous work) which can then be refined, or 2)
by instantiating our abstract interface. We consider the
second approach to be more flexible as it provides a
minimal specification. Moreover, we do not explicitly
provide an implementation of our specification. We come
back to this after Definition 6.

Following the style of mathcomp we define a type,
treeType, that denotes a type that satisfies the require-
ments to achieve our security in the protocol.

a) Correctness conditions for a block tree: For a type
T : Type to be a treeType, we demand that the following
functions should be defined.

tree0 : T
extendTree : T→ Block→ T
allBlocks : T→ seq Block
bestChain : Slot→ T→ Chain

The function tree0 corresponds to the requirement that
there is an initial tree that the protocol can be instantiated
with, extendTree gives a way to extend any tree returning
a new tree, allBlocks should give a set of blocks that the
tree has been extended with and finally bestChain allows
one to extract what is currently the best chain of the tree
with respect to a slot.
T : Type is a treeType if is instantiated, extendable,

valid, optimal and self-contained:

Definition 2 (Instantiated). all_tree0

A type T is instantiated if no blocks are recorded in the
initial structure except for GenesisBlock i.e.,

allBlocks tree0 =i [:: GenesisBlock] .

Definition 3 (Extendable). all_extend

A type T is extendable if extending the structure with a
block is recorded properly in the set of contained blocks
i.e.,

∀(t : T)(b : Block),
allBlocks(extendTree t b) =i allBlocks t++ [:: b] .

Definition 4 (Valid). best_chain_valid

A type T is valid if the best chain achieved from this
structure is always a valid chain i.e.,

∀(t : T)(sl : Slot), valid_chain (bestChain sl t).

Definition 5 (Optimal). best_chain_best

A type T is optimal if the best chain less than a slot



achieved from this structure is at least as good as any
other chain obtained from the set of blocks recorded in the
structure i.e.,

∀(c : Chain)(t : T)(sl : Slot),
valid_chain c→
c ⊆ {b ∈ allBlocks t | slot b ≤ sl} →
|c| ≤ |bestChain sl t|.

Definition 6 (Self-contained). best_chain_in_all

A type T is self-contained if the best chain less than a slot
achieved from this structure is a subset of the recorded
blocks in the structure i.e.,

∀(t : T)(sl : Slot),
bestChain sl t ⊆ {b← allBlocks t | slot b ≤ sl}.

Note that a simple algorithm that keeps track of all
possible chains that can be created from the received
blocks and prunes these for blocks from future slots before
calculating the best chain provides all of the desired
properties. This algorithm is what is used in [DGKR18].

Our development is parameterized over a specific imple-
mentation of such a type, Tree : treeType that we use
to build a particular tree, consisting of all blocks honest
parties have received.

C. Parties
We represent the knowledge of a participating party

as a record containing their identity, a treeType, and a
blocktree of that type:

LocalState := {id : Party, tT : treeType, tree : tT}.

We further parameterize our development by a tree im-
plementation for each party, TreeTypeMap : Party →
treeType. Unlike traditional pen-and-paper proofs (and
previous formalizations) this implies that our results in
Section V are quantified over all parties using different
implementations of the core data-structure. This is a
realistic scenario for a blockchain protocol, as parties might
participate in the protocol with different devices and as a
consequence different implementations optimized for their
particular device.

Being able to make this quantification is another benefit
of our abstract characterization of the core data-structure
for the protocol.

a) Honest behavior: The behavior of an honest party is
defined by two stateful functions: One that defines an hon-
est party’s reaction when receiving a sequence of messages
in a slot, honest_rcv, and one that defines what an honest
party should do when baking for a slot, honest_bake.
Both functions take an argument of type LocalState
and return an updated state together with a sequence of
messages (the type Messages, see Section IV-E) that the
party wishes to flood to other parties.

honest_rcv : Messages→
Slot→
LocalState→
(Unit ∗ LocalState)

honest_bake : Slot→
Txs→
LocalState→
(Messages ∗ LocalState)

The honest parties receives in a straightforward manner,
as they will simply extend their blocktree with all blocks
they receive, using the extendTree-function defined for
their blocktree implementation. When an honest party is
invoked to bake they will test if they are the Winner of
the current slot. If so, they will calculate the best chain
from their current block tree, disregarding blocks from
future slots, and create a new block with the predecessor
set to the hash of the head of the best chain. Then they
will include the transactions provided as an argument in
this block. Finally, they will extend their blocktree with
this new block and create a message containing this block
and flood this.

The honest behavior is computable, and to run the pro-
tocol these two functions could be extracted and connected
to a network-shim5 and a time-shim6, similarly to what has
been done for previous formalizations [KPM+19], [Pîr19].

b) Adversarial parties: We explicitly model an adver-
sary within the system, by parameterizing the development
by a type, AdversarialState that the adversary can
choose freely. We furthermore let the adversary choose the
behavior of any corrupted party by again parameterizing
our development over two functions corresponding to
the adversarial behavior when receiving blocks and when
baking for a slot.

AdversarialRcv,

AdversarialBake : Slot→
Messages→
MsgTuples→
AdversarialState→
(seq (Message ∗DelayMap)
∗AdversarialState)

The adversary’s functions take more arguments than
the corresponding honest ones.7 In this way we model
a more powerful adversary by providing him with a

5Code that floods messages as well as receives messages from other
parties and invoking the honest_rcv.

