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Abstract—False data injection attacks (FDIAs) have re-
cently become a major threat to smart grids. Most of the
existing FDIA detection methods have focused on mod-
eling the temporal relationship of time-series measure-
ment data but have paid less attention to the spatial re-
lationship between bus/line measurement data and have
failed to consider the relationship between subgrids. To
address these issues, in this article, we propose a subgrid-
oriented microservice framework by integrating a well-
designed spatial–temporal neural network for FDIA detec-
tion in ac-model power systems. First, a well-designed neu-
ral network is developed to model the spatial–temporal
relationship of bus/line measurements for subgrids. A
microservice-based supervising network is then proposed
for integrating the representation features obtained from
subgrids for the collaborative detection of FDIAs. To evalu-
ate the proposed framework, three types of FDIA datasets
are generated based on a public benchmark power grid.
Case studies on the FDIA datasets show that our method
outperforms state-of-the-art methods for FDIA detection in
these datasets.

Index Terms—Bad data detection, deep learning, false
data injection attack (FDIA), FDIA detection, microservice,
privacy preserving.

I. INTRODUCTION

IN RECENT years, false data injection attacks (FDIAs) have
drawn the attention of researchers to the vulnerability of

cyber-physical smart grids [1]–[3]. Well-designed FDIAs have
the capability to circumvent conventional residual-based bad
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data detection of a state estimation [4], resulting in serious
consequences for physical power grids. Compared with certain
cyber-attacks (for example, malware attacks), FDIAs aim at
maliciously manipulating measurement data that are generated
by sensors. FDIAs can pass the residual-based bad data detection
because the maliciously modified measurements can perfectly
obey the power flow equations [4]. To address this issue, many
data-driven methods have been proposed [5], and among such
methods, machine-learning-based approaches have achieved a
state-of-the-art detection performance [6].

Despite their success, most of the existing methods [7]–[9]
are specifically focused on dc-model power systems and are not
well suited to real-world power systems, which are based on
the ac model. For example, Wang et al. [8] proposed a CNN-
based method for detecting FDIAs in dc-model power systems
by capturing the inconsistency and co-occurrence dependence
in malicious measurement data. In recent years, to effectively
detect FDIAs in ac-model systems, some deep-learning-based
methods have been proposed [10]–[14]. Kundu et al. [11]
proposed an autoencoder-based unsupervised learning method
to detect FDIAs in ac-model systems. In addition, Zhang et
al. [14] proposed a semisupervised deep learning approach by
integrating an autoencoder into a generative adversarial network.
Compared with the method in [11], labeled false measurement
data are used to train the network model. In both methods, the
measurement data are used as the training dataset. Different from
these two methods [11], [14], Yu et al. [13] proposed using state
variable values estimated from measurement data as the training
dataset to train a deep neural network for FDIA detection.
However, the estimated state values as the training dataset may
incur some potential risks. For example, the second-hand state
values estimated from the measurement data may suffer from
data noise.

Although these machine-learning-based methods have
achieved some success in detecting FDIAs in ac-model sys-
tems, the accuracy can be further improved. Most of those
methods focus on temporal relationships between time-series
measurement data and pay less attention to the spatial relation-
ship of the measurement data between buses and transmission
lines. For example, the autoencoder-based method proposed
in [11] only considers the temporal relationship of normal
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time-series measurement data. Because the measurement data
at a particular time step are treated as a 1-D input, the spatial
relationship between buses and lines is not considered in the
power grid. In the method proposed in [14], the measurement
data captured at a particular time step for a power grid are
simply treated as a 1-D sample, resulting in a loss of spatial
relationships between buses and lines. Yu et al. [13] proposed a
gated recurrent unit (GRU) network-based detector to model the
temporal relationship between time-series measurement data.
Compared with the two aforementioned methods [11], [14], one
major difference is that the estimated state values instead of
the original measurement data are used as the training dataset
to train the FDIA detector. However, the estimated state val-
ues obtained from measurement data cannot thoroughly rep-
resent the spatial–temporal data pattern of the measurement
data.

