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ABSTRACT

The outbreak of COVID-19 has led to a global effort to
decelerate the pandemic spread. For this purpose chest
computed-tomography (CT) based screening and diagno-
sis of COVID-19 suspected patients is utilized, either as a
support or replacement to reverse transcription–polymerase
chain reaction (RT-PCR) test. In this paper, we propose a
fully automated AI based system that takes as input chest
CT scans and triages COVID-19 cases. More specifically,
we produce multiple descriptive features, including lung and
infections statistics, texture, shape and location, to train a
machine learning based classifier that distinguishes between
COVID-19 and other lung abnormalities (including commu-
nity acquired pneumonia). We evaluated our system on a
dataset of 2191 CT cases and demonstrated a robust solution
with 90.8% sensitivity at 85.4% specificity with 94.0% ROC-
AUC. In addition, we present an elaborated feature analysis
and ablation study to explore the importance of each feature.

Index Terms— chest, CNN, COVID-19, CT, machine
learning

1. INTRODUCTION

COVID-19 pandemic is spreading worldwide, infecting mil-
lions of people and affecting everyday lives. In a majority
of infected countries, virus containment steps include isola-
tion of the infected population, thus, breaking the chain of
infection. To do so, accurate, quick and efficient diagnosis
and triage solutions are required to distinguish COVID-19
from both non-infected individuals and those who suffer other
lung abnormalities. Chest CT imaging becomes an effec-
tive tool for that purpose as it produces results that are clini-
cally actionable either for establishing a diagnosis or for guid-
ing patient management, triage, or therapy. Moreover, false-
negative RT-PCR tests have been reported in patients with CT
findings of COVID-19 who eventually tested positive after
serial sampling [1]. Chest CT explicit clinical features are
harnessed by physicians worldwide to interpret lung disease
manifestations and produce a distinction between COVID-19

Fig. 1. System segmentation output maps (rows 1-4) and final
classification decision (row 5). Three cases are shown with
varying pathologies (columns). Visual differences include lat-
erality, peripherality, volume and location of the detections.

and other lung abnormalities [2, 3]. Several studies have al-
ready been published since the pandemic outbreak utilizing
artificial intelligence (AI) analysis of CT scans for diagnosis
and quantification of COVID-19 [4, 5]. Most studies deal-
ing with screening of COVID-19 patients use a single Con-
volutional Neural Network (CNN) architecture for classifi-
cation or segmentation to conclude whether an input case is
COVID-19 or other (usually normal/other pneumonia type).
Shi et al.[6] argued that the classification decision of a sin-
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Fig. 2. Chest CT scan classification process: image processing pipeline and output maps followed by a feature analysis pipeline
and classification, which is the focus of the current work.

gle CNN is not robust enough to capture the variability of
the lung disease manifestations, and suggested to learn clin-
ically meaningful features as the basis to a machine learning
classifier that distinguishes between COVID-19 and commu-
nity acquired pneumonia (CAP). In this paper we present our
classification system to discriminate between COVID-19 and
various pathological conditions, including CAP. The system
is comprised of two major pipelines: an image processing
pipeline (described in earlier publications [7, 8]) and a feature
analysis pipeline, which is the focus of the current work. Fig-
ure 1 shows examples of the image processing pipeline output
maps (rows 1-4). Using these maps we produce a set of clin-
ical features from which we generate the final classification
(row 5). The overall system is shown in Figure 2. We use
a multi-source large-scale dataset that holds cases containing
various opacity manifested lung abnormalities. We demon-
strate the classification performance and analyze the clinical
features contribution using both feature ablation experiments
and feature distribution analysis.

2. METHODOLOGY

2.1. Dataset Preparation

Several public and private chest CT datasets were used, orig-
inating from various sources worldwide and numerous CT
scanners to enable robustness (see Table 1). Input scans slice
thickness ranged from 1mm to 10mm with 0.5mm to 1.3mm
pixel spacing. Each scan underwent alignment to ”RAI+” ori-
entation, clipping between [−1000, 0] Hounsfield Units (HU)
and intensity normalization to [0, 1]. Our dataset includes
2191 chest CT scans in total, divided into 1268 COVID-19
& 923 non-COVID-19 lung abnormalities.

