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Deep Generative Models in the Industrial
Internet of Things: A Survey
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Abstraci—Advances in communication technologies and
artificial intelligence are accelerating the paradigm of in-
dustrial Internet of Things (lloT). With lloT enabling continu-
ous integration of sensors and controllers with the network,
intelligent analysis of the generated Big Data is a critical
requirement. Although lloT is considered a subset of loT, it
has its own peculiarities in terms of higher levels of safety,
security, and low-latency communication in an environment
of critical real-time operations. Under these circumstances,
discriminative deep learning (DL) algorithms are unsuitable
due to their need for large amounts of labeled and bal-
anced training data, uncertainty of inputs, etc. To overcome
these issues, researchers have started using deep gener-
ative models (DGMs), which combine the flexibility of DL
with the inference power of probabilistic modeling. In this
article, we review the state of the art of DGMs and their
applicability to lloT, classifying the reviewed works into the
lloT application areas of anomaly detection, trust-boundary
protection, network traffic prediction, and platform monitor-
ing. Following an analysis of existing lloT DGM implemen-
tations, we identify challenges (i.e., weak discriminative
capability, insufficient interpretability, lack of generalization
ability, generated data vulnerability, privacy concern, and
data complexity) that need to be investigated in order to
accelerate the adoption of DGMs in lloT and also propose
some potential research directions.

Index Terms—Deep generative model (DGM), generative
adversarial networks (GANs), industrial Internet of Things
(lloT), survey.

[. INTRODUCTION

HE industrial Internet of Things (IloT) is a network of
I intelligent and highly connected industrial components
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that are deployed to achieve high production rates with reduced
operational costs through real-time monitoring, efficient man-
agement, and controlling of industrial processes, assets, and
operational time [1]. IIoT is a subset of IoT which needs higher
levels of safety, security, and reliable communication while
considering real-time industrial operations and critical industrial
environment. Moreover, ITIoT pays attention to efficient manage-
ment of industrial assets and operations along with predictive
maintenance.

The recent breakthroughs in deep learning (DL) and hardware
design empower many IIoT applications. DL offers advantages
over traditional machine learning (ML) methods due to three
characteristics: 1) generalizing the complicated relationship
(such as temporal and spatial dependencies) of massive data
collected from IloT settings; 2) making good use of the massive
data resource in IIoT since DL relies on Big Data for powerful
training; and 3) automatically extracting effective features from
IIoT data without laborious feature specification.

However, there are still a number of open challenges toward
successfully implementing DL in IIoT networks and obtaining
practical and reliable results.

1) Imbalanced datasets: The assumption of an abundance
of both positive and negative samples does not hold in
IIoT as much of a mechanical system’s lifetime is in a
normal state, with a short duration of faulty states. With
mechanical components typically replaced or refurbished
before reaching “end of life,” manufacturing datasets
typically have a skewed distribution, with the number of
negative samples (normal state) outweighing the positive
samples (faulty state) [2], [3].

2) Limited labeled data: Diverse operating conditions and
fault modes for sensor data mean that obtaining labeled
data is expensive and not always attainable [4], with 80%
of the IIoT data being unlabeled [5].

3) Domain adaptation: While DL-enabled transfer learn-
ing has addressed domain adaptation, it is limited by
its assumption of the source and target domains having
the same input and output spaces. IIoT settings feature
different input sensor signals and different sets of output
labels [e.g., fault type, remaining useful life (RUL) range,
etc.] across different machines [6].

4) Large attack surface: The increased connectivity among
a large number of mainly resource constrained devices in
IIoT settings is an open problem for the implementation
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TABLE |
COMPARISON BETWEEN IIOT AND 10T

Aspect IIoT TIoT

Area Industry Applications General Applications

Deployment Industrial Systems Smart-X deployments

Human-centric

Low-scale Network

Medium to High

Scalability Large-scale Network

\

|

\

Machine-oriented |

\

Data Volume ‘

\
\
\
Service |
\
|

High to Very High
Advanced and Robust ‘

Security Measures ‘ Utility-centric

Communication needs \ Low-latency, stringent QoS \ Maximised data rate, no QoS guarantees

Resilience | High Fault Tolerance | Not Required

and configuration of security measures, as a secured archi-
tecture based on segregation is more difficult [7]. While
the deterministic industrial processes result in regular net-
work patterns that facilitate intrusion detection systems
(IDS), IIoT networks need more vantage points as traffic
does not flow through one central point [7]. Moreover,
in critical industrial scenarios where the entire training
dataset cannot be disclosed or exchanged with a central
server or other agents, federated learning [8] needs to
be investigated, in which interconnected devices jointly
refine the model parameters in a privacy-preserving
manner [9].

5) Low-latency communication: Traditional optimization
methods for cellular communications, which require ex-
act models and assume stationary wireless fading chan-
nels, are difficult to apply in the dynamic IIoT environ-
ment due to the many synchronized processes in industrial
settings and diverse quality of service (QoS) require-
ments [10], [11]. The above findings are summarized in
Table I, which highlights the differences between IoT and
IIoT along different aspects.

