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Ariadne+: Deep Learning—Based Augmented
Framework for the Instance Segmentation
of Wires

Alessio Caporali “, Riccardo Zanella

Abstract—In this article, an innovative algorithm for in-
stance segmentation of wires called Ariadne+ is presented.
Although vastly present in many manufacturing environ-
ments, the perception and manipulation of wires is still
an open problem for robotic applications. Wires are de-
formable linear objects lacking of any specific shape, color,
and feature. The proposed approach uses deep learning
and standard computer vision techniques aiming at their
reliable and time effective instance segmentation. A deep
convolutional neural network is employed to generate a
binary mask showing where wires are present in the input
image, then the graph theory is applied to create the wire
paths from the binary mask through an iterative approach
that aims to maximize the graph coverage. In addition, the
B-Spline model of each instance, useful in manipulation
tasks, is provided. The approach has been validated quan-
titatively and qualitatively using a manually labeled test
dataset and by comparing it against the original Ariadne
algorithm. The timings performances of the approach have
been also analyzed in depth.

Index Terms—Computer vision, deep neural networks,
industrial manufacturing, instance segmentation.

[. INTRODUCTION

HE development of robotic solutions for the manipulation
T of deformable objects is a topic of interest in several do-
mains of industrial manufacturing not only in the automotive [1],
[2], aerospace [3], and textile industries [4] but also in other very
diverse fields as robotic surgery [5], [6] and food processing [7].
Nowadays, human work is intensively adopted in these domains
due to the complexity involved in the manipulation tasks of
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objects that may have both unpredictable initial configurations
and large deformability and plasticity.

Deformable linear objects (DLOs) are a particular subgroup
of deformable objects consisting of wires, cables, strings, ropes,
and elastic tubes. Although vastly present in every industrial
environment, wires and wiring harnesses still represent a prob-
lematic task for robotic applications. This is the result of few
peculiarities embedded in these objects, like not having any
specific shape (due to the deformability), nor color, nor any
relevant feature that can make them easily distinguishable with
respect to other objects.

This article is motivated by the lack of any reliable and
efficient system for the segmentation in instances of wires
from complex scenarios, such as in industrial manufacturing. In
this article, an algorithm addressing this instance segmentation
problem effectively and robustly is presented. The proposed
algorithm can be then employed in all those subtasks where an
accurate perception of wires is required, such as wire routing,
terminals insertion, and cable grasping.

The developed algorithm is addressed as Ariadne+. It takes as
input data an image of the scene and finds the single instances
of each wire in it by combining deep learning and computer
vision techniques. Besides, the proposed solution is meant to be
time effective. A deep convolutional neural network (DCNN)
performs the semantic segmentation of the source image pro-
viding as output a binary mask. A computer vision pipeline
processes the input image and its binary mask in order to detect
the individual instances of the wires by exploiting a superpixel
segmentation step to reduce complexity. Then, a region adja-
cency graph (RAG) is created to manage the superpixel structure
and properties efficiently. The RAG is simplified, refined, and
clustered, thereafter a procedure is applied to identify the path of
each wire. Finally, an assessment of the wires layout is obtained
by a task-tailored specific DCNN. The obtained instances are ul-
timately modeled by B-Splines providing a useful representation
for manipulation tasks.

The main contributions of this article can be summarized as
follows:

1) A reliable and time effective complete approach for the
instance segmentation of wires in real scenarios.

2) Modeling of the detected wires in terms of
B-Splines.

3) An open source implementation of the entire algorithm
available online [8].

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/


https://orcid.org/0000-0001-9522-4231
https://orcid.org/0000-0001-5764-9896
https://orcid.org/0000-0001-9457-4643
mailto:alessio.caporali2@unibo.it
mailto:alessio.caporali2@unibo.it
mailto:riccardo.zanella2@unibo.it
mailto:gianluca.palli@unibo.it
mailto:daniele.degregorio@eyecan.ai
https://doi.org/10.1109/TII.2022.3154477

8608

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 12, DECEMBER 2022

4) A comprehensive experimental validation in terms of
segmentation capabilities and timings performances of
the approach.

5) A comparison against Ariadne [9], the current state-of-
the-art segmentation algorithm for DLOs.

Il. RELATED WORK

Many research articles on the manipulation of DLOs have
been developed, e.g., for knot tying [10]. However, the problem
of their robust detection is still underdeveloped [11]. The visual
perception of DLOs has been typically addressed in fairly simple
settings. In [12], the tracking of DLOs is presented where the
images are segmented relying on simple color information.
In [13], a good contrast between foreground and background
is assumed to be available. Alternatively, in [1], the utilization
of augmented reality markers for the detection of wiring harness
endpoints is proposed.

Similarly to image processing, also in the RGB-D domain,
color information and plane fitting techniques are used to seg-
ment the target DLO as in [14] for rope untangling, and [15],
concerning the modeling of DLOs via B-Splines chained mul-
tiple random models.

Ariadne [9] can be considered the current state-of-the-art
method for cables detection and segmentation in images featur-
ing complex backgrounds. It is able to perform both a semantic
segmentation and B-Spline modeling for multiple DLOs in the
scene. However, it has few drawbacks, as: it requires a neural
network (or a manual intervention) to specify the cables start and
endpoints; it is intrinsically slow due to the exploration process
involved; its performances are heavily affected by perspective
settings; and it is not robust to specific background/foreground
color combinations. With respect to Ariadne, the following
improvements are implemented in Ariadne+.

1) No manual intervention is needed to initialize the algo-
rithm.

2) Our approach works even in case the endpoints are not
present in the image.

3) The superpixel segmentation and graph generation are not
performed over the entire image, significantly reducing
the execution time.