2.2. Image processing pipeline

The image processing pipeline takes as input a non-contrast
chest ct scan and produces several segmentation output maps.

It is comprised of several deep learning models trained in a
fully supervised manner. First, to produce a 3-D Region of
Interest (ROI) of the lungs, a lung segmentation step is per-
formed using a 2-D U-Net. Second, this ROI serves as input
to a lung lobes segmentation 3-D U-Net based model. Fol-
lowing these steps, abnormalities are detected using a weakly
supervised CNN model as described in [7, 8]. As bilateral and
peripheral lung distribution ground-glass opacity (GGO) and
consolidative opacities are the most common characteristics
of COVID-19 [10], a 2-D U-Net++ was trained to provide a
segmentation map that includes these categories.

2.3. Feature analysis pipeline

In the feature analysis pipeline, we use the output segmen-
tation maps to extract quantitative and descriptive clinical
features [2, 3]. These features are then used to distinguish
between COVID-19 and other lung abnormalities. We next
describe the features extracted:
Lungs statistics features: volumetric lung features and HU
analysis features. The volumetric features (calculated in
[cm3]) include the combined volume of both lungs, separate
volume of the left/right lungs and the volume of each of the
5 lung lobes (henceforth called “anatomical structures”). HU
changes could amount from a possible presence of lung opac-
ity and should be therefore tracked. Analysis features include
both the HU volume and ratio (calculated in [%]) in division
to the anatomical structures, detected in three HU windows:
(a) low [−1000,−950] (b) functional [−950,−600] and (c)
high [−600,−250].

Opacities statistics features: volumetric ([cm3]) and ra-
tio ([%]) features quantifying all detected abnormalities si-
multaneously in division to the anatomical structures. Ad-
ditional features are the “pos-ratio”, i.e the ratio of abnormal-
ities containing slices out of all lung slices, and Grad-CAM
based features [7]. Grad-CAM features are extracted from
the “Lung Abnormality detector” model activation maps and
include the maps sum and volume weighted CNN model acti-
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Origin Source Subjects Comments
China CC-CCII [9] 772 COVID-19, 740 CAP slice thickness 1− 10mm
China Private 224 COVID-19, 5 lung abnormalities slice thickness 1, 1.5, 5mm at one or more time points (between 1 and 5)
US Private 68 lung abnormalities slice thickness 1− 8mm, gathered before the COVID-19 pandemic
China Private 110 lung abnormalities slice thickness 5− 10mm, gathered before the COVID-19 pandemic
Russia Private 272 COVID-19 slice thickness 1− 5mm

Total 2191 chest CT scans: 1268 COVID-19 & 923 non-COVID-19 lung abnormalities

Table 1. Multi-source dataset description. Data contains both covid-19 cases and various other lung abnormalities, including:
CAP, pleural effusion, atelectasis and others.

vations as a method of incorporating weakly supervised based
abnormalities as a part of the source data.

Opacities texture features: abnormal texture detected
is further analyzed and divided into GGOs and Consolida-
tions. For each of these opacities and anatomical structures
the opacity volume ([cm3]) and ratio ([%]) are extracted. Fur-
thermore, to determine the dominance of the opacity, its frac-
tion out of the entire abnormal volume is calculated.

Shape & Location features: shape assessment is a bi-
nary decision whether focal shaped GGOs (< 3cm maxi-
mum axial diameter and of rounded morphology) were de-
tected as a part of the abnormal tissue map. The location fea-
tures include the abnormal tissue laterality classification (∈
{unilateral left, unilateral right, bilateral }) and peripheral ra-
tio ([%]). For shape we assert whether the abnormal tissue ex-
ceeds a pre-defined small volume in a single (left/right) lung
/ both lungs, to identify small FPs. For Location we calculate
the ratio of peripheral opacities (i.e overlapping with the di-
lated edge of the lungs inner surface, excluding the bronchial
tree adjacent area) out of the entire abnormal volume.

