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Abstract – Analytic epidemiology is a transdisciplinary 

study on the cognitive, theoretical, and mathematical models of 
COVID-19 and other contagious diseases. It is recognized that 
analytic epidemiology may be better studied by big data 
explorations at the macro level rather than merely biological 
analyses at the micro level in order to not lose the forest for the 
trees. This paper presents a basic research on analytic 
epidemiology underpinned by sciences of cognition, computer, 
big data, information, AI, mathematics, epidemiology, and 
systems. It introduces a novel Causal Probability Theory (CPT) 
for explaining the Dynamic Pandemic Transmission Model 
(DPTM) of analytic epidemiology. It reveals how the 
fundamental reproductive rate (R0) may be rigorously calibrated 
based on big data of COVID-19. A theoretical framework of 
analytic epidemiology is developed to elaborating the insights 
of pandemic mechanisms in general and COVID-19 in 
particular. Robust and accurate predictions on key attributes of 
COVID-19, including R0(t), forecasted infectives/resources, and 
the expected date of pandemic termination, are derived via 
rigorous experiments on worldwide big data of epidemiology. 
 

Keywords – Analytic epidemiology, COVID-19, cognitive 
pandemic models, R0, infectious transmission models, cognitive 
informatics, cognitive algorithms, big data experiments  
 
 

I. INTRODUCTION 
 

The worldwide outbreaks of COVID-19 [22] and other 
contemporary contagious diseases [12, 14] have triggered a 
wide scope of transdisciplinary studies on epidemiology 
towards their systematical treatments, control, prediction, 
prevention, management, and decision optimization [5, 8, 22, 
24]. The multidisciplinary investigations into the COVID-19 
pandemic have led to the emergence of analytic epidemiology 

underpinned not only by epidemiology, biology, and medical 
sciences, but also by computer, big data, information, AI, 
system sciences as well as mathematics, sociology, and 
economics. 
 

A fundamental challenge to analytic epistemology in 
general and COVID-19 in particular is the lack of cognitive 
informatics and mathematical models for pandemic monitoring 
and prediction in order to support rational and optimal decision 
making at different levels of communities, nations, and the 
world. The traditional mathematical models of epidemiology 
have been mainly based on probability theory, statistics, 
Bayesian networks, and differential equations [3, 4, 7, 13, 14, 
20]. There are three classical models known as the Susceptible-
Infective-Susceptible (SIS) model, the Susceptible-Infective-
Recovery (SIR) model, and the Susceptible-Infective-
Recovery-Susceptible (SIRS) model [3, 9]. In which the 
populations in different epidemiological categories as variables 
over time are identified in the classes of susceptible (S, not yet 
infected), infective (I, infected and transmissive), and recovered 
(R, removed from both classes of S and I with immunity), 
respectively. However, big data of COVID-19 collected 
worldwide [22] do not fit the classic pandemic models very 
well.          
 

The second challenge to analytic epistemology is that 
current pandemic models for contagious disease predication and 
estimation were based on classic probability theories [6, 11, 18, 
19]. Hence, perceptions on the transmission mechanisms of 
epidemiology have been based on two biased assumptions that 
the prior probabilities of contagious infections and 
transmissions are known and invariant [6, 22]. However, it is 
observed recently that, in general, the sample space of pandemic 
probability is not invariant as conventionally perceived [19, 20]. 
Therefore, both preconditional assumptions were untrue 
because none of them may be fulfilled due to the exponential 

6
 

20
20

 IE
EE

 1
9t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
og

ni
tiv

e 
In

fo
rm

at
ic

s &
 C

og
ni

tiv
e 

C
om

pu
tin

g 
(I

C
C

I*
C

C
) |

 9
78

-1
-7

28
1-

95
94

-0
/2

0/
$3

1.
00

 ©
20

20
 IE

EE
 | 

D
O

I: 
10

.1
10

9/
IC

C
IC

C
50

02
6.

20
20

.9
45

02
50



 

growth of the sample spaces of the affected population in 
COVID-19.  