Discriminative techniques used in traditional DL techniques,
such as convolutional neural networks (CNNs), recurrent neural
networks (RNNs), or long short-term memory (LSTM), draw
the decision boundary in data space [12]. They provide excellent
performance but need large labeled and representative datasets,
as they require pretraining to provide precise outputs from the
learning process [4]. The lack of representative data and imbal-
anced datasets may make directly learning a target intractable,
via discriminative techniques [4], [12]. Data generation and
data augmentation have been proposed as possible solutions to
mitigate this risk [6]. Deep generative models (DGMs), which
can approximate and generate a joint distribution of the target
and training data, to generate samples similar to the real data,
which also have physical process plausibility, are thus being
leveraged in IIoT applications [6], [13]. DGMs create a prob-
ability distribution similar to the original by learning a high
number of correlations, as opposed to discriminative techniques
that simply label instances to their most probable classes. On one
hand, learning the distribution of the data (generative classifiers)
could potentially provide better performance than boundaries
(discriminative classifiers); however, it is not always possible
to infer the real distribution of the data, and, sometimes, it is
approximated by a normal distribution. Hence, the outliers affect
the performance of the generative models. On the other hand, the
supervised learning nature of discriminative models means that

they tend not to generalize well and can be prone to overfitting
if insufficient data is available [6].

Recent works have made use of the feature selection and
realistic data sample generation ability of DGMs to apply them
in industrial settings for anomaly and intrusion detection [14]-
[16], multivariate fault instances generation (to solve the data
imbalance problem) [3], trust-boundary protection [17], [18],
network traffic prediction [19], [20], wireless channel downlink
controller-to-actuator scheduling [11], network slicing [21], and
platform monitoring [22]-[25].

DGMs not only have DL’s aforementioned benefits (feature
extraction and relationship representation), but their data gener-
ation ability can aid prediction tasks in some IIoT applications
where the collected IIoT data suffers from low usability caused
by data incompleteness, (partially) unlabeled data, insufficient
quantity, noisy data, etc. DGMs are also finding use in address-
ing the IIoT transfer learning or domain adaptation challenge,
through adversarial approaches where a separate discriminator
is used to align the distributions, to mitigate the domain differ-
ence [26]. In other words, DGMs can integrate the flexibility
of DL and the inference power of probabilistic modeling, model
the underlying distribution of the real data, and generate realistic
“real” data in an unsupervised manner. They can be used as an
upfront layer in a stacked network, providing classified data to
subsequent discriminative models (e.g., to a subsequent RNN)
to process the massive IloT sequential data. The motivation of
this survey arises from these aforementioned aspects of DGMs
and their applicability to the domain of IIoT.

Since DGMs and deep neural networks (DNNs) are not mutu-
ally exclusive, we have studied existing surveys on both topics as
well as those on IIoT. There are some recent studies that analyze
the theoretical and implementation concepts of DGMs [12], [27],
reviewing early DGM models such as Boltzmann machines,
Gaussian mixture and hidden Markov models, autoencoders, and
their variants. Pan et al. [28] presented a review of the generative
adversarial networks (GANs) category of DGMs and detailed
GAN variants from an architectural and objective function-based
viewpoint. Similarly, other reviews on GANs focus on specific
fields such as computer vision [29] or spatiotemporal data [30].
Emerging applications of DL algorithms such as CNN, vanilla
autoencoders, restricted Boltzmann machines, and GANSs in the
IIoT are presented in [31]. Security aspects of IIoT are also the
focus of recent studies, with [7] focusing on security challenges
in IIoT and [32] on differential privacy applications.

Although these existing works review conventional DGMs,
GANSs, DL-based IIoT applications, and the security issues of
IIoT, there is no work that reviews the applications of DGMs
in the IIoT domain. Therefore, this survey mainly focuses on
comprehensively reviewing the applications of DGMs in the
IIoT domain. The comparison between existing related surveys
and this one is explicitly shown in Table II.

The rest of this article is organized as follows. We re-
view the state-of-the-art DGMs in Section II. We ana-
lyze their applications in IIoT scenarios in Section III. We
identify existing challenges with respect to their applica-
bility and present some research promising directions for
solving the corresponding challenges in Section IV, which
concludes this article.
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TABLE Il
COMPARISON WITH EXISTING RELATED SURVEYS
Reference | DL | DGMs | IloT | Other Applications
[7] \ \ B
2 | v | |
L |
ps | | v ||
[29] \ | v \ v
o | | v || ‘
B | /| | v
B | | v
This Survey | | v | v |

Il. DEEP GENERATIVE MODELS
A. Overview of DGMs

DGMs fall under the class of unsupervised ML algorithms,
which aim to extract meaningful concepts from raw data. DGMs
enable an approximation of the distribution of the data through
conditional density estimation, where the characteristics of the
probabilistic generative models enable the uncertainty of data
to be captured. They can be thought of as the combination of
DL with graphical models. DNNs are based only on point es-
timates and make deterministic predictions, given some feature
vectors. Most works on DNNs do not pay much attention to the
complexity of these models. Probabilistic models, on the other
hand, are mainly conjugate and linear models and can be said to
have a simplicity bias. The basis of DGMs is to have the simplest
hypothesis that can explain the data, is tractable, can compute
expectations, and remove biases for underfitting/overfitting. By
combining the probability distribution view of the dataset with a
generative iterative process or Markov chains, DGMs can offer
a unified framework for model building, inference, prediction,
and decision-making. They are also robust to overfitting and
have explicit accounting for uncertainty of data and variability
of outcomes.

