
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023 1467

A Function Approximator Model for Robust
Online Foot Angle Trajectory Prediction Using a
Single IMU Sensor: Implication for Controlling

Active Prosthetic Feet
Sharmita Dey and Arndt F. Schilling

Abstract—Lower limb dysfunction hinders the locomo-
tive activity in individuals and compels them to use assis-
tive devices such as prostheses or orthoses to restore the
missing locomotive functions. Passive assistive devices
have limitations in replacing the lost functionality. On the
other hand, active devices could restore more natural lo-
comotion using motorized joints. To make proper use of
these embedded motors, a control architecture is required
to translate the motion intent of the user into the intended
prosthesis joint trajectories. In this article, we propose
a temporal convolution-based online foot angle trajectory
prediction network (FATP-N) that predicts the foot angular
positions during unconstrained walking from the shank an-
gular position measured using a single wearable motion
tracker sensor. The data acquisition experiments were de-
signed to reflect natural gait with turns, varying inclines,
speeds, and mixed cadences. The trained models were pre-
pared for real-time prediction by compressing them to re-
duce the storage and time complexity. The validations were
performed on different motion conditions, including those
that have not been used for model training, to verify the
robustness of the model. The proposed FATP-N achieved
high accuracy and could generate predictions in real time.
The results indicate that the proposed approach offers a
possible architecture for real-time control of powered intel-
ligent prostheses.
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I. INTRODUCTION

ANTICIPATING human behavior and human motion pre-
diction have received growing attention in the last decade

due to the increasing number of biomimetic human–machine
systems. Accurate motion prediction is a challenging task due
to the fact that human motion is a result of complex neurome-
chanical coordination. Precise estimation of future positions and
trajectory planning of robotic agents like intelligent upper or
lower limb prostheses, power augmentation exoskeletons, and
assistive robotic devices (e.g., a smart wheel chair) are essential
to impart intelligence and define control strategies for such
semiautonomous systems.

Control strategies for such assistive robotic agents need to
cofunction with humans and send control commands to the
assistive device to perform the desired task in line with the
motion of the remaining body [1], thereby, replacing the func-
tioning of the missing or impaired limb. Different methods
have been proposed for devising control strategies for such
assistive devices [2]. For example, in a state-based control
approach, a finite state-action space is typically modeled to
develop control schemes for active prostheses/orthoses [3], [4].
A tabular value representation is maintained based on the finite
states (i.e., kinematics or kinetics of the user/device) to assign
control commands. The different state transitions are governed
by switching rules that make decisions based on the sensor input.
To support multiple phases of gait (e.g., initial stance, midstance,
and early swing) or multiple locomotion tasks (e.g., level-ground
walking, walking on inclined ground, and stair ambulation), the
number of parameters to be tuned, tabular representations to be
maintained, and switching rules to be defined increases [5], lead-
ing to an explosion of the parameter space. Pattern recognition
algorithms for locomotive intent and gait phase detection could
automate some steps [6] (e.g., potentially eliminate switching
rules). However, discretization of the gait cycle to finite states
and its annotation remains a problem, especially when a finer
division of the gait cycle is desired to devise a seamless control

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-8058-4867
https://orcid.org/0000-0001-7022-1069
mailto:sharmita.dey@med.uni-goettingen.de
mailto:sharmita.dey@med.uni-goettingen.de
mailto:arndt.schilling@med.uni-goettingen.de
https://doi.org/10.1109/TII.2022.3158935


1468 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

strategy. Moreover, errors and latency in the classification of the
intended locomotion tasks and gait phase can lead to the risks
of imbalance [7].

More recently, function approximator models have been used
to learn a generalized mapping between the sensor input that
reflects the motion intent of the prosthetic user and the gait
variables to be predicted as output that can be used to control an
active prosthesis [8]–[10]. Since such a generalized mapping is
learned across different gait phases and locomotion tasks, this
method alleviates the need for tuning the parameters, switching
between gait phase and tasks, as well as eliminating the need
for maintaining a tabular representation discretely. Even though
such methods could achieve near-accurate predictions, most
of the studies have focused on predicting gait variables at the
current time instant using a multitude of sensor variables [8],
[10], [11]. These approaches have two potential limitations
for predicting gait variables for prosthetic control. First, the
prediction delays combined with latency introduced by actuator
control and mechanics can lead to delays in actuation [2], [12]
and can cause phase differences in the motion of the user
and the prosthesis [7]. Second, acquiring inputs from multiple
sensors attached to the subjects’ body increases the overhead for
processing and synchronizing multiple channels in real time.