4) A greater robustness to complex and diverse real scenarios
is achieved via novel neural network methods.

To summarize, Ariadne+ improves Ariadne in terms of ap-
plicability, accuracy, and execution time.

Besides Ariadne [9], the semantic segmentation of DLOs
(in particular, wires and cables) has been recently addressed
via learning-based methods in [16] where a dataset generation
approach is presented and the built dataset made publicly avail-
able. In the context of learning-based instance segmentation of
objects [17], [18], the major problem in their application to
DLOs resides in the lack of publicly available datasets, and con-
sequently, the difficulty in annotating a large set of images. Some
approaches are emerged focusing on synthetic data generation
pipelines [19], [20] but their applicability to DLOs still needs to
be proven due to the existing sim-to-real gap [16].

Although for cables, and DLOs in general, the literature
concerning perception algorithms is quite reduced, this is not
the case for other domains where the treated objects may
have some similarities with cables, such as vessel [21] and
suture threads [22] segmentation in medical images. In fact,
DLOs appear as tubular structure in images. Hence, algorithms
developed for curvilinear structures can find, in theory, ap-
plication to cables. Regarding the medical domain, in [21],
the authors propose a new curvilinear structure segmenta-
tion network and show their application to vessel segmenta-
tion task. In [22], an approach consisting on the identifica-
tion of the suture thread tips and a novel “marching” algo-
rithm is presented aiming at segmenting the thread from the
background.

Among simpler general “filters” for tubular structures, the
most popular one, commonly addressed as Frangi filter, is [23],
that is a multiscale procedure able to highlight tubular struc-
tures. In addition, a well-known method is the Ridge filter [24],
which is an algorithm used to extract image ridges, commonly
applied to medical images showing vessel structures. Both
the Frangi and Ridge filter are based on the Hessian matrix,
hence, many false positives are detected in case of complex
backgrounds [9]. Finally, ellipse and line segment detector
(ELSD) [25] is an algorithm developed for detecting line seg-
ments and elliptical arcs. Also ELSD suffers in case of complex
backgrounds [9].

IIl. ARIADNE+ ALGORITHM

The main steps of the Ariadne+ algorithm can be summarized
as follows.

1) Semantic segmentation: A DCNN segments the input
image and provides a binary mask M, as output.

2) Superpixels segmentation: The input image is segmented
into superpixels taking advantage of M.

3) Graph generation: An RAG is created to manage super-
pixels efficiently in terms of neighborhood search and
endpoints identifications.

4) Graph simplification: The graph’s nodes degree is used
to find intersection nodes, simplifying them to a single
equivalent node.

5) Graph clustering: The graph is divided into clusters based
on a connectivity measure.

6) Intersection score evaluation: In case intersection nodes
are present, the scores of their neighbors couples are
evaluated using a DCNN called TripletNet.

7) Paths finder: A paths finding strategy is executed to dis-
cover the path of each wire and maximize the coverage
of the graph.

8) Paths layout inference: A DCNN is used to predict the
wires layout in the intersection areas to create correct
instance masks.

9) B-Spline modeling: The computed paths are approxi-
mated by B-Spline curves.

Fig. 1 provides an overview of the algorithm pipeline. In the
following, each of those steps is discussed in details.
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Fig. 1. Ariadne+ pipeline.

A. Semantic Segmentation

As starting point of the proposed algorithm, a DCNN performs
the semantic segmentation of the input image, producing a
binary mask M, of the wires. The DeeplabV3+ neural network
model [26] is chosen for that purpose since it represents the
state-of-the-art in semantic segmentation. However, it is worth
remarking that any model capable of extracting a good quality
mask from the scene can be employed in the Ariadne+ pipeline
since no specific constraints are introduced in this regard. As
dataset, the Electric Wires Image Segmentation dataset [27]
is employed. It consists of around 30 K samples of synthetic
images of wires of different shapes and colors obtained
using a novel approach based on a Chroma-Key method with
background swapping [16].

B. Superpixels Segmentation

The superpixel segmentation of images consists in partition-
ing them into local meaningful subregions by capturing local
similarity among the pixels. The aim of this procedure is to
simplify the image and speeding processing up. There exist two
main branches of superpixel segmentation algorithms: graph-
based methods [28] and gradient-ascent approaches [29]. In
the proposed algorithm, the simple linear iterative clustering
(SLIC) segmentation algorithm [30] is adopted. This solution
generates superpixels by clustering pixels based on their color
and proximity in the image plane using a 5-D space. Since
a binary mask discerning the wires present in the image is
available, the algorithm called MaskSlic [31] derived as an
extension of the original SLIC and able to perform the clustering
only within regions of interest is exploited for our purposes.
Thus, the region of interest [ ’S i.e., the wires, on the input
image Ig is partitioned into subregions denoted by R;, i.e.,
the superpixels, such that I, = UR;, where ¢ = 1$r. From the
computed superpixel labels, the centroid information is extracted
from each superpixel. The superpixel centroids are then used in
the last pipeline step as reference points for wires’ B-Spline
interpolation. Fig. 2 displays the result of the superpixelization
on the sample image used through this article.

C. Graph Generation

In this step, an undirected and not weighted RAG is built
from the image superpixel segmentation, where each superpixel

(b)

Fig. 2. Superpixelization. (a) Superpixelization of the input image
shown in Fig. 1. (b) Crop of image (a). (c) Graph edges computation
in superpixel mask (top) before and (bottom) after gradient operation.
In (c-bottom) are shown the pixels of the neighboring superpixels in red
and blue.

becomes a graph node. Hence, the graph is composed of 7 nodes,
where 7 is the original number of superpixels. The undirected
unweighted RAG is denoted by G = (V, E), where V is the set
of nodes (or vertices) v;, corresponding to each region R;, and
E is the set of edges e; such as that e;, € I if R; and Ry,
are adjacent. We also denote as adj(v;) the set of nodes adjacent
to v;. The RAG generation and its usage should be as most
efficient as possible to make the pipeline’s run-time execution
faster. The edges of the graph are, instead, computed exploiting
the neighbors of each superpixel.