Asaresult, DGMs are seeing widespread adoption in many in-
dustries, such as those involving computer vision based automa-
tion, e.g., image generation/compression and super resolution
and object detection within images with relevant bounding boxes
(to enable self-driving cars); generating synthetic data to accel-
erate scientific experiments; and designing new experiments for
particle physics or drug discovery. In the following sections,
we present the three categories of DGMs, i.e., 1) autoregressive
models (ARs), 2) variational autoencoder (VAE), and 3) GAN:Ss,
outlining their architecture and popular variants with recent
advances.

B. Autoregressive Models

An AR [33] is a specific regression model on a time series, in
which a value from this time series is regressed on previous val-
ues from the same series. The first-order autoregression model,

written as AR(1), can be presented as follows:

Yo = Bo+ Biyi—1 + & (1

where y; is a time-series variable y measured in time ¢, y;_
is y measured in time ¢ — 1, and €;, 3y, 81 denote the assumed
error and the parameters in a simple linear regression model,
respectively. Similarly, the second-order autoregression model,
called AR(2), would be

Ye = Bo + B1ye—1 + Boyr—2 + €& 2

in which the time-series variable’s value at time ¢ can be pre-
dicted from its values at times ¢ — 1 and ¢ — 2. More generally,
a kth-order autoregression model, denoted as AR(k), will be
a multiple linear regression where the time-series variable’s
value at any time ¢ can be calculated by a linear function of the
values attimest — 1,t — 2,...,t — k, as shown in the following
equation:

Ye = Bo+ Biyi—1 + Boye—o + -+ Bry—r + €. (3)

Neural autoregressive distribution estimation (NADE) [34]
addresses the problem of modeling a joint distribution. For
starters, the assumption is that the dimensions of x are binary
(i.e., zq € {0, 1}Vd). To estimate the D-dimensional distribu-
tion of p(x), NADE begins by making the observation that p(x)
can be cast into a product of conditional 1-D distributions, in
any order o (a permutation of the integers 1, ..., D)

D
= [ r(zoul%o,) @)

where o4 contains the first d — 1 dimensions in ordering o
and x,_, is the corresponding subvector for these dimensions.
Therefore, an “autoregressive” generative model of the data can
be obtained simply by specifying a parameterization of all D
conditionals p(z,,|X,_,). In NADE, we can model each condi-
tional using a feed-forward neural network (NN). Specifically,

P(Zoy|Xo_,) is parameterized as follows:

p(x0d|xo<d) = U(VOdhd + bOd) (5)
hg =0(W,_,x,_, +c¢) (6)

where o is the sigmoid function, H is the number of hidden units,
and Ve RP*H b e RP, W € REXP and ¢ € R are the
parameters of the NN model. Finally, NADE can be trained by
maximum likelihood or, equivalently, by minimizing the average
negative log-likelihood

1 N 1 N D
7 2 losx®) = 0 52 om0
n=1d=1

n=1
by stochastic (minibatch) gradient descent method, where NV is
the batch size.

Derived AR models: PixelCNN [35] is an autoregressive
generative model based on CNN, which models the conditional
distribution of seen image pixel values, and a gated CNN is
used to remember prior pixel values in this gated architecture.
PixelCNN++ [36] is a modified version of PixelCNN, in which
some tweaks, including downsampling, dropout, and skip-out
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Decoder X

Fig. 1. Architecture of a VAE.

connections, are used to obtain better performance results. Pix-
elRNN [37]is also proposed in the same study by using 12 LSTM
layers while adopting the convolutional approach in PixelCNN.
Pixel VAE [38] is proposed to combine the benefits of VAEs and
PixelCNNss, in which a conditional PixelCNN can be exploited
as the output of the VAE’s decoder in Pixel VAE.

To sum up, AR models are basic ARs applied on simple
time-series data generation; NADE model integrates the idea of
autoregression with the function of NN to obtain a better gener-
alization performance for any data type generation; Pixel CNN
is proposed by specifying the NN in NADE model using CNNs,
PixelCNN++ is a modified PixelCNN by using helpful tweaks
to get a better performance, PixeIRNN is an RNN version, and
PixelVAE is a VAE version of the NADE model, a series of
which are leveraged to do image generation.

C. Variational Autoencoders

VAEs [39]-[41] are deep Bayesian networks using NN,
specifically multilayer perceptrons. Hence, they can sup-
port complex data distributions with fast training via back-
propagation. The goal of VAEs is to find the hidden/latent
variables to simplify the generation task. For example, in a task
of generating faces, the pose or the color of the eyes is not
annotated (latent). An autoencoder is formed by two NNs. The
first one is an encoder that codifies the input into a latent vector
and the second one is a decoder that converts the latent vector
into an output that replicates the input. To properly generate
data, the autoencoders need to have a regularized latent space
in which all the points in the latent space are meaningful. VAEs
solve this issue by encoding the input not into latent points but
into distributions over the latent space. Then, the distribution is
sampled as points to feed the decoder (see Fig. 1). In this way,
VAEs avoid overfitting and enhance the decoder to function as
a generator of meaningful data.