 
In epidemiology, the agents transmitting infectious diseases 

to the hosts (human and/or animals) may be categorized into 
four categories including virus, bacteria, protozoa, and 
helminths [14, 22]. The COVOD-19 agent is recognized as a 
kind of new corona virus that is highly infectious with a 
potentially high mortality rate among the infected hosts [22]. 
There is a lack of practically available and dedicated pandemic 
decision-making system. The popular COVID-19 Dashboard at 
Johns Hopkins University has no function for autonomous 
decision making, rapid prediction, and early alarms [10]. 
Further, this type of online systems is not a real-time system and 
therefore do not support rapid decision making. The third 
constraint is that the exiting pandemic information systems in 
other countries cannot be directly migrated to Canada because 
both policies and data collection formats are different.  
  

This paper presents a basic research on the cognitive and 
mathematical foundations of analytic epidemiology for 
explaining the insights of epidemiology and COVID-19 
underpinned by the causal probability theory, big data algebra 
[20], and causal inference algebra [17]. Section II explores the 
domain of analytic epidemiology and its cognitive models. 
Section III creates a set of mathematical models for enabling 
rigorous pandemic analyses and forecasts. A set of experiments 
on epidemiological predictions is demonstrated in Section IV 
based on the analytic epidemiology theory and cognitive 
algorithms for causal probability elicitation from worldwide 
pandemic big data. 
 
 

II. THE COGNITIVE FOUNDATIONS OF 
EPIDEMIOLOGY 

 
This section explores the domain of analytic epidemiology 

in order to understand its universe of discourse and essential 
control attributes. It leads to the cognitive models of COVID-19 
and the calibration of fundamental attributes of epidemiology 
via big data analytics.          
   
2.1  The Domain of Analytic Epidemiology and Control 

Attributes   
  

Definition 1. Analytic epidemiology is a transdisciplinary 
field for contagious diseases and outbreaks detection, treatment, 
prediction, and optimal decision making underpinned by 
sciences of epidemiology, computer, big data, information, 
cognition, AI, mathematics, sociology, and systems. 

 

The domain of analytic epidemiology encompasses a 
comprehensive set of pandemic attributes and variables, 
particularly those of COVID-19 epidemiology [1, 2, 9, 13, 22].           
Four statistical attributes are adopted for estimating pandemic 
classes including: a) � the average daily contact rate; b) � the 
average daily recovery (removal) rate; c) � the average death 
rate; and d) � the average number of adequate contacts by an 
infective per day. 
 
 Definition 2. The universe of discourse U of analytic 
epistemology in a size N population is a relatively conservative 
(constrained) system encompassing three disjoint sets of 
susceptibles NS, infectives NI, and immunized NM classes: 
 

'( ) ( ) ( ) ,  ( ) ( )       
    constrained by the following relations: 

( ) ( ) ( ) ( ( ))
( ) ( ) ( ) ( ) ( )
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where SN  denotes the class of nonsusceptibles, and the 
infective class is divided into the subclasses of hospitalized NH, 
recovered NR, and dead ND. The numbers of normal birth NB and 
non-infective death ND’ are considered approximately 
equivalent in a relatively short period. Though, there is a very 
low rate of reinfective class among those of recovered class in 
COVID-19. It is neglected in traditional epistemological 
models.   
 
 The attributes of U in three sample countries, i.e., Canada, 
USA, and China, are listed in Table 1 with data collected from 
WHO [22, 24] up to July 11, 2020, which provide an overview 
of basic COVID-19 attributes. Data for other countries and 
regions may be found from the same source.    
 
2.2 The Formal Diagnosis Model of COVID-19 
 
 On the basis of real-world COVID-19 big data as presented 
in Table 1, a set of statistical results is derived for the three 
sample countries as shown in Table 2. In Table 2, �s(t) and �S(t) 
represent the average infective rate among the susceptible class 
or the whole population, while �d(t) and �D(t) denote the average 
mortality rate among the infective class or the whole population, 
respectively.  
 

 The decision model of COVID-19 diagnoses may be 
formally described by a Cartesian product of the sets of 
symptoms [23] and test results according to Definition 3. 

 
Table 1. Statistical Big Data of COVID-19 (partial) [23] 

   
Country #Infectives (Ninf)  #Recovered (Nr) #Deaths (Nd) #Hospitalized (Nh) #Tested (Nte= Nt) Population (N) 
Canada 107,347 71,266 8,773 27,308 3,183,516 37,751,539 
USA 3,355,646 1,490,446 137,403 1,727,797 41,770,226 331,060,504 
China 83,594 78, 634   4,634 326 90,410,000 1,439,323,776 
World 12,848,040 7,483,451 567,760 4,796,829 - - 
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Table 2. Sample Statistical Parameters of COVID-19 Pandemic   
   

Country Reproductive rate  
(R0(t): mean | max | approx.) 