Given a node of the graph, its superpixel label is retrieved and
a binary mask of the superpixel is generated. A morphology
gradient operation is performed on the mask to fetch pixels
belonging to the neighboring superpixels. Consequently, from
the labels of these neighbors, the knowledge of the neighboring
relationship of the considered superpixels is obtained. Thus, an
edge connection is established between the node considered and
each associated neighboring node. Fig. 2(c) shows an outline of
the approach on a sample superpixel.

In the following, the degree of a node, denoted by d(v;),
represents the number of its neighbors, and the following clas-
sification is adopted for the nodes on the basis of their degree.

1) v; is an outlier if d(v;) = 0, and thus, it is removed from
the RAG.

2) wv; is an endpoint if d(v;) = 1.

3) v; is a segment if d(v;) = 2.

4) v, is an intersection if d(v;) > 2.

Each node is also augmented with the following attributes.
1) Label ID: To link each node to the original superpixel.
2) Centroid coordinates: Defining the centroid point of the

corresponding superpixel in the image.
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Fig. 3. (a) Graph with intersection nodes highlighted in red. (b) Graph
simplified. (c) Graph divided into intersection-free clusters (blue) and
cluster with intersection.

3) Intersection: 0 (zero) if node is not an intersection (degree
< 2), 1 (one) otherwise.

D. Graph Simplification

Given the RAG initialized in the previous stage from the point
of view of nodes and edges, the simplification of the graph is
carried out in this pipeline step by exploiting the degree property
of the nodes. An intersection is defined as an area of the graph
composed by one or more intersection nodes. Exploiting the
RAG, the intersections nodes are easily identified and organized,
based on neighboring relationships, into groups (intersections)
characterizing a given area of the image.

The graph is then simplified by replacing each intersection
group with a single equivalent node that shares the same neigh-
boring relationships as the original group, e.g., the one of all the
nodes combined. This simplification makes the path discovery
on the graph simpler, in particular, in case of large intersections.
Fig. 3(b) shows the result of the simplification applied to the
initial situation depicted in Fig. 3(a).

E. Graph Clustering

At this stage, RAG nodes appearing to be closer to each other
on the basis of some similarity measure are grouped together.
The similarity measure is usually a topological criteria, e.g., the
graph structure. In the proposed method, the graph is clustered
based on connected components, i.e., each cluster is connected
if a path from any point to any other point of that given cluster
exists. The result of the clustering is to split G into clusters
(subsets) C;, i = 1,...,c, where c¢ is the number of clusters,
such that G = UC; that can be classified into the following two
main groups:

1) intersection-free clusters, i.e., not having any intersection
node inside, shown in blue in Fig. 3(c);

2) clusters with intersections, shown in yellow in Fig. 3(c)
with the intersection node marked in red.

Each cluster will be then processed as described in
Section III-G.

F. Intersection Score Evaluation

The evaluation of the intersections is performed through a
partially learning-based predictor. To this end, the intersection
nodes are collected in the set Vi, and the nodes adjacent to an
intersection are grouped into a set called NV := {v € C : d(v) <
2 Aadj(v) N Vi # 0}, with n; € N, i = 1$m, being m the
number of elements in N (i.e., m = #N). Thereafter, a square
matrix Wyreq € R™*™ is built and initialized to zero. In case

(a) (b) (©

Fig. 4. Triplet loss is a distance-based loss that operates on three
inputs. (a) Anchor data. (b) Positive data example (similar to the anchor).
(c) Negative data example.

no intersection nodes are present in the RAG, this procedure
ends immediately and an empty WW,q is produced as output.
Otherwise, Wjyeq Will contain the predictions among each couple
of neighbors of each intersection node vy, € Viy, where the
generic element wy; of W,eq describes the value obtained for
the pair of nodes {ny, n; }, where ny, n; € N. It follows that the
matrix Wyreq Will have a strictly positive value (< 1 as described
in the following) only if nj and n; are neighbors of the same
intersection point Vi, .

The values of Wjyeq are calculated employing a data-driven
procedure, that is preferred with respect to hand-tuned criteria.
For this reason, a DCNN called TripletNet is developed to
perform this prediction. The name of this DCNN is inspired
by the fact that the triplet loss criterion [32] is exploited for the
required optimization. An example of the input samples of the
network is provided in Fig. 4.

The structure of TripletNet is composed by a feature extrac-
tor (ResNetl8) and a fully connected layer (F'Csjz2s6) out-
putting the embedding representation. The 18-layer version of
ResNet [33] is selected as a good tradeoff between model com-
plexity and quality of the result, a detailed comparison between
the models is reported in Section IV-A. At inference time, the
patches ™+ and x™ are obtained from input nodes nj and n;,
respectively, by performing two crops of size 32 x 32 in the
source image around each node centroid.

TripletNet computes the distance between each pair of
patches, as d = || f(z™) — f(z™)||3. Then, a sigmoid activation
function is used to translate the distance into a probability-like
value constrained between 0 and 1, where probability 1 is asso-
ciated to zero distance. Thus, s}il denoting the score associated
to the pairs of nodes nj and n; is obtained. In this way, we
assign a score to each prediction coming from the network: in
case of very similar patches, their associated score is close to 1,
otherwise it is near to 0.