As discussed above, most of the aforementioned state-of-the-
art methods [10]–[14] focus on modeling the temporal relation-
ships in a power grid from time-series measurement data using
autoencoders, a recurrent neural network, or a GRU; however,
they fail to consider the spatial relationships between buses
and lines. In addition, existing machine-learning-based FDIA
detection methods attempt to learn a distinctive data pattern
or distribution for the entire power grid between the normal
measurement data and the malicious measurement modified
using the FDIAs. Most, if not all, of these existing methods fail
to consider the mutual relationship between subgrids of a power
grid. Because a power grid is a meshed physical system, a mutual
relationship exists between subgrids. Hence, data distribution
of the measurement data in each subgrid can be utilized to
collaboratively detect the FDIA patterns.

With the rapid development of microservices, some studies
have explored the application of microservice technology in
the field of smart grids [15]–[17]. Although a microservice-
based architecture offers many benefits for smart grids, with
the deregulation of the power systems [18], a power grid system
is run by many different companies competing with each other.
Therefore, the privacy of their local system data needs to be pro-
tected. To address these issues, we propose a subgrid-oriented
privacy-preserving microservice framework integrating a well-
designed spatial–temporal neural network for FDIA detection in
ac power systems. The experimental results based on the public
benchmark dataset SimBench [19] show that compared with
the state-of-the-art methods, the proposed framework achieves
significant improvements in terms of precision, recall, and F1

score.
The main contributions of this article are summarized as

follows.
1) Conventional centralized methods do not offer data pri-

vacy protection of local measurement data. We propose a
novel subgrid-oriented microservice framework for FDIA
detection in smart grids by collaboratively learning the
relationship between a specific subgrid and the remaining
subgrids. Subgrid-level features are learned using subgrid
models applied to represent the subgrids. A supervising
model is designed to integrate these features and col-
laboratively detect FDIAs. The proposed framework has

three major benefits: data privacy preservation, parallel
computing, and low latency.

2) Compared with most of the existing methods that focus
on temporal relationship between the measurement data,
we propose a novel spatial–temporal neural network to
learn a subgrid-level representative feature to represent
the spatial–temporal relationship between time-series
bus/line measurement data. Network layers are designed
to learn equal dimension representations for all bus/line
measurement data. Fully connected perceptron layers are
designed to model the spatial relationship between the
bus/line representations. Long short-term memory layers
are integrated into the neural network to effectively learn
the temporal relationship from time-series measurement
data.

3) Compared with most of the existing methods that do
not consider the spatial relationship between bus and
line measurement data, we propose a neural network
architecture to model such spatial relationship. Because a
smart grid is a meshed physical network, where a bus/line
is mutually dependent upon its connecting buses/lines, we
propose the use of a fully connected perceptron layer to
model such a relationship between one bus/line and the
remaining buses/lines.

4) Compared with the existing methods that treat the mea-
surement as a 1-D input, we propose an efficient learning
mechanism for bus and line measurement data of different
dimensions to facilitate the subsequent model learning.
With this mechanism, we propose learning the bus and
line measurements separately, and thus, the approach is
flexible in terms of the neural network design. To facilitate
the subsequent model training, we propose learning an
equal dimension representative feature for all bus/line
measurement data.

The rest of this article is organized as follows. Section II
reviews related state-of-the-art methods on machine-learning-
based FDIA detection. Section III provides necessary back-
ground knowledge regarding FDIA in ac-model power systems.
The proposed framework is presented in detail in Section IV. The
experimental setting and evaluation results are then covered in
Section V. Finally, Section VI concludes this article.