2.4. COVID-19 vs other abnormalities triage

As shown in Figure 2, once the image processing and fea-
ture extraction steps are performed for all chest CT scans, a
feature-based dataset is used to train a machine learning clas-
sifier to differentiate between COVID-19 and other lung ab-
normalities. We experiment with both a Random-Forest (RF)
classifier [11] and an AdaBoost classifier [12] with several
types of kernels; decision tree (DT), Linear, Polynomial and
a radial basis function (RBF). During the training process an
ensemble classifier is fitted. In each training iteration a weak
classifier is added, fitting to the weighted train data. Weight is
determined by previous weak classifiers performance on the
same data, thus minimizing the misclassification error rate.
The final ensemble model is composed of a linear combi-
nation of the aforementioned weak classifiers producing the
COVID-19 probability. The classifier operating point prob-
ability threshold is then chosen for the final prediction, bal-
ancing the classifier’s sensitivity and specificity metrics. To
optimize the training of hyper-parameters, a gross to fine grid
search is performed to select the best suited ensemble model,
weak classifiers design, number of weak classifiers compos-
ing the ensemble, model learning rate and minimum num-
ber of cases per weak classifier split. Following the hyper-

paramater optimization process the parameters ensuring the
highest mean ROC-AUC and sensitivity balance were chosen.

3. EXPERIMENTS AND RESULTS

3.1. Classification optimization process & results

Multi-source data is randomly divided to 5 folds (80% train,
20% test) for cross validation purposes. Training and testing
were repeated throughout the folds to ensure results are in-
different to data division. Rows 1 − 5 in Table 2 present the
optimal results, obtained by the different classifiers. The re-
sults demonstrate the superiority of the DT based AdaBoost
ensemble model, offering a design best suited for both dis-
crete and continuous features and dividing the data into class
differentiated subgroups. Our AdaBoost - DT based model
achieved an optimal point sensitivity of 0.908 with specificity
0.854 and a high ROC-AUC of 0.94. Model results show
robustness to data division between folds since all metrics
demonstrate a small standard deviation. All metrics indicate a
clear dominance of the AdaBoost classifier over the RF. Qual-
itative examples of our system outputs and classification for 3
different pathological cases are displayed in Figure 1.

3.2. Feature analysis

To further assert the importance of the features composing the
decision trees weak classifiers in the final ensemble, an anal-
ysis of the mean Gini Importance (i.e Mean Decrease in Im-
purity) per feature across all folds was performed. The top 10
important features are shown in Figure 3a. The differences/
similarities in features distributions between COVID-19 pos-
itive and negative groups is demonstrated in Figure 3b, show-
ing a kernel density estimation (KDE) of several dominant
features (normalized to [0, 1]) obtained using an estimation
based on all aforementioned datasets. KDE analysis depicts
the probability (y-axis) for each of displayed features to hold
a certain value (x-axis) in division to positive and negative
patients. It can be noted that some of the dominant features
(“pos ratio” and “GGO total ratio”) distributions differ be-
tween the classes while others (“peripheral ratio” and “acti-
vation sum”) do not. This observation, along with these fea-
tures high importance (high decrease in impurity), as depicted
in Figure 3a, suggests that a combination of weak classifiers
is necessary to enable proper classification.
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N o Classifier Sensitivity Specificity Precision F1 Accuracy AUC

1 RF 0.822± 0.015 0.782± 0.033 0.837± 0.025 0.830± 0.017 0.778± 0.014 0.872± 0.015
2 AdaBoost - SVM - Linear 0.781± 0.045 0.705± 0.066 0.786± 0.030 0.782± 0.015 0.740± 0.017 0.800± 0.013
3 AdaBoost - SVM - Polynomial 0.766± 0.040 0.760± 0.084 0.818± 0.049 0.789± 0.006 0.602± 0.023 0.819± 0.022
4 AdaBoost - SVM - RBF 0.768± 0.050 0.730± 0.049 0.796± 0.031 0.780± 0.017 0.637± 0.024 0.808± 0.014
5 AdaBoost - DT 0.908± 0.0170.908± 0.0170.908± 0.017 0.854± 0.022 0.895± 0.014 0.901± 0.0070.901± 0.0070.901± 0.007 0.875± 0.0050.875± 0.0050.875± 0.005 0.940± 0.0050.940± 0.0050.940± 0.005