In addition to the prediction performed by TripletNet, we cal-
culate the curvature between n and n;, similarly to what shown
in [9], and we assign a score sj,; based on this curvature calcula-
tion. In fact, a small ordered sequence of nodes is built by looking
at the single neighbors of nj, and n;, here, denoted as n;j; and nj'.
The constructed sequence is, thus, P; = {n}, ng, n;, nj' }. If the
full sequence cannot be built (i.e., is not possible to retrieve ny,
n;*, or both), a shorter version devoted of one or both of them
can be adopted. In fact, the only requirement for the sequence
is to contain three nodes. Thus, in extreme cases, although very
unlikely, the intersection node can be adopted as replacement,
obtaining P; = {ny, vimj,nl}. In general, a sequence without
the intersection node is preferred since it better approximates
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the curvature of the wire in the region, i.e., it is more robust with
respect to spurious location of the nodes. By considering the
consecutive edges between each pair of nodes in P;, we calculate
the angles ¢,., with 7 = 15#P; — 2. We deploy the Von Mises
distribution (M (+)) for converting the angles information into a
score value obtained as s§;, = W [T, M(¢r — ¢rt1).

The curvature score is used to penalize the score computed
by TripletNet by multiplying the latter with the first

Skl = Sp; St (1)

with sj; representing the final prediction score associated to
nodes ny and n; and inserted to the corresponding entry k, [ of
Wpred-

For a given intersection node viy , the prediction is performed
considering all the possible h pairs of neighbor nodes, with h =
(i) , t denoting the number of items in the set, i.e., the number of
neighbors of viy, , and 2 describing the number of items forming
the combinatorial set (i.e., in our case equal to 2). Thus, we
compute the prediction score for every £l pair in & and updating
Worea accordingly. Thereafter, the procedure is repeated for each
intersection node in G.

G. Paths Finder

From the theoretical point of view, a path P over a generic
cluster C is a sequence of distinct alternating nodes and edges
(Viys €y 5y Vigs Cig gy - -5 Vig_y5 €iy_y 45 Viy), Where an edge e;,
connects nodes v;; and v;, . To simplify the notation, we will
refer to the ith path as P; = {v;, $v;, }, where [ is the total
number of nodes denoting the path i. The goal is to extend the
path node by node in such a way that every node introduced
in the sequence belongs to the same wire in the input image.
Nodes v;, and v;, will be denoted as endpoints. It is worth
mentioning that, as result of Section III-E, in the reminder of
this section, we will focus our discussion to a single cluster of
nodes C, which represent a subset of the entire set of nodes of
graph G. The procedure explained is then carried out for every
cluster in G.

With reference to Algorithm 1, the generic cluster C is first
scanned to find the set of candidate endpoints &, i.e., the set of
nodes having d(e;) = 1, where ¢; € £ is used to refer to the ith
endpoint candidates. In case C is an intersection-free cluster (see
Section III-E), the set of endpoints will have two elements only,
and the path discovery is started directly from one of the two
cluster endpoints indifferently. Then, the nodes are connected
in sequence exploiting neighboring relations until the second
endpoint of the cluster is reached, and the resulting path is added
to the set of all the complete paths P.

However, in case the cluster C presents some intersections, the
set NV including all the nodes that are neighbors of intersection
nodes is considered. Thereafter, the procedure 2 creates a partial
path P starting from an endpoint € and adding neighbor nodes
to this path until a node in V' is reached. It is worth mentioning
that this is the only option because, if an endpoint node would be
reached, this means that this part of the cluster could be classified
as intersection free. Then, the last added node is removed from
N and the partial path P is added to the set of all the partial

Algorithm 1: Paths Finder.

Input: C, Wjreq

Output: P

E+{vel:dw) =1}

Emp — &

Vine < {v € C : d(v) > 2}

N+ {vel:dw) <2Aadj(v) N Vi # 0}

Nimp N

P+ 0

Pip 0

PartialPath(E, NV, P, P,,)

E < Emp

N Nup

while Woq # 0 A Wypea # 0F*F do
{ni,n;} < {ni,n; € N : argmax;
v 4 {v € Vi : {ns,n;} € adj(v)}
Vint = Vine \ v
P+ {’Pi S ]P)lmp n; € 731‘}
]Ptmp — Ptmp \ Pz
P+—PUwv
,P<—'PU{P]' EIP’[mp:nj 67)]‘}
Ptmp — Ptmp \ Pj
if #(PN¢E) =2 then

JJ wi,j S Wpred}

| P<PUP
else
| Pinp ¢ Pimp UP
for [ € {1,. k} do
pred[ }
pred [l’ } 0
Whred 5,1 =0
Wpred [l ] 0
return P

paths Pyy,p. The procedure is then repeated for each endpoint in
the cluster. This will cover all the partial paths from the endpoints
to an intersection, but will not cover the partial paths between two
intersections. For this reason, new partial paths are then created
considering as starting nodes the ones remaining in " and added
to the set partial paths Py,,. Once these steps are concluded, the
set of neighbor nodes should be empty, i.e., N' = (}, and the set of
partial paths should cover the whole cluster but the intersection
nodes, i.e., Pynp = C \ Vini.

In the last phase of the algorithm, the partial paths are joined
on the basis of the intersection score evaluation previously
performed; see Section ITI-F. To this end, the nodes pair (n, ny)
associated to the maximum value of Weq is selected together
with the associated intersection node vj,; and the two partial
paths containing n; or n, as starting or ending node extracted
from Pynp. These two partial paths are then joined via the
intersection node iy, then the resulting path is added to P if the
starting and ending nodes are endpoints; otherwise, it is added
back to [P,,. Then, the rows and columns of Wjq associated to
both the couple (n1,n,) and (ny, ny) are zeroed to remove them
from the selection, and the procedure is repeated until nonzero
values are present in Wyeq.
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Procedure PartialPath(S, N, Py, Py).
Input: S, N, Py, Py
Output: S, N, P, Py
while S = () do
s« S
P+ s
S+ S\s
v« adj(s)
while v ¢ SVv ¢ N do
P+ PuUv
v+ adj(v) \ P
if v € S then
S+ S\v
Pl (*]PHU,P
else
N+~ N\v
P2 (—IPQUP

while A # () do

s N

P<+s

N« N\s

v < adj(s)

while v ¢ N do
P+ PuUv

L v+ adj(v) \ P

N+~ N\v

]PQ(—]PQUP

return S, N, Py, P,

H. Paths Layout Inference

The set of paths obtained as solution from Section III-G is not
sufficient for performing a correct instance segmentation in case
of intersections. In fact, it is not possible to draw the boundary
of each wire’s instance in the image since each intersection node
is assigned to all the paths involved. The goal of this section is
to present the deep learning-based approach that handles this
last issue. As source of information we use image patches with
size 64 x 64 obtained by cropping the source image around the
centroid points associated to the intersection nodes, and then,
by postprocessing further the crops. Let us focus our analysis
on a sample intersection, as the one depicted in Fig. 5(a). In
addition, let us assume that the intersection is constituted by an
intersection node shared between two different paths. For each
path, a 2-D spline curve is interpolated using the nodes centroid
coordinates as control points, and given the spline, a binary mask
of the wire corresponding to the path is generated. The crop
shown in Fig. 5(a) is, thus, processed utilizing the computed
masks obtaining Fig. 5(b) and (c), where the spline-based masks
are used to discard all the pixels of the crop not belonging to the
considered wire.

The obtained patches are provided as input to CrossNet, a deep
neural network employed for their classification. It is composed
by a feature extractor (ResNetl8) combined to a fully connected

()

©

Fig. 5. (a) Example of intersection node. (b) and (c) Representa-
tive patches of the two classes for the displayed intersection. Cross-
Net is employed to predict the class of each patch. (a) intersection.
(b) is_above. (c) is_not_above.

layer (F'Cs2,1). Thus, the network performs a binary classifica-
tion task between two classes (e.g., is_above and is_not_above)
and provides a single probability value as output: 1 (one) if the
input patch is predicted to represent a wire placed at the top of
the intersection area, 0 (zero) otherwise.

Considering again the example shown in Fig. 5, we acquire the
predicted probabilities computed by CrossNet for both patches
of Fig. 5(b) and (c) and select as wire (and path) is_above the
one with the highest probability. So, the selection is performed
based on an output comparison. In fact, since in our framework,
there is always one is_above class sample among the patches
when classifying an intersection, we avoid inserting a threshold
for the probability value that can make the approach less reliable
(e.g., in case of difficult samples). The approach is not limited
to just two wires crossing, but it is applicable also to three or
more wires, although less common.

I. B-Spline Modeling

The final paths obtained from Section III-H are employed
for estimating B-Splines curves. For every path, the ordered
sequence of nodes is translated into a sequence of 2-D points by
reading the node’s centroid coordinates attributes. The centroid
coordinates were computed at the superpixel segmentation stage
(see Section III-B). A cubic B-Spline is fitted to these set of
points. The obtained curve is thus discretized into an ordered
fixed number of 2-D points in pixel coordinates. In this way,
we provide a light model of each wire in the image that can be
useful, for example, in manipulation and tracking tasks.

IV. EXPERIMENTAL TESTS

To validate the proposed algorithm, the original Ariadne [9]
approach is used as benchmark since, to the best of our knowl-
edge, it is the only tool that allows the instance segmentation
of wires from complex images. In addition, this comparison
allows us to highlight the improved capabilities of Ariadne+ over
Ariadne. The latter requires a CNN for the detection of the wires
endpoints. Since we want to make a comparison irrespective of
the CNN capabilities, correct endpoints coordinates are directly
provided to Ariadne.

The rest of this section is divided into an evaluation of the
segmentation capabilities (in Section IV-A), a discussion on the
superpixels parameters sensitivity (in Section IV-B), an analysis
of the timing performances (in Section IV-C), and evidence
of the applicability of Ariadne+ to other types of DLOs (in
Section IV-D).
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A. Training and Testing

DeepLabV3+ is trained with a ResNet-101 backbone for
200 epochs, with batch size 10, output stride 16, separable
convolutions, using Adam for the optimization and employ-
ing a polynomial learning rate adjustment policy starting from
107® to a minimum of 10~°, with power 0.95. The training
dataset is obtained from 90% of the electric wires synthetic
dataset (see Section III-A), while the validation is done on the
remaining 10%. The data augmentation scheme includes hue
randomization, channel shuffling, flipping, and finally, resizing
(360 x 640). The early stopping is configured to end the training
process when the validation loss does not decrease for five
epochs in a row.

Moreover, TripletNet, that is described in Section III-F, is
trained for 100 epochs, with batch size 256, using Adam for
the optimization and applying a learning rate of 10~*. The
dataset used for the training is composed of around 3000 samples
organized offline into 4500 different triplets. The usual split of
90-10 for training and validation is used. The data augmentation
includes hue, saturation, and value randomization plus channel
shuffling. An early stopping strategy is employed by monitoring
the validation loss with a patience of ten epochs.

Finally, CrossNet, described in Section III-H, is trained in a
way similar to the previous network. Hence, for 100 epochs, with
batch size 256, using Adam for the optimization and applying
a learning rate of 5 x 1073, In this case, the dataset is made of
around 1500 samples equally divided between the two classes
and it is split in the 90-10 way. As data augmentation, alongside
hue, saturation, value randomization and channel shuffling, flip-
ping, and random brightness and contrast are employed. Also,
during this training, an early stopping strategy is employed with
a patience of ten epochs.

The models are implemented in PyTorch 1.4.0 and trained
with an NVIDIA GeForce GTX 2080 Ti on an Intel Core i9-
9900 K CPU clocked at 3.60 GHz.

To test the proposed algorithm, another dataset of 90 manually
labeled images collected in different real scenarios is used. The
test dataset is organized into three categories, each containing
30 images.

C1 : Scenes with only the target wires laying on a sur-
face and no other disturbing objects. The difficulties in
these scenes are the high contrast shadows of the wires,
possible chroma similarities between the wires and the
background, the dense crosses of wires, the light settings,
and the perspective distortions.

C2 : Scenes with the target wires on a highly featured and
complex background and no other disturbing objects.
Here, the challenge for the algorithm is to extract the
wires correctly in a cluttered scene.

C3 : Scenes with the target wires in a realistic setting as
an industrial one (e.g., an electric panel). These can be
considered as an example of an application setting, where
the difficulties may be given by the metallic surface
reflecting the wires and other disturbing objects like com-
mercial electromechanical components characteristic of
these panels.

1.0 1.0 —a
c2
0.8 0.8 — C3
E 06 é 06
304 Z 0.4
— C1
0.2 c2 0.2
=— C3
0.0 20 40 60 80 100 0.0 50 60 70 80 90 100
mask threshold loU threshold [%]
(@) (b)
Fig. 6. (a) loU computed for the binary mask M, outputted by the

semantic segmentation network when varying the mask threshold (0.05 :
0.05 : 0.95). (b) AP computed for M. when evaluating the loU = 0.50 :
0.05 : 0.95, with M, thresholded at 0.5.

Each category is further divided into subclasses based on
the number of intersections present in the images, i.e., the
subcategories 1 (one), 2 (two), and 3 (three) are created.

The algorithm produces a binary mask M}, which corresponds
to the predicted semantic segmentation of the wires, and a
colored mask M. where each instance of the wires is represented
by an unique color. We evaluate and compare the outputs by

means of the intersection over union (IoU = %17%’
M is the mask we are evaluating and M, is the ground truth)
and average precision (AP) [34] metrics. The latter is computed
according to the primary challenge metric of [34], i.e., AP at
IoU = 0.50 : 0.05 : 0.95, with M, thresholded at 0.5. In Fig. 7
are visible few examples of test images for each category and
the output of the proposed algorithm. In Fig. 6(a), the relation
between the mask threshold and the IoU score is reported,
showing that an almost constant IoU is obtained across all the
mask thresholds. This plot justifies our choice of 0.5 as mask
threshold for M}, since no major changes are experienced across
the different thresholds. In Fig. 6(b), the behavior of the AP
score when evaluated at the different IoU threshold values is
described.

For the sake of comparison, an intermediate model, named
Hybrid obtained by combining the path discovery process of
Ariadne [9] applied on the masked image, i.e. utilizing [26]
and [31], is also defined. The Hybrid model can be considered
to be conceptually halfway between Ariadne and Ariadne+.
In Table I, a comparison between Ariadne+ and the original
Ariadne algorithm is performed by analyzing the IoU scores. The
values in Table I are obtained by fixing the number of superpixels
in Ariadne+ to 50. Instead, in the case of Ariadne, the number
of superpixels employed in [30] is set to 750 providing the best
results. Table I also reports the comparison between Ariadne+
and the Hybrid configuration through the IoU and AP scores. The
number of superpixels is set to 50 also for the Hybrid model
since it employs the same mask and superpixel segmentation
algorithm of Ariadne+. The Hybrid model requires a set of
endpoints coordinates to initialize the search, since the search-
ing algorithm of Ariadne is employed. To this end, the same
correct endpoints coordinates are provided to the Hybrid model
allowing a fair comparison with Ariadne. Additionally, the best
case scenario is analyzed where both the Hybrid model and
Ariadne are provided with the same correct pairs of endpoints,

where
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Fig. 7.

TABLE |
SCORES ACHIEVED IN EACH TEST CATEGORY (AND SUBCATEGORY) AND
THE AVERAGE BY DEEPLABV3+ (ONLY SEMANTIC SEGMENTATION),
ARIADNE+, HYBRID (COMBINATION OF ARIADNE WITH DEEPLABV3+ AND
MASKSLIC), AND ARIADNE

DeepLabV3+ Ariadne+ Hybrid [9], [31] Ariadne [9]

Category  # ‘ U loU AP ‘ U’ | AP ToU
1 85.7 778 647 | 645 (64.5) 445 (482) | 402 (34.9)
cI 2 83.6 775 60.8 | 59.5 (64.6) 369 (47.0) | 245 (33.8)
3 83.7 747 573 | 544 (57.7) 264 (34.6) | 21.0 (33.1)
1 86.0 82.6 726 | 747 (734) 595 (59.5) | 31.0 (22.5)
c2 2 873 83.0 715|656 (662) 434 (48.0) | 17.6 (25.1)
3 85.0 80.7 66.8 | 586 (605 315 (37.8) | 124 (17.4)
1 87.9 787 70.1 | 612 (65.7) 42.6 (52.3) | 30.1 (28.1)
C3 2 88.0 76.8 61.7 | 62.8 (69.2) 39.6 (51.7) | 19.5 (22.8)
3 85.1 788 646 | 612 (60.0) 372 (409) | 17.9 (24.5)
average - 85.8 790 656 | 62.5 (647) 402 (46.7) | 23.8 (27.0)

As metrics are used the IoU and AP. The mask M; computed by DeepLabV3+ is
thresholded at 0.5. The values in brackets denote the best case scenario.

simplifying the searching process. Concerning Ariadne+, the
knowledge of the endpoints is not required, thus this best case
analysis is not performed.

Note that for Ariadne, the AP scores is not reported since the
low values of ToU will result in AP equal to 0 as previously
described and reported in [34]. Moreover, for DeepLabV3+, the
AP score is not usually computed.

From the comparison between Ariadne+ and Ariadne, an
average improvement of more than +55 points in the IoU can
be noted. The IoU gap between Ariadne+ and the Hybrid model
is instead lower, about +16.5 points on average, while the AP
score gap is about +25.4 points on average. Thus, the presence
of the Hybrid models allows us to highlights the following:

1) the importance of the computation of the image mask M,
via [26] combined with [31], which provides a significant
boost in the score (70% of the overall improvement in the
IoU);

2) the improvement in the novel path discovery algorithm
employed in Ariadne+ compared to the one applied in
Ariadne and the Hybrid model (30% of the gain in the
IoU).

The boost due to the segmentation of the background should
be expected since a substantial portion of the image is directly
avoided in the path discovery, hugely simplifying and speeding
up the process. The benefit introduced by the new path discovery
algorithm is lower but relevant as absolute value thanks to the
presence of the Hybrid model. In particular, from the point of
view of the number of intersections in the scene, an improvement
of +13 and +20 points in the IoU in case of one and three
intersections is obtained, respectively. Thus, the proposed path

Qualitative evaluation of the proposed algorithm using two samples for each category (from left two right: C1, C2, and C3).
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Fig. 8. Receiver operating characteristic (ROC) curves showing the
performances of (a) TripletNet and (b) CrossNet on the respective test
datasets using ResNet18 and ResNet34 as feature extractors (the other
parameters are fixed).

discovery algorithm is more effective with respect to the one
adopted in Ariadne, especially in the presence of complex scenes
with several intersecting cables. Indeed, the consistency of the
scores obtained by Ariadne+ irrespective of the complexity of
the scene are reported in Table I, where the standard deviation
of the IoU score for Ariadne+ is 2.56 compared to 5.33 for the
Hybrid model. Concerning the best case scenario previously
introduced and denoted with the values in brackets in Table I,
although a marginal improvement in case of complex scenes is
notable in both Hybrid and Ariadne model, their performance is
still far from Ariadne+ one. Additionally, the best case scenario
does not always perform better than the normal baseline, in
particular, for Ariadne. This is probably due to the limitations
of the path discovery module adopted in Ariadne when applied
on the entire image and on its sensitivity w.r.t. the superpixel
parameters.

In addition to the overall algorithm performances, we evaluate
the individual performances of TripletNet and CrossNet. The
test datasets for the two networks are derived from the set of 90
test images used to evaluate the overall pipeline. Concerning
TripletNet, we extract 214 triplets, each consisting of three
patches of size 32 x 32 each, from the intersections available
in the test dataset. At test time, for each triplet, we compute
the three embeddings, and consequently, the two associated
probabilities (anchor-positive, anchor-negative) as explained in
Section III-F. To the first probability, a ground truth value of
1 is assigned, while at the second probability, a value of 0 is
assigned instead. These assignments are required in order to
carry out the AUC-ROC curve analysis. Fig. 8(a) displays the
obtained curves comparing the performances with two different
feature extractors, highlighting that ResNet18 is effective for our
purposes.
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TABLE Il
QUANTITATIVE COMPARISON OF SUPERPIXEL PARAMETER SENSITIVITY IN
TERMS OF NUMBER OF INTERSECTIONS AND AVERAGE

#1 #2 #3 average
IoU AP + IoU AP + ToU AP + IoU AP +

10 | 614 426 -265 | 446 159 -487 |337 57 -572 1465 214 -441
20 | 723 588 -10.3 | 69.1 493 -153 | 545 28.0 -349 | 653 454 -20.1
30 | 773 657 -34 | 755 595 -5.1 | 702 49.7 -132 | 743 583 -7.2
40 | 794 687 -04 | 772 621 -25 | 752 579 -50 | 773 629 -26
50 | 79.7 69.1 0 79.1  64.6 0 781 629 0 79.0 65.5 0

60 | 79.7 689 -02 | 798 660 +1.4 |79.1 643 +14 | 795 664 +0.7
70 | 793 683 -08 | 80.6 669 423 | 795 652 423 | 79.8 668 +1.3
80 | 782 659 -32 | 802 663 +1.7 | 797 656 +2.7 | 794 659 +0.4
9 | 767 630 -6.1 | 793 645 -0.1 | 798 655 426 | 787 643 -1.2

Spx

The number of superpixels Spx is varied between 10 and 90, whereas the reference
value of 50 is shown in bold. As metrics, the IoU and AP scores are employed. With
=+, the AP difference compared to the associated reference is highlighted.

Regarding CrossNet, a test dataset of 224 samples extracted
from the intersections present in the main test set is built. The test
set is balanced between the two classes. The samples have a size
of 64 x 64 as already described in Section III-H. The choice of
this patch size is related to the expected dimensions of the source
image (640 x 360), and consequently, to the dimensions of the
cables in the scene (i.e., how big the cables are expected to be
in the image). The best performances are achieved employing
this patch size since it is possible to highlight the intersection
area making the network learning process easier. In case of
large differences in the images and cables dimensions compared
to our settings, the patch size should definitely be modified
to accommodate them. Fig. 8(b) shows the AUC-ROC curves
obtained for the test set, highlighting that ResNet18 is the best
feature extractor.

Although, in our opinion, the proposed test dataset is statis-
tically relevant for the considered real-world applications, the
Ariadne+ source code is provided together with the aforemen-
tioned dataset [8] to allow the testing of the method in scenarios
not considered.

B. Superpixels Parameters Sensitivity

Asdescribed in Section I1I-B, Ariadne+ relays on a superpixel
segmentation algorithm to construct the graph representation.
Although the employed algorithm to this end [30], [31] exposes
several tunable parameters, the only parameter in our pipeline
that needs to be adjusted to extract the best result is the number
of superpixels in the image. For the experiments shown in this
section and reported in Table I, this value is fixed to 50. Instead,
for the evaluation reported in Table II, the number of superpixels
is varied between 10 and 90 with step of 10 to describe the effects
on the overall scores. In particular, the analysis is carried out for
each number of intersections highlighting how as the complexity
of the scene increases, a higher number of superpixels improves
the performances. Table II presents that Ariadne+ can provide
consistent results for a wide range of superpixel number, i.e.,
from 40 to 90, resulting in a variation of just 3 points in
the AP score. Generally speaking, a low number of superpixels
oversimplifies the scene, whereas an unnecessary high value
causes the introduction of false intersections. Fig. 9 provides
examples for three conditions. It is worth mentioning that the

Fig. 9. Qualitative comparison of three different values for the number
of superpixels for the same image. From left to right: low (10), normal
(50), and high (90).

TABLE IlI
EXECUTION AVERAGE TIMINGS OF THE DIFFERENT MAIN PARTS OF THE
PIPELINE AND TOTAL COMPUTED FOR THE TEST DATASET

Algorithm ‘ mean [s] standard deviation [s]
Semantic Segmentation 0.018 0.000
Superpixels Segmentation 0.167 0.010
Graph Generation 0.046 0.003
Graph Simplification and Clustering 0.047 0.003
Paths Discovery 0.020 0.002
Paths Layout Inference 0.017 0.002
Total 0.360 0.019

sensitivity of the result to this parameter is somehow mitigated
by the graph simplification described in Section III-D.

C. Timings

Table I1I displays a summary of the average execution timings
of the different parts of the pipeline and the total. It is computed
for the samples in the test set with the hardware specified in
Section IV-A. The superpixel segmentation stage accounts for
almost half the total time. On the contrary, the path discovery
is very efficient due to the utilization of a batch-inference
approach rather than performing the predictions one by one.
The same approach is carried out for the paths layout inference,
although the amount of gain is less significant due to the lower
number of predictions. For Sections III-D and III-E is provided
a single time value since the clustering step is implemented
very efficiently and its processing time is negligible. Moreover,
the average execution time of Ariadne [9] is measured on the
same samples/hardware as comparison, obtaining an average
initialization time of about 1.4 s and a path discovery for each
DLO of about 2.5 s. Therefore, it can be concluded that Ariadne+
speeds up the DLO detection by an order of magnitude.

D. Application to Other Types of DLOs

Ariadne+ is now evaluated with other type of DLOs, as plastic
hoses and suture threads, being both commonly found in the
medical applications. They share very similar characteristics
with cables and wires: they can be approximated with a spline
model, they may have intersections, and they cannot have bifur-
cations. Hence, the applicability of Ariadne+ also to these types
of DLOs is tested without any modification, and Fig. 10 shows
the results obtained with plastic hoses and suture threads.

V. LimIT CASES AND FAILURES

There exist cases where Ariadne+ is not able to provide a
robust and complete solution or a solution at all. Such limit
cases arise in particular in the following cases.



8616

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 12, DECEMBER 2022

Input Mask (DeeplabV3+) Output (Ariadne+)

Hose 2

ead 2 Thread 1

E.
|

Fig. 10. Examples of Ariadne+ applied to plastic hoses and suture
threads. The latter were provided by [22].
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Ariadne+: Limit cases and failures.

Fig. 11.

1) The aspect ratio between wires thicknesses and image
size is much different from the one seen during training.
In this case, a fine tuning of the network model may be
necessary and the dataset can be obtained via [16].

2) The wires in the image are arranged in specific con-
figurations, as one next to the other without spacing in
between. In this case, the algorithm may fail in the cre-
ation of a correct graph leading to a wrong result. To solve
this problem, we may need to improve the segmentation
and superpixelization stages, by optimizing the learning
process or by fine tuning the segmentation dataset. An
example of this case is shown on the last row of Fig. 11,
where the two wires are challenging for the semantic
segmentation network.

Ariadne+ tries to solve the task but fails in assessing the
correct wires in the scene.

On the contrary, there are cases where Ariadne+ is able to
provide good quality solution. These cases are represented by
wires intersecting and merging into a single wire, as shown in the
first two rows of Fig. 11. Ariadne+ solves these images smoothly
by first producing candidate paths from the endpoints, and then,

by maximizing the allocation of nodes in the most likelihood
way.

VI. CONCLUSION

In this article, we presented a reliable and time effective
approach for the instance segmentation of wires. This algo-
rithm may be used in manufacturing environments for all those
subtasks involving the perception of wires, as wiring routing,
grasping, and terminal insertion. The availability of models of
the wires in terms of B-Splines may be useful in those robotic
manipulation tasks. The experimental results demonstrated the
validity of our method, that is able to robustly provide the
instances of the wires even in real complex industrial scenarios.
In future works, we will improve the approach by addressing
the limit cases explained in Section V and by optimizing the
learning process with more data.
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