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Abstract—Viral subtyping can facilitate visualization and mod-
eling of the geographic distribution and temporal dynamics of
disease spread. Understanding the virus’s evolution spatiotem-
porally can help forensic strategies. We have identified mutation
variation within SARS-CoV-2 sequences via an entropy measure
followed by frequency analysis. These signatures, Informative
Subtype Markers (ISMs), define a compact set of nucleotide sites
that characterize the most variable (and thus most informative)
positions in the viral genomes sequenced from different individu-
als. Using these ISMs, we show that we can use them for a variety
of downstream analyses, such as comparing countries’ subtype
compositions. We present association graphs as a visualization
tool to connect different ISMs based on their co-occurrence across
different individuals. In particular, we investigate dominant ISMs
for different locations, across different factors such as gender and
age.

Index Terms—Bioinformatics, Viral Genomics, Association
Graphs, Entropy Measures

I. INTRODUCTION

The novel coronavirus responsible for COVID-19, SARS-
CoV-2, has led to over 50 million confirmed cases worldwide
and well on its way to 100 million cases by next year if
no intervention is taken. The global nature of the pandemic
greatly needs tehcniques to track viral transmission dynamics
in real-time. Only a small fraction of the viral samples are
sequenced and deposited in the GISAID database,a global
science initiative and primary source that provides open-access
to genomic data of influenza- and corona-viruses [1]. Since the
virus readily mutates, each sequence of an infected individual
contains useful information linked to the individual’s exposure
location and sample date. But, there are over 30,000 bases in
the full SARS-CoV-2 genome—so tracking genetic variants
on a whole-sequence basis becomes difficult. We use an
entropy-based method [2] to produce compact representation,
a seventeen base-long compressed label, called an Informative
Subtype Marker or “ISM”. In this work, we aim to show
how regional and temporal distributions of subtypes track the
progress of the pandemic. Using the ISMs with association
graphs, we provide a quantitative visualization of the relative
co-occurrence between different ISM pairs.

II. RELATED WORK

A. Tracing SARS-CoV-2’s evolving lineages
The Nextstrain group has created a massive phylogenetic

tree incorporating sequence data and applied a model of the
time-based rate of mutation to create a hypothetical map of
viral distribution [3] (available at https://nextstrain.org/ncov).
Similarly, the China National Center for Bioinformation has
established a “2019 Novel Coronavirus Resource”, which
includes a clickable world map that links to a listing of
sequences along with similarity scores based on alignment
(available at https://bigd.big.ac.cn/ncov?lang=en) [4]. Exten-
sive phylogenetic analysis has revealed variations in the
genome such as L (70%) and S (30%) clusters as well as A,
B, and C clusters [5], [6]. In [6], a promising network graph
is used to develop these inferences. However, using the entire
genome of the sequence has been shown to have instabilities
[7]. Therefore, techniques that are compressed representations
that take into account redundancies should be developed to
help the forensic tracking of SARS-CoV-2 lineages.

B. Association Graphs
Association graphs have been traditionally used as a knowl-

edge discovery tool [8] to discover and visualize association
rules between variables, known and latent, in high-dimensional
and large-scale data analysis. More recently, the idea of using
graph-based visualization of associations between microbes
in the microbiome was introduced in [9], and a graph-based
visualization of chemical contaminants that co-occur in the
raw instrument signal was introduced in [10]. In this work,
we build upon the visualization in [9], [10] to introduce the
idea of quantifying co-occurrence associations between ISMs
in a graph setting. The key motivation is to discover ISMs that
co-occur across different subject groups to identify dominant
ISMs in different locations and time, and then present these
ISM associations in a graph-setting for expert interpretation.

Accordingly, in Figure 1 we present the schematic diagram
of an association graph for ISMs.

We note that each ISM in Figure 1 is denoted by a unique
vertex with a numerical index. Two vertices are joined by
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Fig. 1. Schematic diagram of an association graph between six ISMs.

an edge if they co-occur across a given data set. An edge
between two connected ISMs with vertex indices m and n
has a metric, henceforth called the ”association metric”, and
denoted as ρ(m,n).

The association metric denotes the relative co-occurrence of
the ISMs across the data set, and as such this co-occurrence
can be measured in multiple ways. In this work, we consider
the relative ratio-based metric in Equation (1), adopted with
modifications from [11]. In principle, it is similar though not
identical in mathematical formulation to relative abundance
(i.e., frequency), a popular metric in the bioinformatics litera-
ture, also presented for reference in this work. Mathematically,
in a dataset of P subjects, if ISMm is detected M times, and
ISMn is detected N times, then ρ(m,n) is given by:

ρ(m,n) = min

(
M

N
,
N

M

)
(1)

By design, the association metric in Equation (1) is commu-
tative, i.e., ρ(m,n) = ρ(n,m), with highest possible value of
ρ(m,n) = 1 when M = N .

While any two ISMs will always have an association metric,
we can filter an association graph to isolate vertices that share
high (or low) values of ρ(·).

III. METHODS

A. Preprocessing step: Forming the ISMs

The ISM procedure is to align the sequences using MAFFT
[12]. Then, we calculated the entropy at a given position i by:

H(i) = −
∑
k∈L

pk(i) ∗ log2(pk(i)) (2)

where L is a list of unique characters in all sequences and
pk(i) is a probability of observing a character k at position i.
We estimated pk(i) from the frequency of characters at that
position. The result is that we get 30,000 entropies as seen in
Fig. 2. We then select sites that have more than 0.2 entropy
and mask out ambiguous bases, which is described more in
[2].

B. Associations between ISMs

Association graphs provide a visual tool to represent the
relative co-occurrence of two or more ISM sequences. Figure
1 shows the schematic diagram. We created associations by
direct string comparisons between two ISMs.