Formally, the encoder is represented by g(z; = P(z;/x;,6)).
Its input is z; and its output is the distribution of the latent space
Z. A sample of this distribution is the input of the decoder that
computes P(x;/z;,0). For every point X in the dataset, there
exists at least one vector of latent variables z able to generate
something similar to x with a deterministic function ¢(z;#6),
parametrized by a vector . VAEs aim at optimizing # such that z
can be sampled from the probability density function of z, P(z),
and ¢(z;0) will generate x, using the law of total probability
q(z;0) = P(x|z;0). Hence, the aim of VAESs is to maximize the
probability of each X (P(z), the marginal) in the training set
according to

Pla) = / (P(2]2:0)P(2)dz). ®)

However, the distribution P(z/z) is intractable, especially in
high-dimensional space. To minimize this function, VAEs use
the decoder to find the z that reconstructs x (P(z|z; 6)). Hence,
the problem is to find a tractable model distribution ¢(z) to
approximate the true posterior P(z|z), via variational inference.
To that end, VAEs need to reduce the diversion (asymmetric dis-
tance) between two probability distributions (¢(z) and P(z|y))
with Kullback-Leibler divergence, KL

q(=) ] ©)

P(z]z)
where E, ) represents the expectation of the distribution ¢(2).
Hence, the problem is to minimize the KL distance. Applying
Bayes rule

KL(q(2) | P(]2)) = o [m

KL ()P (1) = By [in i

= Ey)[Inq(2)] = E4(z)[In P(z]x)]

= Ey)[Inq(2)] — Eqz[In P(z, 2)] 4+ In P(z). (10)
Rearranging (10) gives

In P(z) = KL(¢(2)| P(z])) + _ In Pég)z). (11)

Equation (11) is a constant (In P(z)), which is equal to a term
we want to minimize (KL) and a term that it is the variational
lower bound or evidence lower bound (ELBO). The ELBO
is a lower bound on the probability of observing some data
under a model, which is used as an optimization criterion for
approximating the posterior distribution. So, the problem can

be converted into maximizing the ELBO (Z In 2:2) ), where

q(;)
Z In P(Z;’)Z) = Z q(z)In P(x/z) + Z q(z)In P@)

q q(z)
= Ey(z)P(z/z) — KL(q(2)|P(2)).

(12)
To reduce the complexity, P(x|z; #) is often chosen as a Gaus-
sian distribution N/ (11, 0®) with mean . and covariance o2 as fol-
lows: P(x|z;0) = N(z|f(2;0),0% % I), or Bernoulli distribu-
tions for binary data. Hence, (£, ) P(/2))is the reconstruction
error. Assuming a normal distribution, o is a diagonal matrix (a
vector) and the encoder generates the mean and variance of z as
vectors. To simplify the calculations, Kingma and Welling [39]
proposed to reparametrize z, as z; = u;(y) + €;07(y), where
€; ~ N(€;0,1) introduces noise to allow the generation of
unseen data (see Fig. 1). This trick reduces variance in the
gradients and, hence, allows the stochastic gradient descent [41]
and error back-propagation [42] in NN. Therefore, VAEs learn
the probabilistic generative model py(x|z) (decoder) as well
as an approximated posterior distribution g, (z|z) (encoder) by
maximizing the ELBO

£(6,0,2) = Eqy(cpmnpo(e/2)] - KL(gs(2/)Ip(2)).
(13)
VAEs allow building flexible models, but, due to the diag-
onal covariance, they cannot capture fine grained details as
autoregressive networks do. VAEs have been used to recognize
and generate complex data, mainly images [38], [43], such as
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X ~ Pdata
\ /
Fig. 2.  Architecture of a GAN.

handwritten digits [39], [42], [44], faces [39]-[41], [45], and
house numbers [43], [46], to rotate or modify the light of an
image [45], noisy images [42], and even to predict the next frame
in a video [47].

Derived VAE models: Some works have improved the flexi-
bility of VAEs by the introduction of auxiliary latent variables
forming multilayers of latent variables [44], [48], [49]. Others
try the flexibility by normalizing flows [50], [51]. Kingma et
al. [52] propose inverse autoregressive flow. Huang et al. [53]
introduce neural autoregressive flows and De et al. [54] enhance
it. D-VAE [55] proposes a directed acyclic graph VAE. tvGP-
VAE [56] enhances VAE with tensor variate Gaussian processes,
allowing for arbitrary correlation structures in the latent space
via kernel functions.

D. Generative Adversarial Networks

In contrast to autoregressive and VAE models that are
likelihood-based, GANSs are likelihood-free generative models,
which combine a generator and discriminator in the same net-
work. First proposed by Goodfellow et al. [57] in 2014, GANs
are based on game theory, with the generator Gy learning the
data distribution via unsupervised learning, to create realistic
adversarial samples, and the discriminator Dy (or the critic)
classifying it as real or fake (simulated).