Average infective 
rate (�s(t), � S(t)) 

Test rate  
(�te) 

Mortality rate  
(�d(t), �D(t)) 

Population  
(N) 

Canada [1.0921, 2.0000, 2.3513] 3.3719%, 0.2844% 8.4328% 8.1726%, 0.0232%       37,751,539 
USA [1.1043, 1.8000, 3.8930] 8.0336%, 1.0136% 12.6171% 4.0947%, 0.0415%    331,060,504 
China [1.0582, 2.9351, 7.0940] 0.0925%, 0.0006% 6.2800% 5.5435%, 0.0003% 1,439,323,776 

 
 
 

 Definition 3. Let the set of symptoms of COVID-19 be S = 
{S1(Fever), S2(Cough), S3(BreathDifficulty), S4(Chills), 
S5(ChillShaking), S6(MusclePain), S7(HeadAche), 
S8(SoreThroat), S9(LossOfTaste/Smell)}, and the set of lab tests 
be L = {L1(NucleicAcid), L2(SoreSample), L3(LungImage)}. The 
diagnosis E of COVID-19 infectives is detected by the Cartesian 
product between the sets of logical values of detection symptoms 
ES and lab confirmations EL as follows: 
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where T|L and F|L denotes a Boolean logical variable for True 
or False, respectively. The diagnosing results are classified in 
the categories of symptomatic positive, none-symptomatic 
positive, negative, and susceptibly negative; and the big-R 
notation [15] represents an iterative series of recurrent structures 
or embedded functions.       
  

2.2  Fundamental Attributes of COVID-19 Pandemic and 
their Calibrations by Big Data Analytics   

 

 In epidemiology, the reproductive ratio R0 of a contagious 
disease is adopted to estimate how fast the disease spreads in a 
community. The role of R0 is formally introduced in a simplified 
model as a constant 

0R   in the following for approximate 
estimation. However, more rigorous analysis of R0(t) as a 
dynamic series will be developed in Sections III and IV.     
  

 Definition 4. The exponential series Ninf(t) of epidemical 
transmission on the 0 tht k�  day is estimated by a product of 
initial infectives Ninf(to) and the average reproductive rate 

0R  
raised to the kth power:  
 

0 00 00( ) , 0( ) 1.0, )0, (inf i fn n
k

i fN k R N kRt t tN�� � �     (3) 
 

 Theorem 1. The estimated average reproductive rate 
0R  of 

a pandemic transmission is the kth root of the average ratio 
between the number of infectives Ninf(t0+k) cumulatively 
infected at t0 + k by each initial infective Ninf(t0): 
 

0
0

0
0( ) 0

(
( )

, 0,
)

 inf
inf

inf

k
N k

k t
t

R N
N t

�
� �              (4) 

 Proof. According to Definition 4, Theorem 1 may be directly 
proven.                                                                                        �      
  
 It is noteworthy that 

0R = 1.0 when k = 0. 
 
      Corollary 1. The average reproductive rate 

0R  is an 
indicator � for the congruous severity classified in two 
categories by the threshold 

0R = 1.0: 
 

0

0

,      1.0
,   1.0 0

congruous R
incongruous R

�

 ��� �

� ��

                  (5) 

  
 The average value of 

0R  in COVID-19 has been estimated 
in a considerably inconsistent range according to different 
pandemic patterns and datasets in a certain period of the 
pandemic. For instance, WHO has empirically estimated 

0R of 
COVID-19 in the range of 2.24 to 4.00 recently, while its 
preliminary estimation was from 1.40 to 2.50 on January 23, 
2020 [23]. It will be explained in Section III why the WHO 
empirical estimations on 

0R  were considerably higher than 
those obtained in rigorous analyses with real-world big data in 
different periods of the COVID-19 lifecycle.      
 
 Investigating into the nature of pandemic dynamics for 
rigorously predicting the pandemic trends, we find that in order 
to model more general and complex pandemic dynamics, the 
reproductive rate must be treated as a series of variables R0(t) 
over time. A formal analysis of this fundamental phenomenon 
of epidemiology will be elaborated in Sections III and IV based 
on the causal probability theory and big data analytics. It will 
describe how R0(t) is rigorously determined as a series of 
dynamic variables in epidemiology.  

