
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 10, OCTOBER 2022 7341

Software-Based AUTOSAR-Compliant Precision
Clock Synchronization Over CAN

Florian Luckinger and Thilo Sauter , Fellow, IEEE

Abstract—Modern cars are characterized by a growing
number of sensors, actuators, and advanced driver assis-
tance systems that require a synchronized view of the time.
These devices are typically interconnected by CAN, which
is still the most important in-vehicle network. Precise clock
synchronization over CAN is difficult due to the properties
of the bus, and current approaches often use dedicated
hardware or proprietary software solutions. A few years
ago, however, the AUTomotive Open System ARchitecture
(AUTOSAR) development alliance published a standardized
synchronization method. In this article, we investigate what
synchronization precision can be realistically achieved in a
real-world automotive hardware and software environment.
This involves pure software timestamping, standard CAN
controllers without hardware modifications, and a typical
automotive real-time operating system. We evaluate several
approaches to reduce the synchronization jitter using fil-
tering and optimizing the timestamping procedure. Experi-
ments show that, ultimately, a precision better than 50 µs
can be achieved with a fully AUTOSAR-compliant software
implementation.

Index Terms—Automotive embedded system, AUTomo-
tive Open System ARchitecture (AUTOSAR), CAN, clock
synchronization, real-time system, timestamping.

I. INTRODUCTION

OVER the years, many in-vehicle networks have been
developed to meet the needs of the increasing number

of devices and data volume to be processed. In recent years,
even Ethernet is gaining importance in the automotive sector [1].
Autonomous driving and, in general, driver assistance systems
require sensors like cameras, RADAR, or light detection and
ranging (LIDAR) and accentuate the need for high communi-
cation bandwidth [2], [3]. On the other hand, there are classical
safety-relevant applications that do not require large amounts
of data, such as anti-lock braking system (ABS), or traction
control. In this domain, the controller area network (CAN) bus

Manuscript received August 15, 2021; revised December 21, 2021
and January 22, 2022; accepted February 3, 2022. Date of publication
February 9, 2022; date of current version July 11, 2022. This work was
supported by TU Wien Bibliothek through its Open Access Funding Pro-
gramme. Paper no. TII-21-3566. (Corresponding author: Thilo Sauter.)

Florian Luckinger is with Elektrobit, 1050 Vienna, Austria (e-mail:
florian.luckinger@elektrobit.com).

Thilo Sauter is with the Institute of Computer Technology, TU Wien,
1040 Vienna, Austria, and also with the Department for Integrated Sen-
sor Systems, University for Continuing Education Krems, 2700 Wiener
Neustadt, Austria (e-mail: sauter@ict.tuwien.ac.at).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TII.2022.3149923.

Digital Object Identifier 10.1109/TII.2022.3149923

is still more than 30 years after its introduction, the predominant
networking solution to connect electronic control units (ECUs),
sensors, and actuators.

Automotive applications, such as all distributed systems,
require a proper alignment of processes and, therefore, the
synchronization of local clocks at the network nodes to achieve a
common view on time. Proper synchronization is a basic require-
ment for various functions: from capture-and-replay methods
during the development phase of ECUs to the coordination
of sensor data acquisition and control actions during normal
operation to the recording of error data for diagnostic pur-
poses [4]. In the AUTomotive Open System ARchitecture (AU-
TOSAR), clock synchronization, therefore, plays a central role
across the different network domains [5], with different mech-
anisms adapted to the capabilities of the individual networks
and time gateways connecting the time domains [6]. For CAN,
AUTOSAR defines a simple one-way reference broadcast
scheme with a time master regularly distributing its local time
to the connected slaves [7].

In packet-oriented networks, clock synchronization always
relies on timestamps being drawn upon sending and receiving of
dedicated synchronization messages. These timestamps are used
to calculate the deviation between reference and local clocks
and to steer the adjustment. Consequently, the accuracy of the
synchronization is essentially determined by the accuracy of the
timestamps. In this context, the timestamping jitter, i.e., the vari-
ation of the latency between the reception of the message and the
actual drawing of the timestamp, plays a decisive role. Hardware
timestamps are known to generally yield better performance
than software timestamps [8] but require dedicated hardware
support [9]. Especially in the cost-sensitive automotive domain,
CAN controllers with hardware timestamping capabilities are
not yet common. The relevant CiA 603 document specifying
a hardware timestamping unit was released in 2017, and to
date, implementations are only available in CAN IP (intellectual
property) cores from big embedded system [9], not in classical
single-chip controllers. If we consider that the entire market for
automotive CAN nodes in 2018 was about 3.4 billion1 and that
IP cores are used typically in large ECUs, we may safely assume
that the vast majority of CAN controllers will still have to rely
on software timestamping for the near future.

In software-based solutions, timestamps are ideally drawn
immediately after a frame is received by the controller, which

1[Online]. Avilable: https://www.renesas.com/us/en/application/automotive/
in-vehicle-networking-application

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-1987-8732
https://orcid.org/0000-0003-1559-8394
mailto:florian.luckinger@elektrobit.com
mailto:sauter@ict.tuwien.ac.at
https://doi.org/10.1109/TII.2022.3149923
https://www.renesas.com/us/en/application/automotive/in-vehicle-networking-application
https://www.renesas.com/us/en/application/automotive/in-vehicle-networking-application

7342 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 10, OCTOBER 2022

can be noticed either by actively monitoring the receive buffer
or by using interrupts. With such approaches, synchronization
accuracies in the range of several microseconds have been
achieved [10]–[12]. However, these laboratory setups mostly
used dedicated embedded software only for clock synchroniza-
tion and ignored that, in practice, embedded platforms are used
also for other tasks, which require some sort of operating system
(OS). Therefore, in a realistic scenario, the influence of the OS on
the synchronization performance should be taken into account,
too.