During learning, the generator and discriminator are updated
alternatively. Gy is a directed latent variable model that generates
samples x from z, where x denotes samples from input data or
generator and z is the noise input. The discriminator function
tries to distinguish samples from the real dataset and the gen-
erator by maximizing the objective (pgam 7 po) Or minimizing
D(G(#;0,)) for generated samples from p, not from pya. The
architecture of a GAN is shown in Fig. 2.

Gy minimizes a two-sample test objective (pgaa = pog), Which
is equivalent to minimizing 1 — D(G(z;6,)), as D is a bi-
nary classifier. Thus, overall, GANs have a minimax learning
objective

rrgn max By po(z) [logD ()]

+ Eep. (»[log(1 — D(G(2;0,)))]-

The implementation of GANs can prove challenging due to
their 1) unstable optimization procedure, where the generator
and discriminator loss continues to oscillate without converging
and 2) potential for mode collapse, with the generator producing
one of a few types of samples over and over again. Some
studies [28] have proposed for the discriminator to use the

(14)

minibatch layer to reflect the diversity of the sample, to avoid
mode collapse.

Derived GAN models: With the G and D networks being mul-
tilayer perceptrons in the original GAN model, various derived
GAN architectures have been proposed in order to improve the
performance in terms of data diversity, data quality, and more
stable training [28]-[30]. The deep convolutional generative
adversarial networks [58] apply CNN in the generator and
critic, for better image feature extraction. Conditional GANs
(CGANS) [59] seek to address mode collapse by introducing a
conditional variable c, in both the generator and discriminator.
This makes the input to the discriminator to be G(z|c) from
the generator, with the real sample also derived from c. Other
approaches to avoid mode collapse include those that com-
bine the adversarial loss of GANs with the objective function
of VAEs [60], by replacing the VAE decoder with the GAN
generator, and Wasserstein GAN (WGAN) [61], where a new
loss function derived from the Wasserstein distance is used and
D is used to score data quality by estimating the Wasserstein
metric between generated and original data distribution. For
unsupervised image-to-image translation, CycleGAN [62] has
been proposed to learn the mapping between an input image
and an output image, where paired training data may not be
available. Self-attention GAN (SAGAN) [63] includes self-
attention layers in the G and D networks, allowing to learn
global, long-range dependencies for generating images specially
in multiclass image generation. D checks that features in distant
parts of the image are consistent (e.g., the nose and ears are
in the right place of the face). Your Local GAN (YLG) [64]
enhances SAGAN by making the networks as sparse as possible
for computational and statistical efficiency. YLG introduces a
new local sparse attention layer that preserves the geometry
and locality. Multiscale gradient-GAN [65] creates multiscale
connections between G and D, which allows for the gradients
to flow at multiple resolutions simultaneously. This enhances the
adaptation to different datasets, which is uncommon in GANs
due, in part, to instability during training because there is not
enough overlap in real and fake distributions. Another approx-
imation to improve the performance of GANs is to enhance
the loss function. f-GAN [66] uses a more general notion of
distance, the f-divergence, which includes Jenson—Shannon and
total variation as distance metrics for training generative neural
samplers. RealnessGAN [67] represents the concept of realness
as a distribution rather than a single scalar (real or generated).
Loss sensitive GAN [68] introduces a loss function to quantify
the quality of generated samples, keeping the loss of the real
sample smaller than that of a generated counterpart.