6 AdaBoost - DT - W/O Lungs statistics 0.779± 0.042 0.852± 0.026 0.877± 0.024 0.825± 0.029 0.802± 0.018 0.886± 0.019
7 AdaBoost - DT - W/O Opacities statistics 0.816± 0.023 0.832± 0.028 0.870± 0.015 0.842± 0.012 0.819± 0.010 0.891± 0.013
8 AdaBoost - DT - W/O Opacities texture 0.835± 0.036 0.886± 0.0210.886± 0.0210.886± 0.021 0.910± 0.0110.910± 0.0110.910± 0.011 0.870± 0.018 0.843± 0.016 0.927± 0.008
9 AdaBoost - DT - W/O Location & Shape 0.856± 0.018 0.858± 0.030 0.891± 0.024 0.873± 0.007 0.847± 0.014 0.924± 0.013

Table 2. Rows 1 − 5: Classification performance (mean results) of different classifiers utilizing all depicted features. Rows
6− 9: Ablation study (mean results), obtained while removing each feature group in turn. Results are averaged across 5 folds.

Fig. 3. (a) Features importance; (b) KDE analysis on selected
features.

3.3. Feature ablation study

Among paramount features described in Figure 3 is a combi-
nation of lungs and opacities statistics, opacities texture and
location. This indicates the importance of each of the fea-
ture groups to the final classification. To assess the quan-
titative contribution of the groups we conducted an ablation
study, removing in turn each of the feature groups from the
classification process and measuring the effect on the final
ensemble classifier performance. Ablation results (displayed
in Table 2) demonstrate that all ablated groups removal lead
to a decrease in almost all measured metrics. We notice that
the lungs and opacities statistics feature groups ablations re-
sulted in the most significant metrics decrease. When remov-

ing the lungs statistics (opacities statistics) features sensitivity
decreased by 12.9% (9.2%). This large variability in perfor-
mance indicates the importance of the features to the clas-
sification process. An exception is observed when omitting
the opacities texture features, which resulted in a slightly in-
creased specificity and precision scores (indicating a lower
number of FP), however it goes hand in hand with a drastic
drop in sensitivity (i.e increasing number of FN). Since high
sensitivity is crucial in the context of emergency disease con-
trol this metric was of the highest importance.

4. DISCUSSION AND CONCLUSION

We propose an end-to-end system for COVID-19 chest CT
based automated triage. Our model was trained and tested on
a large scale database from various sources, containing a di-
versity of pathological states. The pipeline enables the classi-
fication explainability using the extraction of clinical features
as well as their quantitative analysis and visualizations. Re-
sults show 90.8% sensitivity, 85.4% specificity and accuracy
of 87.5%, thus expanding the previously demonstrated iSARF
model [6] ability for screening between COVID-19 and CAP
screening to additional pathological states without compro-
mising the obtained results (90.7% sensitivity, 83.3% speci-
ficity and accuracy of 87.9%). The ablation study demon-
strated that each of the extracted features holds a unique con-
tribution to the final classification performance. The selected
classification approach, excesses the need to normalize fea-
ture scales/ units and prioritize between features, being an
inherent feature of the weighted ensemble classifier. Future
work will include additional covid-19 related textures such
as ”crazy paving” and ”halo sign” [13] along with IBSI ra-
diomics features [14]. In conclusion, automated chest CT
based screening models show great promise in COVID-19
triage, and provide quantitative based analysis of the patient
pathological state. In the future, such models could provide
diagnosis support as well as contribute to the detection of in-
cidental findings.
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5. COMPLIANCE WITH ETHICAL STANDARDS

All Private datasets cases used in this paper were extracted by
querying cloud picture archiving and communication systems
(PACS) for cases that contained lung abnormalities. Their
usage in this study is in line with the principles of the Decla-
ration of Helsinki. All data provided was annonimized delet-
ing all patient identifiable information. Open access datasets
usage ethical approval was not required as confirmed by the
license attached with the open access data [9].
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