6Code that invokes the honest_bake each time a new slot start.
7The adversary is not provided with any transactions as it can

freely decide what to include in the blocks. Moreover, later we will
quantify over any selection of transactions to honest parties (including
over selection-algorithms that may be known to the adversary before
hand).



complete view of the state: the entire history of messages
sent in the system and those that are sent, but not yet
delivered, as well as their delivery times (encapsulated
in the type MsgTuples; see Section IV-E). This type of
powerful adversary, i.e. one that who has access to all
messages sent even before they are delivered, is called
a rushing adversary. We also allow the adversary to
supply an additional argument (of type DelayMap) to the
messages he wishes to be sent. This allows him a more fine-
grained control over when his messages will be delivered
(again see Section IV-E). Although the type-signatures
of AdversarialRcv and AdversarialBake are similar, we
parameterize our development by two distinct functions to
make adversary much powerful as possible.
Modelling an active adversary by quantifying over an

opaque function was previously done in other Coq devel-
opments [PM15], [GS19].

D. Global state

We define a record type GlobalState that contains
all the information for this protocol when it is executed.
The GlobalState record has the following fields.
Clock: The current slot of the system.
Message buffer: A buffer containing all messages that
have been sent but not yet delivered in the system.
State map: A partial map of type Party →
option LocalState that keeps track of the local state
of all participating parties.
History: The history of all messages that have been
sent. This is merely a book-keeping tool for describing
assumptions such as the absence of hash-collisions in
the state. Examples of how this is used can be found
in Section V.
Adversarial state: The adversaries state.
Execution order: The order in which the system
should activate its parties. This is merely a bookkeeping
allowing the environment to decide the order of activa-
tions (see Section IV-F).
Progress: The progress that the system has made
within a single slot

Progress , {Ready, Delivered, Baked}.

How a global state can change its progress is defined
in Section IV-F.

E. Network

We assume a lock-step-synchronous network with a
known upper bound on the delivery time. This is similar
to what the first analysis of both PoW [GKL15] and
PoS [KRDO17] assumes. This can be extended to a semi-
bounded delay network (with a known upper bound) in the
same way as [GKL15], [DGKR18]. This network model is
different from the analysis in [PS18], which assumed only

a partially synchronous network8. However, NSBs are not
secure in that model.
More precisely, we assume that time is discretized into

slots which are coarse enough for honest parties to have
enough time to first execute their computations for a slot
and then send out messages. At this time there should be
enough time left in the round such that any message sent
out at this point is ready for the delivery phase of the next
round. This assumption enables the possibility of creating
a flooding network with the property that if a message is
sent by an honest party in slot sl then it will be delivered
to any other party at time sl + 1.
Adversarial parties sending messages in slot sl does,

however, have the possibility of postponing sending their
messages until the very end of the round in which case
they can choose to let some honest parties receive their
message in slot sl + 1 and others in slot sl + 2.

At first this may seem as a stronger assumption than
used in previous work [GKL15], [KRDO17], [DGKR18].
There adversaries can send different messages to different
parties. Adversarial blocks will then be propagated to
other honest parties only after an honest party extends
these. This is because honest parties will send entire
chains around instead of just blocks. Note, however,
that our network model can easily be derived from their
assumptions by simply letting all honest parties gossip
about the blocks they receive. Our network model can be
instantiated with a gossip protocol. This is closer to what
is used in NSBs running in practice and more realistic
than previous pen-and-paper modeling.

To capture this network in our formalization, we intro-
duce the type Message as an inductive type with only a
single constructor namely BlockMsg : Block→Message,
and the record MsgTuple defined by

MsgTuple :=
{msg : Message, rcv : Party, cd : Delay},

where Delay , {1, 2}. The field msg contains the actual
message that is to be delivered at the receiving party
contained in the field rcv. cd is the current delay of the
message, which will be decremented for all messages as
time progresses in the model.
The flooding network available to the parties is formal-

ized as a set of functions that operate on a global state. The
functionalities flood_msgs and flood_msgs_adv enable
the honest parties, the adversary, respectively to send

8A network that only guarantees that messages eventually will be
delivered.



messages.

flood_msgs : Messages→
GlobalState→
GlobalState

flood_msgs_adv : seq (Messages ∗DelayMap)→
GlobalState→
GlobalState

Both functions will create a new message-tuple with the
message for each party in the execution order of the global
state. flood_msgs will set the delay of the messages that
are being sent to 1, whereas the flood_msgs_adv takes an
extra parameter for each message namely a DelayMap ,
Party→ {1, 2}, such that the adversary for each message
explicitly can choose what parties should have it delivered
in the next round and what parties should have it delivered
in two rounds.

F. Reachable Worlds
To be able to reason about the reachable states of

the protocol, we first define an initial global state, N0 :
GlobalState. To this end we parameterize our devel-
opment over a sequence of parties participating in the
protocol, InitParties : seq Party, and create an initial
state for all these parties with their tree set to tree0. The
development is also parameterized over any initial state
that an adversary wants to choose, AdversarialState0 :
AdversarialState.

N0 is now defined in a straightforward manner with no
messages in the message-buffer, nothing in the history,
AdversarialState0, and the parties’ respective initial
states.
We also parameterize our development by a total map

Honest : Party→ B which decides what function should
be invoked for each respective party. This corresponds to
the adversary being able to statically decide who should
be corrupted.
We furthermore parameterize our development by a

total map TxSelection : Slot → Party → Txs which
decides what transactions honest parties should include
in the blocks they bake. We choose this modelling as it
is completely irrelevant for the blockchain what payload
parties make it carry. The entire proof could be (and
was in earlier versions) performed without any content
in the blocks. By adding some payload inside blocks we
allow the adversary the possibility to try to disturb the
blockchain by letting (otherwise identical) blocks have
different content.9

To capture how the protocol progresses we define a
relation over atomic steps of a global state that enforces
a state-transition system. A depiction of the transition

9We are grateful to the CSF reviewers for this insight.

system can be found in Figure 1. In the definition below
progress refers to the progress stored in a global state.

Definition 7 (Atomic step reachable). SingleStep

For any two states N1, N2 : GlobalState, we say that
N2 is reachable in an atomic step from N1 if one of the
following steps are taken.
Receive: If the progress of N1 is Ready, then N1 can
step to the state obtained by invoking each respective
parties delivery-function, update the state of the state
according to the outcome of this, and set the progress
to Delivered.
Bake: If the progress of N1 is Delivered, then N1 can
step to the state obtained by invoking each (honest
or dishonest) party’s bake-function, updating the state
according to this outcome, and setting the progress to
Baked.
Increment: If the progress of N1 is Baked, then N1
can step to the state obtained by incrementing the slot
number and updating the progress to Ready.
Permute execution order: Any N1 can step to the
state obtained by permuting the execution order of N1.
Permute message buffer: Any N1 can step to the
state obtained by permuting the message buffer of N1.

When N1 can step to N2 in one atomic step, we write
N1  N2.

This transition relation can be seen as an environment
activating the parties in a restricted order. We model a
adversarial environment by allowing permutations of the
message buffer and the execution order. This models a
very powerful adversary who gets to choose the exact
message order for all messages sent, and decides the
execution order for each step10. Definition 7 is formalized
as an inductive relation over global states in Coq.

We extend this definition to cover multiple steps as the
reflexive transitive closure of atomic steps.

Definition 8 (Reachable). BigStep

For any two states N1, N2 : GlobalState we say that
N2 is reachable from N1 if N2 is reachable in zero or more
atomic step from N1. We write N1 ⇓ N2.

Our definition of reachable enforces that the set of parties
participating in the protocol remains static through the
execution of the protocol.

V. Safety and Liveness
This section will discuss our three main theorems (chain

growth, chain quality and common prefix) and outline
the structure of their proofs. The entire proof amounts to
roughly 6k lines of code using mathcomp’s compact proof
language.

10This is also our reason for representing the execution order and
message buffer as lists rather than multisets as we wish to give the
adversary as much power as possible, by letting him determine the
exact order.
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Figure 1: A depiction of the transition system that defines
reachable states.

Throughout the section we make two standard assump-
tions about the transition system. We assume that the list
of parties participating (InitParties) in the protocol is
unique, i.e., that no party will be activated twice during
the same atomic step, and that there is at least one honest
party among the participants11.

a) Phrasing of theorems: Our chain growth, chain
quality and common prefix are stated as implications rather
than the absolute probabilistic statements given in previous
analysis. Chain growth relies only on a certain number of
lucky slots within the time-span of states, whereas chain
quality relies on a collision-free state, a forging-free state
and certain condition on the winning events in a time-span.
Common prefix relies both on a collision-free and a forging-
free state. It states that either the property holds or a bad
event happens — namely that the adversary has gotten an
advantage that is statistically unachievable for a large k.

A probabilistic statement can be obtained by bounding
the probabilities of the desired hypotheses (or conclusion).
Formalizing this depends on the specific lottery functional-
ity, the hash function, and the signature-scheme. This is
not treated in this work, but below we will provide intuition
how to prove this; see also Appendix A.

A. Defining Preconditions

We start by defining some basic concepts. First, we
specialize hash-collisions to our setting. Next, we state
an assumption on the adversary’s capability to publish
blocks with honest identifiers, before we move on to define
certain good and bad events with respect to the lottery.

Any NSB protocol only provides its guarantees under the
assumption that there are no hash-collisions throughout
the execution. We define this as a collision-free state.

11This is not a requirement on the stake of the honest parties, but
simply a requirement that at least one of the actual parties in the
protocol behaves honestly. The requirements on the lottery and thus
on the stake will appear as preconditions for the individual statements.

Definition 9 (Collision-free). collision_free

A global state N : GlobalState with block history bh :
seq Block is collision-free if

∀b, b′ : Block,
b, b′ ∈ bh→ HashBlock b = HashBlock b′ → b = b′.

For any two global states N1, N2 : GlobalState, if
N1 ⇓ N2 and N2 is collision-free, then N1 is also collision-
free, as block histories are monotonously growing over
reachable states. We have taken care to phrase each of our
main theorems using this definition, instead of assuming a
global axiom on the injectivity of the hash-function or that
any reachable state is collision-free. The introduction of
such global axioms could lead to an inconsistency. Moreover,
it would not be possible to bound the probability that such
an axiom is satisfied by a collision-resistant hash-function.
We provide intuition how this can be done with the current
formulation:
Remark 1. If N : GlobalState is not collision-free, then
two blocks were produced between the initial state N0
and N where the hash-function collided. If an adversary
can break the collision-free assumption with non-negligible
probability, then one can construct a new adversary
emulating both honest and dishonest players whom will
produce a collision on the hash-function with non-negligible
probability.
Another assumption that is needed in order to be able

to state our main theorems is that the adversary cannot
forge any honest blocks through the execution that led to
a global state. We do not model signatures explicitly, so
instead, we assume that the adversary cannot send out any
block with the bid-field set to the identifier of an honest
party that is not already a part of the block history.

Definition 10 (Forging-free). forging_free

We say that a global state N : GlobalState is forging-
free if for any activation of the adversarial functions,
AdversarialBake, AdversarialRcv with parameters from
a global state N ′ : GlobalState where N ′ ⇓ N implies
that there are no honest blocks in what the adversary sends
that is not already in the block history of N ′.

In order to state this in the formalization, we introduce
a more fine-grained refinement of the reachable transition-
relation. We need this to be able to precisely state that
the assumption holds in between each individual party-
activation and not only in the synchronous steps.
The definition of forging-free closely corresponds to the
property one could achieve by using an EUF-CMA (exis-
tential unforgeability under chosen message attack) secure
signature scheme to sign blocks.
Remark 2. If N : GlobalState is not forging-free, the
adversary has been able to forge a message between the
initial state N0 and N , and has thus succeeded in breaking
the signature scheme. Any adversary that can break this
assumption with a non-negligible probability will thus be



able to break the EUF-CMA secure scheme with a non-
negligible probability.
We define a lucky slot to be any slot where an honest

party wins the lottery and an adversarial slot to be the
corresponding concept for adversarial parties. Finally, we
define honest advantage to be the difference between these
two amounts over a sequence of slots.

Definition 11 (Lucky slot). lucky_slot

A slot sl is a lucky slot if there is a party p ∈ InitParties
s.t. Winner p sl ∧ Honest p.

Definition 12 (Super slot). super_slot

A slot sl is a super slot if there is a exactly one party
p ∈ InitParties s.t. Winner p sl ∧ Honest p.

Definition 13 (Adversarial slot). adv_slot

A slot sl is an adversarial slot if there is a party p ∈
InitParties s.t. Winner p sl ∧ ¬Honest p.

There is a close connection between a lucky slot and
the creation of a left-isolated block in the analysis of
PoW [KMM+20], as we have scaled our slots such that
all honest blocks have time to propagate before the round
begins. Similarly, super slots corresponds to isolated blocks.
We call the block won by an honest player in a super slot
a super block

Definition 14 (Honest advantage). honest_advantage_range

We define the honest advantage for an interval of slots to
be the difference between the number of lucky slots and
the number of adversarial slots in this period.

B. Preliminary Lemmas
We now state some selected definitions and lemmas that

are used to prove our main theorems. The first lemma we
introduce describes how knowledge propagates between
honest parties.

Lemma 1 (Knowledge propagation). honest_tree_subset

Let N1, N2 : GlobalState and p1, p2 : Party. If N0 ⇓ N1,
N1 ⇓ N2, p1 is a party in N1 with tree t1, p2 is a party in
N2 with tree t2, N1 is at Ready, N2 is at Delivered, and
N1 and N2 are in the same slot then

allBlocks t1 ⊆ allBlocks t2.

Proof sketch. Our main observation is that at any point in
time a block is in the tree of p1, it is either also already in
p2’s tree or to be delivered at the next delivery transition.
Blocks can be added when an honest party wins the right
to bake a block, in which case they will immediately send
the block to all other parties and thus fulfill the invariant,
or they can be added by an adversary and thereby delivered
to an honest party by a delivery event, in which case it
will be delivered to all other honest parties in the following
delivery slot (by our network assumption).
This is in particular true when p1 and p2 is at Ready,

which means that after the delivery transition p2 will know
all the blocks that p1 knew before.

Since honest parties extend their trees monotonously
this subset-relation will also extend to any state that leads
to N1 and any state that is reachable from N2.

The core insight of the proof for common prefix is that
each time a super-slot is won the block produced in this
slot will not have the same depth in a chain as any other
honest block. In order to define this precisely, we define
how to calculate a chain from a block12.

Definition 15 (Chain from a block). cfb

We define the chain from a block b : Block with respect
to a sequence of blocks bp : seq Block to be the chain
obtained by following the pointers to from b through bp
ending in GenesisBlock. We write cfb b bp to denote
this chain. If no such chain can be obtained by following
pointers in bp we say that cfb b bp = [::].

Definition 16 (Position of a block). pos

We furthermore define the position of a block, written pos,
to be the length of the chain obtained by following the
pointers from the block,

pos b bp := |cfb b bp|.

As this is not a structurally recursive function we use
the coq-equations plugin [SM19] in order to automatically
get a strong induction principle. This allows us to prove
the following lemma that is a central step towards proving
the common prefix property.

Lemma 2 (Super block positions). no_honest_pos_share_sb

Let N : GlobalState, sb, b : Block and let bh :
seq Block be the history of blocks in N . Suppose N0 ⇓ N ,
N is forging-free and collision-free, b, sb ∈ bh, b is honest
and sb is a super block then

pos sb bp 6= pos b bp.

Proof sketch. The proof proceeds by induction on the
transition relation N0 ⇓ N . The base case is trivial as there
are no blocks in the block history of N0. In the induction
case we distinguish between which transition was taken
last.
Receive: Receiving messages does not change the sub-
set of the block history that is honest. Moreover, a
collision-free state guarantees that the positions of the
honest blocks that are already in the block history do
not change.
Bake: Let sl be the slot of N . We note that any honest
block b′ ∈ bh must have a slot number that is less than
or equal to that of the current state, and distinguish
between these two cases.

slot sb < sl : Any honest party that bakes a new
block in this step must have known about sb

12This definition does not appear in previous pen and paper proofs,
which only talks about positions of blocks without defining with
respect to what set of blocks.



(by Lemma 1) and are aware of a valid chain that is
at least as long as the position of sb. We will therefore
have for any new block b that is baked in such a way
that pos sb bh < pos b bh.
slot sb = sl : There is exactly one honest party that
bakes a block in this step. By Lemma 1 this party
must know about all other honest blocks baked in
previous rounds. We will therefore have that for any
old honest block b that pos b bh < pos sb bh.

Increment/Permute orders: These transitions do
not change the block history.

At last we define pruning and a prefix, as well as a minor
lemma relating the notions in order to phrase and prove
our common prefix theorem.

Definition 17 (Pruning). prune_time

Let c : Chain be a chain and let sl : Slot be a slot. We
prune c by sl by removing all blocks that has a slot higher
than sl,

prune sl c , {b← c | slot b ≤ sl}.

For a valid chain, pruning corresponds to simply remov-
ing blocks until the head of the chain is below a or equal
to a certain slot. We finally define prefix13.

Definition 18 (Chain prefix). suffix

Let c1, c2 : Chain. We say that c1 is a prefix of c2 if there
exists a c3 : Chain such that c3 ++c1 = c2. We write
c1 � c2.

Lemma 3 (Prune prefix transitivity). prune_suffix_trans

For any sl : Slot and c1, c2, c3 : Chain such that
prune sl c1 � c2 and prune sl c2 � c3, we have
prune sl c1 � c3.

C. Main Theorems
We are now ready to state our three main theorems. For

clarity we ignore the constants −1 and 1 when counting the
number of lucky/adversarial/super slots. These constants
are used to account for adversary’s ability to wait one
more round to bake than the honest parties, because he
immediately knows of all previously baked blocks. The
precise statements can be found in the accompanying
formalization.

At a slot sl any party with a tree t will consider their
best chain to be the chain calculated from the tree by
disregarding all blocks from this slot and the future,
bestChain (sl−1) t. We will show the three key properties
for such chains.

The chain growth property intuitively says that in each
period, the best chain of any honest party will increase at

13Technically this is a suffix due to the orientation of our list
structure, but to avoid confusion we use the word prefix to align with
previous results.

least by a number that is proportional to the number of
lucky slots in that period.

Theorem 1 (Chain Growth). chain_growth_parties

LetN1, N2 : GlobalState, p1, p2 : Party, sl1, sl2 : Slot
and w : N. If N0 ⇓ N1, N1 ⇓ N2, p1 is a party in N1 with
tree t1, p2 is a party in N2 with tree t2, the round of N1 is
sl1, the round of N2 is sl2 and there are at least w lucky
slots between N1 and N2 then

|bestChain (sl1 − 1) t1|+ w ≤ |bestChain (sl2 − 1) t2|.

Proof sketch. We proceed by induction on the number of
lucky slots, w.
The base case follows by monotone growth of honest

chains over time14. In the induction case we identify the
global state N with the lowest slot number sl s.t., N1 ⇓ N ,
N ⇓ N2, and lucky_slot sl. In the global state N , we
establish that the honest party who wins the slot creates
a new chain that is strictly longer than any chain of an
honest party in N1, as they knew what was there before
by Lemma 1. We complete the proof by applying the
induction hypothesis to N .

For a concrete lottery implementation, a probabilistic
version of Theorem 1 can be proved by calculating the
expected number of lucky slots in a period and then using
the Chernoff-bound to upper-bound the likelihood that
less lucky slots than expected occur.

We now present the chain quality property. The chain
quality property says intuitively that within any chunk of
consecutive blocks in an honest party’s best chain, there is
an honest share of blocks. This share is proportional to the
difference between the number of honest and adversarial
slots.

Theorem 2 (Chain Quality). chain_quality

Let N : GlobalState, p : Party and w : N. Suppose
N0 ⇓ N , N is forging-free and collision-free, p is a party in
N with tree t, the round of N is sl, and let Bi . . . Bj be
a consecutive interval of blocks of bestChain (sl − 1) t. If
there is an honest advantage of at least w for time periods
longer than slot Bi− slot Bj then the number of honest
blocks in Bi . . . Bj will be at least w.

Proof sketch. We define Bî and Bĵ s.t. Bî . . . Bĵ is the
smallest interval of bestChain (sl − 1) t such that
Bi . . . Bj ⊆ Bî . . . Bĵ , Bî is honest and Bĵ is either honest
or the head of bestChain (sl− 1) t 15. As Bî is honest, we
can apply Theorem 1 to establish that |Bî . . . Bĵ | is at least
the number of adversarial slots in the time span between
the creation of Bî and Bĵ plus the honest advantage in
this time span. As all blocks in a valid chain (and as
bestChain (sl − 1) t is valid) have unique slot numbers

14Technically, the slot number of N1 needs to be strictly smaller
than that of N2, as the knowledge of p1 needs to have time to
propagate to p2 by Lemma 1.

15Bî is well defined as we consider the genesis block to be honest.



this implies that the there must be at least w honest blocks
in between Bî and Bĵ and therefore also w honest blocks
in Bi . . . Bj .

We achieve the full chain-quality property that is defined
for any fragment of any honest party’s best chain rather
than the somewhat weaker property considered in [Ren19].

A probabilistic version of Theorem 2 can be proved for a
lottery where the expected number of lucky slots is higher
than the expected number of adversarial slots. This induces
the assumption that a majority of stake is to be honest. If
this is the case, then a standard probability bounds (such
as Chernoff’s) can be used to bound the likelihood that
less lucky, respectively more adversarial, slots occur than
expected within a period of slots.

Together chain growth and chain quality prove liveness,
as chain growth ensures that more blocks will be appended
to any honest party’s log and chain quality ensures that
there will be some honest input to this log.

The common prefix property informally says that during
the execution of the protocol the chains of honest parties
will always be a common prefix of each other (after
removing some blocks on the chain). We follow [KMM+20],
[GKL15] and define two variants of the common prefix
property. The first variant ensures that any two best chains
of honest parties are consistent within a single round, and
the second variant ensures that the best chain of an honest
party is consistent with earlier best chains of any honest
party. The latter variant constitutes safety for blockchain
consensus protocols.

Lemma 4 (Common prefix-lemma). cp_prune_gen_inc

Let N : GlobalState, p : Party, c : Chain, k : Slot
and bh : seq Block. Suppose N0 ⇓ N , N is forging and
collision-free, p is a honest party in N with tree t, the
round of N is sl, the block history of N is bh, c ⊆ bh, that
c is a valid chain, all blocks in c have a slot number less
than sl and that |bestChain (sl− 1) t| ≤ |c|. Then one of
the following events occurs:
1) prune k (bestChain (sl − 1) t) � c
2) There exists sl′ : Slot, s.t. sl′ ≤ k and the number

of super slots in the slot range from sl′ to sl is less
than two times the number of adversarial slots in the
same period of time.

Proof sketch. We define b′ to be first honest block in the
common stem of c and bestChain (sl−1) t. If k < slot b′

we can conclude prune k (bestChain (sl − 1) t) � c.
Otherwise we show Event 2.
We define sl′ as slot b′. Let bh be the block history

of N . For any honest block b that is produced between
slot b′ and sl, we have

pos b′ bp < pos b bp ≤ |bestChain (sl − 1) t| ≤ |c|.

pos b′ bp < pos b bp because at the time b was created
the honest party that created it knew about a chain of

length pos b′ bp, and pos b bp ≤ |bestChain (sl− 1) t| as
otherwise there would be a longer chain available to p at
time sl. Any adversarial slot can appear at most once on
each chain. So, by Lemma 2 there must be an adversarial
slot for every two super blocks in this period.

Remark 3. For any reachable N global state with two
honest parties, Lemma 4 can be instantiated with c being
the longer of the best chains for these parties. This will
thus give us that the best chain of any honest party will
be a prefix of any other honest party’s best chain.

Theorem 3 (Timed Common prefix). timed_common_prefix

LetN1, N2 : GlobalState, p1, p2 : Party, sl1, sl2 : Slot
and k : Slot. If N0 ⇓ N1, N1 ⇓ N2, N2 is forging-free and
collision-free, p1 is a party in N1 with tree t1, p2 is a party
in N2 with tree t2, the round of N1 is sl1 and the round
of N2 is sl2. Then one of the following events occurs:

1) prune k (bestChain (sl1−1) t1) � (bestChain (sl2−
1) t2)

2) There exists sl′, sl′′ : Slot, s.t. sl′ ≤ k, sl1 ≤ sl′′ ≤
sl2 and that the number of super slots in the slot range
from sl′ to sl′′ is less than two times the number of
adversarial slots in the same period of time.

Proof sketch. The proof proceeds by induction on the
transition relation N1 ⇓ N2. The base case where N1 = N2
is solved by applying Lemma 4 (in particular Remark 3). In
the induction case we distinguish between which transition
was taken last.

Receive: The induction hypothesis gives us that the
statement is true for the tree t′2 which p2 has just before
he receives the messages in this round. The messages
that p2 receives in this round must however already be in
the block history and therefore Lemma 4 can be applied.
This either results in Event 2 or we can apply Lemma 3
to achieve that prune k (bestChain (sl1 − 1) t1) �
(bestChain (sl2 − 1) t2).
Bake: The induction hypothesis gives us that the state-
ment is true for the tree t′2 which p2 has just before
he tries to bake for this slot. If p2 bakes a block for
the slot sl, the new block that is baked cannot itself
be a part of the bestChain (sl2 − 1) t2 but it might
however still change the internal structure of the t2 such
that bestChain (sl2 − 1) t2 6= bestChain (sl2 − 1) t′2.
This new chain must, however, already be a part of the
block history, and therefore Lemma 4 can be applied.
This either results in Event 2 or we can apply Lemma 3
to achieve that prune k (bestChain (sl1 − 1) t1) �
(bestChain (sl2 − 1) t2).
Increment: Incrementing the time allows for a slightly
longer best chain than just before time was incremented.
We apply the induction hypothesis to establish the
relationship between the old best chain of p2 and the best
chain of p1. Now we again apply Lemma 4 and Lemma 3.



Permute execution order/message buffer: These
transitions do not change the best chains of any honest
parties and the induction hypothesis can be applied.

As the conclusion of Theorem 3 is a disjunction it is
enough to exclude Event 2 from happening to ensure
Event 1. To achieve a probabilistic bound for Event 2, it is
necessary that the lottery ensures that the expected amount
of super-slots is more than twice the expected amount of
adversarial slots.16 If that is the case, standard probability
bounds (such as Chernoff’s) can again be used to upper-
bound the likelihood that less super slots, respectively more
adversarial slots, than expected occur within a period of
slots. Finally, to exclude that any such period exists, union-
bound is used to sum the probabilities of all the different
interval lengths larger than k but less than the current slot
number.
A covert adversary is one that leaves no trace that it

did not follow the protocol. Such adversary would only
be able to place each block on one chain. If we restrict
ourselves to such adversaries, we would immediately obtain
a tighter bound. We could follow [KMM+20] and only need
to assume that a majority of the resources behaves honest.

VI. Related Work
a) Verified distributed systems: A series of works have

focused on formally verifying distributed systems in a non-
Byzantine setting. Raft [OO14] is a consensus algorithm
that withstands benign failures and is simpler than similar
algorithms, such as Paxos. The safety property of Raft
was formalized using the Verdi framework [WWP+15],
[WWA+16]. Verdi relies on a shallow-embedding of proto-
cols into Coq and provides the verified-system-transformers
which facilitate composable verification. Applying Coq’s
extraction to the Raft consensus protocol one obtains an
implementation when connected to a network-shim. Their
extracted code is as efficient as non-verified implementa-
tions.
Disel [SWT18] is a framework for verifying distributed

systems. It is built on a foundation of separation logic
embedded in Coq and allows verifying OCaml like programs
using a Hoare style reasoning. One can use the partial
correctness of their Hoare style specifications to reason
about safety. Aneris [KJTO+20] is another framework
embedded in Coq for verifying distributed systems. It
is built upon the Iris separation logic [JSS+15], which
allows reasoning about multi-threaded computations for
local nodes while being able to combine the statements
about local nodes to safety statements for the entire system.
Neither Disel nor Aneris has been used to reason about
Byzantine behavior.

Lamport designed TLA+ [Lam92] with the specific pur-
pose of formally specifying and checking distributed proto-

16For this to be possible for a concrete lottery construction, such
as the one in Ouroboros Praos, at least 2

3
′
s of the underlying stake

needs to be controlled by honest parties.

cols. This was used together with the TLAPS model-checker
to check the safety (but not liveness) of PBFT [Lam11].

IronFleet [HHK+15] is a framework for combining both
TLA-style specifications that are machine-checkable and
Hoare style specifications in Dafny [Lei10]. They prove a
performant implementation of Paxos (a consensus algo-
rithm withstanding benign failures) to be both safe and
live.

b) Verified cryptographic protocols: There is an impres-
sive amount of work verifying cryptographic primitives and
two-party protocols [BBB+19]. However, there are only few
works that verify multi-party protocols that are designed
to be robust in an adversarial setting. We mention the
formalizations of multiparty computation [HKO+18] and
the AWS key-server [ABB+19]. These are both done in
Easycrypt in the computational model. These works bene-
fits from Easycrypt’s logic that allows to reason about game-
hops easily but also show limitations of Easycrypt’s build-in
programming language pwhile that lacks primitives for
communication. The latter increases the complexity of the
formalizations.
Modern cryptographic security proofs of consensus,

e.g. [BMTZ17], [BGK+18], emphasize the use of an in-
formal composible framework. This will also be important
for us when we want to prove that the system remains
secure when we instantiate our lottery functionality with
an implementation that has been proved to be secure in iso-
lation. Fortunately, such modular/composible frameworks
are being developed more formally [CSV19], [LSBM19].
However, only very simple protocols have been proven
secure using these, due to the complexity of the frameworks
themselves.

VII. Conclusion

We have given a formalized proof that a PoS NSB proto-
col with a static set of corrupted parties in a synchronous
network has chain growth, chain quality, and common
prefix. This has required us to define precise semantics
for the execution of the protocol. We have defined honest
behavior by computable functions and used this to define a
relation on reachable global states. We have also developed
a new methodology for specifying core data-structures by
their functional behavior rather than concrete implemen-
tation. This enables us to focus on the core combinatorial
arguments while also providing a clear specification for
optimized implementation. The methodology further has
the consequence that we are able to prove security for
parties running different implementations of the same
protocol.
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Appendix

A. Concrete Probability Bounds
For parties running the blockchain quantitative guaran-

tees will often be more useful than the implications stated
in Theorems 1 to 3. What is the minimal expected growth
of the best chain? How long does a party need to wait



before it is 99% certain that a block will not be rolled
back?
To answer these questions, we will show how to bound

the probabilities of the preconditions/conclusions of
Theorems 1 to 3. We will not discuss the probability
of having a forging-free and collision-free global state
any further as we have already done so in Remark 1
and Remark 2. Instead, we focus on the probability
that a sequence slots occurs that fulfills the respective
preconditions or excludes a part of the conclusion.

Theorems 1 to 3 hold for any abstract lottery function,
thus in particular for a random function17. Hence, the
properties also hold for an implementation of the lottery
such as the one constructed in Ouroboros Praos [DGKR18].
The lottery in Ouroboros Praos relies on a VRF. This
is where the probabilities arises. For simplicity let us
assume that a concrete lottery gives rise to a series of
independent random variables (as the one from Ouroboros
Praos) corresponding to whether a specific slot fulfills
Definitions 11 to 13,

LSi =
{

1 if slot i is a lucky slot
0 else

SSi =
{

1 if slot i is a super slot
0 else

ASi =
{

1 if slot i is a adversarial slot
0 else

.

Given that a lottery gives rise to such a random experiment,
we now wish to bound the probability that a certain
sequence of slots satisfies the preconditions/conclusions
of Theorems 2 to 3. Before we proceed to bounding the
probabilities for such a lottery construction, we record a
standard probability bound.

Lemma 5 (Chernoff).
LetX1, . . . , Xn be independent random variables withXi ∈
{0, 1} for all i, and let µ := E

[∑n
i=1 Xi

]
. We then have for

all δ ∈ [0, 1],

Pr
[

n∑
i=1

Xi ≤ (1− δ)µ
]
≤ e−

δ2µ
2 ,

and

Pr
[

n∑
i=1

Xi ≥ (1 + δ)µ
]
≤ e−

δ2µ
3 .

We also introduce convenient notation for the successes
of the variables pLS := Pr[LSi = 1], pLS := Pr[SSi = 1], and
pAS := Pr[LSi = 1]. For an interval of slots r we define

LS(r) =
∑
i∈r

LSi, SS(r) =
∑
i∈r

SSi, and AS(r) =
∑
i∈r

ASi,

17I.e., a computation that, when evaluated throughout the execu-
tion of the protocol, returns the same output on same inputs.

and the corresponding expected values

E[LS(r)] = r·pLS, E[SS(r)] = r·pSS, and E[AS(r)] = r·pAS.

By instantiating Lemma 5 for these specific variables, we
now have that for all δ1, δ2, δ3 ∈ [0, 1],

Pr[LS(r) ≤ (1− δ1) · r · pLS] ≤ e−
δ2

1·r·pLS
2 , (1)

Pr[SS(r) ≤ (1− δ2) · r · pSS] ≤ e−
δ2

2·r·pSS
2 , (2)

Pr[AS(r) ≥ (1 + δ3) · r · pAS] ≤ e−
δ2

3·r·pAS
3 . (3)

Using these we now show how to bound the probabilities
for chain growth and common prefix.

a) Chain Growth: Equation (1) provides a lower
bound on the number of lucky slots as a function of
the interval length. As Theorem 1 ensures chain growth
corresponding to this quantity, this provides a lower bound
on the chain growth as a function of the interval length.

b) Common Prefix: For common prefix we wish to
exclude that Event 2 from Theorem 3 happens. To do so
we need that

SS(r) > 2 · AS(r).

For all δ, δ′ ∈ [0, 1], we have that SS(r) > (1 − δ) · r · pSS

except with probability e−
δ2·r·pSS

2 . Except with probability
e−

δ′2·r·pAS
3 , we have that (1 + δ′) · r · pAS > AS(r). So we

need to ensure that

(1− δ) · r · pSS > 2 · (1 + δ′) · r · pAS.

To do so we need the assumption on the lottery that
∃ε, pSS ≥ 2 · pAS + ε18. This implies the following condition

(1− δ) · r · (2 · pAS + ε) > 2 · (1 + δ′) · r · pAS

m

ε >

(
(1 + δ′)
(1− δ) − 1

)
· pAS · 2. (4)

This can be satisfied by choosing δ and δ′ to be small.
The probability that Equation (4) does not hold decrases
exponentially with r. To be precise as

e−
δ2·r·pSS

2 + e−
δ′2·r·pAS

3 .

To bound the existence of a time interval larger than a
specific r, but less than the current world length (and thus
exclude Event 2), we use union-bound and take the sum
of these exponentially decreasing probabilities.

c) Chain Quality: Can be proved by the exact same
approach as the common prefix, by using lucky slots instead
of super slots and assuming only an honest majority.

18This corresponds to assuming that 2/3 of the stake behaves
honestly for the Ouroboros Praos lottery.