II. RELATED WORK

In smart grids, errors in measurement data may be generated
for various reasons, such as a poor telecommunication medium,
meters with finite accuracy, and reading failures [20]. This
type of error can usually be efficiently detected and removed
by the residual-based bad data detection function in the state
estimation. However, Liu et al. [4] proved that a type of well-
designed malicious measurement vector generated according
to system equations, i.e., FDIA, can successfully circumvent
the conventional residual-based bad data detector in dc-model
power systems; in addition, the study in [21] expanded this attack
to ac-model power systems [4]. In recent years, various methods
have been developed to efficiently detect and defend against
FDIAs [22]. However, most of these studies focus on protecting
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some special meters or encrypting the measurement data instead
of detecting the FDIAs from the measurement data [23], [24].
Some methods have been developed to detect FDIAs, such as
statistic-based method [25], graph-theory-based methods [26],
[27], a time-series simulation [28], and machine-learning-based
methods [7]–[9]. However, most of the aforementioned meth-
ods focus on FDIA detection for dc-model power systems. In
this study, an FDIA detection neural network is proposed for
ac-model power systems.

In recent years, to effectively detect FDIAs in ac-model power
systems, some deep-learning-based methods have been pro-
posed [10]–[14]. Kundu et al. [11] developed an attention-based
autoencoder detector by capturing the relationships between
normal measurement data. Its key hypothesis is that an autoen-
coder model trained on clean measurement data can be used
to infer whether measurement data are positive or negative. As
an advantage, historical time-series measurement data are used
to train the detector. However, this detector is only trained on
normal measurement data without FDIA measurement data. In
addition, this method does not consider the spatial relationship
between buses and lines. By comparison, we proposed a neural
network based on fully connected perceptron layers to capture
the spatial relationship. Furthermore, not only the normal mea-
surement data but also malicious measurement data are utilized
to train the neural network. The experiment results show that
the proposed neural network achieves a better accuracy in FDIA
detection in terms of the recall, precision, and F1 score. Zhang
et al. [14] proposed a semisupervised deep learning approach by
integrating an autoencoder into a generative adversarial network.
The autoencoder is used to reduce the dimensions of the input
data and extract representative features. The generative adversar-
ial network is then used to capture the nonconformity between
malicious and normal measurement data. Unlike the method
in [11], labeled FDIA measurement data are used in this method
to train the network model. Compared with our framework, this
method does not consider the spatial relationship between buses
and lines. In addition, this method does not take into account
the mutual relationship between subgrids. Different from these
two methods [11], [14], Yu et al. [13] proposed using state
values estimated from measurement data as the training dataset
instead of the measurement data to train a deep neural network
for FDIA detection. However, estimated state values as the
training dataset may incur some potential risks. For example,
the second-hand state values estimated from the measurement
data may suffer from data noise. Therefore, to avoid this risk,
first-hand measurement data are utilized to train the proposed
neural network.

With the rapid development of smart grids and microservices,
some research studies are exploring the application of microser-
vice technology in the field of smart grids [15]–[17]. Liang et
al. [15] proposed a cloud-based microservice architecture for a
real-time data process in the supervisory control and data acqui-
sition (SCADA) power control system. As an advantage, in this
article, the functions of the data collection, processing, storage,
interaction, and display in the SCADA system are analyzed.
In addition, a front collection subsystem and front collection
service are discussed in the proposed cloud-based SCADA

microservice system. However, this article mainly focuses on the
microservice application in the SCADA control system from the
concept level. Huang et al. [16] investigated the design scheme
of a microservice architecture, elaborated on key technologies
of the microservice, and proposed a microservice architecture
for a power grid dispatching control system. The experimental
results show that the proposed microservice system achieves
an improvement in terms of fault tolerance, maintainability,
and scalability. Lyu et al. [17] proposed a microservice-based
architecture for an energy management system. As an advantage,
this architecture improves the load performance and scalability
of an energy management system. Power systems are currently
being deregulated in many countries. Data privacy protection
for these competing local operators has become an emergent
issue [18].