The performance of software timestamping, and particularly
the timestamping jitter, depends strongly on how network mes-
sages are handled by the OS. Evidently, the most accurate solu-
tion is to process incoming messages immediately via hardware
interrupts, as nonpreemtible tasks lead to higher synchroniza-
tion jitter [13]. On the other hand, in safety-critical real-time
systems, interrupts are a source of nondeterminism and interfere
with the normally preferred static scheduling approach. How to
reconcile the two has been debated for a long time, with no
real conclusion [14], [15]. The ISO 26262-6 standard strongly
recommends a “restricted use of interrupts” in design of software
architectures for safety-critical automotive systems [16]. Based
on this, a pragmatic approach adopted by many automotive
software developers in the industry is to use interrupts mainly
for tasks that can be scheduled relatively well, such as the
reading of sensors triggered by an ECU. For events that are
genuinely asynchronous, such as network messages between
subsystems or ECUs that are not globally synchronized, a more
common approach is to poll the buffers of the communication
controller regularly or to include dedicated preemption points in
the scheduler [17], [18], which is roughly equivalent. According
to our knowledge, straightforward preemption of running tasks
by network communication is rather depreciated in industrial
practice to avoid problems with schedule execution, even at the
expense of higher communication jitter.

The purpose of this article is to analyze the possibilities to
achieve precision clock synchronization over CAN in full com-
pliance with the AUTOSAR standard in a practical automotive
software environment, i.e., considering that clock synchroniza-
tion is not the only task and that the embedded platform must
also run an operating system. To this end, the study is based on
two assumptions. First, we consider implementations using only
software timestamping, meaning that they can rely on standard
CAN controllers not needing hardware extensions or dedicated
hardware solutions. Second, we focus our investigation on a
real-world automotive real-time operating system using coop-
erative (nonpreemptive) round-robin task scheduling without
interrupts.

The rest of this article is organized as follows. Section II
reviews related work in the field of software-based clock syn-
chronization of CAN. Section III introduces the AUTOSAR
clock synchronization basics. Sections IV and V present the
timestamping approach and the synchronization strategy. Sec-
tion VI describes the experimental testbed and the base-
line results, whereas Sections VII and VIII evaluate per-
formance improvements. Finally, Section IX concludes this
article.

II. RELATED WORK

Clock synchronization over CAN has been a topic of interest
for a long time in the CAN community, and many different solu-
tions have been proposed in the course of time. Two main groups
can be distinguished: The first targets time-division multiple
access (TDMA) schemes for time-triggered communication,
where clock synchronization is a low-level network service to
align time slots. This usually is done by exploiting the bit timing
properties of CAN, and often requires dedicated hardware to
implement timestamping. A classical example is time-triggered
CAN (TTCAN) level 2, which introduces a dedicated Network
Time Unit to synchronize the local time with the network
time [19], reaching a synchronization precision around 10 μs.
Also, Carvalho and Pereira [20] implemented a TDMA scheme
with dedicated hardware. The theoretically achieved precision
was less than 1 μs, however, at the expense of an extremely high
resynchronization rate leading to a high bus load, which made
the approach impractical.

A different approach was investigated in [21] for a CAN-like
on-chip network in a multiprocessor system on chip (SoC). The
synchronization protocol is based on a simple synchronization
message and partly implemented in hardware. Therefore, a
precision of 2 μs can be achieved. Contrary to many other
approaches, the authors also considered a real-time microkernel
which accommodated multiple applications and was tightly
connected to the TDMA slots.

A less tight TDMA approach was investigated in [22]. In their
theoretical study, the authors investigated clock synchronization
to reduce bus contentions between multiple nodes and to im-
prove scheduling. Based on a pure software solution and taking
into account also pre- and postprocessing times of data in the
applications, they postulated that a synchronization precision of
1 ms was sufficient.

The approach in [23] was inspired by TTCAN, although not
limited to time-triggered systems. It proposesd an additional
hardware module for timestamping and clock synchronization,
to be implemented in parallel and independent of the actual CAN
controller. The evaluation showed an achievable precision of
20 μs.

The second group is more relevant for this article and com-
prises event-triggered communication schemes. The approach
in [10] is one of the earliest and was the basis and inspiration
for many subsequent solutions. It used simple state correction
and a short, from today’s viewpoint, impractical synchonization
interval to achieve a precision in the range of 20μs. The approach
was taken up by other authors, such as [11], who obtained a
precision of ∼10 μs.

The study in [24] examined the use of low cost hardware
in network control systems. It used precision time protocol
(PTP) with modifications necessitated by the restricted payload
in CAN, and a message format similar to the one defined by
AUTOSAR. The timestamping was completely software based,
and the authors achieved a precision better than 100 μs, which
was limited by the clock resolution.

In [25], a simulation-based analysis of two synchronization
approaches was presented. The analysis of an algorithm based

LUCKINGER AND SAUTER: SOFTWARE-BASED AUTOSAR-COMPLIANT PRECISION CLOCK SYNCHRONIZATION OVER CAN 7343

TABLE I
COMPARISON OF RELATED WORK

on [10] offering simple clock state correction yields a worst-case
precision of about 9 μs, depending on the synchronization inter-
val. The more sophisticated second approach uses information
about the bit timing of CAN, provides clock drift compensation,
and reaches a precision of∼4 μs. In [12], the authors presented
experimental results for their clock drift correction approach,
achieving about 5μs precision. Interestingly, they also evaluated
the native AUTOSAR synchronization solution with simple state
correction. This solution achieved ∼100 μs for a synchroniza-
tion interval of 1 s.