To address the federated learning challenge in privacy-
preserving scenarios, the authors in [69] and [70] have proposed
distributed GANs, where a number of cooperating agents learn
the GAN task in a decentralized manner without sharing their
data with any central server or among themselves. The work
in [69] is applied to a distributed IDS with the agents sharing the
weights of their D models, while in brainstorming GAN [70],
the GAN value function is modified to a brainstorming function
to integrate the generated data points across neighboring agents.
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TABLE IlI
Il0T APPLICATIONS BASED ON DGMs
Reference | Domain | Scenario | Model | Advantage
1711 | Anomaly Detection | 10T Equipments | VAE | 'VAE-based reconstruction probability for analyzing cause of anomaly.
(721 | Anomaly Detection | 10T Equipments. | GAN | Generator trained with features extracted from normal samples, apparent and latent loss values for anomaly score.
[14] | Anomaly Detection | 10T Equipments | ARX | correlation among data helps detection.
73] | Anomaly Detection | 10T Equipments | CGAN | Generative adversarial ANNs help detect security anomalies in layer-scale cyber physical systems.
[20] | Trust-Boundary Protection | 10T Networks | Deep-IFS | Two autoregressive units (LocalGRU and MHA) improve the network intrusion detection performance
[17] | Trust-Boundary Protection | IoT Systems | GAN | Downsampler-encoder-based cooperative data generator ensures better extraction of distribution of 10T data.
(18] | Trust-Boundary Protection | ToT Systems | GAN | Deep-leaning fez ation-based semisupervised model achieves an adaptive protection mechanism.
[74] | Trust-Boundary Protection | 10T Networks | conditional VAE | Intrusion labels integrated inside the decoder layers to improve network intrusion detection accuracy.
1751 | Trust-Boundary Protection | 0T Systems | DIGFuPAS | GAN for generating adversarial attack samples, IDS robustness improvement by retraining classifiers.
176] | Trust-Boundary Protection | 10T Systems | ARIES | GAN with decision tree and SVM, for attack classification and identifying packet and operating data abnormalities.
177] | Trust-Boundary Protection | TIoT Systems | GAN | ‘The utilization of double GANs overcomes the vulnerability of over-training the authorized devices.
[19] | Network Traffic Prediction | ToT Networks | MTL + LSTM | Multi-task learning architecture improves network traffic prediction accuracy.
[11] | Network Traffic Prediction | 10T factory | GAN | GAN learns the wireless channel distributions and schedules the downlink transmissions accordingly.
(78] | Network Traffic Prediction | TloT Networks | GAN | GAN for autonomous wireless channel modeling, AWGN distribution approximation.
1791 | Network Traffic Prediction | TIoT Networks | GAN | Network traffic classification at protocol, application and attack type.
211 | Network Traffic Prediction | 10T Networks | GAN-distributional Q network | Network slicing for physical layer resource management.
[23], [24], [80] | Platform Monitoring | 0il Production | ARs | Multi-variate regression model processes time-series data to predict oil production.
(81] | Platform Monitoring | Atificial Lift | AR + LSTM | LSTM improves the gas/oil production prediction performance for artificial lift mechanisms.
22] | Platform Monitoring | Paste Thickner Control | AR + RNN | Neural network-based model predictive control scheme enhances the performance of paste thickner control.
(251 | Plaform Monitoring | Temperature Control | NARX | External input improves the perdiction of syngas heating value and hot flue gas temperature.
(82] | Platform Monitoring | Motor Vibration | RNN-VAE | RNN-VAE leverages motor vibration time-domain signals to detect motor faul.
83] | Platform Monitoring | Hot Strip Mill | VAE | VAE improves the performance of the fault detection in hot strip mill process.
[84] | Plaform Monitoring | Hot Metal Production | VAE-LIME | Local Interpretable Model agnostic Explanations could interpret the blackbox of the neural network.
[85] | Platform Monitoring | Voltage Dip Classification | GAN | GAN drives an active learning-based automatic labelling method which helps train voltage dip classification system.
3] | Platform ¢ | RUL of ma | CGAN + GRU | GAN data augmentation helps generating multi-variate fault instances.
2] | Platform Monitoring | Synthetic faults for trucks’ APS | CGAN + WCGAN | Synthetic faults generated by conditioning on the minority data cluster.
1861 | Plaform Monitoring | Fault detection in gearboxes | GAN | Fault diagnosis integrated with adversarial training to optimize both real and faulty data,
(871 | Platform Monitoring | Fault detection in rotating machinery | wavelet transform (WT) GAN + CNN | WT to extract time-frequency image features, GAN for data augmentation, CNN for fault detection.

IIl. APPLICATIONS OF DGMS IN INDUSTRIAL 10T

We survey some representative IIoT application domains to
which deep generative methods have been applied and demon-
strated notable performance improvement. They are in four
domains, which include the following:

1) anomaly detection;

2) trust-boundary protection;

3) network traffic prediction;

4) platform monitoring.

All references are summarized in Table III.

A. Anomaly Detection

Anomaly detection approaches aim to learn the system be-
havior under normal operating conditions to be able to identify
later system states that are dissimilar. Both VAEs and GANs
have been applied for anomaly detection by learning the induced
distribution and subsequently asserting if a sample is part of the
distribution by mapping it to the closest sample in the generated
distribution. VAEs tackle this mapping by adapting an autoen-
coder learnt during the training [71]. A GAN-based anomaly de-
tection algorithm for imbalanced industrial time series datasets
has been proposed in [72], with an encoder—decoder—encoder
structured GG network with convolutional layers. Only normal
samples with elaborately extracted features are used in model
training. The model outputs anomaly scores comprising appar-
ent and latent loss, with fault samples generating much higher
anomaly scores.

Considering that large volumes of multidimensional data are
generated in 6G I1oT, the authors in [ 14] designed an autoregres-
sive exogenous model (ARX) for eliminating the noise in data
for anomaly detection, and a multidimensional data relationship
diagram is creatively used to characterize the spatiotemporal
correlations among heterogeneous data. The authors in [73]
applied CGANs to search for security anomalies, noting that

the discriminator needs to be trained for more steps than the
generator to ensure that their loss curves converge.

B. Trust-Boundary Protection

Trust-boundary techniques are applied in IIoT to segment
the networks, with IIoT processes and data storage separated
into different segments based on user access privilege [17].
The authors in [88] use the GAN model to generate adversarial
samples for aiding the design of trust-boundary protection mech-
anism against adversarial attacks. However, the distribution of
noisy inputs of this GAN model largely differs from real data
distribution in IIoT networks.