III. PRELIMINARY KNOWLEDGE

In this section, we mainly provide some necessary background
knowledge on a state estimation and the bad data detection
mechanism in ac-model power systems. Following that, we
present a general approach to the design of FDIAs applied
against conventional bad data detection.

A. AC State Estimation

State estimation is an essential function in a modern power
management system. The function of the state estimation is
to determine the optimal state for a power system according
to proper measurement data. For example, in an N -bus sys-
tem, there are n = 2N − 1 values in state x, as denoted by
x = [θ2, θ3, . . . , θN , V1, V2, . . . , VN ]T , where Vi and θi are the
bus states at bus i, and the phase angle θ1 as the reference
angle is normally set to zero radians. The state of a power
system can be thoroughly described by the voltage magnitudes
and phase angles at all buses [29]. Then, an entire power grid
can be mathematically modeled according to its optimal state,
grid topology, and physical parameters of various electrical
equipment. The measurement data usually include bus and
line measurement data. Bus measurement data are typically
comprised of the voltage magnitude, active power injection,
and reactive power injection. The line measurement data are
typically comprised of an active/reactive power flow at two ends
of the lines. For ac power systems, the nonlinear relationship
between the measurement data and the states can be formulated
as follows [13]:

z = h(x) + e (1)

where z ∈ Rm is the measurement vector at a time step, x ∈ Rn

is the state vector, e ∈ Rm is a measurement error vector with a
zero mean, and h(x) is a set of m nonlinear power functions of
the measurement and state. Each error ei ∈ e for measurement
zi ∈ z is assumed to be independent and follow a zero-mean
Gaussian distribution N (0, σ2

i ). Here, hi(x) ∈ h(x) represents
the power function between the measurement i and state vector
x. Specifically, givenx = [θ2, θ3, . . . , θN , V1, V2, . . . , VN ]T , the
power flows at a line connecting buses i and j can be formulated
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as

Pij = V 2
i (gsi + gij)− ViVj(gij cos θij + bij sin θij)

Qij = −V 2
i (bsi + bij)− ViVj(gij sin θij − bij cos θij)

where θij = θi − θj . gij + jbij and gsi + jbsi are the
parameters.

The state estimation is an optimization process used to de-
termine the optimal state vector x by solving the following
weighted least-squares optimization problem:

J(x) = (z− h(x))TR−1(z− h(x)) (2)

where R = diag[σ2
1 , σ

2
2 , . . . , σ

2
m] is a weight matrix, whose el-

ements indicate the measurement accuracy of those measure-
ments. The function J(x) can be minimized using iterative
approximation methods (such as the Newton–Raphson method).
The state estimation can then be formulated using

x̂ = argmin
x

J(x) (3)

where x̂ indicates the optimal states estimated on the measure-
ment data z.

B. Residual-Based Bad Data Detection

Because measurement data (bad data) with large noise may
lead to significant errors in the state values obtained from the
state estimation process, bad data detection is, therefore, devel-
oped to detect whether the measurement data contain bad data.
One commonly used method is the Chi-square test [30].

The residual is defined as the difference between the original
measurement values z and values obtained from the power
functionsh(x̂)with the optimal state values x̂, formulated using

r = z− h(x̂). (4)

Let γi = ri/σi, where ri ∈ r. The variable γi then follows
the standard normal distribution N (0, 1). Here, Υ is defined as
the sum of the square of γi, which is formulated by

Υ =

m∑
i=1

γ2
i . (5)

Then, Υ follows a chi-square distribution χ2
m−n with m− n

degrees of freedom. According to the theory of χ2 testing, the
value ofΥ can be utilized to determine whether the measurement
data contain bad data [30]. Therefore, bad data can be detected
and removed from the measurement data; in addition, correct
state values can be obtained by reconducting the state estimation
process according to the clean measurement data.

