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Abstract—Artificial intelligence has been adopted to fa-
cilitate monitoring, operation, and decision in the logistics
field. Logistics robots with environment perception capabil-
ity have been used to improve warehousing efficiency in lo-
gistics systems. However, autonomous mobile robots face
computationally intensive and real-time demanding tasks
such as navigation, localization, and obstacle avoidance.
In this article, we present EventTube, an edge comput-
ing based event-aware system that can efficiently discover
events from the video data captured by RGB-Monoculars
and collaborate with individual devices to make timely de-
cisions. EventTube deploys a semantic context extraction
pipeline on edge servers to aggregate video streams from
mobile robots and feed a few keyframes, including the start
and end of the specific events to the successive percep-
tion pods, accelerating logistics robots’ response speed.
The event-related model parameters are trained and up-
dated online on a server. The video data collected at the
warehouse site for our mobile robots show that EventTube
significantly improves parcel delivery efficiency without af-
fecting regular deliveries.

Index Terms—3-D detection and localization, artificial
intelligence (AI), computer vision in logistics, edge
computing.

I. INTRODUCTION

W ITH the rapid growth of logistics demand, artificial
intelligence (AI) is widely used in the logistics field. The

sorting, storage, and transportation of cargos in logistics ware-
housing have been made intelligent, significantly improving the
function and corresponding quality of logistics services. Au-
tonomous mobile robots (AMRs) with environment perception
capability and sorting robots for sorting parcels are gradually
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playing a vital role in the warehousing segment of the logistics
system.

The mainstream logistics robots have problems such as paths
that need to be planned, inflexible obstacle avoidance, and rigid
identification of cargo location and volume [1]. Environmental
perception and sorting speed have become bottlenecks for logis-
tics robots to improve efficiency. In the classic automated guided
vehicle (AGV) and AMR automatic transport system, the video
data captured by the logistics robot is directly transmitted to a
high-performance server for the perception calculation of the
robot’s surroundings, and the server does intelligent planning
after combining data from multiple sources to send down to
the robot [2]. As a critical issue of logistics environment per-
ception, the accurate detection of objects by robots can enhance
their autonomous capabilities. The logistics robots employ high-
resolution industrial cameras to monitor and capture the racks,
obstacles, motions, and environments in a warehouse. The vol-
ume of video frames transmitted to the servers occupies massive
bandwidth up to 1 Gb/s, while the bandwidth provided by most
logistics warehouse networks is no more than 100 Mb/s. As
we implemented on NVIDIA 2080Ti, a high-resolution frame’s
average decode and per-event analysis delay cost about 50 ms.
The unnecessary communication and computation introduce
significant event detection delay that increases linearly as the
increment of events in the frame. After dozen frames, the delay
accumulates rapidly, causes the logistics robot to take serious
lagging actions, and dramatically reduces the transportation
efficiency. Of course, it is also impossible for AMRs to perform
the high-resolution object detection, localization, and analysis
independently due to the lack of sufficient computation capacity.

Frames skipping and sampling are adopted to reduce band-
width and computing overhead intuitively, but that is very limited
and loses event frames. The logistics robots have apparent target
objects and events in specific environments and locations, which
are sparse in the video stream. Extracting the regions of interest
(ROIs), sizes, locations, tracks, relationships, appearance times,
and other semantics attributes of the small part of objects will
significantly reduce the volume of spatio-temporal data. At the
same time, the logistics robots can only complete simple tasks
of the whole semantics extracting pipelines; other computation-
intensive tasks should resort to the edge servers around AMRs.
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The accuracy and computation of semantics extracting affect the
performances of the following autonomous capabilities; the edge
servers must trade off between the accuracy and computation
complexity via overcoming three challenges. First, the edge
servers should switch among ROI detection models according to
environment context to improve the accuracy with low comput-
ing complexity while predicting events type and start and end
times. Second, the neural network models chosen by the edge
servers must be lightweight enough to handle more streams from
AMRs with lower resources and delay. Third, the edge servers
should face various scenarios with or without events and the
events captured by static or moving cameras.

By event-triggered semantics extracting and data acquisition
methods, the communication overhead can be reduced, the speed
of target monitoring and tracking can be increased, and the
responsiveness of the whole autonomous driving system can
be improved. The key to improving the transportation efficiency
of logistics robots is to improve the ability to obtain information
from the environment. Existing systems have used 1) LiDAR-
based vehicle localization and environment sensing methods [3],
which are accurate and efficient but costly and 2) event-aware
RGB video analysis methods, which locate events through the
changing relationship between video frames [4] and then analyze
the set of frames where events occur.

