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Abstract—COVID-19 has been designated as a once-in-a-
century pandemic, and its impact is still being felt severely in
many countries, due to the extensive human and green casualties.
While several vaccines are under various stage of development,
effective screening procedures that help detect the disease at
early stages in a non-invasive and resource-optimized manner
are the need of the hour. X-ray imaging is fairly accessible in
most healthcare institutions and can prove useful in diagnosing
this respiratory disease. Although a chest X-ray scan is a
viable method to detect the presence of this disease, the scans
must be analyzed by trained experts accurately and quickly if
large numbers of tests are to be processed. In this paper, a
benchmarking study of different preprocessing techniques and
state-of-the-art deep learning models is presented to provide
comprehensive insights into both the objective and subjective
evaluation of their performance. To analyze and prevent possible
sources of bias, we preprocessed the dataset in two ways - first, we
segmented the lungs alone, and secondly, we formed a bounding
box around the lung and used only this area to train. Among
the models chosen to benchmark, which were DenseNet201,
EfficientNetB7, and VGG-16, DenseNet201 performed better for
all three datasets.

Index Terms—COVID-19 Diagnosis, Deep neural networks,
Disease prediction, Medical imaging, Region of Interest

I. INTRODUCTION

The first recorded case of COVID-19, caused by the coro-
navirus named SARS-CoV-2, was back in November 2019,
in Wuhan, China. Since then, due to its unique attributes, it
has proven to be an extremely infectious virus, infecting 67.6
million people as of December 2020. COVID-19, like other
coronaviruses, affects respiratory organs significantly, causing
shortness of breath and other similar symptoms. In severe
cases, it can evolve into pneumonia. The COVID-19 virus’s
presence is detected most accurately using the RT-PCR (Real-
Time reverse transcription-polymerase Chain Reaction) test.

PCR test results may take a few hours to days, depending on
the testing site. PCR sample collection and analysis is a highly
manual and laborious process, and reagent contamination can
cause a high false-positive rate [1].

In Chest X-rays and Computed Tomography (CT) Scans,
COVID-19 appears as peripheral and bilateral nodular ground-
glass opacities and consolidation [2]. Therefore, these tools are
also used, albeit not as the primary diagnostic tool, to detect
the virus’s presence. Using computer vision to aid diagnosing
in the medical industry helps save medical professionals’
precious time, especially in a pandemic, where the healthcare
services are overwhelmed with a flood of patients coming
in. In this regard, deep neural models like Convolutional
Neural Networks (CNNs) have shown to be very useful for
medical image classification purposes. Transfer learning, in
particular, helps overcome challenges like insufficient training
data while still attaining reliable results. Our study aims to
compare the performance of different state-of-the-art model
architectures for multi-class prediction of two lung anomalies,
COVID-19 & Pneumonia, and normal (healthy) lungs with
different preprocessing techniques. Based on our analysis of
existing literature on detecting COVID-19 and Pneumonia
from Chest X-rays, we shortlisted three models to benchmark.
Furthermore, we implemented various preprocessing methods
like segmenting the lung and forming the bounding box to
avoid bias. We have also used visualisation techniques to
compare the features learned by these models.

This paper is organized as follows: II presents a detailed
discussion on the existing research in the area of interest.
In Section III, we describe the different models that were
chosen for the benchmarking study, the datasets and different
preprocessing methods adopted to eliminate bias. Section IV
presents the observations with reference to the comparative
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performance of the models, followed by conclusion and future
directions of research.

II. RELATED WORK

Image classification techniques have provided significant
results for diagnosis and prognosis in the medical field. This
method is applied to images of X-rays, CT scans, and even
MRI scans. Poddar et al [3] proposed a hybrid model called
VDSNet which combines CNN, VGG, data augmentation and
spatial networks (STN) to detect lung diseases and reported
a validation accuracy of 73%. The dataset used consisted of
chest X-ray images and some additional information such as
gender as well as age. Kieu et al [4] attempted to detect
abnormal regions from a minimal set of features through
a model that uses multiple Convolutional Neural Networks.
ConvnetJS library was used to build the proposed mutli-
CNN model. The classifiers of the model finally provided the
normal/abnormal density of each image and Fusion rule was
employed to compute the results.