C. False Data Injection Attack

Because measurement data maliciously modified using
FDIAs are generated according to the power functions, they can
circumvent the residual-based bad data detection mechanism.
According to (1), malicious measurement data can be generated
by deliberately manipulating certain special measurements. The
stealth FDIA can be deduced from the residual-based bad data

detection mechanism, as follows [21]:

‖za − h(x̂bad)‖ = ‖z+ a− h(x̂+ c)‖

=

∥∥∥∥∥
(

z1

z2 + a2

)
−
(

h1(x̂1)

h2(x̂1, x̂2 + c)

)∥∥∥∥∥
=

∥∥∥∥∥
(
z1

z2

)
−
(

h1(x̂1)

h2(x̂1, x̂2)

)∥∥∥∥∥
= ‖z− h(x̂)‖

(6)

where variables with a subscript of 1 indicate those that stay
untouched during the attack, and variables with a subscript of 2
indicate those that will be maliciously modified (one of the ef-
fective approaches used to determine the attacked measurements
is presented in [21]). Vector c denotes an attack vector against
the selected state variables; in addition, the vector a denotes
the required changes in the attacked measurements. If (7) is
satisfied, the attack is, thus, a stealth attack and can circumvent
the residual-based bad data detection mechanism as follows:

a2 = h2(x̂1, x̂2 + c)− h2(x̂1, x̂2). (7)

Therefore, the malicious attack measurement can fool the bad
data detection mechanism.

IV. PROPOSED FRAMEWORK

In this section, we present details of the proposed subgrid-
oriented microservice framework for FDIA detection in ac-
model power systems. The FDIA detection task is formulated
as a multilabel classification problem to detect whether mea-
surement data are malicious. The proposed microservice frame-
work is composed of two main components: a subgrid-level
spatial–temporal architecture as a subgrid microservice mod-
ule, denoted by MST

sub, and a supervising architecture as the
supervising microservice module, denoted by Msup. The MST

sub
aims to learn a representative feature for a subgrid to represent
the spatial–temporal relationship between time-series bus/line
measurement data. In addition, Msup aims to integrate these
representative features and collaboratively detect FDIAs in the
power grid. Compared with federated learning, one similarity is
that there is no training data sharing during the entire training
process. Therefore, it is helpful for preserving data privacy. One
of differences is that there is no model sharing in the proposed
framework, while federated learning will share the global model
with other local clients during the training process. Therefore,
the proposed framework further strengths privacy preservation
in the deregulated smart grids. Fig. 1 provides an overview of
the proposed microservice framework.

A. Subgrids and Measurement Data

In this framework, a power grid G is logically represented
by several subgrids, denoted by G = {G1, G2, . . . , Gτ}, where
τ denotes the number of subgrids. For each subgrid Gi, we
design a spatial–temporal neural network MST

sub-Gi
to learn a

representative feature OGi
and represent the spatial–temporal
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Fig. 1. Diagram of the proposed microservice framework.

relationship between time-series bus/line measurement data. Be-
cause the bus and line measurement data are usually of different
dimensions, we design network layers to learn equal dimension
representations for them. Then, we design neural architectures
to model the spatial–temporal relationship between bus/line
representations, as denoted by OGi

= fGi
t (fGi

s (Db
Gi
, Dl

Gi
)) =

MST
sub-Gi

(Db
Gi
, Dl

Gi
), where fGi

s denotes the spatial architecture,

fGi
t denotes the temporal architecture, and Db

Gi
and Dl

Gi
stand

for the bus and line measurement data, respectively.
For an nb-bus system with nl lines, the measurement data

normally consist of bus and line measurement data. The mea-
surement data at bus bi are typically comprised of the voltage
magnitude Vi, active power injection Pi, and reactive power
injection Qi. The measurement data at line lij connecting buses
bi and bj are typically composed of the following:

1) Ps, the active power flow at the “from” side;
2) Qs, the reactive power flow at the “from” side;
3) Pt, the active power flow at the “to” side;
4) Qt, the reactive power flow at the “to” side.