Although edge servers take on most of the task, AMRs also
need to fully use their capability of video compression, shal-
low neural network, and weak accelerating to reduce network
bandwidth overhead coarsely. Otherwise, the backhaul video
streams produced by the amount of AMRs in the local area will
block the network. In the article, we argue that the difficulty in
achieving environmental state awareness on AMRs for logistics
needs is not a lack of neural network capability. Our central
insight is that the inability to simplify neural networks to run
on AMRs and their RGB sensors is not an inherent problem of
neural networks but rather an underutilization of the properties
of RGB video streaming in logistics transportation. For exam-
ple, the standard mobile transport device upstream data-aware
approach FilterForward trains the model directly on the entire
video stream, and even with the strategy of simplifying the
model, the model still requires resources well above the end de-
vice hardware limit. Furthermore, obstacles captured by AMR’s
cameras usually appear as moving regions in consecutive frames,
hit detection relies on interframe variation, and high-precision
analysis relies on analyzing a segment of the video, including
temporal information. We assert that 1) a fast event detection
model based on inter-frame variation and timing information
can best represent the distribution characteristics of events in
RGB-Monocular video, 2) Low-level feature screening methods
can achieve a high event hit ratio and high accuracy in contin-
uous frame sequence analysis. Therefore, these simple neural
networks can be surprisingly effective at environment perception
(more effective than techniques for compressing models trained
on large datasets!) Based on the two assertions, our proposed
event consists of three parts: the diff module is installed on
AMRs to focus on moving objects, and their lower level features
whether the robots are static or not and optimize the backhaul

transmission overhead; the tubelet module is performed on edge
servers to extract semantic event tubes from moving objects
related video streams and feed the result to following pipelines
on demand; the online training and posterior module are run
on a central server to optimize the model parameters of the diff
module and the tubelet module.

The contributions of this article are as follows.
1) We have proposed and implemented EventTube, an

environment-aware system for logistics and transporta-
tion. The core tubelet module is executed on edge servers
to filter out semantic event-tubes for improving the accu-
racy of AMRs’ environment perception and speeding up
AMRs’ operation efficiency.

2) The EventTube adopts shadow and sparse neural net-
works to locate ROIs of event classes from differential
temporal sequence obtained by diff module, which is
lightweight with small computation. We also introduce
a back propagation mechanism to adjust the start time,
end time, location of ROI tubes, and following pipelines
on demand. The mechanism provides reliable detection
results even for videos taken on low-cost monocular
cameras.

3) We also employed an online training method to adapt to
various scenarios, whether AMRs are static or moving.
Experiments on the logistic activity recognition dataset
(LARa), KITTI dataset, and real scenario showed that
the EventTube could improve event hit rate and reduce
bandwidth overhead and overall delay. The EventTube
improves transportation efficiency without affecting the
standard delivery of packages.

The rest of this article is organized as follows. We discuss
related work in Section II. Section III provides the system model
and problem definition. In Section IV, we present EventTube,
an edge computing based RGB camera-aware system that can
efficiently acquire data from video data. Then, we present the
performance evaluation in Section V. Finally, Section VI con-
cludes this article.

II. RELATED WORKS

A. Environment Perception Methods for Mobile Vehicles

1) LiDAR-Based Method: Considering the detection and
localization accuracy of object, AMR is currently mainly
guided by LiDAR-based methods. Researchers have used high-
precision LiDAR point clouds for accurate 3-D object detection
and corresponding localization. PointNet [5] demonstrates the
effectiveness of the direct application of CNN on point cloud
through experiments and the stability of the network through the-
ory. The work [6] achieves high accuracy results by converting
the point cloud of LiDAR data into pixel-level depth information
and combining it with RGB video data using the commonly used
CNN method. The work [7] established an observation model of
AGV based on LiDAR to quickly obtain the accurate position of
the vehicle by matching the observation information and achiev-
ing the environment awareness during autonomous localization.
The work [8] implemented an AMR robot on TurtleBot3 Burger
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by combining 2-D LiDAR, RGB-D camera, and related safety
devices. LiDAR has some drawbacks, such as high cost and sen-
sitivity to adverse weather conditions. These limitations suggest
that employing LiDAR-based object detection and 3-D localiza-
tion system is unrealistic in practical, day-to-day applications.
Conversely, RGB cameras are relatively cheap, ubiquitous, and
can potentially be resilient to most environments.

2) Video-Based Method: Cameras provide detailed informa-
tion in the form of pixel intensities, which can reveal shape
and texture properties on a larger scale. The work [9] fused
RGB-D cameras with wheel odometry to construct a localization
system with a field-tested localization accuracy of centimeter-
level on the dataset without precalibration. Recent works have
explored the prospects of 2-D RGB images for 3-D detection.
The work [10] presents a method for 3-D object detection and
pose estimation from a single image. The work [11] uses a
multiframe optimization technique to achieve depth information
extraction utilizing the camera’s self-motion on the time series,
which improves the accuracy and consistency of 3-D localization
results achieving results comparable to LiDAR even on RGB-
monocular. The work [2] transmits the video data collected by
the logistics robot to a high-performance server for environment
perception calculation. The server does intelligent planning after
synthesizing data from multiple sources and sends it to the
robot. The cost of monocular cameras is low, but due to the
computational overhead of detection and localization tasks on
video, it cannot be promoted on a large scale.