 
III. MATHEMATICAL MODELS OF ANALYTIC 

EPIDEMIOLOGY 
 

The preceding section has indicated that the challenging 
problems in analytic epidemiology demand novel mathematical 
means and models. It is observed that the sample space of 
general probability is dynamically varying rather than static as 
traditionally perceived [20, 22]. This section analyzes the 
constraints of traditional approach to epidemiological dynamics 
modeling by classical probability theory. Then, a novel theory 
on causal probability is introduced towards rigorous 
epidemiological analytics. 
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3.1  The Causal Probability Theory (CPT) for Modeling the 
Dynamics of Epidemiological Processes       

 
 In order to address the instability, sensitivity, and interlocked 
(dependent) solutions in the SIR model and classic exponential 
growing sample spaces of pandemic probability, we introduce 
the Causal Probability Theory (CPT) for analytic epidemiology. 
CPT models the dynamics of pandemic transmissions as a causal 
series. Each step in the causal probability series is determined 
by CPT where traditional probability is a special case of it when 
the sample space is assumed to be invariant.  
 

 Definition 5. The axiom of a series of causal probabilities in 
CPT is based on the fundamental concepts: a) The causal 
influential factor �t determined by the difference between the 
sizes of events    ( ) and ( 1)e t e t 	 over the current sample space 

( )S t , where  ( -1)e t is called the cause and  ( )e t  the effect; and 
b) The elemental causal probability �t of an event ( )te  on a 
variable sample space ( 1)S t 	  in the recursive series of a 
pandemic, i.e.:      
 

 
| ( ) | | ( 1) | | 0,  ( ) 0

( )
| ( ) | ,  0 1,  ( 1

1

,  

)
( )

|

0

t t

t t

e t e t S t
S t

e t S t
S t

�

� �

�

�

	 	
� �

� � � 	 �
	


 ���
�
�


                 (6) 

 

 On the basis of Definition 5, the causal probability of a series 
of causes and effects in CPT may be rigorously derived as 
follows.       
  

 Definition 6. The causal probability ( )t�  of a series of n 
consecutively pairs of causal probabilities ( )( 1) ( )tt te e�	 ����  in 
a dynamic sample space ( )S t , is: 
 

 � �   

  

1 1

0
1

( | ( )) (1 ),  / 0

| ( ) | | ( ) ( 1) |  (1 ,  (0) 0, (0) 0
)

)
( 1) (

n n

t t t
t t

n

t

p t S t dS t dt

e t e t e t e S
S t S t

R R

R

� �
� �

�

� �

	 	
� � � �

	

      (7) 

  

 The causal probability model for analytic epidemiology 
reveals a special series of causal influences between each pair of 
the previous and the current events on a varying sample space

� � /dS t dt . The traditional probability theory considers only a pair 
of conditional influence on a static sample space, which is a 
special case of the causal probability theory. 
 

 Theorem 2. The sample space � �S t  of causal probability in 
a series is not a constant due to the causal influences in the 
recursive series: 
 

� � 0
dS t

dt
�                                       (8) 

 

 Proof. According to Definition 6, Theorem 2 is proved as 
follows:  
    

  

 

1 1
,( ) ( 1),  (0) 0 (0) 0

( 1) ( ) ( ) ( 1)

( )thus 0

n n

t t
S t e t e S

e t e t S t S t

dS t
dt

R R
� �

� � 	 � �

� 	 � � � �

�

 

 Theorem 2 indicates that the causal probability is a general 
probability theory that extend classic conditional probability and 
the Bayesian law [4, 22] to a general setting where both the 
sample space and events are varying influenced by the past 
series as that in epidemical transmissions. It is mathematically 
different from similar terms about causal probability [25].     

  
       Based on Definition 6 and Theorem 2, the fundamental 

model for explaining the dynamic behaviors of epidemical 
transmission may be formally perceived as follows.  
 