Therefore, in this article, we aimed at developing a strategy for
predicting the foot angular position trajectories in advance while
using a “minimal-sensor” setup. To achieve this, we exploited the
sequential nature of the gait by which the past temporal patterns
of the gait variables could hold information about the current
and future joint trajectories. We hypothesized that an appropriate
function approximator could learn the temporal relations in the
data to predict the desired gait variable trajectory in advance,
thus compensating for other delays. Moreover, such a model
could potentially minimize the sensor overhead by leveraging
history information from a single sensor.

II. CONTRIBUTIONS

In this article, we propose a novel temporal convolutional
network (TCN)-based framework called foot angle trajectory
prediction network (FATP-N), which could use the temporal
intralimb synergy during locomotion to predict the future sagit-
tal foot angle trajectory. In contrast to other studies, we used
only a single input feature from a single sensor to obtain high
prediction accuracy that facilitates minimal-sensor setup and
simpler system design. We found that incorporating bouts of
history information into the input signal trajectories reduces
the need for multiple input features. Moreover, we conducted
the experiments without a constrained experimental protocol
to replicate walking in the “wild.” The subjects were asked to
walk freely with turns, variable speeds, inclines, and cadence.
We trained individual FATP-N models for each subject from the
recorded data. Further, we verified these models using online and
offline experiments, which were also conducted on conditions
that have not been encountered during training (validated on
contralateral turns and higher slopes/inclines while trained on
only ipsilateral turns and lower inclines). The trained models
were compressed to reduce the storage and time complexity for

real-time prediction. The main contributions of our work are
summarized as follows.

1) A TCN-based novel framework to predict the sagittal foot
positions in advance by exploiting the biological body
segment synergies during human gait.

2) A solution to leverage information from a single wear-
able inertial measurement unit (IMU) (“minimal-sensor”
setup).

3) Evaluation experiments testing different walking scenar-
ios encountered during natural, unconstrained locomotion
(different inclines, speeds, turns, and cadence).

4) Optimized and compressed models for real-time perfor-
mance as well as scalability to edge devices.

5) Comparison with different baseline and state-of-the-art
data-driven methods for gait trajectory prediction to pro-
vide a benchmarking platform for future studies in a
similar direction.

III. RELATED WORK

Recently, advanced deep learning algorithms like recurrent
neural network (RNN) architectures have gained interest in dif-
ferent fields for time-series prediction. Many authors in biome-
chanics and rehabilitation have used such algorithms for gait
trajectory prediction, which could eventually help design better
control strategies for powered assistive devices. Liu et al. [13]
used a deep spatiotemporal model based on long short-term
memory (LSTM) networks for advanced prediction of knee
angle trajectories from measurements of other joint angles of
both legs for controlling a powered exoskeleton. Liang et al. [14]
used motion data from wearable sensors to learn a synergy
between upper and lower limb trajectories using LSTM networks
and predict the reference hip and knee angle trajectories for
stroke patients. Mundt et al. [15] used feed-forward neural
networks and LSTM networks to predict lower limb joint angles
and moments from inertial data simulated from optical motion
tracking data. Su et al. [16] used an LSTM network to predict gait
trajectories (lower limb joint angular velocity) and gait phase
using multidimensional data from seven IMU sensors attached
to the lower limbs and pelvis. He et al. [17] used visual signals
from a Kinect sensor to predict the lower limb trajectories using
an LSTM network. Zaroug et al. [18] used LSTM networks
for multitimestep forecasting of lower limb trajectories using
motion capture data. Fang et al. [19] implemented a gait neural
network using temporal convolutional networks for gait mode
recognition and gait trajectory prediction using data from an
array of sensors attached to the lower limbs and pelvis.