There exist several studies that examine the performance
and effectiveness of transfer learning on natural image
datasets. One such study by Wu et al [5], implemented
and compared ResNet50, VGG-19, VGG-16, and Inception-
v3, and found that the accuracy of flower recognition is
improved with transfer learning when compared to traditional
methods. Hon et al [6] used VGG and Inception Models
for transfer learning to overcome the major challenge that
required a large dataset for training, as well as to optimize
the architecture of the deep learning model. Hashmi et al [7]
put forward a weighted classifier for the task of penumonia
detection. This paper uses a number of state-of-the-art models
namely InceptionV3, Xception, ResNet18, MobileNetV3, and,
DenseNet121 and combines the predictions made by the same
in an optimal way. Ozturk et al [8] builds upon the Darknet-
19 model termed as ’You Only Look Once’, which performs
object detection in real-time, to classify images of X-rays.
DarkCovidNet, the model proposed, had been trained on three
labels: Pneumonia, COVID-19 and No-Findings for which it
attained an average classification accuracy of 87.02%.

Rahimzadeh et al. [9] presented a concatenated neural
network and achieved an overall accuracy of 91.4% between
five folds to classify the chest X-rays into three classes:
normal, COVID-19, and pneumonia. The features extracted
from ResNet50V2 and Xception models were used to build the
concatenated model and finally connected to a convolutional
layer for classification. Bai et al. [10] attempted to classify
between COVID-19 viral pneumonia contagion and other
viral pneumonia from chest CT scans. CovaidAID [11] used
the pre-trained model of CheXNet to classify CXR images
into the No-Findings, COVID-19 and the various types of
pneumonia. Though the size of the dataset used was small,
the proposed model achieves an accuracy of 90% and also a
sensitivity of 100% for the COVID-19 infection. Jaiswal et al
[12] utilized DenseNet for COVID-19 infection classification,
however a binary classification problem was tackled, COVID-
19 vs Normal. Zebin et al [13] used the Cohen dataset

for COVID-19 positive X-rays used VGG16, ResNet50, and
EfficientNetB0 to predict whether a given X-ray is COVID-
19 positive, Pneumonia positive or normal. They implemented
CycleGAN architecture for increasing the under-represented
COVID-19 class images.

Based on the extensive literature review conducted, several
potential directions for further research were identified. Sev-
eral works employ state-of-the-art deep learning models like
variations of VGG, ResNet, DenseNet, MobileNet, Xception
for these prediction tasks. These models have performed well
in different image classification scenarios, and are therefore are
well suited for COVID-19 detection as well. A few researchers
have experimented with different preprocessing techniques to
ensure the identification of the Region of Interest. Most works
have reported their results using standard metrics, without
showcasing the features that the models have picked up. This
opens up potential new avenues to explore for visualization of
learned features, for more intuitive predictions.

III. PROPOSED METHODOLOGY

A. Datasets

The frontal chest X-ray images have been gathered from a
variety of sources that are available for public use, collected
by Cohen et al [14], Daniel et al [15] and Linda et al [16]. The
dataset contains X-ray image scans with 3 labels - COVID-19,
NORMAL (healthy), and PNEUMONIA. There are a total of
6432 frontal chest X-ray images, out of which around 20% of
them have been used for testing. Table I shows the train/test
data split.

TABLE I. NUMBER OF IMAGES PER CLASS AFTER DATA-SPLIT

Split/Label COVID-19 Normal Pneumonia Total
Train 460 1266 3418 5144
Test 116 317 855 1288

Total (class-wise) 576 1583 4273 6432

We used online (real-time) data augmentation, leveraging
the ImageDataGenerator library of Keras [17]. This library
performs data augmentation in real-time on each batch of im-
ages, as it is being fed to the model for training. Augmentation
techniques like horizontal flipping, shifting, altering brightness
and random zoom have been used. To remove potential bias
in the data and identify the ROI within each scan (which is
around the lung area), we used two different approaches -
Segmentation and bounding box, which are described below.

1) Segmentation: The first approach is to segment the
lungs, for removal of any bias sources like the presence of
different texts on the X-ray, or parts of the body apart from
the lungs that might be visible and so on. For this task, the
standard U-Net [18] architecture has been used, which was
trained on Shenzhen Hospital X-ray and Montgomery County
X-ray Set [19]. The proposed model [20] for medical image
segmentation was built for the RSNA Pneumonia Detection
Challenge on Kaggle. The U-Net model was specifically built
for biomedical image segmentation, and therefore serves our
purpose well.
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2) Bounding Box: To prevent the model from learning
features from the intricate mask edges, another approach
was implemented. We generated bounding boxes around the
contours of the lung mask to create clean edges. This also
ensures that minimal information is lost because of potential
error while generating the mask. Fig. 1 and 2 show illustrate
the process.