 Definition 7. The number of infectives of a pandemic on day 
t may be rigorously predicated based the causal probability ( )t�  
where its prior as the cause is the cumulative number of 
infectives ( -1)infN t :         
 

 

 

1 1

1

( ) ( ) ( -1)

             (1 ) ( -1)

n n

inf inf
t t

n

t t inf
t

N t t N t

N t

R R

R

�

� �

� �

�

� �

                    (9) 

      
 The physical meaning of ( -1)infN t  in Definition 7, is 
embodied by the cumulated historical priors as the cause, and 

( )infN t  the current event. The big-R calculus denotes the 
dynamics mechanisms of system updating in order to 
interchange roles of the effect and the cause in the recursive 
series of causal probability inferences.         
           
3.2 Fundamental Theories for COVID-19 Forecast and 

Control 
 
 On the basis of CPT, a dynamic transmission model of 
analytic epidemiology may be rigorously derived for COVID-
19 prediction based on both the dynamic transmissive rates and 
the varying sample spaces over time.  
 
 Lemma 1. The series of dynamic reproductive rates 

 0
1

( 1)
n

t
R tR

�

	  of COVID-19 is recursively determined by its causal 

probabilities 1 1(1 )t t t� � �	 	� �  in each step of the iteration:         
 

  

2 2
0 0

( 1)
0( 1) (0) 1, ( )

( 2
,  

)

n n
inf

t
inf

inft
R t R

t
t

N
N t

NR R
� �

�
	

	 �
	

       (10) 

 
 Proof. Let 0 ( )t R t� �  be the dynamic causal probability of a 
pandemic series. According to Definition 7, Lemma 1 is proved 
by the recursive series when of the previous values Ninf(t-1) and 
Ninf(t-2) are known in the causal series. 

� 
  

 It is noteworthy that, although the average value of R0(t), 0R
(Definition 4),  in empirical studies on COVID-19 is assumed as 
a constant, it is naturally a  -shape series due to the cumulative 
infective dynamics as shown in Figure 3. R0(t) may be rigorously 
calibrated for each step of the transmission series

 0
1

( )
n

t
R tR

�

 based 

on Lemma 1 as follows.   
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 Theorem 3. The Dynamic Pandemic Transmission Model 
(DPTM) of analytic epidemiology is a recursive series of causal 
probabilities driven by the reproductive rate R0(t) to determine 
the effect of future number of infectives ( )infN t  based on prior 
causes ( 1)infN t 	 : 
 

  

1
0

1
0( ) )( ( 1) (0) 1, (0) 0,  i

n n

inf
t t

nf infR t N NN t t RR R
� �

	 � �     (11) 

 
 Proof. According to CPT and Lemma 1, a series of causal 
probabilities between adjacent events in a variant sample space 
S (t) of COVID-19 are:  
 

� �

0
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Thus, the causal series of pademic transmissions 
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i

t

R

nf

n

n n

inf inf
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t

t

t t

t R t N t

N t R t t

N

N
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                                           � 
 

 According to Theorem 3, the infectives in a pandemic series 
may be rigorously predicated at any given time as follows. 
             
 Corollary 2. The forecasted number of infectives  ( )infN t k�  
of a period on days t + k is determined by the following sum of 
products of Ninf(k) and R0(k)k-t:         
 

0( ) ( ) ( 1)
t k

inf inf
t

N t k R N
�

� �
�

�

� 	"                  (12) 

 

where if k = 0, Eq. 12 reduces to the simplest form 
0( ) ( ) ( 1)inf mean inf

tN t R N t	 	  . 
 

 Proof. According to DPTM (Theorem 3), the cumulative 
infectives of a subseries in [t, t+k] is proven as follows:       
 

0

( )  ( ),

  ( ) ( ) ( 1) ( )

t k

inf inf
t

t k t k

inf inf inf
t t

N N

N R N N t k

R
�

� �

� �

� � �

�

�

� �

� �

� �

� 	 � �" "
 

� 

   As indicated by Corollary 2, there are two criteria to forecast 
the termination of a pandemic based on if the trend of R0(t) is 
approaching to 1.0 or if the limitation of the infective rate 
dNinf(t)/dt is approaching to 0.          
  
 Definition 8. The forecasted endpoint Tmax of an epidemical 
lifecycle is determined at the point of te according to DPTM 
while the following conditions continuously meet for a period: 

 

 0
inf

max 0
inf

lim ( ) 1.0
( )( ( ), ) ( )lim 0

e

e

t t

e

t t

R t
dN tT R t t dN tdt

dt

�

�
�

�

�



�
�



            (13) 

 
where the stabilization period may be set as a week or so until 
either or both conditions are continuously met. 
     