Therefore, Hassan er al. [17] proposed a downsampler
encoder-based cooperative data generator to ensure better ex-
traction of real distribution of IIoT network data in attack mod-
els, which is updated and verified using a DNN discriminator
to guarantee its robustness with the idea of GAN’s adversar-
ial training. In [18], they further presented an adaptive trust-
boundary protection mechanism for IIoT networks using DL
feature extraction based semisupervised model, which avoids
manual effort to update the attack databases and automatically
learns the rapidly changing natures of unknown attack models by
using unsupervised learning and unlabeled data from the wild.

The large number as well as the heterogeneity of devices
and communication protocols contribute to the large attack
surface problem in IIoT networks. Trust-boundary protection,
thus, uses intrusion detection as a core technique to control
access levels [17]. To this end, Deep-IFS [20] is a forensics-
based DL model to detect intrusions in IIoT traffic. Deep-IFS
learns local representations using local gated recurrent unit
(LocalGRU) and captures global representation using multihead
attention (MHA). Two autoregressive units’ utilization improves
the robustness of Deep-IFS model for intrusion detection on
IIoT traffic in fog environment. In [74], the authors use con-
ditional VAEs to detect network intrusions, using the labels in
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the training data as an extra input in the decoder to improve the
accuracy. DIGFuPAS [75] aims to increase the ability of IDS
against adversarial attacks by using a WGAN to repetitively
retrain classifiers from crafted network traffic flow. ARIES [76]
is a multilayered IDS that integrates unsupervised GAN with
supervised decision tree and support vector machine (SVM).
The first layer classifies attacks such as denial of service, brute
force, port scanning attacks, etc., in a supervised manner, with
the second and third layers identifying packet and operating data
abnormalities.

Special attention needs to be paid to the radio frequency (RF)
fingerprinting protection. In IIoT, as there can be numerous
devices transmitting their data over RF, they could be subject to
attacks where a fake device supplants the identity of a genuine
device and transmits malicious data. RF fingerprinting is used to
verify the identity of a device based on imperfections of the trans-
mitters, such as in-phase and quadrature signal (IQ) imbalance,
amplifier nonlinearity, digital-to-analog converter nonlinearity,
carrier frequency offsets, and oscillator drift. In [77], the authors
use GAN first to generate malicious data that simulates an
authorized device that exists. Then, they use a GAN again
to overcome this vulnerability by overtraining the authorized
device with generated data.

C. Network Traffic Prediction

End-to-end network traffic is an essential information for
many network security and management functions in IIoT; so
network traffic prediction is not a trivial issue. Cellular traffic
optimization for meeting the low-latency requirements in IloT
scenarios is an open problem [10]. Moreover, QoS is sensitive to
packet size distributions, packets’ interarrival time, and channel
fading. Motivated by this, Nie et al. [19] proposed an effective
prediction mechanism using multitask learning architecture and
an autoregressive unit which takes advantage of link loads as
additional information to improve network traffic prediction
accuracy. To address the issue of limited data samples in channel
fading models, Liu et al. [11] applied the GAN model to learn
the wireless channel distributions in a factory environment and
schedule the controller to actuator downlink transmissions ac-
cordingly, while also taking into account nonstationary channel
fading. GANs have also been employed in [78] to propose
a wireless channel modeling framework, with the results of-
fering a good approximation of a real wireless channel. The
applicability of GANs in traffic classification scenarios with
<20% labeled traffic flows has been demonstrated in [79], by
finding representation features of raw traffic data into lower
dimension feature space. GANs have also found application in
demand aware resource allocation by network slicing in a 5G
cellular environment [21], to meet the diverse QoS needs over
a common physical infrastructure, where a GAN-powered deep
distributional Q network has been proposed to approximate the
action-value distribution.

D. Platform Monitoring

IIoT integration has been an ultimate growth factor for multi-
national companies, especially in oil and gas industry. To this

end, Sonawane et al. [80] presented a multivariate regression
model to predict the future production performance of oil wells
based on monthly production time series data, which ensures
that the owner of oil and gas can monitor the equipment at a fine
granularity. Similarly, [23] and [24] used an AR on IIoT device
data to forecast the value of oil production to help in detecting
anomalous values and provide an idea about any flaws in the
oil well. In [81], an AR is integrated with a DL model (LSTM)
to realize artificially lift mechanisms like beam pumping, hy-
draulic pumping, electronic submersible pumping, and gas lifts,
while making sure that the oil and gas production is predicted
accurately. In addition, IIoT can also be used to control paste
thickener [22], in which an NN-based model predictive control
scheme is implemented over an IIoT platform with the help
of an autoregression unit (attention RNN). The authors in [25]
proposed an NN-based nonlinear autoregressive with external
input (NARX) model to predict syngas heating value and hot flue
gas temperature for monitoring a waste-to-energy plant by using
data collected by IIoT. Moreover, in [82], an RNN-based VAE is
used to detect motor fault by using motor vibration time-domain
signals, while [83] uses VAE for fault detection in a hot strip
mill process. There, the authors first extract quality-related latent
variables using deep variational information bottleneck, which
minimizes the mutual information between latent variables and
observations while maximizing mutual information between
latent variables and process quality.

Furthermore, with the help of local interpretable model
agnostic-explanations (LIME) that could interpret the blackbox
of the NN, [84] proposed a VAE-LIME model for interpreting
the models forecasting the temperature of the hot metal produced
by a blast furnace. In [85], the generative—discriminative model
pair in GAN drives an active learning-based automatic labeling
method of voltage dip sequences used for training a voltage dip
classification system.

The data generation ability of GANs can address the problem
of fault data unavailability and imbalanced datasets in manu-
facturing IIoTs and has, thus, found use in predictive mainte-
nance functions. Behera et al. [3] proposed a novel prognostics
system based on CGAN and deep gated recurrent unit (GRU)
to generate multivariate fault instances for predicting the RUL
of manufacturing components, while CGAN and Wasserstein
CGAN (WCGAN) are benchmarked in [2] for generating syn-
thetic faulty samples for trucks’ air pressure systems (APS).
Adpversarial training with GANs to optimize both real and fault
data for fault detection in gearboxes is proposed in [86], while
GANs with CNN for fault detection in rotating machinery are
applied in [87].

[V. CONCLUSION

In the following paragraphs, we highlight several challenges
that need to be investigated in order to accelerate the adoption
of DGMs in IIoT, open issues, and future research directions,
and then conclude the article.

Limited Expressive Power: Although DGMs are promising
approaches leveraged to do data generation and assist prediction
tasks, their power is limited by the relatively fixed network
architecture and stringent requirements on the input of DGMs.
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However, the data collected from IIoT usually contain noise
and abnormal data and have unexpected formats. Therefore,
data preprocessing should be implemented on the collected data
before feeding them into DGMs, and the architecture of DGMs
would require redesigning in order to be applicable to specific
scenarios.

Weak Discriminative Capability: The existing DGMs fail to
achieve the expected performance on sophisticated structured
probabilistic models and completed unsupervised tasks (e.g.,
mode collapse of GANs). Combining different kinds of DGMs
is a promising direction to further improve the generation per-
formance; semisupervised approaches can be taken into account
to alleviate the side effect of completely unsupervised training.

Insufficient Interpretability: DGMs lack sufficient inter-
pretability since the latent vector used for generation is hard
to interpret; as a result, it is difficult to capture the semantic
meaning of the generated data. More approaches to improve
understanding of latent vectors should be a focus for the future
research of DGMs. Such interpretable latent vectors will be
able to do controllable generation owing to the understanding of
semantic meaning of generated data.

Lack of Generalization Ability: The trained DGMs usually
lack generalization ability since they can only generate data
samples conforming to data in the training dataset but cannot
generate new data samples which are dissimilar to that in the
training dataset. For example, once a DGM is trained with
training dataset containing cat and dog images, the trained DGM
can only be used to generate cat/dog images but cannot generate
bird images. However, in practice, it is difficult to collect a
comprehensive training dataset, leading to DGMSs’ limitation of
generalization ability. To this end, the idea of continual learning
can be taken into account to improve the generalization ability
of DGMs.

Generated Data Vulnerability: The data generated by DGMs
are not as good as real data, making it possible to distinguish
generated data from the real data collected from IIoT with the
help of ML techniques. The idea of adversarial training can be
leveraged to avoid detection from ML techniques when the gen-
erated data have already been trained to pass the corresponding
detection models.

Privacy Concern: Large real-world datasets in IIoT appli-
cations are used by DGMs to generate IloT data, which un-
avoidably raise many privacy concerns. Therefore, a privacy
protection mechanism should be an indispensable component for
designing a feasible privacy-preserving DGM in order to prevent
privacy leakage as well as maintain the performance of IIoT data
generation. There have been encouraging developments through
distributed GANSs [69], [70] in this direction; however, in the
presence of unreliable wireless links and limited resources on
IIoT devices, optimizing scheduling and bandwidth allocation
are open issues in IIoT privacy-preserving federated learning.

Data Complexity: Data collected from IIoT are massive and
come from multiple sources. On the one hand, massive IIoT
data brings the challenge of time and structure complexity; so
more time-efficient and lightweight DGM architectures should
be designed to handle the voluminous input data as well as
maintaining the performance of generation. On the other hand,

DGMs should evolve to generate multisource data in IIoT while
managing the possible conflicts between different data sources.
Aligned to this is the issue of energy efficiency, considering that
model performance optimization can quickly drain energy in
low-powered IIoT devices [4], especially in decentralized cases
as noted above, where the computation is done on the devices. A
promising development in this direction is that of GAN-powered
compressed sensing [89] that enables energy-constrained IIoT
sensors to efficiently sense signals without requiring high-rate
samplers, minimizing energy consumption. This needs to be
supported with the development of models that can be trained
to infer useful information from the compressed data directly
without actually uncompressing it.

DGMs and specifically networks incorporating adversarial
training have received much recent research attention, due to
their ability to understand the underlying data distribution. As
a result, DGMs have huge potential in IIoT scenarios. In this
article, we presented the state-of-the-art DGMs for IIoT and
detailed the different applications of DGM-based IIoT. We also
outlined several outstanding research challenges and identified
future directions. We believe that this survey will motivate IIoT
and DGM researchers to further investigate this exciting research
topic and develop more creative and computationally efficient
DGMs for IIoT applications.
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