Fig. 2. Variable sites that have a high entropy are chosen to be indicated in
the ISM representation.

IV. RESULTS

We demonstrate that ISMs can be used to show spatiotempo-
ral trends in SARS-CoV-2 data. By simple frequency analysis,
we are preliminarily able to observe that countries in similar
parts of the world tend to have similar subtypes. We also
observe that subtype frequencies in a given location come in
waves. However, this analysis does not tell the entire story.
We wish to investigate if one subtype was “transmitted” from
one country to another and how this progressed over time.
In this regard, association graphs allow a simple graph-based
visualization of relative co-occurrence between ISM sequences
and allow us to track the vertices that cluster together across
time, location and other variables.

A. Preliminary Plots of Geographic and Temporal Relative
Abundances

At the country/region level, we assess the geographic dis-
tribution of SARS-CoV-2 subtypes, and, in turn, we count the
frequency of unique ISMs per location. The ISM pipeline cre-
ates pie charts for different locations to show the geographical
distribution of subtypes. Fig. 3 show the distributions of ISMs
per country. Each subtype is also labeled with the earliest date
associated with sequences from a given location in the dataset.
ISMs with less than 5% abundance are plotted as “OTHER”.

To study the progression of SARS-CoV-2 viral subtypes in
the time domain, we group all sequences in a given location
that were obtained no later than a certain date (as provided
in the sequence metadata) together and compute the relative
abundance (i.e., frequency) of corresponding subtypes. Any
subtypes with a relative abundance that never goes above
2.5% for any date are collapsed into “OTHER” category per
location. Fig. 4 shows the ISM relative abundance over time
in the USA.
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Fig. 3. Distribution of ISM subtypes in various countries as of mid-October
2020. exact ISM sequences can be seen at [2]. We can see that East Asia has
a different composition from North American and Central Europe.

Fig. 4. ISM subtypes over time, where waves can be seen. (of mid-October
2020). At the beginning, newly introduced ISMs became highly abundant
as previous outbreaks were squashed. However, now two subtypes seem to
persist.

B. Associations

In this preliminary work, we introduce the concept of
association graphs, and given practical limitations, we only
provide the bar-graphs of the relative distributions of dominant
ISMs for different groups of subjects taken from the GISAID
database. Figures 5-8 provide the results over diverse subject
groups across a range of age, location and gender from the
GISAID database. From these types of graphs, we can see
that there is more diversity in England of viral subtypes (from
the uniform spread) than in North America.

Fig. 5. Measuring associations between ISM sequences for North American
females, all age groups

Fig. 6. Association profile variability between female subjects, across all age
groups, between North American and England.

Fig. 7. Association profile variability based on gender, for a particular region
(New York and New Jersey), for all age groups. ISM sequences marked in
red are distinct between male and female, i.e, their association metrics are
either extremely low or zero.

Fig. 8. Association profile variability based on age group, for all male subjects
within a given region (New York and New Jersey). ISM sequences marked
in red are distinct between the two age classes, i.e, their association metrics
are either extremely low or zero.

V. CONCLUSION

We use an entropy-based method [2] to produce a seventeen
base-long compressed label, called an Informative Subtype
Marker or “ISM”, to create a compact representation. Based on
GISAID database, we demonstrate how regional and temporal
distributions of subtypes track the progress of the pandemic.
Using the ISMs with association graphs and related association
variability charts, we provide a quantitative visualization of the
relative co-occurrence between different ISM pairs.

ACKNOWLEDGMENTS

We downloaded all SARS-Cov-2 sequences available from
and acknowledge the contributions of the Global Initiative
on Sharing All Influenza Data (GISAID) EpiFlu database,
which has made accessible novel coronavirus sequencing data,
including from the NIH Genbank resource [1]. We would also

518



like to acknowledge the authors, originating and submitting
laboratories of the sequences from GISAID’s EpiFlu Database
on which this research is based, as well as all future SARS-
CoV-2 sequence contributors in GISAID’s EpiFlu Database.
This work used the Extreme Science and Engineering Dis-
covery Environment (XSEDE) [13], which is supported by
National Science Foundation grant number ACI-1548562.
Specifically, it used the Bridges system, which is supported
by NSF award number ACI-1445606, at the Pittsburgh Super-
computing Center (PSC). This work was supported by NSF
awards #1919691 and #1936791.

REFERENCES

[1] Y. Shu and J. McCauley, “Gisaid: Global initiative on sharing all
influenza data – from vision to reality,” Eurosurveillance, vol. 22,
no. 13, 2017. [Online]. Available: https://www.eurosurveillance.org/
content/10.2807/1560-7917.ES.2017.22.13.30494

[2] Z. Zhao, B. A. Sokhansanj, C. Malhotra, K. Zheng, and G. L.
Rosen, “Genetic grouping of sars-cov-2 coronavirus sequences using
informative subtype markers for pandemic spread visualization,” PLOS
Computational Biology, vol. 16, no. 9, pp. 1–32, 09 2020. [Online].
Available: https://doi.org/10.1371/journal.pcbi.1008269

[3] J. Hadfield, C. Megill, S. M. Bell, J. Huddleston, B. Potter,
C. Callender, P. Sagulenko, T. Bedford, and R. A. Neher, “Nextstrain:
real-time tracking of pathogen evolution,” Bioinformatics, vol. 34,
no. 23, pp. 4121–4123, 05 2018. [Online]. Available: https:
//doi.org/10.1093/bioinformatics/bty407

[4] W. Zhao, S. Song, M. Chen, D. Zou, L. Ma, Y.-K. Ma, R. Li, L. Hao,
C. Li, D. Tian, B. Tang, Y.-Q. Wang, J. Zhu, H. Chen, Z. Zhang,
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