Fig. 1. Original X-ray along with generated mask and final overlay image

Fig. 2. Generated mask from Segmentation process, mask with bounding
box, and final overlay image

B. Deep Neural Models

Based on the extensive review of existing works and their
use in other similar classification scenarios, the following mod-
els were chosen for benchmarking experiments. Each of these
models have been trained and tested on all 3 types of datasets
(mentioned above). Transfer learning is used to compensate
for the relatively small dataset that is currently available to us
- this improves training speed as the model is already able to
discern some basic low-level features beforehand, and needs to
be trained to recognise more relevant and high-level features.
The models are described below.

1) DenseNet201: - In the DenseNet model, features learned
by all previous layers are used by the classifier due the
densely connected nature of the model’s convolutional layers.
The decision boundaries obtained from this model tend to
be smoother. Rich patterns and more diverse features can
be learned by this model. It does not face the vanishing
gradient problem either, and takes less time to train due to
its relatively low number of parameters (both achieved by
dense connections across convolutional layers). The variant
of DenseNet used is DenseNet201, which is 201 layers deep.
For our experimental purposes, only the layers from the fifth
convolutional block onwards (including) are made trainable.
The total number of trainable parameters are 8,088,579 and
the number of non-trainable parameters are 11,339,584.

2) EfficientNetB7: - EfficientNet [21] in comparison to
most CNN models, achieves both a greater accuracy and is

more efficient, while reducing parameter size and FLOPS by a
significant margin. EfficientNet is particularly useful for using
deep learning on the edge, as it reduces compute cost, battery
usage, and also training and inference speeds. It has also been
shown that the latest version of EfficientNet, i.e., EfficientNet-
B7, has the highest accuracy among all, with less number of
parameters. For our experimental purposes, only the layers
from the seventh convolutional block onwards (including) are
made trainable. The model has a total of 24,551,235 trainable
parameters and 41,021,264 non-trainable parameters.

3) VGG-16: - The VGG-16 model is one of the most
versatile and widely used pre-trained models for image clas-
sification, and has hence been used for benchmarking. For
the purposes of this paper, layers after the fifth convolutional
block (including) are made trainable. The number of trainable
parameters is 7,677,827, while the number of non-trainable
parameters is 7,635,264.

For the task of classifying the chest X-ray images, we
adopted transfer learning techniques. Transfer learning per-
forms well in training DNNs with comparatively little data.
All the models have been pretrained on the Imagenet database
[22], which is widely used for research. The model is loaded
using a generic and well-trained image classification network
for feature extraction, and then by adding a few layers to suit
the classification task at hand. Fig. 3 shows the layers that
have been added:

Fig. 3. Classification Task - Layers added

For visualisation, heatmaps are generated using the
Gradient-weighted Class Activation Mapping (Grad-CAM)
technique [23]. This technique shows how important each pixel
(location) is for the considered class by producing heatmaps of
2D class activation over the input image. Grad-CAM performs
visualisation in the following manner: Given an input image,
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the output feature map of a particular convolution layer is
taken. Each channel in this feature map is weighed by the
gradient of the corresponding output class with respect to that
particular feature map. Using Grad-CAM, we can validate
visually where our network is learning from, verifying that
the correct patterns in the image are being looked at and that
the model is indeed picking up those patterns.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For the experimental validation, we experimented with all 3
models, training them for 20 epochs on each of the 3 datasets
created as described earlier. The images were resized to a
shape of 224*224*3, and a batch size of 16 (pre-augmentation)
was used. The model was trained using the Adam optimizer
(lr=0.0001), and categorical cross-entropy was used as the loss
function.

For each dataset, the training accuracy and loss at each
epoch for all models have been plotted. This allows us to
compare the training performance of the models on the same
dataset. The metrics used are - recall (1), precision (2), F1-
score (3) and accuracy (4). Recall for a particular class refers
to the portion of correctly predicted images for that class out
of all the images in that class. Precision for a particular class
refers to how many images are truly of that class, out of all
those predicted to be in that class. F1-score for a particular
class is the harmonic mean of the recall and precision of that
class. Accuracy is the number of accurately predicted images
out of all the images.

recall =
TP

FN + TP
(1)

precision =
TP

FP + TP
(2)

F1− score = 2.
recall . precision

recall + precision
(3)

Accuracy =
AccuratelyPredictedImages

TotalNumberofImages
(4)

where FP is the number of False Positives, FN is the number
of False Negatives, TN is the number of True Negatives and
TP is the number of True Positives.