B. Edge Computing and Collaboration in Logistics
Systems

1) Video Event Acquisition on Mobile Robots: This class of
approaches considers that frames are dense and events of interest
are sparse in the video stream captured by the camera. The
idea of feature-based frame filtering can be widely seen in
the CV community, and many of these approaches are used to
retrospectively classify or identify events in video [12]. Fast
filtering system for video analytic (FFS-VA) [13] achieves a
reasonable tradeoff between throughput and AdaFrame [12]
training of long- and short-term memory networks to adaptively
select frames with important information. Tour into the video
(TIV) [14] considers deep neural network (DNN) split infer-
ence in industrial scenarios, where edges run as many layers
as possible before sending intermediate values to the cloud.
Reducto [4] implements a practical frame filtering system on
cameras at low computing power by modeling the relationship
between feature type, threshold, and query accuracy. In contrast
to all these solutions, EventTube targets high recall high filtering
of real-time filtering on end devices whose resources can sup-
port micro-NN networks. DNN-driven streaming (DDS) [15]
drives data acquisition through the receiver, gets feedback on
low-quality data, and transmits high-quality data for a portion
of the region based on the input. In this article, we investigate that
ROIs are particularly fixed in logistics processes; so EventTube
integrates a video ROI method based on server feedback based

Fig. 1. System overview.

on frame filtering to reduce computational and transmission
further overhead.

2) Control Methods for Logistics Robots: In logistics sys-
tems, a collaboration between devices can improve robot posi-
tioning accuracy and transportation efficiency. Chen et al. [16]
implement AGV positioning and cargo status recognition on a
global surveillance camera and controls logistics robots for the
cargo loading, unloading, and transportation by using data net-
work communication technology. Zhang et al. [17] investigate
the collaboration of multiple mobile robots in a factory freight
logistics system, construct a panoramic view by the air–ground
cooperation to overcome the enormous difference between the
aerial view and ground view, and achieve high precision collab-
orative robot positioning. Those collaborative control methods
were dependent on a global panoramic view generated from
most video streams in a warehouse, which achieved high pre-
cision at the expensive cost of stream synchronization, network
bandwidth, and view synthesis. In this article, the EventTube
distributes the basic preprocess tasks of video streams to edge
servers and feedback ROIs and their timestamp to a central server
for collaboration, which only requires simple time alignment and
very little computation overhead for coordinate transformation
and object fusion. The previous collaboration systems can be
strengthened and put into fact in a low cost.

III. SYSTEM OVERVIEW AND DEFINITIONS

Fig. 1 depicts the architecture and main modules of our pro-
posed EventTube system. Currently, EventTube supports mobile
robot obstacle detection, cargo identification, and localization
tasks in the logistics field. These video information acquisition
tasks are described in Section V-A.

A. Pipelines on Central Servers

In a new scenario, initial models and parameters of AMRs and
edge servers do not work well for accurate logistics perception,
which should be pretrained on the powerful central server. In the
beginning, the original video stream generated from an AMR
is directly forwarded to the central servers by EventTube. The
server runs a traditional video analysis pipeline in a few minutes
of video to get the characterization of the video. The prediction
result of an event tube is directly related to whether the frame is a
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keyframe or not. Therefore, we make the traditional video analy-
sis pipeline process each video frame and get the corresponding
prediction result. We collect all the feature data and results in this
video, find the most suitable interframe differential features with
corresponding thresholds, design each frame trigger interval
value for the tubelet as a regression label, and train the tubelet.
At the end of this phase, the most suitable low-level features
for each perception task are identified and stored on the server,
the suitable tubelet regression model for this video stream is
deployed in the terminal, and the initialization of the weights is
completed.

B. Diff Module on AMRs

The Diff module extracts interframe differences and low
features. Due to the scaling or moving of AMRs’ camera, the
module calibrates successive frames to the exact coordinates by
spatial sampling, padding, and cutting before frame pixel differ-
ential. After frames alignment, the module will perform three
tasks, per-frame feature extraction, interframe feature difference
calculation, and filter. After receiving a query request, the server
analyzes and derives the best features and filtering threshold for
the query task and informs the interframe differencing module.
After receiving the configuration information from the server
pipeline, the feature extractor calculates the specified frames’
specified features and continuously extracts the differences in the
characteristics between tracking consecutive frames. The com-
puted difference value is compared with the filtering threshold
for each pair of consecutive frames. Frames with a difference
value less than the threshold mean that only the same result
is obtained even if both frames are uploaded to the traditional
video analysis pipeline, which indicates that filtering out one of
the frames does not affect the accuracy.

C. Tubelet Module on Edge Servers

The tubelet module is the core part of the EventTube system.
It adopts hierarchical lightweight shallow convolutional neural
network models to generate tubes and their semantics from
interframe differences and low features, then only transmits
the coarse event type and filtered ROIs’ features to the final
perception and action. The head model is a binary classification
model to justify if any event exists. The middle model is a
prediction model for the start and end of the event. Meanwhile,
the prediction model is also verified on time by receiving fea-
tures from the Diff module. Finally, the tail model is an event
spatial positioning model used for ROIs’ adjustment. To train
the models and parameters, the central server processes all
frames, calculating the interval value between each frame and
the starting point of the frame of interest for the tubelet as a
regression tag.

The central server uses a model trainer, which quickly trains
a simple regression model for each input that characterizes the
relationship between frame features, the current frame moment,
and the first keyframe in the future. The simple hierarchical
regression models are trained based on a shallow convolutional
neural network, which typically takes only a few seconds to

train on a few minutes of video. The models deployed on the
edge servers run on a compressed set of consecutive frames,
which can accurately predict the ROIs in a future sequence of
frames combining with a timestamp and temporal features and
provide higher filtering power. At the same time, the model is
simple enough to meet the real-time requirements even on the
end device.

D. Hierarchical Frame Enhancement Module

The state changes on the video stream are continuous and not
abrupt, and the frames in the over the state can also provide
information during analysis; so the video sequence needs to
be provided to the server for analysis. The hierarchical frame
enhancement module on the terminal reduces the amount of data
that needs to be transmitted through ROI cropping and hierarchi-
cal enhancement methods. The ROI region is obtained based on
the results of the server’s reasoning in analyzing the pipeline over
a few minutes of video. The hierarchical enhancement method
sets different levels of compression for other parts of a sequence,
choosing a high compression rate at the beginning of the state
and gradually decreasing the compression rate during a series,
ending with HD frames. The compressed frames come from the
active cache.

E. Threshold Tuning and Model Retraining

After the terminal receives the specified low-level features
and difference thresholds and the tubelet receives the regression
model trained by the server, EventTube starts filtering the frames.
However, in some cases, the video dynamics may change (e.g.,
lighting changes), and the existing difference module and tubelet
still analyzed originally may lead to drift phenomena. In this
case, the conditioner periodically sends the frames to the model
trainer on the server and updates the model, and the server
sends the updated differential thresholds and regression model
to the endpoint. The mismatched values and the corresponding
original frames are also sent to the model trainer in case of
incorrect predictions. It is worth noting that the update period is
not fixed, but the period size is adjusted based on the prediction
confidence.

F. Active Cache

Sending mismatched values and raw frames means that the
end device needs to provide additional storage to cache frame
data over a period of time. Taking advantage of this, we de-
sign an active cache that improves efficiency and accuracy. As
mentioned in Section III-E, the server has a dynamic feedback
period, and as discussed in Section III-C, the tubelet needs to
take into account timing information. The traditional analysis
pipeline on the server also needs to utilize a video sequence to
analyze effectively. Which frames do we use as information in a
timing sequence? How many frames are selected? We propose an
adaptive sampling strategy where the cache size is aligned with
the total number of frames in the dynamic feedback period. The
frame sampling strategy is described in detail in Section IV-C.
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Fig. 2. Hierarchical shallow neural network. (a) Classification model
for event existing or not. (b) Classification model for event start or end.

We verify the impact of the number of frames selected on
EventTube by comparing the experiments.

IV. OUR PROPOSED EVENTTUBE

A. Hierarchical Shallow Neural Network

EventTube simplifies the complex multiclassification seman-
tic extracting task into a series of hierarchical binary classifi-
cation tasks. The hierarchical shallow neural networks infer the
existence, start–end points, and location of events in sequence.
The models are executed in parallel as successive pipelines, and
the outputs of previous models’ hidden layers are fed into the
following models as input. The hierarchical mechanism makes
the followup models share the computation with former models.
Fig. 2 shows that the start–end identification model infers based
on the output of hidden layer of event-existence detection model,
which increases the depth of successive model, but avoids unnec-
essary reinferring and duplicate copies. After complete inferring,
the models obtain event tubelet with full semantics and feed
them to the central server for final control policies. To improve
the hit rate of hierarchical binary classification models, when
quiet time with no events exceeds the threshold, the EventTube
informs AMRs to transmit full-frame samples to the central
server, entering the incremental training phase.