 As a result, the expected maximum infectives 

-max ( )infN t of a 
pandemic may be obtained according to Definition 8 given Tmax 
as follows  
 
 Definition 9. The maximum infectives Ninf-max towards the 
termination point Tmax of a pandemic is determined by an 
integration or approximately a weighted sum of the incremental 
infectives:      
 

max

max

 

max 0

max
0

( ) ( )

                    ( ) ( ),  1

T

inf -max inf

T

inf inf
t

N T N t dt

N t h N T h
�

!

� ! � �

#

$
         (14) 

   
 Towards the termination point Tmax, all other attributes of a 
pandemic may also be rigorously predicated.  
 
 Definition 10. The maximum mortality Nd-max towards the 
termination point Tmax of a pandemic is determined by the 
product of the total infectives and the average death rate:      
 

-max max max max( ) ( ) ( )d d infN T T N T�                   (15) 
 
 Applications and big-data-based experiments of CPT and 
DPTM will be presented in the following section. 
  
 

VI. APPLICATIONS OF CPT AND DPTM IN  
ANALYTIC EPIDEMIOLOGY 

 
 The theories of analytic epistemology and the Dynamic 
Pandemic Transmission Model (DPTM) as developed in the 
proceeding section have provided a rigorous foundation to 
reveal the insights of pandemic mechanisms. This section 
describes the design of a decision-making tool for analytic 
epidemiology. Then, a set of experimental results will be 
obtained to demonstrate the predictive power of the DPTM 
theory and the approach to rigorous forecasts of COVID-19 
trends based on real-world big data. 
 
4.1 The Architecture of the Analytic Epidemiology System   
 

The Analytic Epidemiology System (AES) encompasses six 
subsystems of solutions with 15 categories of 60+ functions. 
AES is shown in Figure 1 for elaborating an entire picture of 
analytic epidemiology. Within each of the subsystems, a number 
of COVID-19 analytic functions and algorithms are embodied to 
implement the system. Details of key functions and algorithms 
as well as their mathematical models are based on the analytic 
CPT and DPTM as developed in Sections II and III. 
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AES provides a wide spectrum of rapid decision supports for 
multimodal big data gathering, analysis and visualization, event 
detection and alarms, situation awareness, predications, 
taskforce deployment, resources allocation, and machine-
learning-based causal inference algorithms. As shown in Figure 
1, the real-time analytic system of epidemiology encompasses 
the subsystems of: a) The real-time operating systems (RTOS) 
platform; b) The graphical user interface (GUI) of AES; c) The 
big data analytic engine (BDAE); d) The AI decision engine 
(AIDE); e) The pandemic decision making (DM) database 
(PDB); and f) The pandemic DM knowledge base (PKB). 

 
 The AES tool powered by the CPT and DPTM algorithms as 
developed in Section III is designed to address a set of key 
challenges to epidemiological analyses and predictions. This 
subsection illustrates the key functions and algorithms of the 
system including predictions for dynamic infectives and 
incrementals, maximum infectives and average reproductive 
rates, maximum death/average death rate, and epidemic life 
cycle (end time), as well as their rigorous estimations beyond 
those of traditional statistical methodologies. 

 A set of numerical and machine learning algorithms is 
designed for rigorously determining the important attributes of 
COVID-19 pandemics and their forecasts based on the 
mathematical models of analytic epidemiology supported by the 
AES tool. Rigorous requirement predications are enabled for 
expected infectives Ninf(t), recovered Nr(t), deaths Nd(t), hospital 
wards allocation Nh(t), and the expected termination day Ne(t) of 
the pandemic in any region. All the key attributes of pandemic 
are quantitatively analyzed and reported by the AES tool for the 
expected values, maximums, potentials, trends, ratios, and early 
alarms.           