The high accuracy of the predicted trajectories obtained in
these studies indicates that deep learning algorithms tailored
to time-series data could learn the nonlinear relations between
gait variables and use sensor history information to forecast
gait trajectories. However, some of these studies used either
marker-based motion capture data or visual signals, which can be
reliably acquired only in laboratory environments. Other studies
required acquiring inputs from multiple sensors attached to the
subjects’ body that may increase overhead for multiple channels
processing or synchronization in real time. Alcaraz et al. [20]
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TABLE I
COMPARISON OF FATP-N APPROACH WITH OTHER RELATED STUDIES

used data from a single IMU sensor attached to the foot seg-
ment to compare different deep learning architectures for joint
angle trajectory prediction. However, this method is not feasible
for powered prosthesis control for transtibial and transfemoral
amputees. Moreover, most of the existing studies (with a few
exceptions like [13] and [14]) have not verified the performance
of such algorithms for the real-time prediction of gait trajec-
tories. Similarly, many of these studies were performed under
constrained locomotion protocols, which do not complement
the natural walking conditions of humans. This study addresses
these challenges with a unified solution by using compressed
temporal convolutional networks that support varying motion
conditions while using input from a single wearable sensor to
generate real-time predictions on both laptop PC and edge de-
vices. To the best of our knowledge, this is one of the first studies
that showcase the potential of a temporal convolutional neural
network (CNN) on an edge device for lower limb trajectory
prediction.

In Table I, we compare our approach with previous studies
that used state-of-the-art sequence prediction models for gait
trajectory prediction. It is seen that our approach required only
a single input variable to achieve comparable or better perfor-
mance than the state-of-the-art approaches. However, different
studies have quantified their results following different methods,
making it difficult to compare the performance of our approach
to other studies directly. Moreover, the inputs and predicted
variables also varied across studies. To establish a common
ground for comparison, we additionally compared our approach
to other data-driven models that are potential contenders for
our application using our data. This comparison can provide a
platform to benchmark future works in a similar direction.

IV. METHODOLOGY

A. Model Selection

Our learning-based model for predicting the foot angular
positions was inspired by three main aspects.

1) Relevance to application: Since our application scenario,
i.e., gait is an ordered temporal sequence, the history of
the temporal kinematic signals could hold information
about the current and future trajectories. Therefore, using
models that preserve such temporal correlations in data is
agreeable. The sequence prediction models such as RNNs
and TCNs are tailored to such tasks.

2) Computational efficiency: Computational efficiency is an
essential aspect of real-time actuation applications be-
cause this decides the reaction time to low-level control
commands. Therefore, a model with few parameters is
preferred. Deep learning models like CNNs and RNNs
use parameter sharing to reduce the number of parameters
and facilitate generalization.

3) Performance: To ensure safety in prosthesis control, high
prediction accuracy is desired from the model meant to
predict the gait variables. Therefore, we choose a model
that consistently predicts with high accuracy across dif-
ferent input embeddings and motion conditions.

To select the model that best satisfies these requirements,
we compared five different algorithms—linear regression (LR),
Gaussian process regression (GPR), gated recurrent units
(GRUs), LSTM networks, and TCNs for the predictive accuracy
and computational time requirements.

B. Foot Angle Trajectory Prediction Network (FATP-N)

We propose an FATP-N based on a 1-D temporal CNN that
captures the history of the shank segment orientation (θshank)
over a sequence of samples to forecast the trajectory of the foot
angle (θfoot) at a time point in the future. The FATP-N can be
defined as a function F

θt+m
foot = F(θt−T

shank, θ
t−T−1
shank , . . ., θtshank) (1)

where m is the number of samples to the future at which the
θfoot is predicted, and T is the number of samples of history
information of θshank used. In this article, we set m = 10 and
T = 15. The implementation of the FATP-N has been inspired
from [21]–[23], which describes a variation of CNNs for se-
quence modeling tasks by combining 1-D CNNs and causal
convolution. We chose a TCN variant over the commonly used
RNN architectures like LSTM since TCNs are structurally sim-
pler but computationally more efficient than RNN architectures.
Unlike RNNs, which sequentially process the input sequence to
compute the hidden states, TCNs can process input sequences
in parallel, thus making the computational effort independent
of the input sequence lengths. TCNs can preserve temporal
information through temporal convolution and pass it through
the hidden layers despite the parallel processing.

The FATP-N (see Fig. 1), similar to the TCN implementation
in [23] ensures causal behavior by employing convolutions such



1470 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 2, FEBRUARY 2023

Fig. 1. Structure of the FATP-N with three-layered temporal convolutions followed by a fully connected layer. At layer 1, 16 kernels of size three
are used. At level 2, 32 kernels of size 5, and at level 3, 64 kernels of size nine are used.

Fig. 2. (Left) Input and output of the FATP-N model: The θshank measurements obtained from the shank IMU sensor are time-delay embedded
with a lookback of 15 samples. The FATP-N model learns to map the time-delay embedded θshank to the θfoot ten samples to the future. θfoot values
for training FATP-N are obtained from an IMU sensor placed on the subject’s foot. (Right) The architecture of the FATP-N: A three-level stacked
temporal convolutional network with dilation of one at each layer, kernel sizes K = 3, 5, and 9 in respective layers. The number of kernel filters Nf

in each layer were 16, 32, and 64. At each level, the output feature map has the same length T as the input sequence and a width equal to the
number of filters in that layer, Nf .

that the output at the time point, t, is convolved with only the
components from time point, t, and earlier in the preceding layer.
The causal convolution operation, C, at a time point, t, with a
kernel, Ψ : RK −→ R of size K on a 1-D sequence input, x ∈
RT , with a dilation factor of d, can be defined as

C(t) =

K−1∑

i=0

Ψ(i).x(t− d.i). (2)

While typical implementations of the TCN [22], [24] uses
the same kernel size across layers with exponentially increasing
dilations [23] to allow large receptive fields, we propose a three-
level stacked temporal convolutional network with a dilation
factor, d, of one and kernel size, K growing with the level of the
stack [see Fig. 2 (right)]. Each level of the FATP-N is comprised
of causal convolutions and nonlinear activation. At level 1, 16
filters of size 3 and a causal padding were used, leading to

feature map, O1 ∈ R15×16. At the second level, 32 filters of size
5 and a causal padding were used, leading to a feature map
O2 ∈ R15×32. At the final level of the TCN stack, 64 filters of
size 9 were used and the last output of the output sequence was
considered, leading to a feature map,O3 ∈ R64. The final feature
map, O3, is passed through a fully connected layer to obtain the
network’s final output. This network structure was selected since
we observed in our initial analysis that using the same dilation
and increasing the kernel size across levels increases accuracy in
most cases while keeping the computational time almost similar.
Moreover, this practice simplifies the later steps to compress the
model.

Other hyperparameters of the model were determined using
a grid-search cross validation. We computed the accuracy on
a validation set using different hyperparameter combinations
from a parameter grid. Specifically, we tested different activation
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functions like identity, hyperbolic tangent (tanh), sigmoid, relu,
and elu, different optimizers like Adam and SGD, different
dropout rates of 0.0, 0.2, and 0.4, and different initializers like
He normal, He uniform, Glorot normal, and Glorot uniform.
Based on the experimental hyperparameter search and literature
review, we used Adam as optimizer, tanh as activation, Glorot
uniform as initializer, and a dropout rate of 0.4. Adam [25] is
one of the most popular state-of-the-art optimizers generally
due to its variable learning rate and momentum for weight
updates, which causes faster convergence. Glorot [26] is the
recommended initialization corresponding to a tanh
activation [27]. The implementations were done using
Tensorflow Keras [28].

C. Offline Experiments With IMU Sensor Data

1) Data Acquisition: Shank and foot angular positions
were acquired from seven able-bodied subjects (height:
169.6± 6.8 cm, mass: 72.3± 8.6 kg, age: 42.1± 16.6, two
females, and five males). Data were obtained at 100 Hz using
wireless motion tracker sensors or IMUs (MTw Awinda, Xsens)
strapped near the center of mass of the shank and foot of the
subject. The walking trials lasted for 35–40 s and were as
natural as possible, including varying speeds, cadences, and
turns without being strictly constrained to be on a straight
line. To assess whether the FATP-N model can generalize its
performance to variations in walking patterns, we acquired data
from a subject walking on a treadmill at different inclinations
(0◦, 5◦, and 10◦) and speeds increasing from 1.5 to 4 m/h. The
measurements from the shank sensor were used to provide inputs
to the FATP-N model, whereas the foot sensor measurements
were used as ground truth for training the FATP-N model and
testing the accuracy of its predictions.

2) Input and Output: The time history information of the
flexion-extension (sagittal) shank angles (θshank) were the in-
put to the FATP-N model, whereas the flexion-extension foot
angular positions (θfoot) at a future time point were the output to
be predicted. A time-delay embedding was performed to ensure
causal connections over a look back of 15 samples (150 ms
at 100 Hz). The FATP-N mapped each time-delay window of
15 shank angle data samples to the foot angular position, ten
samples (100 ms at 100 Hz) into the future (see Fig. 2). The
shank and foot angular positions were obtained directly from
the wireless motion trackers (IMUs).

3) Model Training and Testing: Three-level stacked FATP-N
models were trained and tested for each subject separately using
a five-fold cross-validation scheme on the prerecorded data
using IMU sensors. During each cross-validation iteration, 80%
of data from the subject was used to train the corresponding
models, and the remaining 20% was held out for testing the
model performance. For a 40-s recording session with 4000
samples (100 Hz), training data consisted of 3200 samples
(32 s, 100 Hz), and the test data consisted of 800 samples (8 s,
100 Hz). Accordingly, after the fivefolds of cross-validation,
each recorded data point was used for testing once. Furthermore,
to assess the generalization capability of the FATP-N, the model
was trained on data from a subject walking at varying speeds
(1.5 to 4 m/h) and inclines of 0◦ and 5◦. The model performance

was then tested on data from a held-out trial with similar walking
speed variations and inclines of 0◦ and 10◦. The training inputs
and outputs of the model were normalized individually within
a range of zero to one. The test inputs and outputs were also
normalized using the scale factor obtained from the train data.
This was done to simulate a real-time scenario where it is not
possible to find the scale factors for input and outputs from
real-time data. The coefficient of determination (R2), correla-
tion coefficient (ρ), and the normalized root mean square error
(NRMSE) between the actual and predicted trajectories were
considered for quantifying the quality of the predictions on the
out-of-sample data. Similarly, the inference rates were measured
to quantify the computational efficiency.

D. Online Experiments Using IMU Sensors

One of the main challenges of using CNN-based models
for real-time applications is the computational complexity of
the model due to a large number of parameters. We addressed
this challenge by compressing the trained model to a flatbuffer
format [29] to make it efficient for real-time predictions both in
terms of computational time and storage requirements. We call
this compressed model FATP-N Lite.

The trained and compressed FATP-N models were used to
predict the foot angular positions online as the subjects walked
at self-selected speeds. The wireless motion trackers were placed
on the shank and foot at the same body locations of the subjects
as during the offline data acquisition (in the previous section).
The foot sensor measurements were used only to test the pre-
diction accuracy. The subjects were asked to walk as naturally
as possible without following any strict experimental protocol.
The shank and foot motion data were recorded using IMUs at
100 Hz and were written online to text files. A custom-written
program monitored these files continuously, and whenever new
data became available, the trained FATP-N model for predicting
the foot angular positions was invoked. For each prediction,
the previous 15 samples of the shank angular positions were
read and normalized using the scaling factor obtained during
training and was used as the input to the FATP-N. The FATP-N
predictions at each query point were compared with the IMU
measured foot angular positions ten samples in the future to
quantify the performance of the models. The online trial of each
of the subjects lasted 20 s. The online experiment process is
illustrated in Fig. 3. An Intel i7 processor (six cores) hardware
with 16-GB RAM and a clock speed of 2.59 GHz was used for
offline training of the FATP-N models and online predictions.

E. State-of-The-Art and Baseline Comparisons

Finally, we compared the TCN-based FATP-N approach with
four other learning-based models; namely, LSTM networks,
GRUs, LR, and GPR model with “matern” covariance function.
LSTM and GRU are advanced state-of-the-art RNN architec-
tures and potential contenders for our application scenario. LR
and GPR models served as representative baselines for linear
and nonlinear methods for comparison. Each approach learns a
functional relation between history information from the shank
segment motion and a future sagittal foot position as given in
(1) with a future lookup, m, of ten samples. To ensure that
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Fig. 3. Online experiment protocol. The shank and foot IMU data are
stored into text files, which are polled for new data. When new data
becomes available, a compressed FATP-N model is invoked for the
prediction.

Fig. 4. Mean R2, correlation coefficient (ρ), NRMSE, and inference
rate of FATP-N predictions on prerecorded data across seven subjects.
Error bars show one standard deviation from the mean.

this comparison is consistent and sound, we performed this
analysis across 17 different sequence lengths, 1 < T < 200 for
all the five different models. Furthermore, for a fair comparison
between FATP-N and RNN-based architectures, we selected
the network structures such that each model had approximately
the same number of tunable parameters. The hyperparameters
of LSTM and GRU were determined using grid search cross
validation with the same parameter grid used for FATP-N. The
algorithms were trained and tested on IMU data following a
fivefold cross-validation protocol detailed in Section IV-C3.
Finally, we report the R2 scores, correlation coefficient ρ, and
inference rates in samples/s as a function of input sequence
length, T .

V. RESULTS

A. Offline Experiments

Fig. 4 shows the performance of the FATP-N models trained
and tested using fivefold cross validation on prerecorded data
from seven subjects. An R2 score of 0.95± 0.01, NRMSE of

TABLE II
METRICS QUANTIFYING ACCURACY AND COMPUTATIONAL SPEEDS OF

ONLINE PREDICTIONS USING COMPRESSED FATP-N MODELS

4.7± 0.9%, and a correlation coefficient, ρ of 0.98± 0.01 was
reported. Furthermore, the FATP-N model trained on varying
speeds and inclines could generalize its performance to similar
speeds and new inclines (see Fig. 5), and generate predictions
with high accuracy (R2 = 0.94, ρ = 0.98, and NRMSE=5%).
These results showed that the FATP-N model performance is
consistent in adapting to variations in walking patterns.

The offline trained FATP-N models used around 600 kB of
memory and generated predictions at a rate of 28.1± 1.5 Hz.
Since the IMU acquisition rate was 100 Hz, a real-time predic-
tion could not be supported with this prediction rate. To improve
the computational efficiency of the FATP-N model for real-time
predictions, the models were compressed to a flatbuffer format
(FATP-N Lite). The FATP-N Lite models were able to generate
predictions at a rate of 4.81± 0.25 kHz (150x speed-up in the
inference rate) while not affecting the high prediction accuracy
(see Fig. 4). Moreover, the FATP-N models required only 275 kB
of disk space (compared to 600 kB for the FATP-N model), thus
achieving a compression rate greater than two.

B. Online Experiments

Table II (first three rows) shows the performance metrics of the
compressed FATP-N model during the online experiments using
IMU data. The online prediction performance was slightly lower
than that of the offline predictions. A high correlation coefficient
(ρ > 0.97) was obtained between all subjects’ predicted and
sensor-measured foot angular positions. The NRMSE stayed
below 8% and averaged to 6%. The R2 scores ranged between
0.88 and 0.97 and averaged to 0.93.

Analogous to the offline predicted trajectories, the online
predicted foot angle trajectories closely followed the sensor-
measured trajectories (see Fig. 6). Misalignment between the
sensor-measured and predicted trajectories occurred mainly dur-
ing the peak foot angular positions. The highest correlation
between the measured and predicted trajectories occurred at a
delay of −10 samples except for one subject for whom the delay
for the highest correlation was −11 samples. This indicates
that the predicted trajectory leads the measured trajectory by
∼10 samples, which conforms to how the FATP-N model was
trained to predict the foot angle ten samples into the future.

Table II (last four rows) lists the frequencies at which the
prediction algorithm monitors (polls) the text file for new data
from IMUs, the rate at which the text file was updated with new
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Fig. 5. FATP-N predictions for a subject walking at speeds increasing from 1.5 to 4 m/h and on two different inclines (0◦ and 10 ◦). The model was
trained on data from another trial during which the subject walked at different speeds (1.5 to 4 m/h) and on inclines of 0◦ and 5◦. Results are shown
for 9000 samples acquired at 100 Hz.

Fig. 6. (Left) Normalized foot angular positions predicted online by the FATP-N models (red) for two subjects (Top: worst R2 and bottom: best R2)
using shank angular positions acquired at 100 Hz during the 20-s walking trials at self-selected speeds, including turns. The blue curve shows the
measured values of normalized foot angle trajectories ten samples (0.1 s at 100 Hz) to the future. (Right) Cross correlation (xcorr) between the
measured and predicted normalized θfoot trajectory as a function of the delay between measured and predicted trajectories. A delay less than zero
indicates that the predicted trajectory leads the measured trajectory.

data from IMU, the rate at which new predictions are generated,
and the rate at which query points are lost (not read or predicted).
The polling rate was above 1 kHz, which was more than ten
times faster than the file update rate (∼100 Hz). The prediction
rates closely matched the file update rate, with loss rates less
than one sample per second. It was observed that the file write
operation took 120 μs on average. An acquisition rate of 100 Hz
ensured that no recorded sample was lost while writing to file.
The read-operation took on average 630 μs, and the FATP-N
prediction of each query point took on average 320 μs. Since
the read and predict operations took less than 1 ms, the pro-
posed algorithm could potentially generate predictions as fast as
1 kHz. Data loss (samples being not read or predicted) occurred
when more than one sample was written during the read-predict
operation. Since the read-predict operation took less than a mil-
lisecond and the acquisition rate was around 100 Hz on average,
data loss occurred when the IMU data was being streamed
or written in bursts (with less than 1 ms between consecutive
samples).

Finally, to assess the model’s scalability to edge devices, the
compressed FATP-N models (FATP-N Lite) were mounted on
a Raspberry Pi 4, and computational requirements were tested.
It was found that FATP-N Lite could read new samples and
generate predictions at a rate of ∼350 Hz, which is more than
three times the data acquisition rate. These results indicate that
the proposed FATP-N Lite models are scalable to be used on edge
devices, and thus, provide a promising approach for designing
onboard controllers for powered prosthesis and exoskeletons.

C. State-of-the-Art and Baseline Comparisons

Fig. 7 shows the prediction accuracies and inference rates of
the different algorithms. The prediction accuracy was quantified
using the R2 score and correlation coefficient ρ between the
measured and predicted trajectories. The inference rates were
measured as the rate at which the test samples were processed.
For smaller sequence lengths, all algorithms expect LR gave
a good accuracy (R2 > 0.9 and ρ > 0.95). With an increase in
sequence length up to T = 100, the prediction accuracy of GRU,
LSTM, and GPR reduce at different rates. On the other hand,
LR showed an increase in accuracy with sequence length up to
T = 10, and then, plateaued at an R2 of around 0.85 except for a
dip at sequence lengths from T = 75 to T = 100. GPR showed
a rapid decrease in accuracy with increasing sequence length,
eventually reaching an R2 of around 0.7 and ρ below 0.9. LSTM
network’s accuracy also decreased with increasing sequence
length, reaching a performance par with the LR model at T =
50 before showing a further increase at a large sequence length
of T = 200. The GRU showed a slight decrease in accuracy
with sequence lengths increasing up to T = 100 but regained its
performance when they were increased further. The TCN gave
consistently high accuracy for different sequence lengths with a
slight increase in accuracy for larger lengths.

The sequence-based deep learning models like GRU and
LSTM regained their initial performance with increasing
sequence length. We assume that this is because of the
cyclic nature of gait in which larger sequence lengths include
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Fig. 7. Prediction score (R2), correlation coefficient (ρ), and inference speeds of different learning-based models across various input sequence
lengths. The algorithms were trained and tested on IMU-acquired kinematic data from seven subjects.

information from the same phase of the previous gait cycle (here,
T has a maximum value of 200, which corresponds to 2 s,
whereas the time for one gait cycle is slightly above one second
on average). The comparisons made it evident that, among the
compared algorithms, the TCN offered the best combination of
prediction accuracy and computational simplicity. These results
inspired us to use the TCN as the base of our FATP-N.

The superior performance of TCNs compared to RNNs across
varying sequence lengths may be explained by the fact that TCNs
are able to maintain much longer memory than RNNs [23].
TCNs also offer many advantages in sequence prediction tasks
compared to RNNs due to their structural and functional dif-
ferences with RNNs. While RNNs process the input signal
sequentially in time, TCNs can process the input sequence as a
whole using shared kernels. Furthermore, different kernel sizes
allow TCNs to have a flexible receptive field to learn relations
at different scales.

VI. DISCUSSION

The main challenges of implementing a real-time control
strategy for powered assistive devices like active prostheses are
the delays due to data acquisition, control command generation,
and motor control. Since human locomotion is a temporal se-
quence of events involving different limbs, joints, and muscles,
this study aimed to predict the θfoot at a future time point using
the time history information of θshank. This was achieved by
training a three-level stacked temporal convolutional network
(which we call FATP-N) to map the time history information
of the shank angular positions to a future foot angular position.
The training was done using shank and foot angular position
data acquired from wearable motion sensors (IMUs) as subjects
performed gait experiments. The trained model was validated
on out-of-sample data. Offline validation of the trained models
showed high accuracy indicating the potential of the proposed
FATP-N models for predicting the foot angle trajectories using
only a single input feature (θshank).

However, deep learning architectures like CNNs are com-
putationally complex to implement for real-time applications.
Since real-time prosthesis control is a major focus of the pro-
posed FATP-N architecture, it becomes interesting to make
the proposed model suitable for real-time prediction. This was
done by compressing the model to a flatbuffer format. The

compressed FATP-N models (FATP-N Lite) were less than half
the size and more than 150 times faster than the uncompressed
models for individual predictions. The online prediction ac-
curacy obtained using the compressed FATP-N models was
slightly lower than that of the offline performance. Moreover,
we showed that the compressed FATP-N models are scalable to
edge devices like Raspberry Pi for real-time prediction, thus
presenting a promising approach for onboard controllers for
prosthesis/exoskeletons.

In this article, a future look-forward of ten samples (100 ms at
100 Hz) was selected to showcase the ability of FATP-N models
to forecast the foot angular position in the future. For all subjects,
the predicted θfoot correlated the most with measured θfoot, 10 to
11 samples into the future (see Fig. 6). In a real-world control
application, the future predictions could be stored in a buffer and
applied by considering the control delays. On the other hand,
a large look forward may not be recommended since the user
might change his locomotive intent by the time this prediction
could be applied for control.

The FATP-N models were tested on various motion con-
ditions ranging from walking with varying speeds, cadences,
turns, and inclines. Future work should verify the method with
further motion conditions, e.g., walking on different terrains,
stair ambulation, running, etc. Furthermore, our strategy remains
to be tested on an even larger pool of subjects, for example,
amputees. Nevertheless, this study evaluated the feasibility of
using the FATP-N for real-time prediction of gait variables
using an input feature measured using a single wearable motion
sensor. The high accuracy and real-time prediction rates indicate
that the predictions from the FATP-N model could be used
for online control of powered assistive devices like prostheses
and orthoses. These results have implications for developing
a real-time position control strategy of the ankle joint or the
foot segment of an ankle-foot prosthesis/orthosis, which can
assist the user with improved ankle-foot function, especially for
ground clearance during the swing phase.

VII. CONCLUSION

In this article, we proposed a FATP-N, which can predict the
foot sagittal angle in advance from the history information of
shank sagittal angle. The performance of the FATP-N model
was tested in offline and online experiments with wearable
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motion trackers. We showed that the input from only a single
gait variable obtained from a single IMU sensor was required
for near-accurate, robust real-time prediction of the foot angle
using the proposed FATP-N network during unconstrained loco-
motion. We used a compressed version of the trained models to
improve the computational efficiency of online predictions. The
results indicated that the proposed approach offers a possible
architecture for real-time control of powered intelligent pros-
theses by compensating for the lag due to signal acquisition,
processing, and motor control.
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