Table I presents an overview of the related work. A typical
characteristic of most of the approaches is that they focus only on
the clock synchronization. Performance data are mostly based on
embedded evaluation platforms running only CAN communica-
tion and synchronization tasks. Interdependencies with operat-
ing systems (even lean ones) that are inevitable once the system
has to fulfill other tasks are rarely considered. Accordingly,
timestamping is mostly assumed to be immediately available
after message reception, and it is typically implemented using
interrupts that are quickly serviced. These solutions can reach a
synchronization precision in the μs range; however, they do not
go together well with the requirements discussed in the previous
section, in particular the one that network communication should
not preempt other tasks. Therefore, we investigate in this article
what performance can be attained if such requirements are taken
into account.

III. AUTOSAR CLOCK SYNCHRONIZATION OVER CAN

In this article, we consider only local synchronization, i.e., the
internal synchronization of a group of nodes, irrespective of the
global time (which could be given, e.g., by GPS). We consider a
distributed system with N participants, each with its own clock
Ci. In the ideal synchronized case, all N clocks show the same
value at any time. In real systems, however, deviations occur. A
measure for the synchronization quality of distributed systems
is the precision Π. It indicates the maximum deviation between
the clocks in the system and can be defined as

Π = max
i,j∈1,2,...,N

|Ci(t)− Cj(t)| . (1)

The clocks used in this article are adder based. A signal is
generated by an oscillator with a fixed frequency. This signal
is used as a basis for the local clock, and with each oscillator

Fig. 1. Clock synchronization message exchange over CAN in AU-
TOSAR.

tick, a preset value is added to the current clock value. By
changing the clock increment, the speed of the clock can be
adjusted. This allows for compensating rate differences be-
tween clocks, in addition to setting the clock state to a given
value.

AUTOSAR clock synchronization over CAN [7] adopts a
master–slave reference broadcast scheme tailored to the prop-
erties of the CAN bus. In particular, it has to cope with the
8-B limit for the user data. Fig. 1 shows the message exchange.
The master first takes timestamp t1 from the local clock. The
seconds part of t1 is sent to the slave with the SYNC message.
The SYNC message is timestamped when sent by the master
(t2) and when received by the slave (t3). The time difference
between t1 and the transmit timestamp t2 is transmitted using
the follow-up (FUP) message. After exchange of the SYNC and
FUP messages, the slave knows the timestamps t2 and t3 and can
use them for synchronizing its clock. The reason for splitting the
information transfer and taking the additional timestamp t1 lies
in the limited payload of CAN. Time in AUTOSAR is encoded
as a 64-b number with nanosecond resolution [9]. Together with
additional information bits needed to distinguish the individual
messages and possible counter overflows, 8 B are not enough
to include everything in one CAN frame. The OFS and OFNS
messages are optional and are used for the transmission of an
independently measured clock offset.

7344 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 10, OCTOBER 2022

Fig. 2. System model indicating essential delay components. Only the
receive path is relevant for clock synchronization.

IV. SOFTWARE TIMESTAMPING APPROACH

A peculiarity of the AUTOSAR clock synchronization over
CAN standard is that the reference point for timestamps is the
end of the frame, not the start, like in other synchronization pro-
tocols. This actually helps to overcome the timing uncertainties
of the bus access. The synchronization task runs on the CPU and
is invoked cyclically by the scheduler. When the send function
is called, the data to be sent are placed in the send buffer, and the
function returns. It would be straightforward to use this instant
to draw the send timestamp; however, the actual transmission
depends on the bus load and the priority of the SYNC message.
Even if it has the highest priority, sending must wait if another
transmission is currently in progress and the bus is busy.

When a CAN frame is sent, it is read back from the bus
by the sender, too, to check for possible error flags and the
acknowledgement flag. If transmission was successful, the con-
troller places the frame in the receive buffer like any other frame
received over the bus. The CAN receive task periodically reads
this buffer and notifies the application, which will then read
the clock counter value. The send and receive timestamps can,
therefore, be generated with the same mechanism. This situation
is reflected in Fig. 2, which shows the system model with the
most essential components and delays [26].

Owing to the timestamp being drawn at the end of the frame,
the transmission latency tTX plays no role. For the purpose of
this article, we may safely assume that the SYNC frames are
simultaneously received by master and slaves so that the receive
latency tRX plays no role either. In reality, there will be some
jitter in the frame processing inside the CAN controller, as well
as the propagation delay along the bus line. All of these delays
are, however, hardware related, and as we are analyzing soft-
ware timestamping, these delay components can be considered
constant and negligible.

The latency until the timestamp is finally available in the
application process is ultimately made up of the following two
components.

1) tsch is the delay caused by the real-time scheduler. It
describes the time span between receipt of the message
in the message memory of the CAN controller and the
callback in the software. Under ideal conditions, the
maximum value of this delay is equal to the period of
the receive task plus the software delays that occur when
the callback is called. However, under real conditions, this
delay is larger because the receive task can be delayed by
other tasks. In addition, the value increases when several
messages are received at a time.

2) tread is the delay in reading the clock value. It is the time
span between calling the read function and the actual
reading of the timestamp. It depends on the execution
time of the software and is, therefore, not constant.

The general procedure of synchronization differs depending
on the role of the participant. The master first reads the local time
and stores the auxiliary timestamp t1. The seconds part of t1 is
sent with the SYNC message. The SYNC message is received
again by the master as soon as it was sent successfully, and the
application is informed about it by a callback. When the callback
is triggered, the local time is read and stored as timestamp
t2. From t2 and the sent seconds part of t1, the difference is
calculated and sent with the FUP message. This ensures that the
timestamps are related to the end of the CAN frame.

The slave always waits for incoming SYNC messages. If
such a message is received, the local time is read and stored
as timestamp t3. From the SYNC message, the seconds part
of t1 is read and stored. After that the system waits for an FUP
message with the same sequence number. The seconds part of the
timestamp is read from this message, and t2 is reconstructed. The
slave then has t2 from the master time domain and t3 from its own
time domain. From these two timestamps, the deviation of the
two clocks can now be calculated and used for synchronization.

With t as the reference point at which the SYNC messages
are placed in the receive buffers of the CAN controllers of the
nodes, the timestamps are given by

t2 = t+ tMaster = t+ tsch,Master + tread,Master (2)

for the master side and

t3 = t+ tSlave = t+ tsch,Slave + tread,Slave (3)

for the slave side. Given the identical timestamping procedure
on both sides, the expressions are naturally the same. It must be
noted, though, that the delay components are stochastic variables
whose distributions may vary for each device.

V. CLOCK SYNCHRONIZATION

Based on the timestamps collected, the slave can adjust its
local time to that of the master. A simple state correction is
depreciated because of possible discontinuities in the time scale.
Rate correction is commonly preferred, where the slave clock
rate is adjusted to gradually reduce the difference between
the local clock value CSlave(t) and the reference CMaster(t)
received from the master. The rate calculation is based on the
last synchronization round i, where

PMaster,i = t2,i − t2,i−1 (4)

LUCKINGER AND SAUTER: SOFTWARE-BASED AUTOSAR-COMPLIANT PRECISION CLOCK SYNCHRONIZATION OVER CAN 7345

and

PSlave,i = t3,i − t3,i−1 − coffs (5)

are the current clock periods for master and slave, respectively,
and coffs accounts for a possible clock offset. If the clocks are
perfectly syntonized, PSlave,i = PMaster,i, and the ratio

Ri = PMaster,i/PSlave,i (6)

is, therefore, used as a correction factor to determine the adjusted
clock tick length TL

TLi = TLi−1 ·Ri (7)

which is the increment for the adder-based clock. If in addition,
a significant clock offset t3 − t2 exists, the clock rate is addi-
tionally changed to a temporary rate that is faster or slower than
the nominal rate, and applied for a short time to compensate the
offset quickly. As will be shown in Section VIII, rate filtering can
be applied to reduce variations in Ri induced by the scheduler
granularity. Algorithm 1 shows the pseudocode of the clock
adjustment. Not explicitly shown in the algorithm is the startup
phase. After power-up, the clock states will be undefined with
respect to one another. Simple state correction is then performed
to synchronize them before the algorithm switches to regular rate
correction.

VI. EXPERIMENTAL SETUP

The synchronization algorithms are implemented on an
EBX200 hardware platform from Elektrobit, a modular multi-
purpose embedded system that is used for automotive develop-
ment tasks, such as restbus simulations and capture-replay. Espe-
cially the latter needs also high-accuracy clock synchronization.
It consists of a PowerPC processor and an Altera Cyclone V field
programmable gate array (FPGA). The processor contains two
cores, one of which runs Linux and is responsible for connecting
and transferring measurement data to the host PC via TCP/IP.
Real-time tasks are executed on the other core, including the
clock synchronization and message exchange via CAN.

The communication controller for the CAN bus which is im-
plemented in the FPGA uses the MCAN IP core from Bosch [27].
This controller would offer an integrated function for recording
both transmission and reception timestamps in the data link
layer. However, these timestamps are drawn at the beginning of a
frame, which is incompatible with the AUTOSAR specification
mandating timestamping at the end of the frame. Therefore, this
function cannot be used.

For the given purpose of this work, i.e., the investigation of
purely software-based clock synchronization with a standard
CAN controller, one could argue that an FPGA platform is
unnecessary. On the other hand, the FPGA allows simple ac-
cess to the internal signals needed for performance evaluation.
Moreover, it permits monitoring without influencing system
operation, which makes it an ideal development platform.

The EBX200 platform runs a real-time OS handling the tasks
executed on the real-time core. It is based on a cooperative
scheduler with a nominal period of Ts = 500 μs. Tasks include
system functions like OS housekeeping, debugging functions

Algorithm 1: Synchronization Algorithm.
1: function CANCallbackmessage
2: R← Actual rate in nanoseconds per clock tick
3: Δcorr ← Amount of time corrected by offset

correction in last round
4: tSlave = getTime()
5: tMaster = getTimestampFromMessage(message)
6: R = RateCorrection(tMaster, tSlave,Δcorr)
7: Δcorr = OffsetCorrection(tMaster, tSlave, R)
8: function RateCorrectiontMaster, tSlave,Δcorr

9: tMaster,−1 ←Master timestamp of last sync round
10: tSlave,−1 ← Slave timestamp of last sync round
11: R−1 ← Rate calculated in last sync round
12: RMax ←Maximum rate to be applied
13: RMin ←Minimum rate to be applied
14: x = R−1 ∗ (tMaster − tMaster,−1)/(tSlave −

tSlave,−1 −Δcorr)
15: if x > RMax then
16: x = RMax

17: if x < RMin then
18: x = RMin

19: if FilterActivated
20: R = ApplyFilter(x)
21: else
22: R = x
23: tMaster,−1 = tMaster

24: tSlave,−1 = tSlave
25: R−1 = R
26: return R
27: function OffsetCorrectiontMaster, tSlave, R
28: C ← Factor by how much the given rate can be

changed in ppm
29: Δ← tMaster − tSlave
30: I ← Synchronization interval in nanoseconds
31: Rtemp ← Temporary rate used for offset correction
32: N ← Number of ticks on which the temporary rate

is applied
33: NMax ←Maximum ticks that can be used for

offset correction in this interval
34: NMax = I/R
35: N = |Δ| ∗ 1000000000/C
36: if N > NMax

37: N = NMax

38: CorrectionPerTick =
sign(Δ) ∗R ∗ C/1000000000

39: Rtemp = R+CorrectionPerTick
40: Δcorr =CorrectionPerTick∗N
41: return Δcorr

that provide data from the real-time core to the host, the send and
receive tasks for communication via CAN, FlexRay, or Ethernet,
the clock synchronization function, and other user tasks. Being
nonpreemptive, the scheduler does not support interrupts, so that
access to interfaces can only be done by polling. For communi-
cation over CAN, this means that the receive buffer is checked

7346 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 10, OCTOBER 2022

Fig. 3. Experimental setup (DETI: Digital event triggered input, ETH:
Ethernet).

every scheduler period if a frame has been received. This gives
a worst case latency of Ts until frames are registered by the
software. As the scheduler is cooperative, the actual period may
also vary slightly depending on the execution time of individual
tasks.

For performance evaluation, two devices are synchronized
via CAN using the standard resynchronization period Tr = 3 s
specified by AUTOSAR. During this time, the worst case clock
drift is given by the known expression

Γ = 2 · δ · Tr (8)

with δ as oscillator drift rate. The oscillators of the experimental
platform have δ = 50 ppm, which yields a drift of Γ = 300 μs
during the synchronization interval. We notice that this is in
the order of magnitude of the scheduler period, which means
that the timestamping uncertainty will be the dominating factor
influencing the synchronization precision. In the experiments,
the master is left free running, and the synchronization is done
on the slave side. One master and one slave are sufficient because
the synchronization messages are one-way broadcasts from the
master and additional slaves would not add complexity or extra
bus load. For simplicity, and also with a view to the dominating
impact of the OS, usual tests of corner cases such as rapid
heating or cooling of individual oscillators are omitted. Instead,
contrary to many related works, the experiments are conducted
over several hours to collect a representative amount of data.

To determine the precision, the clocks on the master and the
slave are read out periodically at the same time. This mea-
surement must be minimally invasive and must not interfere
with the other processes in the system. To this end, and to
minimize measurement uncertainty, the reading of the clocks
is triggered by digital signals. Fig. 3 shows the structure of
the measurement setup. A function generator is used as the
trigger source, generating a 10-Hz square wave signal. At each
positive edge, a timestamp is generated in the FPGAs on both
devices simultaneously. The generated timestamps are then read
out by the software on the nonreal-time core and sent to the
monitoring PC for data collection and processing. The difference
CSlave,j − CMaster,j between the two associated clock samples
on both devices describes the mutual deviation of the clocks and

Fig. 4. Distribution of the master–slave clock offset using standard
settings.

Fig. 5. Deviation between master and slave clock. Sampling frequency
is 10 Hz, synchronization interval is 3 s.

can then be used to determine the precision of the synchroniza-
tion.

For the baseline measurements, the platforms were operated
with default software settings. Around 100 000 clock readings
were recorded from both devices. With a trigger period of 10 Hz,
this corresponds to a measurement duration of 2.78h. Fig. 4
shows the resulting histogram of the clock deviation. It reveals
a sort of quantization effect that becomes more obvious if we
look at a window of the time series data (see Fig. 5). The
pattern that can be observed is a result of the polling-based
frame reception strategy combined with the scheduler period.
Depending on when the synchronization message is received
within the cycle, there is a delay of up to Ts until the timestamp
is actually drawn. As the schedulers of the two devices are
not synchronized and the actual scheduler period may jitter
depending on the load, the scheduler cycles of the two devices
drift with respect to each other. This leads to “cycle slip” sit-
uations where the synchronization message slips into the next
(or previous, depending on the relative clock drift) cycle and the
clock deviation calculated from the timestamps suddenly sees a

LUCKINGER AND SAUTER: SOFTWARE-BASED AUTOSAR-COMPLIANT PRECISION CLOCK SYNCHRONIZATION OVER CAN 7347

jump of ±Ts from one synchronization period to the next. The
synchronization algorithm tries to correct this apparent offset
quickly, which leads to an oscillatory behavior as seen in Fig. 5
that takes a few rounds to settle until a steady state is reached
again.

VII. IMPROVING SOFTWARE TIMESTAMPS

As seen before, in a pure software solution, the timestamps
are expected to exhibit large jitter due to the scheduling delay.
For operating systems like the one used in this study, this delay is
directly related to the polling period of the CAN receive task. But
since the scheduler works cooperatively, the exact delay cannot
be determined. One proven measure to reduce jitter is to bring
the timestamp closer to the hardware [8]. Most solutions based
on software timestamping use interrupts for this purpose. An
interrupt is triggered as soon as a message is received from the
CAN controller. However, as outlined in the introduction, this is
not possible with the given OS and generally seen as critical in
automotive systems. To improve synchronization performance,
we subsequently investigate how to optimize the polling rou-
tine. This can be achieved by several measures, including the
following.

Reducing the scheduler period allows to read CAN messages
more often from the CAN controller, reducing the latency be-
tween receiving the message in the controller and calling the
software callback. Under ideal conditions, when the task is
always executed at the scheduled time, this measure promises
a linear improvement of the timestamp accuracy. It should be
noticed, though, that there is a tradeoff between the latency
reduction due to more frequent task execution and the over-
head introduced by task switching. This is a general issue of
debate around fully preemptive versus nonpreemptive real-time
OS [17].

Increasing the priority of the receive task will reduce the jitter
of the timestamp, especially in the case of a contingency if the
scheduler has many tasks in its queue. However, it does not
protect against delays caused by tasks already running.

Timestamping in the driver brings the timestamping closer to
the hardware. The CAN driver consists of several access func-
tions to the CAN controller. These functions receive messages
from the controller memory and then trigger the corresponding
callbacks. Instead of waiting for the callbacks, the timestamp
can be generated directly in the access functions. This leads to a
reduction of the software dependency and, thus, to a reduction
of the variable delay.

The measures mentioned make only limited sense in them-
selves because they mostly influence each other. Only a combi-
nation of these measures can provide substantial improvement,
the most promising measure certainly being the reduction of the
task period.

For the experiments, the scheduler period was reduced to Ts

= 100 μs, which is the minimum possible to avoid excessive
task switching. As supporting measure, the CAN receive task
was given highest priority. Moreover, default tasks for other au-
tomotive communication systems like FlexRay were removed.
The synchronization period of 3 s was kept unchanged. These

Fig. 6. Histogram of clock offset with improved scheduler settings.

Fig. 7. Clock offset behavior with improved scheduler settings (window
equals 10 min).

optimizations are still in line with the device configuration
for realistic automotive use cases. Fig. 6 shows the resulting
histogram of the slave clock offset, and Fig. 7, a section from
the time series data. As expected, the histogram is narrower
thanks to the smaller quantization error resulting from the shorter
scheduler period. The improvement is, however, not fully linear
because there are still the cycle slip effects leading to marked
over- and undershoots of the adjustment algorithm.

VIII. RATE FILTERING

So far, the nominal clock rate has been calculated only from
the last synchronization interval. The apparent challenge when
using software timestamps is the enormous jitter induced by
the scheduler, as seen in the previous sections. To reduce this
influence, a filter can be applied to the calculated rate as is
commonly done in clock synchronization. This idea is based on
the assumption that the real rate of the reference clock changes
only very slowly with respect to the synchronization period,
given that the setup of the system is static.

The filter should suppress fast changes stemming from times-
tamping jitter, but follow rather slow frequency variations of the

7348 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 10, OCTOBER 2022

Fig. 8. Typical time series input data (blue) to the rate filter together
with the output of an exponential weighted average filter for different
widths (yellow: M = 40, orange: M = 10).

local oscillator due to temperature changes and aging. For em-
bedded systems like the ones investigated in this article, resource
usage is an additional criterion. Furthermore, the filter selection
must pay attention to the particular distribution of the data which
will differ from usual random noise. To this end, timestamps
were recorded simultaneously by the two devices in the setup like
during normal operation. From the timestamps, the relation of
the synchronization periods (tSlave,i − tSlave,i−1)/(tMaster,i −
tMaster,i−1) is computed. The value 1 corresponds to the case
that the two devices run completely synchronously. In this case,
the intervals of both the devices have the same duration. Fig. 8
shows typical data, revealing the influence of the scheduler
granularity. The peaks in the data come from cycle slip situations
as mentioned before.

Three approaches were evaluated for suitability as rate filter.
The most intuitive choice would be a classical moving average
filter

x∗i =
1
N

N∑
n=0

xi−N (9)

with moving window sizeN . Obviously, a larger window results
in better filtering, but has also the drawback that more data need
to be stored and that the filter reacts slower.

From the nonlinear filter category, a moving median filter
would be an option [28] because it is efficient for outlier removal.
However, the quantization effects in Fig. 8 are not really outliers.
On the other hand, the filter does not provide averaging for
the noisy part of the data. Rather, experiments showed that
the median filter tends to produce an offset. Furthermore, it is
computationally expensive as it involves storing and sorting the
data within the window before calculating the median, and no
recursive or iterative implementation is possible.

An exponentially weighted average filter offers a resource-
saving alternative. It requires only the last filter value and the
new data point for the calculation. The new value is weighted
with a constant factor

cf = e−1/M (10)

Fig. 9. Histogram of clock offset with rate filtering. The inset shows
the close-up of the distribution, the x-axis range of the large diagram
was not adjusted to allow comparison with the previous results.

that depends on the filter width M . The filtered data points x∗i
can be derived from the raw data xi recursively as

x∗i =

{
1
i (xi + x∗i−1 · (i− 1)), i ≤M

xi · (cf − 1) + x∗i−1 · cf , i > M.
(11)

This filter combines simple implementation and the property
that recent data points are weighted more. This allows the filter
to react to changes in the rate and at the same time to smooth out
the influence of the jitter. Fig. 8 shows the filter output for two
different widths. For the further experiments, the width of this
filter was set toM = 15 as a compromise between response time
and averaging performance. The filter was applied in addition
to the improvements presented in the previous section.

Fig. 9 shows the histogram that now resembles more the
normal distribution like behavior to be expected from a well
working synchronization. Like already in Fig. 6, we can notice
a distinct offset between master and slave clock that apparently
cannot be compensated by the synchronization algorithm. This
is typical for reference broadcast schemes like the one employed
by AUTOSAR and due to the lack of round trip delay measure-
ments. This offset is not only due to the network propagation
delay but also due to the mean values of other stochastic delay
parameters, in particular to the software delay on the master side
between sending the synchronization message and generating
the associated timestamp after reading the message from the
buffer. As the master runs freely, this delay is more deterministic
than on the slave side. The time series (see Fig. 10) demonstrates
that the filter effectively reduces the oscillations of the servo
algorithm, although the basic timestamping jitter is of course
still present.

In addition, we also applied the rate filtering approach to the
system with the original settings, i.e., Ts = 500 μs, to account
for cases where shortening of the scheduler period would be
infeasible. Time series and histogram of the clock offsets are
similar to Figs. 6 and 10 and, therefore, not explicitly shown,
but the aggregated results are depicted in Fig. 11 and included in

LUCKINGER AND SAUTER: SOFTWARE-BASED AUTOSAR-COMPLIANT PRECISION CLOCK SYNCHRONIZATION OVER CAN 7349

Fig. 10. Clock deviation between master and slave using the rate
filtering approach.

Fig. 11. Comparison of clock offsets between master and slave using
different scheduler periods and rate filtering.

TABLE II
COMPARISON OF RESULTS

Table II. It can be seen that ultimately, rate filtering is far more
effective than reducing the scheduler period.

IX. CONCLUSION

The ambition of this article was to investigate clock syn-
chronization over CAN following the AUTOSAR standard in
a realistic automotive hardware and software environment that
is not tweaked specifically for the purpose of this research. The
most important findings from our experiments were that proper
rate filtering has by far the largest impact on synchronization
performance. Shortening the scheduler period primarily reduces
a possible residual offset between master and slave clock, and

optimizing the task list and task priorities may provide additional
improvement, but to a lesser extent.

Table II summarized the results of the previous sections.
Competing approaches seemed to be still better, however they ei-
ther used dedicated hardware or interrupt-based timestamping—
solutions that have been explicitly excluded in our work as not
fully compatible with the limitations of automotive embedded
system development. Most of these works do not consider op-
erating systems, either, which may have an impact on interrupt
handling and, thus, on the timestamping latency. Furthermore,
performance figures from the literature must be taken with care
because it is not always clear how the authors actually define
clock precision. If we disregard the residual clock offsets in
Fig. 11 and only evaluate the syntonization performance (which
is sometimes also used as an indicator for the synchronization
precision), we find a standard deviation in the range of ∼10 μs
and below, depending on the scheduler settings. This is compa-
rable with the best performing solutions from the literature.

We conclude that under the given boundary conditions, our
results marked probably the optimum that can be realistically
obtained by truly software-based clock synchronization accord-
ing to the AUTOSAR standard. Major improvements could only
be achieved by further reducing the timestamping uncertainties.
One option could be to improve the rate filtering, e.g., by detect-
ing cycle slips and eliminating them (i.e., the spikes in Fig. 8)
from the filter input. The most promising strategy, however, is
certainly to use hardware-assisted timestamping. It would solve
the problem with nondeterminism caused by interrupts because
the timestamps and the associated messages could be retrieved
from the buffer at any time through a regular scheduled task.
This would also reduce, albeit not completely, the offset between
master and slave clocks that cannot vanish in the one-way broad-
cast scheme used by AUTOSAR. Removing also this residual
error would require true round-trip delay measurements that are
beyond the scope of the standard.

The future of CAN might also offer interesting potentials. The
next generation of CAN will be CAN XL. This version will offer
data rates up to 10 Mb/s and a significantly enlarged payload
of up to 2048 B, while retaining the media access scheme of
CAN and backward compatibility with the previous CAN FD
version. This will also permit integration of TCP/IP. As this
standard is still under development, it is not yet considered
by AUTOSAR, and, therefore, we can only speculate about
ways to perform clock synchronization in CAN XL. As the
basic media access scheme remains unchanged, the standard
AUTOSAR synchronization mechanism [7] should work also
with CAN XL. However, integrating TCP/IP also opens the
possibility to include PTP as synchronization protocol. This
could be particularly interesting with AUTOSAR’s time domain
concept [5] as it would allow seamless time integration of CAN
XL segments into upper-level automotive ethernet networks.

ACKNOWLEDGMENT

The authors would like to thank M. Kobelrausch, TU Wien, for
the valuable discussions and complementary information about
automotive embedded software development.

7350 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 10, OCTOBER 2022

REFERENCES

[1] J. Huang, M. Zhao, Y. Zhou, and C.-C. Xing, “In-vehicle networking: Pro-
tocols, challenges, and solutions,” IEEE Netw., vol. 33, no. 1, pp. 92–98,
Jan./Feb. 2019.

[2] L. L. Bello, R. Mariani, S. Mubeen, and S. Saponara, “Recent advances
and trends in on-board embedded and networked automotive systems,”
IEEE Trans. Ind. Informat., vol. 15, no. 2, pp. 1038–1051, Feb. 2019.

[3] R. Bogdan et al., “Optimization of AUTOSAR communication stack in the
context of advanced driver assistance systems,” Sensors, vol. 21, no. 13,
2021, Art. no. 4561.

[4] S. Raju, G. Jeyakumar, A. Mukherji, and J. K. Thanki, “Time synchronized
diagnostic event data recording based on AUTOSAR,” in Proc. IEEE Int.
Conf. Adv. Netw. Telecommun. Syst., 2017, pp. 1–6.

[5] Specification of Synchronized Time-Base Manager, AUTOSAR Standard
421 CP Release 4.3.1, Dec. 2017.

[6] H. J. Kim, U. Lee, M. Kim, and S. Lee, “Time-synchronization method for
CAN-Ethernet networks with gateways,” Appl. Sci., vol. 10, no. 24, 2020,
Art. no. 8873.

[7] Specification of Time Synchronization Over CAN, AUTOSAR Standard
674 CP Release 4.3.1, Dec. 2017.

[8] A. Mahmood, R. Exel, and T. Sauter, “Impact of hard-and software
timestamping on clock synchronization performance over IEEE 802.11,”
in Proc. 10th IEEE Workshop Factory Commun. Syst., 2014, pp. 1–8.

[9] F. Hartwich, “CAN frame time-stamping—Supporting AUTOSAR time
base synchronization,” in Proc. 16th Int. CAN Conf., 2017, pp. 04-1–04-5.

[10] M. Gergeleit and H. Streich, “Implementing a distributed high-resolution
real-time clock using the CAN-bus,” in Proc. 1st Int. CAN Conf., 1994,
pp. 1–6.

[11] J. Allan and D. Lee, “Fault-tolerant clock synchronization with
microsecond-precision for CAN networked systems,” in Proc. 9th Int.
CAN Conf., 2003, pp. 07-1–07-9.

[12] M. Akpınar, E. G. Schmidt, and K. Werner Schmidt, “Drift correction for
the software-based clock synchronization on controller area network,” in
Proc. IEEE Symp. Comput. Commun., 2020, pp. 1–6.

[13] J. Mitaroff-Szécsényi, P. Priller, and T. Sauter, “Compensating software
timestamping interference from periodic non-interruptable tasks,” in Proc.
22nd IEEE Int. Conf. Emerg. Technol. Factory Automat., Sep. 2017, pp. 1–
4.

[14] K. Sandstrom, C. Eriksson, and G. Fohler, “Handling interrupts with static
scheduling in an automotive vehicle control system,” in Proc. 5th Int. Conf.
Real-Time Comput. Syst. Appl., 1998, pp. 158–165.

[15] C. Menard, A. Goens, M. Lohstroh, and J. Castrillon, “Achieving deter-
minism in adaptive AUTOSAR,” in Proc. 23rd Conf. Des., Automat. Test
Eur., 2020, pp. 822–827.

[16] Road Vehicles - Functional Safety - Part 6: Product Development At the
Software Level, ISO Standard 26262-6:2018, International Organization
for Standardization, Geneva, Switzerland, 2018.

[17] B. Blackham, V. Tang, and G. Heiser, “To preempt or not to preempt, that
is the question,” in Proc. Asia-Pacific Workshop Syst., 2012, pp. 1–7.

[18] B. Blackham, Y. Shi, and G. Heiser, “Improving interrupt response time in
a verifiable protected microkernel,” in Proc. 7th ACM Eur. Conf. Comput.
Syst., 2012, pp. 323–336.

[19] T. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther,
“Time triggered communication on CAN (time triggered CAN - TTCAN),”
in Proc. 7th Int. CAN Conf., 2000, pp. 1–7.

[20] F. C. Carvalho and C. E. Pereira, “A runtime stability analysis of clock
synchronization precision on a time-triggered bus prototype,” SBA: Cont-
role Automação Sociedade Brasileira de Automatica, vol. 20, pp. 45–52,
Mar. 2009.

[21] G. Breaban, S. Stuijk, and K. Goossens, “Time synchronization for an
asynchronous embedded CAN network on a multi-processor system on
chip,” in Proc. IEEE Int. Symp. Precis. Clock Synchronization Meas.,
Control, Commun., 2017, pp. 1–6.

[22] H. Daigmorte, M. Boyer, and J. Migge, “Reducing CAN latencies by use
of weak synchronization between stations,” in Proc. 16th Int. CAN Conf.,
2017, pp. 4-12–4-19.

[23] G. Rodriguez-Navas, S. Roca, and J. Proenza, “Orthogonal, fault-tolerant,
and high-precision clock synchronization for the controller area network,”
IEEE Trans. Ind. Informat., vol. 4, no. 2, pp. 92–101, May 2008.

[24] P. Marti, M. Velasco, C. Lozoya, and J. Fuertes, “Clock synchronization
for networked control systems using low-cost microcontrollers” Automat.
Control Dep., Tech. Univ. Catalonia, Barcelona, Spain, Tech. Rep. ESAII-
RR-08-02, 2008.

[25] M. Akpinar, K. W. Schmidt, and E. G. Schmidt, “Improved clock synchro-
nization algorithms for the controller area network (CAN),” in Proc. 28th
Int. Conf. Comput. Commun. Netw., 2019, pp. 1–8.

[26] F. Luckinger and T. Sauter, “AUTOSAR-compliant clock synchronization
over CAN using software timestamping,” in Proc. 17th IEEE Int. Conf.
Factory Commun. Syst., 2021, pp. 49–52.

[27] Bosch, “M CAN Controller Area Network Users Manual,” Gerlingen,
Germany, Tech. Rep. Revision 3.2.1, 2015.

[28] L. Tan and J. Jiang, “Digital signals and systems,” in Digital Signal
Processing, 3rd ed., L. Tan and J. Jiang, Eds. New York, NY, USA:
Academic, 2019, ch. 3, pp. 59–89.

Florian Luckinger received the master’s de-
gree in electrical engineering from TU Wien,
Vienna, Austria, in 2021.

Since 2015, he has been with Elektrobit, Vi-
enna, Austria, where his main interest is the
development of automotive embedded systems.
His research interest also includes the develop-
ment of clock synchronization solutions for the
automotive environment.

Thilo Sauter (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from TU Wien,
Vienna, Austria, in 1999.

He was the Founding Director of the Depart-
ment for Integrated Sensor Systems, Univer-
sity for Continuing Education Krems, Wiener
Neustadt, Austria, and is currently a Professor
of Automation Technology with TU Wien. He has
authored or coauthored more than 350 scientific
publications. His expertise and research inter-
ests include embedded systems and integrated

circuit design, smart sensors, and automation and sensor networks with
a focus on real-time, security, interconnection, and integration issues
relevant to cyber-physical systems and the Internet of Things in various
application domains such as industrial and building automation, smart
manufacturing, or smart grids.

Dr. Sauter is a Senior Administrative Committee Member of the IEEE
Industrial Electronics Society. He has held leading positions in renowned
IEEE conferences. He has also been involved in the standardization of
industrial communications for more than 25 years.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