 
4.2 Experiments on COVID-19 Trends Predication by AES 
  
 On the basis of DPTM supported by the AES tool, key 
attributes of analytic epidemiology, including R0(t), ( )infN t ,  
Tmax, and

-max ( )infN t , may be rigorously determined for COVID-
19 prediction and decision-making with high accuracy and 
confidence.   
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Fig. 1. The framework of pandemic decision-making (PDM) for the analytic epidemiology system (AES) 
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                                      b) USA 
 

                                 c) China

Fig. 2 Predictive analyses of COVID-19 trends 
 
 

 The analysis and forecast functions of the AES tool are based 
on a set of raw big data adopted from WHO databases [23] 
during January 20 to June 30, 2020 as shown in Table 3. Key 
pandemic attributes are rigorously derived and/or predicated by 
the tool based on the DPTM algorithms, particularly CPT-driven 
machine learning algorithms for calibrating the dynamic trends 
of R0(t) and forecasting the infectives through the lifecycle of the 
COVID-19 pandemic in the sample countries or anywhere else. 
 

Table 3. Sample Big Data of Incremental Infectives (!Inf(t))  
of COVID-19 [WHO, 2020] 

   
Data
set 

Country Sample Duration Days 

1 Canada March 1 to June 30, 2020 122 
!Inf1 

[4  3  6  1  14  4  8  6  12 19 21 40 42 60 81 101 156 129 146 216 242 141 527 820 582 
634 702 895 665 1128 1199 1140 1497 1265 1475 1258 970 1230 1393 1475 1383 1190 
1033 1300 1383 1309 2207 2187 1976 1715 1248 2027 2982 2150 2377 2007 2242 3804 
3553 1732 2384 1913 2344 3346 2101 2045 2225 2229 2263 2133 1844 2096 2065 2072 
2237 2122 2192 2118 2097 1989 2053 2185 2170 2250 2012 2009 2082 1962 2065 2007 
1941 1959 1963 1809 1895 1827 1888 1685 1706 1845 1767 1815 1828 1708 1854 1797 
1795 1756 1834 1582 706 735 667 702 701 741 805 659 770 729 1065 705 …] 

2 USA March 1 to June 30, 2020 122 
!Inf2 

[20 16 23 32 72 108 116 122 174 294 286 438 534 739 744 1005 1674 3028 4838 5411 
7156 8930 10469 9071 13863 16772 18800 20034 19249 20631 24987 27089 29019 
32433 34110 25860 27667 32252 35143 33997 36886 29562 26716 26534 26485 30159 
34814 30943 28773 25478 28830 26334 28158 34827 37049 31204 27315 23734 25330 
28815 31462 34940 28358 30134 24059 25834 25334 29527 29204 25820 22122 18841 
22872 21362 27200 24496 24639 18907 22664 20177 23321 26174 24848 21275 20055 
19545 18998 19814 22748 24681 23705 19644 21531 22015 20383 22260 24176 22837 
16258 19448 18746 20944 23025 26994 25082 19210 20872 24871 26033 28065 33002 
32699 25932 32416 34978 34863 40170 47263 42373 38796 43449 46317 …] 

3 China January 20 to June 5, 2020 138 
!Inf3 [77 149 131 259 444 688 769 1771 1459 1737 1982 2102 2590 2829 3235 3887 3694 

3143 3399 2656 3062 2478 2015 15152 5093 2644 2009 2053 1891 1751 825 892 399 
649 416 527 411 440 329 430 573 206 128 120 143 145 103 46 45 20 31 25 11 18 27 29 
39 35 84 65 46 82 102 147 99 114 118 135 128 106 98 86 93 78 19 55 75 66 86 92 56 64 
113 115 99 49 52 27 31 21 36 13 37 15 9 12 25 3  6  22  4  12  4  5  7  4  2  3  6  1  14 17 
1  7  6  5  10  5  7  6  5  2  13  0  3  11  7  1  3  0  4  5  18  9  7  1  11  6] 

 
  
 Case 1. The analysis and predictive results of Canada by the 
AES tool are shown in Figure 2(a) based on the daily sample 
dataset of incremental infectives !Inf(t) during March 1 to June 
30, 2020 with the first 122 days of a partial COVID-19 lifecycle 
as presented in Table 3. The pandemic attributes derived by the 
AES tool include the reproductive rate R0(t), expected infectives 

expinf ( )N t , and real infectives inf ( )N t . Figure 2(a) demonstrates 
a fairly high accuracy in prediction and the insights of the 

dynamic R0(t) in COVID-19 pandemic. It is noteworthy that the 
maximums of the cumulated infectives

-max ( )infN t  and expected 
infectives ( )infN t  are up to 169,961 vs. 170,330, respectively, 
which are shown in logarithmic scale in order to highlight the 
other attributes of COVID-19 dynamics in Canada in the given 
period. 
   