We denote the bus measurement data at time ti as zbti ∈ Rnb×3

and denote the line measurement data at time ti as zlti ∈ Rnl×4.
Hence, the entire measurement data at time ti can be denoted as
zti , which is composed of zbti and zlti , as formulated using zti =

{zbti , zlti}. For the time-series measurement data, we denote this
as Zti = {zti−K

, . . . , zti−1 , zti}, where K is the time window.
For convenience, we also represent it asZti = {Zb

ti
,Zl

ti
},where

Zb
ti
= {zbti−K

, . . . , zbti−1
, zbti} and Zl

ti
= {zlti−K

, . . . , zlti−1
, zlti}.

For measurement data zti , we define its label as follows:

yti =

⎧⎪⎨
⎪⎩

1, if zti is maliciously manipulated by FDIAs

and can circumvent the bad data detection

0, if zti is normal measurements without FDIAs

.

(8)
During the experiments, the bad data detection mechanism

embodied in the commercial software PowerFactory-2017-SP41

is utilized to generate the labeled data.

B. MST
sub: Subgrid-Level Spatial–Temporal Microservice

Architecture

The proposed moduleMST
sub aims to learn a representative fea-

ture OGi
for each subgrid Gi to represent the spatial–temporal

1[Online]. Available: https://www.digsilent.de/en/newsreader/digsilent-
releases-powerfactory-2017-sp4.html

TABLE I
CONFIGURATION OF PARAMETERS IN MST

sub

relationship between time-series bus/line measurement data.
The model architecture is shown in Fig. 2. The corresponding
values of the related parameters are summarized in Table I,
where f c-n-a

∗ indicates a convolution layer followed by a batch
normalization and an activation exponential linear unit (ELU),
and f l-a

∗ indicates a linear perceptron layer followed by an
activation ELU.

In theMST
sub module, we first design two network layers, f c-n-a

1-b
and f c-n-a

1-l , to learn equal dimension representations for buses
and lines. Compared with the methods in the literature [11],
[13], [14], whereas bus and line measurements are mixed as
a 1-D input, our module has the following advantages: 1) the
measurement data for each bus and line are treated separately,
which can retain the topology information, and 2) equal dimen-
sion presentations are learned to represent each bus and line
facilitating the subsequent model learning. The construction of
the network layers is formulated as follows:{

Ob
1 = f c-n-a

1-b (Zb
ti
) = fa(fn(Zb

ti
∗Wb

1 + ab1))

Ol
1 = f c-n-a

1-l (Zl
ti
) = fa(fn(Zl

ti
∗Wl

1 + al1))

where Wb
1 ∈ R3×6, Wl

1 ∈ R4×6, and ab1 and al1 are the additive
bias. Here, O1 is obtained by concatenating Ob

1 and Ol
1, where

nbl = nb + nl. The layer f c-n-a
2 is designed to further model

hidden representative features, which are formulated using

O2 = f c-n-a
2 (O1) = fa(fn(O1 ∗W2 + a2))

where W2 ∈ R6×3 and a2 is the additive bias. To model the
spatial relationship between a bus/line and the remains of the
buses/lines, we design the layer f l-a

3 , which is formulated using

O3 = f l-a
3 (O2) = fa(O2 ∗W3 + a3)

where W3 ∈ R3×nbl×nbl , and a3 is the additive bias. The layer
f c-n-a

4 aims to model a fixed-length spatial representation for
measurement data at a time step, which is formulated using

O4 = f c-n-a
4 (O3) = fa(fn(O3 ∗W4 + a4))

where W4 ∈ Rnbl×40, and a4 is the additive bias. To model
the temporal relationship between time-series spatial represen-
tations obtained from the layer f c-n-a

4 , three LSTM unites are

https://www.digsilent.de/en/newsreader/digsilent-releases-powerfactory-2017-sp4.html
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Fig. 2. