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Abstract—The increasing size and complexity of cyber-
physical production systems (CPPS) lead to an increasing
number of faults, such as broken components or inter-
rupted connections. Nowadays, faults are handled manu-
ally, which is time-consuming because for most operators
mapping from symptoms (i.e., warnings) to repair instruc-
tions is rather difficult. To enable CPPS to adapt to faults
autonomously, reconfiguration, i.e., the identification of a
new configuration that allows either reestablishing pro-
duction or a safe shutdown, is necessary. This article ad-
dresses the reconfiguration problem of CPPS and presents
a novel algorithm called AutoConf. AutoConf operates on a
hybrid automaton that models the CPPS and a specification
of the controller to construct a QSM. This QSM is based on
propositional logic and represents the CPPS in the recon-
figuration context. Evaluations on an industrial use case
and simulations from process engineering illustrate the ef-
fectiveness and examine the scalability of AutoConf.

Index Terms—Automated reconfiguration, cyber-
physical production systems (CPPS), intelligent fault
handling.

I. INTRODUCTION

CYBER-PHYSICAL production systems (CPPS) are sys-
tems consisting of collaborating computational units that

are strongly interconnected with physical components, such
as actuators and sensors, collecting and processing data [1].
CPPS are expected to be capable of self-organization, self-
maintenance, and self-repair. Plug and produce is a term fre-
quently used in the context of CPPS, aiming at minimizing
configuration efforts in production when faults occur, compo-
nents are exchanged, or a new system layout is established [2].
However, while the possibilities of CPPS to enable a holistic
selfhealing nowadays are limited due to missing redundancies
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and selfhealing capabilities of materials [3], there are attempts
toward designing CPPS in a way that allows for fail-safe behav-
ior and maintaining production even in the presence of faults
[4]. These designs integrate redundancies, spare parts, and the
possibility to adapt the system layout to offer various production
paths. Reconfiguration aims at recovering a system from a fault
by automatically adapting the system configuration, such that
production, which was interrupted due to the fault, can be
maintained, possibly by an adapted control [5]. In other words,
the goal of reconfiguration is to transfer the system to a valid
configuration, i.e., a configuration that allows normal system
operation according to [6]. Hence, effects of faults are minimized
and production outages are reduced, accepting a degradation of
the system performance, e.g., a reduction of speed, if necessary
[5]. However, the adaptations that enable continuous produc-
tion need to be identified from a large space: the possibilities
usually are binary choices that lead to the search space rising
exponentially with every possibility. Nowadays, approaches are
based on naive heuristics that establish cooperative control for
local subsystems [7]. To the best of our knowledge, there is just
little research on identifying a suitable, system-wide adaptation
using efficient algorithms [8]. As a consequence, reconfiguration
for CPPS faces some unsolved research questions (RQ1–RQ3),
which result in requirements on an efficient solution (R1.1–4,
R3.1–3):

RQ1: Which properties of the CPPS are relevant in the context
of reconfiguration? Usually, CPPS have continuous and discrete
characteristics: velocities, temperatures, or water levels are typ-
ical continuous properties, positions of valves (opened/closed)
and of switches (ON/OFF) are typical discrete properties; for-
mally, CPPS can be described as hybrid systems [8]. Hence, a
model of CPPS in the context of reconfiguration needs to (R1.1)
model the current system behavior and the possibilities of the
CPPS to adapt to a fault including the effects of the adaptation us-
ing available system information, (R1.2) allow for an integration
of the capabilities of the controller such that a state allowing for
reaching the goal can be identified, (R1.3) contain an estimation
of how the CPPS evolves, and (R1.4) be based on a formalism
that allows for using known solution algorithms. However, AI
approaches on reconfiguration often assume a system model to
be given[3], [9], while approaches from fault-tolerant control
(FTC) require great manual efforts. In addition, faults may
require structural adaptations, e.g., the integration of redundant
hardware, which usually is not covered by FTC [5]. There are
numerous modeling formalisms for CPPS [10], [11]. Here, the

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-9203-5902
https://orcid.org/0000-0001-8747-3596
mailto:kaja.balzereit@iosb-ina.fraunhofer.de
mailto:kaja.balzereit@iosb-ina.fraunhofer.de
mailto:oliver.niggemann@hsu-hh.de
https://doi.org/10.1109/TII.2022.3146940


740 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 19, NO. 1, JANUARY 2023

goal is not to find another modeling formalism but to focus on the
AI-based reconfiguration algorithm and extract the information
relevant from established formalisms.

RQ2: How can the system dynamics be handled by static
reconfiguration? CPPS in general are dynamic, i.e., the system
evolves over time, usually described using differential equations.
However, fault handling in general is static: the task of recon-
figuration is a one-time adaptation while the dynamic handling
is task of the controller [5]. In addition, static models are easier
to create and more robust [12]. Hence, for reconfiguration, the
system dynamics need to be integrated into a static model,
i.e., information about dynamics needs to be estimated and
formalized to be compatible with a static model. FTC uses
estimations based on simulations or state space representation
[13]. However, these representations need to model the system,
including the faulty behavior in detail, which in general is not
possible since the required amount of expert knowledge is not
available [14]. Thus, the estimation of the dynamic behavior
needs to be done using available resources, such as topology
descriptions or historic system data.

RQ3: Is propositional logic well suited to identify a recon-
figuration? An algorithm solving the reconfiguration problem
of CPPS should (R3.1) take restrictions on the solution space
coming from the CPPS into account since enumerating all pos-
sibilities to adapt to a fault is not possible due to combinatorial
explosion [5], (R3.2) be compatible with static models con-
taining qualitative system information, i.e., information about
causal dependencies in the system, and a binary validity of
configurations [6], and (R3.3) enable a direct integration of
expert knowledge and intuitive modeling. Propositional logic is
used widely for diagnosis [12] and planning [9] since it mimics
human reasoning [15]. If it is well suited for reconfiguration of
CPPS has not been examined yet.

The contribution of this article is threefold. First, we present
a novel approach enabling automatic reconfiguration, which is
especially important for frequently changing systems, such as
CPPS; otherwise, reconfiguration would need to be implemented
for each new system layout manually. Given a fault leading
to deviations in the system, the approach identifies an input
mask that recovers a configuration that allows for maintaining
production. The approach is based on a qualitative system model
(QSM), i.e., a model representing the properties relevant for
reconfiguration, which omits the need for quantitative descrip-
tions, such as differential-algebraic equations (DAE). The QSM
is created using a description of the causal dependencies between
the system variables. In contrast to existing approaches, our
approach requires less expert knowledge and can be built from
available information. However, the approach is compatible with
more detailed system models. Second, an AI-based solution
approach that is capable of reasoning about the consequences
of intervening into control and identifying reconfiguration is
presented. As far as we know, this is the first approach that is
based on implementing reconfiguration in propositional logic,
allowing for using established solvers and intuitive modeling.
Last, the effectiveness (R1.1–3, RQ2, R3.2–3) and scalability
(R1.4, R3.1) of the approach is illustrated using an industrial use
case and representative simulations from process engineering.

A comparison to an established FTC approach is given and the
runtime is compared to established search techniques, which are
random search and a black-box approach.

The rest of this article is organized as follows. In Section II,
the related work from is discussed and the delimitations of our
approach are shown. After that, in Section III the problem is
defined and formalized. In Section IV, the solution approach,
which is based on the creation of a QSM, is presented. Then
in Section V, the evaluation, consisting of the application to an
industrial use case, a comparison to an existing approach and
the examination of scalability, is presented. Finally, Section VI
concludes this article.

II. RELATED WORK

In what follows we have included representative publications
from highly ranked journals, conferences, and workshops with
more attention on reconfiguration during the last decade to make
the recent developments of this field quickly accessible. We
will introduce each of the primary research directions, FTC,
diagnosis and planning, multiagent systems (MAS), Industry
4.0 (I4.0), and ontology-based approaches.

A. FTC

FTC is concerned with the accommodation of faults using
methods from control theory [16]. Today, the faulty system
behavior is often assumed to be known, which usually is not
the case in practical applications [13]. Hence, in recent years,
several techniques have been developed to estimate unknown
fault behavior, e.g., using adaptive feedback gains, that suc-
cessively adapt the control values [13], or by integrating an
observer that estimates the consequences of an actuator fault
[17]. Thus, the maximal impact of faults no longer needs to be
known but is determined during fault handling. Ma et al. [18]
showed an approach based on the combination of FTC and fuzzy
logic. A fuzzy observer determines unknown state variables and
approximates their behavior using nonlinear functions. Then, an
optimal control that minimizes the errors is calculated. FTC uses
ordinary differential equations (ODEs) to describe the timed
system behavior. ODEs require high manual efforts for modeling
and parameter adjustment. Major system disturbances, such
as failing system components would lead to massive changes
in these quantitative system models, which cannot be covered
by estimation techniques [5]. Hence, a new system model is
needed. Furthermore, FTC mainly focuses on continuous vari-
ables. When CPPS contain multiple discrete operation modes,
for each mode one control is needed.

B. Diagnosis and Planning

Model-based diagnosis (MBD) is the task of identifying root
causes. Automated planning identifies, given an initial and a
goal state and a model of the environment, a sequence of actions
reaching the goal state [9]. Travé-Massuyès [12] emphasized
the importance of such qualitative approaches in the context of
control: they enable reasoning about causal dependencies while
quantitative control approaches can ensure optimal control and
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stability. For diagnosis, hybrid systems are modeled using hybrid
automata and qualitative fault models [11] or Bayesian networks,
that model the dependencies between sensors and faults qual-
itatively [19]. For solving, Feldman et al. [15] presented an
enhanced SAT-based algorithm to MBD, for that the system
and observations are modeled in propositional logic. Borgo
et al. [9] used automated planning for the optimal control of
manufacturing systems. The system components are modeled as
symbols, the domain model describes the dependencies between
these. Then, automated planning is used to identify a sequence
of actions that enable optimal control. In qualitative simulation
(QS), physical systems are described using qualitative differen-
tial equations where instead of quantitative values, functions are
described by symbols expressing qualitative properties, such as
monotony information [10]. Thus, the need for expert knowledge
is reduced. However, QS is limited by its prediction correctness
since it suffers from a combinatorial blowup.

C. Multiagent Systems

MAS are characterized by multiple agents that each are spe-
cialized on a task and are connected to achieve a common goal
[20]. For reconfiguration, multiple agents are combined using
either automated planning such that a system-wide control is
established [20], or heuristics for redistribution of control [7].
Other MAS identify reconfiguration dynamically and use agents
to overcome time-delays coming from manual reconfiguration
[21]. An important constraint on all MAS discussed is the need
for highly specialized agents, which are technically complex to
train [22].

D. Approaches From Industry 4.0

Part of the vision of I4.0 are selfadapting CPPS capable of re-
acting autonomously to faults [23]. Strasser et al. [24] proposed a
formalism based on the creation of a reference model according
to the IEC 61499 standard [25] in the fields of manufacturing,
power systems, and robotics that enable systems to adapt to
changed circumstances, such as faults. The work also outlines
the need for a system-wide control infrastructure that enables
interoperability of the system components. Ladiges et al. [26]
presented an approach that combines selfdescriptions of compo-
nents in order to achieve a system-wide synchronized control and
a minimization of configuration efforts. For this purpose, each
component is assigned a formal description of its functionalities
and its input and output variables. However, both approaches
[24], [26] rely on the creation of detailed models, which are
costly to build. In addition, they do not focus on solving the
reconfiguration task but on providing reference models con-
taining the information necessary for system-wide control and
generating cooperative control strategies based on predefined
heuristics [7]. These strategies enable automatic handling of
minor deviations, but faults requiring more complex adaptations,
e.g., the integration of redundant hardware into the control
loop, push the approaches to their limitations. Also, the expert
knowledge needed for creating the models may not be available
[14]. Sinha et al. [27] presented an approach on modeling CPPS
in first-order logic and identifying valid configurations using a

TABLE I
COMPARISON OF EXISTING APPROACHES

Note: “+” (“-”) stands for approaches (not) satisfying the requirement, “0”
stands for no proposition concerning the requirement possible.

satisfiability solver. This approach, however, focuses on adapt-
ing the system to handle changes in the system architectures
or available resources and not on handling faults in the system.
Otto et al. [28] used optimization to identify optimal parameter
combinations for reusable software components. However, the
scope of this work is on optimal control and not on recovering
from faults. We build upon this work by providing a sophisticated
solution algorithm, which identifies even complex adaptations.
It works on causal graphs but it is also compatible with more
detailed models [24], [26] since these provide the information
needed for reconfiguration, too.

E. Ontology-Based Approaches

In automation technology, ontologies are used to model CPPS
including their capabilities in terms of concepts and relations
[29], [30]. Combined with observations, ontologies allow for
reasoning about alternative control instructions. For reconfigu-
ration, resources, functionalities, and requirements of CPPS are
described, and an optimal mapping between those is searched
[30]. Engel et al. [29] presented how to formalize modules and
orchestration instructions of CPPS in a knowledge base using
ontologies, and thus, reducing configuration efforts. The main
drawbacks of ontologies are the high modeling efforts and expert
knowledge required for creating the system models [14].

F. Novelty of Our Approach

Table I summarizes the capabilities and limitations of existing
approaches from FTC, e.g., [13], [17], [18]; MBD, e.g., [9],
[11], [15]; MAS, e.g., [7], [20], [21]; I4.0 [24], [26], [31]; and
ontologies, e.g., [29], [30] concerning (R1.1–4) and (R3.1–3).
Our approach builds upon the related work as follows. As in
MBD [11], [12], we use a QSM abstracting relevant CPPS prop-
erties using symbols. Compared to FTC or I4.0, our approach
requires less expert knowledge to create the model; fault models
describing the system under faults are not necessary. However,
our approach is compatible with more detailed models since it
relies on logic that is able to also reason about these models in a
short time. An important difference compared to QS [10] is that
qualitative information is not used for simulating the CPPS in
detail but only to estimate how the CPPS evolves. Our model is
drawn from causal graphs describing the dependencies between
system variables (R1.1). Similar to approaches from FTC (e.g.,
Wang et al. [13]), we use observations in form of sensor readings
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Fig. 1. Hybrid automaton.

to reason about the current system status and estimate future be-
havior. But in contrast, we create the system model from causal
graphs and not from sampled system data, reducing the impact of
noise and false sensor readings. Also, no quantitative calculation
of future system states but qualitative information is used as
in ontology-based approaches (R1.2). FTC models the system
including the capabilities of the controller in a quantitative way,
which usually is time-consuming. In I4.0 and ontology-based
approaches, the capabilities are modeled qualitatively, i.e., using
available process specifications. To minimize modeling efforts,
our approach also uses a qualitative control model (R1.3). MBD
and ontologies rely on logical reasoning enabling intuitive mod-
eling and the use of established solvers [15], [29]. To build on
these advantages, our approach uses propositional logic (R1.4).
Logic also permits restricting the solution space intuitively by
constraints such that efficient solving is enabled (R3.1). And as
usual in MBD and in ontologies, dynamic system information
is modeled statically (R3.2). In addition, expert knowledge can
be integrated directly (R3.3).

III. PROBLEM FORMULATION

CPPS consist of physical and virtual components that are
connected to achieve a given production task [1]. Formally, a
CPPS can be described by a hybrid automaton H (see Fig. 1).
H is a tuple (I,X,x0,F ,Σ,Φ) with I being a set of in-

put variables. I consists of discrete ID and continuous IC
variables I = ID ∪ IC . i(t), iD(t), and iC(t) refer to an (dis-
crete/continuous) input at time t.m = |I| denotes the dimension
of I . Every combination of discrete inputs iD defines a mode
μ ∈ M. X ⊂ Rn with n ∈ N denotes state variables. x(t)
refers to a state describing the continuous behavior at time t.
x(t = 0) = x0 are initial states, F is a finite set of functions
{fµ1 ,fµ2 , . . .} with fµi

: X × R × IC → X describing the
continuous behavior in mode μi over time t ∈ R, Σ is a finite set
of discrete events {σ1,σ2, . . .} with σi : ID → ID that transits
the system between modes, Φ : Σ×M×X → M×X is a
transition function mapping an action, a mode, and a state into a
new mode and initial state. If all functions fµi

are independent
from t, so that fµi

: X × IC → X ∀μi ∈ M , the automaton is
called time-invariant. Otherwise, it is called time-variant. For
readability, variables depending on time t are shortened to the
variable itself, e.g., i instead of i(t). Given a statex and an input
i, the tuple (x, i) is called a configuration of the hybrid system.

A. Running Example

The two-tank system in Fig. 2, which is an adaptation of
a system used for FTC and reconfiguration [5], serves as the

running example. The system consists of two tanks T1, T2, two
heating elements H1, H2, two cooling elements C1, C2, and two
connecting pumps p12, p21. Every tank has an inflow with either
hot (90◦C) or cold (10◦C) water and an outflow controlled by
valves v01, v10, v02, and v20. State variables are given by water
levels l1, l2 and temperatures θ1,θ2. These are measured in each
tank. The ten input variables are given by the opening states of
the valves and pumps. Hence, the hybrid automaton contains 210

modes.
Fig. 3 shows how reconfiguration interacts with existing con-

trol loops. The input variables I usually are controlled by a
program P , e.g., a control or a production plan. To define the
system goal, reference values on output variables are specified
by human operators. The program controls the system by a
sequence of input changes, which establish the wanted reference
values [5]. In case of a fault, this program may become invalid
such that the system goal is no longer reached. Nowadays, most
known faults are handled by P while often no fault handling
is done at all [8]. Hence, when a fault occurs, reconfiguration
becomes necessary to alter the system to a new configuration,
from that production can be maintained by control. For this pur-
pose, reconfiguration changes the system to a new configuration
by masking inputs, i.e., applying a function fR on a subset of
the inputs IR ⊂ I that may no longer be affected by control.
The new configuration shall enable that a possibly adapted
production program P ′ maintains system operation [5]. Second,
P ′ is identified, which works on the remaining, unmasked inputs
I \ IR and controls the system as specified by human operators.
The reconfiguration algorithm operates on a model of the CPPS
and a description of the controller, i.e., information when the
system goal can be reached by at least one program P . The
identification of an adapted program P ′ can be done using
well-known control methods. However, the identification of an
adequate reconfiguration is still an open research topic [5]. Given
a system goal, a configuration (x, i) is valid iff the system goal
can be reached by at least one program P .

Definition 1 (Reconfiguration): Given an invalid config-
uration (x0, i0) and a set of production programs P =
{P1, P2, . . .}, reconfiguration is a function fR : IR → IR with
IR ⊂ I such that (x, fR(i)) is valid. Thus, a valid configuration
is recovered and the system goal can be reached by a program
P ′ ∈ P , which operates on the unmasked inputs I \ IR.

B. Running Example

Let the valve v01 be blocked, such that the water level in tank
T1 becomes too low. A possible reconfiguration is to open pump
p21. The corresponding reconfiguration function is fR(bp21) = 1
with bp21 being the binary input defining the opening state of p21.

IV. SOLUTION APPROACH

The solution approach AutoConf consists of two steps (see
Fig. 4). First (see Section IV-A), a QSM in propositional logic
representing the CPPS in the context of reconfiguration is cre-
ated. For this purpose, the algorithm AutoConf_GenerateSM is
created, which operates on the input and state variables of the
CPPS and causal graphs describing the dependencies between
these. The causal graphs can be created automatically from a
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Fig. 2. Running example. (a) Nonfaulty operation. (b) Valve v01 is blocked. (c) Reconfiguration via pump p21.

Fig. 3. Interaction between control and reconfiguration.

Fig. 4. Steps of the solution approach.

topology description, e.g., a piping and instrumentation diagram,
selfdescriptions of system components and their interconnection
[26], or using learning techniques [32]. The resulting system
model is given to the second step, the algorithm AutoConf_Solve
(see Section IV-B), which also operates on observations of state
and input variables, and a specification of valid areas of the
controller. The result of AutoConf_Solve is a mask that assigns
fixed values to the inputs of the hybrid automaton and ensures
recovery of a valid configuration. AutoConf is the concatenation
of AutoConf_GenerateSM and AutoConf_Solve.

Hence, given causal graphs and observations, reconfiguration
works completely automatically. Propositional logic is used for
following several reasons. it: (1) enables the direct integration
of expert knowledge in the form of process specifications and
domain knowledge due to intuitive modeling [15]; (2) reduces
the underlying search space to the relevant configurations, since
the logical formula models constraints coming from the CPPS;
and (3) allows for fast solving, sacrificing the optimal solu-
tion for a quick identification of an arbitrary solution. Since
reconfiguration is a search problem, it could also be directly
implemented in search. But this would come with higher manual
efforts due to less intuitive modeling. The high-dimensional
search space would need to be modeled explicitly. In addition,
it would be necessary to evaluate the influence of constraints

coming from expert knowledge on the search space manually.
Here, the masking of inputs is done by assigning inputs fixed
values, e.g., fixing a valve to open or close position. This
simplification is valid since reconfiguration aims at recovering a
valid configuration and not at optimally controlling the system
[5]. Hence, continuous inputs I = {i1, . . .} are discretized to
binary variables B = {b1, . . .}. Setting a binary input variable
to true represents the opening of the corresponding valve. We are
concerned with time-invariant systems only, by modeling past
system behavior in state variables.

A. Step I: Algorithm AutoConf_GenerateSM to Generate
System Model

The following sections describe how the logical formula rep-
resenting the system in context of reconfiguration is created and
how the requirements (R1.1–4) are met, i.e., to model the current
system status and the possibilities of adaptation including their
effects (R1.1), the logical formula needs to contain variables
representing the state and input variables, including the causal
dependencies between those to enable reasoning about the con-
sequences of masking inputs (Section IV-A1). The capabilities
of the controller (R1.2) are modeled in terms of valid and invalid
configurations meaning, a configuration is valid if it allows for
maintaining production (Section IV-A2). The handling of how
the system evolves (R1.3) is achieved by integrating a qualitative
prediction of the dynamics (Section IV-A3). And logic permits
using established solving algorithms, e.g., SAT solvers, which
are in focus of research for many years now [33] (R1.4). The
overall algorithm describing how the logical formula is created
is shown in Section IV-A4.

1) Causal Dependencies Between Input and State
Variables: To describe the causal dependencies between
binary input variables B and state variables X , causal graphs
are used. In causal graphs nodes represent variables and edges
represent causal dependencies between the variables [34]. For
reconfiguration, we use specific causal graphs G+ = (V,E+)
and G− = (V,E−). V is given by the binary input variables and
the state variables, so V = {x1,x2, . . .xn, b1, b2, . . ., bm}. The
edges in E+, E− indicate if setting a binary input variable to
true (i.e., fixing the corresponding input variable to a completely
opened position) leads to a significant increase/decrease of a
state variableE+ = {(bj ,xi)|j ∈ {1, . . .m}, i ∈ {1, . . .n} and
bj leads to significant increase of xi}. An increase/decrease
is significant, if it enables recovery of a valid interval within
the reconfiguration time Δt. These causal graphs can either be
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Fig. 5. Causal graphs for dependencies of running example. An arrow
from a variable to another indicates that activating the first one leads
to an increase/decrease of the second. (a) Increasing dependencies.
(b) Decreasing dependencies.

generated using expert knowledge [34] or learning techniques
[32]. Throughout the article, we assume the properties of
the causal graphs to not change over time. This poses the
requirement of monotonic dependencies between input and
states, e.g., a valve always leads to an inflow in a tank, on CPPS.
However, if this requirement is not satisfied, further restrictions
can be added to ensure validity of the QSM.

Running Example: Fig. 5 shows the causal graphs for the
running example. For example, when v01 or p21 are opened,
represented by Boolean variables bv01 , bp21 , l1 increases.

2) Capabilities of Controller: Since the goal of reconfigura-
tion is to recover a configuration that enables the controller to
maintain production, the capabilities of the control define valid
and invalid configurations. Iff the control is capable of work-
ing properly, given a configuration, the configuration is valid.
Usually, the areas from that a control can maintain production
are described by intervals on states, i.e., the control enables the
system to reach the goal if all state variables x are in specified
intervals [lb,ub] with lb,ub ∈ Rn being bound values [35].
The Boolean vectors low, high ∈ {0, 1}n model if the states
x are too low/high, so

lowi = BinaryValue(xi < lbi) (1)

highi = BinaryValue(xi > ubi) (2)

with BinaryValue returning the truth value of the statement.
Running Example: The valves v10, v20 are controlled by a

program ensuring constant outflow when the water levels are
between 0.3 and 0.4 m. θ1 and θ2 shall be between 65◦C and
75◦C, and 10◦C and 20 ◦C, respectively. These values define lb
and ub.

3) System Dynamics: The system dynamics are integrated
by state variables, which store past system behavior, and by
integrating a qualitative estimation of how the system evolves
given a specific input into the QSM. This comes with the
advantage of a simpler system model than those used in FTC.
In addition, this approach mimics human fault handling, i.e., in
case of a fault, a human would also adapt the system inputs once
by estimating from expert knowledge how the system evolves.
Hence, an estimation from causal graphs is drawn if a state will
increase or decrease in a specified reconfiguration time Δt: first,
for each state variable xi the sets POS,NEG containing those
binary input variables that increase/decrease xi are created. A
variable that is too low is estimated to recover to [lbi,ubi] if

at least one additional binary input leading to an increase is
activated or an additional binary input leading to a decrease is
deactivated (analogously for variables that are too high). Please
note, that this restriction reduces the solution space, i.e., further
combinations of Boolean inputs might exist, which also lead to
recovery of a valid configuration, but not satisfy the restriction
of not activating decreasing inputs for variables that are too low
and vice versa. The integration of these combinations can be
done manually for each CPPS.

Here, we use a fixed reconfiguration time Δt. However, the
approach is also compatible with flexible times, e.g., approxi-
mated using historical data or expert knowledge.

Running Example: The system dynamics are represented by
the state variables θ1,θ2 for temperature and l1, l2 for water
levels. Their values at time t are defined by their past values and
evolve based on the laws of thermo- and fluid dynamics.

4) Creation of Logical Formula: If at least one state is not in
its valid area, one of two following cases occurs. Either the states
that are not in their valid areas will return to their valid areas
within reconfiguration time Δt due to a suitable input, or not.
Given the second case, reconfiguration identifies the input mask
to achieve the first case, a configuration that recovers validity.
These are the configurations, in which for the state variables,
that are not too low or too high, inputs are activated that enable
recovery of a valid interval.

Algorithm 1 shows how the logical formula SM is created.
Inputs are the sets X,B and the graphs G+, G−. SM is initial-
ized as empty set in Algorithm l. 1. Then, for each state variable
xi ∈ X , the sets POS and NEG are identified, which contain
those binary input variables that lead to an increase/decrease of
xi using the information from the causal graphs G+, G− (see
Algorithm l. 4, 5). Then, SM is extended by constraints that
ensure that if a state is too low, at least one additional binary
input leading to an increase is activated or an additional binary
input leading to a decrease is deactivated (see Algorithm l. 6)
(analogously for states that are too high in Algorithm l. 7). For
this purpose, the binary variables b0 are added to the model,
which represent the initial value of the binary inputs.

Please note that the system model requires no fault models,
i.e., data about how the system behaves in the presence of faults.
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Whilst the approach is compatible with fault models, data about
faulty behavior in general are not available since it is nearly
impossible to foresee every fault at design time. Hence, the
approach is applicable to unknown faults and situations.

CPPS may offer the possibility to replace faulty compo-
nents or adapt the system layout [8]. To integrate these, binary
variables indicating the exchange of components or the use of
redundant hardware are used. The effects of these changes are
then modeled by causal graphs. Further, the system model can
be extended by capabilities extracted from a selfdescription of
the system, such as digital twins [20], [36].

Running Example: The system model for the running example
consists of eight constraints, two for each state variable. For
example, the constraint lowθ1 ⇒ ((¬b0

H1
∧ b0

H1
) ∧ (¬b0

H2
∧

b0
H2

)) ∧ (b0
p21

∧ ¬bp21) ensures that in case the temperature in
T1 is too low, it is increased by activating a heating element or
closing pump p21 since it delivers cold water.

B. Step II: Solution Algorithm AutoConf_Solve

The solution algorithm meets the criteria (R3.1–3) as follows.
Constraints directly reduce the solution space and the number
of nodes that need to be examined (R3.1). While there are
different types of logic, also temporal ones, propositional logic
operates on a static system model (R3.2). Expert knowledge can
be integrated directly since logic is selfexplanatory and enables
intuitive modeling (R3.3) [15].

The formula created in the previous section is input to a SAT
solver, which identifies an assignment to free variables, i.e.,
the Boolean input variables. A satisfying assignment leads to
the recovery of a valid configuration. But a SAT solver does
not take cost-functions or other valuations of different valid
solutions into account. However, the space of valid solutions can
be reduced further using regularization, i.e., constraints ensuring
that user-specified criteria (e.g., costs under a given bound) are
satisfied. In this approach, we apply regularization minimizing
the cardinality of the input mask, i.e., the number of input
variables affected by the reconfiguration. Hence, intervention
into control is minimized as much as possible.

Algorithm 2 shows the algorithm AutoConf_Solve. It takes
the system model SM , an initial configuration (x0, b0), and the
bound values lb, ub as inputs. The output is a new assignment
to the binary input variables, denoted by b. To minimize the
cardinality of the input mask, i.e., the number of input variables
that are fixed, an upper bound for binary changes is defined and
initialized with 1 (see Algorithm l. 1). The symbols low,high
are initialized by the function InitLowHigh, which returns the
binary truth values of (1) and (2) (see Algorithm l. 2). Then, the
solving loop starts (see Algorithm l. 3) and the constraint for the
upper bound is initialized by creating a cardinality constraint for
the number of variables in b that differ from b0 (see Algorithm l.
5). For this purpose, an XOR is applied component-wise to b and
b0. If the logical formula SM ∧ low ∧ high ∧ β is satisfiable
(see Algorithm l. 6), the assignment to the binary input variables
is identified using the function Assign (see Algorithm l. 8) and
returned (see Algorithm l. 9). Otherwise (see Algorithm l. 10),
the upper bound is increased (see Algorithm l. 11) and a new
iteration is started. In case the upper bound reaches its maximum,
given by |B|, and no solution is found, shutdown is returned
and the instructions ensuring a safe shutdown are applied to the
CPPS.

V. RESULTS

An industrial use case from process engineering (see
Section V-A), established simulations of tank systems (see
Section V-B), and a comparison to an FTC approach
[5] (see Section V-C) are used to show effectiveness (R1.1–3,
RQ2, R3.2–3) of AutoConf. The systems are realistic examples
of CPPS [5], [37] and contain continuous and discrete vari-
ables, they are consequently hybrid. In addition, the systems
are controlled, but not fault-tolerant. Hence, the systems pose
realistic reconfiguration problems. Causal graphs needed for
creating system models are generated from available system
specifications. To show scalability (see Section V-D) (R1.4,
R3.1), systems with varying numbers of input and state variables
are used and a comparison to random search and a black-box
approach is given. Thus, the advantages of limiting the search
space using logical constraints are quantified.

For reconfiguration, faults are not separated according to the
affected component but to their effect on the state variables.
Continuous faults lead to a continuous change of state variables,
e.g., a leak in a tank leads to a continuous decrease of the water
level. Discrete faults lead to an abrupt change of state variables,
e.g., an addition of water to a tank leads to an abrupt increase
of the water level. Temporal effects, such as a creeping loss of
temperature are handled as soon as a state variable reaches an
interval area. Faults that have no effects on state variables are
not within the scope of this article.

A. Industrial Use Case: Tennessee Eastman Process
(TEP)

The TEP is a simulation of a production plant often used as
a complex control problem [38]. It has been used widely as an
application example in the areas of fault detection and diagnosis
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TABLE II
RESULTS FOR SINGLE-FAULT CASES

Note: For each kind of fault listed in column 1, the number of simulated
cases is listed in column 2. # Reconf. denotes the number of correctly
reconfigured test cases (shown in column 3, in percent in column 4).

[39], alarm management [40], control theory [38], for the eval-
uation of MAS [41], reconfiguration methods [42], and as an
example for digital twin modeling [37]. It is representative for
many real-world systems used in pharmacy, chemical engineer-
ing, and other. It consists of a reactor, a separator, a condenser,
and a stripper, which are interconnected to deliver a specific
combination of gas and liquid, created from four different input
materials. Twelve valves in the process control the flow between
the system components; 41 sensors measure system variables.
In the absence of faults, the system is controlled by 17 control
loops [40]. The causal graphs required for reconfiguration are
extracted manually from the process description. While the
valves originally are linear valves with continuous opening
degrees, for reconfiguration, they are abstracted by discrete
variables describing either completely opened or completely
closed positions. This is valid since reconfiguration aims at
recovering a valid area of operation and not optimally controlling
the system. Various deviations leading to anomalous system
behavior and undesired output can be injected into the system.
These deviations, which manifest either locally or propagate
through the system, are caused by manipulating one or more
system variables. Typical deviations are variations in tempera-
ture, material concentration, or flow of input variables.

Manca [40] published datasets comprising single-fault cases,
e.g., deviations in the flow or the concentration of input products
and multifault cases, i.e., combinations of single-fault cases with
superposing effects. In addition, valid and invalid areas of state
variables are defined by bounds, which serve as lb,ub in the
QSM. We examine 90 single-fault cases and 100 multifaults
cases. The performance of AutoConf for the single-fault cases is
shown in Table II. IDVs 1,2 are combinations of deviations in
the concentration of input products, IDV 5 is a disturbance of
temperature of an input product, IDV 6 is a disturbance of flow
of an input product, and XMV 3 and XMV 4 are disturbances
of valve opening positions. XMV 3-1 h is a disturbance of the
valve for one hour. Out of 90 test cases, 75 are reconfigured
correctly. Disturbances XMV 3-1 h and XMV 4 tend to fail
since the deviation is not recognized by AutoConf.

Out of the 100 multifault cases, 91 are reconfigurable, i.e., a
masking of system inputs exists that allows for reaching a valid
configuration again. A total of 72 of these lead to an invalid
configuration, i.e., the deviations are not mitigated by control.
As soon as at least one state variable is out of its valid area,
reconfiguration is initiated. Reconfiguration then calculates an

TABLE III
RESULTS FOR MULTIFAULT CASES

input mask, which sets some of the 12 valves to open or close
positions, which ensures that a valid configuration is recovered.
Out of 19 faults that are not handled correctly, 15 faults did not
lead to an invalid configuration. 4 faults were not handled cor-
rectly due to Δt being too small such that a valid configuration
is not recovered within the reconfiguration time. Table III shows
the results of the proposed approach for these multifault cases.
TEP contains single and multiple continuous faults affecting the
concentration or temperature of input variables or stuck valves.
As can be seen, approximately 80% of faults in the industrial use
case are reconfigured correctly. Otherwise, these faults would
have led to an output having a reduced quality, or, in the worst
case, to machine and production outages. Hence, reconfiguration
can improve the performance of CPPS significantly. However,
20% of faults have not been handled correctly yet. Most of these
fail due to the fault not leading to an invalid configuration. Here,
a fault detection method, which is integrated into the definition
of valid and invalid configurations, would enable the reconfig-
uration algorithm to also handle these faults. Configurations
would be labeled as invalid as soon as the fault is detected and
reconfiguration would be triggered. In addition, the approach
is compatible with a varying time Δt, determined using expert
knowledge or learning techniques.

B. Evaluation of Limitations of the Approach

We use the two-tank system from the running example and the
three-tank-benchmark presented by Blanke et al. [5], provoke
various faults, such as broken components, e.g., leaking tanks,
and blocked connections, and monitor the output of AutoConf.
Both systems have been used for evaluation of reconfiguration
[43]. The ladder contains a redundant tank, which is not used
during nonfaulty operation. However, if necessary, e.g., when
a fault occurs, reconfiguration triggers usage of the redundant
tank to maintain production. Hence, the system layout may
change. For reconfiguration, redundant hardware is modeled
using binary variables. The systems are simulated in Modelica.
The QSMs are created using available topology information. The
model of the three-tank-benchmark encounters additional con-
straints indicating the direction of flow in the valves depending
on the water levels. The inputs of the system, i.e., the variables
controlling the heating and cooling elements, the valves, and
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TABLE IV
RECONFIGURATION RESULTS FOR TWO-TANK SYSTEM AND

THREE-TANK BENCHMARK

Note: WL Stands for Water Level.

the pumps, are discrete; the water level and the temperature
are continuous. Hence, the systems are hybrid. The two-tank
system encountered 58 faults, the three-tank-benchmark 39. In
addition to single faults, multiple-fault scenarios consisting of
two continuous, one continuous and one discrete, or two discrete
faults are simulated. In both systems, continuous faults are tank
leaks (2 cases each), valves stuck in either open or closed position
(eight cases each), and pumps stuck on full power or blocked
(four cases each). Discrete faults are abrupt drops and rises of
the water level, e.g., by manual adding cold or hot water (five
cases with intensity from 20% to 70% of current level each). In
the running example, which also processes temperature, further
faults are injected. Temperature drops and rises (one case each)
and failing heating/cooling elements (four cases) are continuous
faults, discrete drops, and rises of temperature (six cases each
with intensity from 7% to 42% of current temperature) are
discrete faults. Also, multiple faults are injected that are com-
binations of two continuous faults (four cases: heating/cooler
failures + stuck valves/pumps), a continuous and a discrete
fault (five cases: heater/cooler failures + abrupt level drops),
or a combination of two discrete faults (five cases: level and
temperature drops, one case: level drops in two tanks).

The results of the evaluation are shown in Table IV. All
of the continuous, discrete and multiple continuous faults are
reconfigured correctly. When it comes to multiple faults with
discrete faults, the method is only capable of handling 50%
responsibility 80% (multiple continuous + discrete) and 50%

TABLE V
COMPARISON TO FTC APPROACH BY BLANKE ET AL. [5]

responsibility 100% (multiple discrete) since multiple faults
often lead to conflicts. Multiple states cause the invalid configu-
ration, which may lead to contradicting constraints in the QSM.
Hence, the algorithm fails even though a solution exists. Adding
a prioritization to the constraints such that faults are handled
successively will enable enhanced multiple fault handling.

C. Comparison to FTC Approach by Blanke et al. [5]

The presented approach is compared to an FTC approach pre-
sented by Blanke et al. [5] using their three-tank-benchmark. An
important difference compared to AutoConf is that the approach
is based on a DAE representing the CPPS. The creation of the
DAE requires high manual efforts and a large amount of expert
knowledge while AutoConf operates on a hybrid automaton
and causal graphs describing. Table V shows the result of the
comparison. The approach by Blanke et al. [5] tends to fail for
multiple fault cases since they lead to major deviations, which
require a structural adaptation of the system that is not identified
by FTC. AutoConf is able of handling all fault cases.

D. Runtime of AutoConf

The size and complexity of CPPS rise permanently [8]. Hence,
a reconfiguration algorithm needs to be scalable to be of practical
use for CPPS. Formally, reconfiguration is a search for an input
mask recovering a valid configuration. A search space is a tuple
(S,O) where S = {s1, s2, . . .} is a set of search nodes and O =
{ol : sj → sk, l ∈ N} with sj , sk ∈ S is a set of operations,
which change the search nodes [44]. For reconfiguration, the
search nodes si ∈ S = X ×B represent configurations (x, b).
The operations represent possible changes to the configuration,
i.e., changes to the binary input variables. The dimension of
the search space depends on the number of state variables n
and on the dimension of the binary input variables m. In this
approach, the state variables are discretized into three areas (too
low, too high, ok) such that the number of search nodes is given
by 3n × 2m. By default, for each node m operations exist, one
for each change of a binary variable, leading to m× 3n × 2m

operations in total. Hence, for reconfiguration, an exponentially
sized search space needs to be examined.

Simulations of artificially generated tank systems with up to
4000 input variables and 3500 tanks are used to examine the
runtime of AutoConf. These tank systems are adaptations of the
running example, where the number of tanks and their intercon-
nections varies. Various faults are injected and reconfiguration
is performed multiple times. Fig. 6 shows the average time for
one execution of AutoConf as a function of the sum of input vari-
ables and state variables since the complexity of reconfiguration
directly depends on the number of these variables. Calculation
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Fig. 6. Calculation time for one execution of AutoConf.

Fig. 7. Comparison to random search, a black-box approach, and
AutoConf.

ran on a MS Windows system with Intel Core i7-8500Y, 16 GB
RAM.

We compare the runtime of AutoConf to the established search
techniques random search [45] and a black-box approach [46].
Random search enumerates all possibilities in random order; the
black-box approach starts with the initial, invalid configuration
and searches for the closest solution. Hence, the action of an
uninformed operator, who would change inputs one-by-one,
is mimicked. To examine scalability, systems with a varying
number of state and input variables are used. The comparison is
shown in Fig. 7. Random Search and the black-box approach suf-
fer from combinatorial explosion even for small-scale systems
while AutoConf solves the reconfiguration problems in short
times (less than 0.05 s). The black-box approach often finishes
in short times for solutions close to the initial configuration,
but when it comes to larger adaptations random search is faster
since the black-box algorithm contains computationally intense
operations.

VI. CONCLUSION

Various faults, such as broken components or interrupted
connections, occur in CPPS due to the increasing size and
complexity of the systems. Nowadays, fault handling is mostly
done manually, which usually is time-consuming. However,
in many cases, the production goal still could be reached by
adapting the configuration and control of the CPPS. But due to
control handling only known situations, the necessary changes
cannot be applied in case of faults that have not been foreseen
at design time. To enable CPPS to handle faults autonomously,
reconfiguration, i.e., the implementation of a new configuration
that allows reestablishing production, is needed.

This article presented a novel approach on reconfiguration for
CPPS, which identified an input mask counteracting deviations
that occur due to faults. For this purpose, a QSM in propositional
logic that describes the CPPS in the context of reconfiguration
was created. The QSM integrated an estimation on how the

system evolves and also took the capabilities of the controller,
which defined valid and invalid configurations, into account (see
RQ1). The system dynamics were integrated into the QSM using
an estimation of how the system evolves. Here, causal graphs
describing coherences between input and state variables were
used. These causal graphs can either be drawn from a topology
description and a minimum of expert knowledge or using learn-
ing techniques (see RQ2). The search for reconfiguration was
implemented in propositional logic, enabling the application of
a SAT solver. This comes with the benefits of intuitive modeling
and human-understandable reasoning. In addition, the solution
space was reduced by the constraints given by the CPPS (see
RQ3). Experimental results were performed on an industrial use
case and simulations from the field of process engineering. The
algorithm was shown to handle various single faults and even
multiple faults. However, some multiple faults may lead to goal
conflicts that cannot be handled at the moment. Compared to an
FTC method, the presented approach is shown to handle more
and numerous complex faults. The runtime of AutoConf was
examined using large-scale systems with up to 8000 variables
and compared to state-of-the-art approaches, such as random
search and a black-box approach. Results showed that AutoConf
outperformed other approaches but also showed limitations
when it comes to systems with more than 4000 variables. To
apply AutoConf to real-world systems that comprise even more
variables, a logic to decompose the system into subsystems will
be developed in future work.

Currently, time dependency of the system was handled im-
plicitly assuming that states store past system behavior (limita-
tion to time-invariant systems). To integrate time variance, the
definition of configurations and the algorithm will be extended.

Despite the success demonstrated, a significant limitation is
that the space of possible adaptations of AutoConf is defined by
causal graphs. Nonetheless, AutoConf is compatible with more
complex spaces, e.g., generated from selfdescriptions of system
components or digital twins. And since modeling in logic is
intuitive, transferring these system models can be done easily.
Besides, AutoConf identifies only an arbitrary valid solution,
not the best one. However, each solution can be assigned a cost
function, such that the SAT solver, given an objective function,
identifies the best solution.
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