 Cases 2 and 3. Analyses and predications for COVID-19 in 
USA and China are shown in Figures 2(b) and 2(c), respectively. 
The big data of the former [10] are sampled in the same period 
as that of Canada. While the dataset of the latter is obtained from 
January 20 to June 5, 2020 with 138 days for a complete 
pandemic lifecycle [23]. The pandemic systems of the three 
sample countries in Figure 2 show that although the absolute 
values of pandemic trends may be widely different in the world 
or local communities, the basic pandemic patterns across them 
are common, that may be rigorously predicted based on the 
DPTM theory for COVID-19. The analytic results and 
simulations provide empirical support for the theories of DPTM 
and CPT as the general pandemic model for any other countries, 
regions, cities, or communities. Rational decision models may 
be generated by the AES tool for supporting rapid reactions and 
rational policy making based on the theories proven in Section 
III. 
 
 Case 4. Extrapolative forecasts for the key dynamic trends 
of R0(t) and its average value have been derived as illustrated in 
Figure 3, where the sample countries are comparatively studied. 
Figure 3 indicates that the driving initial R0(t0) for triggering a 
pandemic is much greater than 1.0. However, R0(t0) is decreasing 
through the lifecycle of the pandemic until it reaches 1.0. In the 
visualized results of Figure 3, the CPT and DPTM models as 
obtained in Definition 6 and Theorem 3 have successfully 
applied to accurately predict the key attributes and expectations 
of COVID-19 trends. Comparative analyses and calibrations of 
R0(t) by the AES tool are summarized in Table 4 where the 
approximate 0 ( )R t  is determined by Eq. 4.           

 

 

12
 



 

 

 

                    a) Canada                                                                          b) USA                                                                        c) China 
 

Fig. 3. Forecasts of R0(t) trends in the COVID-19 dynamics 

 
Table 4. COVID-19 R0(t) Calibrations   

   
Country Dynamic R0(t) Approximate 

0 ( )R t  

Mean  
  

0 ( )R t  
Max  

R0-max(t) 
Min 

R0-min(t) 
Mean  

0 ( )xR t  
Max  

R0x-max(t) 
Min  

R0x-max(t) 

Canada 1.0921 2.0000 1.0000 1.2638 2.3513 1.1038 
USA 1.1043 1.8000 1.0000 1.3953 3.8930 1.1290 
China 1.0582 2.9351 1.0000 1.4221 7.0940 1.0857 

 
 Figure 3 reveals that the continuous increments of infectives 
in a COVID-19 series are not caused by an increasingly higher 
transmission rate R0(t) in the sample countries as traditional 
empirical explanations suggested. However, big dada analyzing  
results derived from the DPTM theory indicate that the main 
factor of a COVID-19 pandemic is driven by the exponential 
magnitude of cumulatively growing base of total infectives 

1
( )

n

inf
t

N t
�
" .  

 
 The experimental results as reported in Case Studies 1-4 as 
well as Figures 2 and 3 have demonstrated the strengths of the 
AES tool in real-world COVID-19 applications powered by the 
robust and rational CPT and DPTM theories. This basic research 
is a way to rigorously explain the myths of COVID-19 by an 
explainable and forecastable causal probability theory, the 
DPTM methodology, and the AES tool with associated 
cognitive and analytic algorithms.     

 
 

V. CONCLUSION 
 

This work has revealed a broader picture and deep insights 
of analytic epidemiology by the dynamic pandemic transmission 
model (DPTM). It has explored the cognitive, mathematical, and 
predicative foundations of analytic epidemiology. The causal 
probability theory (CPT) has been created for rigorously 
explaining how the fundamental reproductive rate R0(t) is 
rigorously defined and calibrated based on the big data of 
COVID-19. A theoretical framework of analytic epidemiology 
has been designed to elaborate the DPTM of epidemiology in 
general and COVID-19 in particular. Robust and accurate 
predictions on key attributes of COVID-19, including the 

calibrated transmissive rate R0(t), the predicated infectives at any 
day of the pandemic lifecycle, and the expected end of the 
pandemic, have been derived and demonstrated via four case 
studies with epidemical big data.  
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