Fig. 4. Comparison of training metrics of all model-dataset combinations

Recall (1), Precision (2) and F1-Score (3) are computed for
each of the labels - Pneumonia, COVID-19 and Normal, for all
3 types of datasets. The accuracies (4) are computed for each
dataset as a whole. These values, reported in Table II, reflect
the observation made in the training metrics, from which it
is evident that all the models perform well for COVID-19
detection. From Fig. 4, it can be noted that DenseNet gives
the highest accuracy and the lowest loss in terms of training
metrics for all the datasets. However, this is not enough
to conclusively say that the model is indeed better, as we
need to compare the testing metrics of these models as well.
Comparing these values while keeping the dataset constant
shows us a clearer picture of the performance of each model.

The F1-Scores of each model, as seen from Table II show
that the DenseNet model performed the best across all datasets.
For this reason, we move forward by comparing the perfor-
mance of each dataset within DenseNet. The training accuracy
and loss after each epoch for each dataset with DenseNet is
plotted in Fig. 5. The training accuracy is highest for the
raw dataset, followed by bounding box dataset and finally the
segmented dataset.

It is important to remember that the key to useful predictions

TABLE II. PERFORMANCE EVALUATION OF THE DEEP NEURAL MODELS USING STANDARD METRICS

Model Metric Raw Segmented Bounding-Box
COV NOR PNEU COV NOR PNEU COV NOR PNEU

DenseNet Precision 0.9909 0.8882 0.9693 1.0 0.8575 0.9687 0.9904 0.8575 0.9586
Recall 0.9396 0.9274 0.9602 0.8965 0.9495 0.9438 0.8965 0.9116 0.9485

F1-score 0.9646 0.9074 0.9647 0.9454 0.9011 0.9561 0.9411 0.8837 0.9535
Accuracy 0.9503 0.9409 0.9347

EfficientNet Precision 1.0 0.8457 0.9630 0.9714 0.9029 0.9462 1.0 0.8479 0.9540
Recall 0.8534 0.9337 0.9450 0.8793 0.8801 0.9672 0.8448 0.9148 0.9461

F1-score 0.9209 0.8875 0.9539 0.9230 0.8913 0.9566 0.9158 0.8801 0.9500
Accuracy 0.9340 0.9378 0.9293

VGG-16 Precision 1.0 0.7883 .9725 0.9557 0.8463 0.9779 0.9814 0.8713 0.9413
Recall 0.9310 0.9400 0.9122 0.9310 0.9558 0.9345 0.9137 0.8548 0.9567

F1-score 0.9642 0.8575 0.9414 0.9432 0.8977 0.9557 0.9464 0.8630 0.9489
Accuracy 0.9208 0.9394 0.9278
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is learning relevant features. Although the model trained on
the raw dataset seems to be performing well, when we analyse
the visualisation through GradCam, we can see that the model
is learning irrelevant features outside of the lung. In Fig. 6, for
Raw, the text on the top of the X-ray is where the network is
most activated, whereas in the model that was trained on the
bounding box dataset, the presence of ground glass opacities
in the lung are picked up very well, as seen from the heatmap
shown in Fig. 6 (third row, last image).

Fig. 5. Observed Accuracy and Loss performance for DenseNet

Fig. 6. Feature Learning of DenseNet for the (a) Raw dataset (b) Segmented
dataset (c) Bounding Box dataset

V. CONCLUSION & FUTURE WORK

In this paper, an attempt to compare and benchmark the
suitability of different preprocessing techniques on some state-
of-the-art CNN models to classify lung diseases is presented.

The problem of detecting COVID-19 from these X-rays and
differentiating them from non-COVID-19 pneumonia is rel-
atively new and often challenging. In the proposed work,
different preprocessing methods were applied to the datasets,
for training deep neural models, after which the classification
performance was compared across all the models. Among the
chosen models, DenseNet performed the best with best-in-
class precision, f-score, and accuracy performance. Due to the
limitation posed by dataset size and availability of COVID-
19 X-rays, we have employed transfer learning to overcome
this barrier and implement multi-class prediction with state
of the art convolutional models. Visualisation techniques were
incorporated for studying the bias introduced in the models
due to extraneous factors like text on the X-ray etc. These
experiments underscored the need for effective ROI identi-
fication for achieving best performance and also for scaling
the performance for larger datasets. Our findings provide a
basis for model selection for feature engineering, in cases
where multimodal data/ensemble models needs to be used for
classification. It can also be used to help select among different
types of preprocessing techniques, depending on the use-case,
which we intend to explore as part of future work. In addition
to these models, other state-of-the-art models can be compared
- after applying one of the proposed preprocessing techniques,
by making more of their layers trainable to further improve
performance.
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