B. Event Localization With Tubelet

Low-level feature-based interframe differencing aims to iden-
tify critical frames that may affect the results by capturing frames
with significant feature changes. But the interframe differencing
filter itself does not understand the content of the frames, which
makes the potential filtering power not strong. The tubelet mod-
ule applies neural networks Section IV-A to mine the semantics
of frames and consider the relationship between consecutive
frames on a time series to achieve more powerful filtering with
guaranteed hit-rate and recall of event tubelet.

Specifically, we design a simple NN-based regression model
that runs on consecutive compressed frames, first extracting the
image semantics by a simple convolutional neural network (or
operator in the computer vision community), then combining
the semantics of multiple frames, and finally feeding the pooled
features into a linear regression network to predict the score.
The frame difference module in Section III-B can detect the
interframe diff-value, and when the diff-value is large, it can

be considered that there is sufficient semantic information on
the time series of that segment, which is likely to affect the
analysis result. Based on this, we can capture all frames with
different values more significant than a threshold over a period
of time, which can significantly characterize the state migration
process of the content in the video stream over the time series.
We input the frames filtered by the frame difference module
into the tubelet, which combines the timing information and
predicts the location of the start/end moment of our event tube of
interest through a regression model. This is used as a criterion to
continue filtering out useless frames without reducing the recall
rate. When the tubelet module detects the event tube, it will
cache both the frames of the excessive state and the event tube
as key frames F in the active cache and set the return parameters
of the event tube according to the server configuration
(see Section IV-C).

It is worth noting that the tubelet model is simple, only
suitable for specific conditions. The video dynamics may change
(e.g., lighting changes), and the existing differential module and
tubelet are still analyzed according to the original method and
may lead to a drift phenomenon. Therefore, we will update the
model in the tubelet module according to the periodT . The value
of T is not fixed and will change as the confidence level of the
tubelet module results changes. Regular online updates of neural
networks are a challenge. In contrast to standard deep learning
algorithms, training a model online means that the frames of
the input model are not independent and identically distributed,
especially on relevant streaming data. In this case, the general
neural network quickly forgets the memory of the original data
while adapting to the new frames.

As we observed in Section I, if a critical frame exists in the
video data, the distribution density of positive samples close to
the key frame is high for a period of time. Based on this, we
propose a systematic online update strategy. Specifically, we
set recall constraints R and define the maximum and minimum
periods tmax, tmin. We initialize T to tmin. The tubelet module
performs inference on the frames filtered by the difference
module. When the number of frames is a multiple of the current
interval T , the system uploads it directly, even if tubelet prefers
to discard it. The server evaluates the tubelet result ptube and the
actual predicted result ptl. If the regression deviation is within
the constraint, the interval T is increased by 1 s

Ti+1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tmin, Ri < R;
Ti

2
, confi ≤ confstd;

Ti, confi > confstd, Ti = tmax;

Ti + 1 s, confi > confstd, Ti < tmax

. (1)

Otherwise, T is halved, and if the recall is lower than the query’s
constraint due to the wrong result of the tubelet, the period is
reformulated to tmin, and multiple iterations are executed. This
dynamic cycle update strategy is commensurate with the dense
distribution of positive samples in the time-dependent video
stream. As our evaluation shows, we can train online learning
tubelets with high recall and filtering rates, even using standard
gradient descent optimizers.
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C. EventTube Profile

The server runs a traditional video analysis pipeline. In the
initial stage, the trainer uses a few minutes of representative
video frames to compute each frame and obtains the detection
results, including those using the traditional video analysis
pipeline, the difference value of each candidate feature, and the
pretrained tubelet model. In contrast to the traditional pipeline,
we do not cause the server to perform inference on each HD
frame at moments other than the initial stage, but only on the
filtered event tube.

We deploy an active cache on the endpoint to load the data in
the event tube. A small active cache would result in insufficient
information in the frame sequence and would not bring richer se-
mantics to the detection task compared to high list frames, while
a too-large active cache would result in more load on the endpoint
and high uplink overhead. We use a hierarchical enhancement
algorithm, as shown in Algorithm 1. The component on the end
device provides some initial parameters, including the set of
filtered frames F, the collection of incremental differences {ri}
provided by the interframe difference component, and the period
T supplied by the tubelet module component. The component
provides other parameters, including the number of frames in
the encoding sequence to be uploaded N , and the hierarchical
enhancement configuration in the encoding sequence cfg. We
regulate the active cache size in terms of two scales, the active
cache sequence length m, and the number of frames in the
uplink sequence N . Regarding the choice of m, we aim to
preserve the state change process of a sequence as possible
and, therefore, set m to match the total number of frames in
the dynamic feedback cycle of the tubelet. By calculating the
product of period T and frames per second (FPS), we can obtain
the total number of frames m in the cache. After determining
m, we should perform appropriately spaced sampling from m
frames to generate further sequences. The server dynamically
adjusts N and cfg according to the balance between resources
and precision.

The goal of the selection is to preserve as much of the process
of state change in the sequence as possible, and the interframe
difference module has calculated the interframe difference di
for the specified feature (di denotes the result of the difference
between frame i and frame i + 1 in sequence m). We select
frame fl such that the

∑l−1
i=0 di and

∑m−1
i=l di of the interframe

differences on both sides of fl in the sequence is minimized,
obtaining the subsequences m1 and m2, and so on until the
first N frames are selected. The first N frames are arranged in
chronological order, and the encoded sequence {f ′i} is generated
based on the compression parameters configured by the server.
The {f ′i} is placed in the uplink and uploaded to the segment
analysis pipeline considering the timing channel information.
The server in EventTube will see a pyramidal sequence of frames
and analyze them based on that. When using the timing informa-
tion to analyze the cargo or obstacle state in the video, not every
frame in the sequence needs to be in HD, but only the change
of state needs to be represented, and the compression rate of the
frames can be adjusted to reduce the communication pressure.
We believe that compressing some frames in the sequence does

Algorithm 1: Hierarchical Enhancement Algorithm.

Input: F, {ri}, T,N, cfg
Output: {f ′i}
1: Init PriorityQueue Qseq

2: m← T · fps
3: {fm} ← slice F

4: PUSH(Qseq, {fm})
5: for n← 0 to N do
6: if IS_EMPTY(Qseq) then
7: BREAK
8: end if
9: F ′ ← POP(Qseq)

10: s, e← GETBOUND(F ′)
11: mid← rs + (re − rs)/2
12: l← BINARYSEARCH({ri},mid)
13: PUSH(Qseq, {fs, . . ., fl}), PUSH(Qseq, {fl, . . ., fe})
14: INSERT({f ′i}, fl)
15: end for
16: for f ′i ← POP({f ′i}) do
17: f ′ ← COMPRESS(f ′i, cfg)
18: INSERT({f ′i}, f ′)
19: end for
20: return {f ′i}

not affect the recognition accuracy of the server-side, and the
smaller the index of the n frames uploaded, the higher the
compression ratio can be set.

V. PERFORMANCE EVALUATION

A. Experiment Settings

1) Data Sources and Analysis: Our dataset consists of video
data captured on RGB-Monoculars from mobile robots in lo-
gistics warehouses, LARa [18] and public autonomous driving
dataset KITTI [19]. The logistics warehouse site covers various
obstacle and movement scheduling scenarios, and the video
quality varies depending on the movement speed and lighting
conditions when the RGB-Monoculars are capturing the data.

2) Query Tasks: Automation of warehouse goods trans-
portation, e.g., AMR automatic obstacle avoidance, logistics
robot positioning, etc. Automatic sorting of goods in ware-
houses, e.g., goods status recognition.

3) Experimental Environment and Server Model Setup:
EventTube modules ran on AI chip based edge server with
0.6TLOPS NPU, 1.5 GHz CPU. The central server ran on a
Centos instance with 32 CPU cores and 1 NVIDIA 2080Ti
GPU. The camera was a virtual machine (VM) whose resources
were provisioned based on [4]. In the VM scenario, we limited
the RAM to 512 MB, the CPU to a single core, and the CPU
frequency to 2 GHz via cpulimit.1

1[Online]. Available: https://github.com/opsengine/cpulimit

https://github.com/opsengine/cpulimit
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Fig. 3. Comparing EventTube and the other two strategies for the
datasets (a) event tIoU and (b) achieved FPS.

B. Overall Performance

We chose two baseline algorithms to verify the effectiveness
of EventTube.

1) Baseline: We first compare it to a baseline video analysis
pipeline where the AMR does not perform any operations
and transmits the captured data to the server for analysis.
This approach demonstrates the superiority of EventTube
in terms of response time and bandwidth savings.

2) Offline: To verify the importance of context in video
information acquisition, we compare EventTube with an
optimal offline system that uses a detection model [20]
based on running on a single frame to discover events.
This approach demonstrates the superiority of EventTube
in terms of event response speed and accuracy (i.e., event
hit ratio).

We define time domain Intersection over Union (IoU) (tIoU)
to evaluate the accuracy and efficient of semantics predict, which
reflects the start–end gap between evaluation and groudtruth as
(2), where fg

s , fg
e are start and end frames of groudtruth, fp

s , fp
e

are start and end frames of prediction, and count(fs, fe) is count
of frames between fs, fe

tIoU =
count(fg

s , f
g
e ) ∩ count(fp

s , f
p
e )

count(f l
s, f

l
e) ∪ count(fp

s , f
p
e )

. (2)

Fig. 3(a) shows that EventTube achieved an tIoU of 71.5%–
78.6% in our selected dataset. The event hits indicate that the
mobile robot can detect the corresponding cargo or obstacle with
the data collected by RGB-Monocular. As expected, the tIoU of

Fig. 4. Response delay comparison of EventTube and the other two
strategies.

EventTube is significantly improved compared to the single-
frame detection model.

Despite this high tIoU, EventTube can always provide a
detection delay more negligible than the other two systems. As
illustrated in Fig. 3(b), EventTube achieves a fast response to
events by prescreening redundant data using a diff module and
then predicting the start and end moments of events using a
regression model while maintaining a tIoU.

1) Response Time: The promise of frame filtering is ulti-
mately to reduce resource overheads and deliver (highly recall)
query results with low latency. Fig. 4 illustrates that EventTube
is able to reduce median per-frame response times by 44.15%–
49.82% (14.17–15.81 ms) compared to the baseline pipeline.

On the other hand, due to the simplicity of EventTube and
average bandwidth saving, it has not brought more reasoning
delay and communication based on successfully reducing the
number of frames the server needs to process. That makes the
back-end processing speed increase by above 60%.

2) On Resource-Limited Devices: In our experiments, the
resource-constrained VMs are considered as the camera
component of the video analysis pipeline. Specifically, we chose
a VM instance with a 2-GHz single-core CPU and 512-MB
RAM. This profile follows the range of camera resources ob-
served in the commodity cameras and surveillance deployments
studied in [4]. We implemented EventTube on VM instances
using Opencv and Pytorch for low-level feature extraction and
continuous frame classification, as well as for threshold adjust-
ment and training window scaling.

EventTube runs at 67.5 fps in a constrained environment,
highlighting the ability to perform real-time filtering. By digging
further, the processing overhead of different parts of EventTube
is shown in Table I. Most of the processing overhead in the frame
difference module is due to the per-frame extraction running
with Python and OpenCV. Even if no processing is applied,
the fps per frame extraction is 125.8. The low-level feature
filtering approach also only achieves 107.4 fps compared to the
tubelet module running at 78.3 fps. Overall, we observed that the
filtering results of EventTube for each video exactly matched the
results of our VM-based implementation, which illustrates the
feasibility of EventTube for large-scale applications on AMR
and sorting robots.
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TABLE I
COMPARISON OF THE INFERENCE SPEED AND EVENT HIT RATIOS OF EACH

COMPONENT AND ITS COMBINATION IN EVENTTUBE

c h r

Fig. 5. Bandwidth overhead for our dataset. The n is the number of
frames in enhancement sequence (see Section III-F).

3) Bandwidth Saving: Because EventTube considers timing
information, it aims to monitor an event tube instead of a single
frame. Therefore, EventTube can find possible events of interest
more quickly by observing the migration status in a video
context, effectively reducing the response time. The response
time is mainly composed of communication delay. Fig. 5 shows
the bandwidth savings brought by EventTube. 4 Offline YoloX
infers the frames on the edge servers directly and then only
sends the results to a central server. Offline processes only
quarter frames in time with less bandwidth but more delay,
which causes important events to be missing and requires more
edge servers. Under the requirement of 90% recall by relying
on higher filtering capabilities, EventTube still saves about 60%
(even when n = 10) of the bandwidth. The main overhead is to
transmit the compressed frame sequence.

4) Maximum Number of Connected Logistics Robots: Ac-
cording to our collected warehouse site dataset, the communica-
tion capacity in logistics warehousing is limited by the total up-
link limitation (usually 10–100 Mb/s). Taking the uplink band-
width limitation as an example, we tested the maximum number
of camera links under three different systems, EventTube, base-
line, and offline, by simulating the collected warehouse video
dataset. As shown in Fig. 6, the maximum number of parallel
cameras supported by EventTube under the 10-MB bandwidth
limit is five times higher than the baseline. That means the
same logistical efficiency can be achieved with one-fifth of the
bandwidth cost without compromising the quality of work per
device, compared to an end-to-end detection approach that does
not use optimization. Alternatively, EventTube can place more
AMRs and AGVs in logistics warehouse centers that already
have the infrastructure to increase freight efficiency dramati-
cally. As bandwidth increases, the gap between EventTube and

Fig. 6. Parallelized testing under bandwidth constraints.

the baseline and offline approaches shrinks because “Events”
on multiple devices can be concentrated in the same time slot,
which is the bottleneck for parallelization improvement at the
most congested moments.

C. Comparison With Other Detection Methods

We also compared EventTube with three existing detection
approaches that can consistently meet the desired accuracy
target.

1) YOLOX-Tiny [20]: We considered an event detecting sys-
tem that computes approximate query results using a compressed
detection model. We trained a YOLOX-Tiny model on the
AMR-monocular video dataset to detect events encountered by
mobile robots in warehouses and then tested it on the remaining
video clips.

2) Geometry [10]: Geometry is a method for 3-D object
detection and poses estimation from a single image. It first
regresses relatively stable 3-D object properties using a deep
convolutional neural network and then combines these estimates
with geometric constraints provided by a 2-D object bounding
box to produce a complete 3-D bounding box.

3) LOCNet [11]: LOCNet is a monocular camera 3-D detec-
tion and localization framework that integrates 3-D based object
detection, tracking, and localization. Through multiframe opti-
mization techniques, mining depth information in video streams
captured by monocular cameras outperforms state-of-the-art
image-based detection schemes in various scenarios. In our
experiments, the mean Average Precision (mAP) of Geometry
and LOCNet have compared on the KITTI(easy) dataset. It is
important to note that neither Geometry nor LOCNet can be
deployed to AMRs, despite their efforts for real-time analysis.

Table II shows that EventTube achieves significantly greater
benefits compared to the three systems. On storage video cap-
tured by AMR cameras, EventTube’s event hit rate was three
percentage points higher than the YOLOX-Tiny method running
on the same underresourced device, while the FPS was twice
as high. Because EventTube uses a diff module that detects
events quickly and filters out a large amount of redundant data
before performing event analysis, this means that EventTube
can improve AMR productivity. We tested EventTube against
current monocular camera 3-D target detection frameworks on
the publicly available dataset KITTI(easy). Although the ac-
curacy is not significantly improved compared to the currently



MO et al.: EventTube: AN ARTIFICIAL INTELLIGENT EDGE COMPUTING BASED EVENT AWARE SYSTEM 1831

TABLE II
COMPARING EVENTTUBE WITH EXISTING DETECTION AND LOCALIZATION

METHODS IN SMART LOGISTICS SYSTEM

c

Fig. 7. Application diagram of EventTube in warehousing cargo loca-
tion and identification.

available monocular camera 3-D detection methods, EventTube
can detect 3-D targets faster than conventional 3-D detection
methods by compressing the video frame sequences with the
filtering of nonevent data.

D. Logistics Applications

There are many AI applications in logistics systems, es-
pecially in warehousing, where RGB-Monocular based cargo
location and identification is a common application. Since video
data usually entails effective communication and computa-
tional overhead, real-world field buses are generally incapable
of taking up such pressure. Most current research on such
problems [21] has focused on resource scheduling and load
balancing.

However, optimizing scheduling strategies has not fundamen-
tally reduced the computation and communication overheads in
the logistics system, which has failed to reduce logistic costs
significantly. This leads to the intelligent logistics system’s high
efficiency and low cost. Therefore, as shown in Fig. 7, intelligent
logistics systems can be combined with edge computing to
achieve autopilot of AMRs, localization, and identification of
goods, and improved efficiency of logistics and warehousing
by using resources on AMRs or terminal devices. Specifically,
EventTube uses historical videos captured by cameras as training
sets to build neural network models capable of 3-D target detec-
tion and localization instead of through manual methods. Then,

the diff module is applied to detect the events in the video with
high efficiency and hit rate, and the data determined as “Event”
is transferred to the tubelet module to filter out the frames that
are not useful for machine vision methods without degrading the
validity, and to mine the depth information based on consecutive
frames for fast 3-D target detection and localization. EventTube
can be deployed on AMRs or an edge computing platform, where
cameras and storage servers collaborate to fully exploit the
computing power of edge devices and improve overall resource
utilization. With the help of EventTube, robotic arms, AMRs,
and warehousing platforms can quickly and efficiently locate
and identify goods and select the corresponding actions and shelf
locations.

VI. CONCLUSION

This article introduced EventTube, an edge computing-based
event aware system that can efficiently discover events from
the video data captured by RGB-Monoculars and collaborate
with individual devices to make timely decisions. It proposes
an edge computing and accurate and efficient solution for
warehouse cargo localization and identification, exploiting the
spatio-temporal correlation of events of interest in streaming
data to acquire video information on videos captured by
monocular cameras quickly. Technical support was provided for
the main tasks of logistics scenarios such as AMR environment
perception, cargo localization, and 3-D target detection.
Extensive experimental results showed the superiority of
EventTube in terms of accuracy, time delay, and roll-out cost.
Extensive experimental results showed that our EventTube
outperforms existing approaches.

For future work, in this article, we will improve the processing
capability for high noise video streams by enhancing the layered
enhancement method of tubelet and adding support for other
industrial video classes so that EventTube can be used effectively
in large-scale systems.
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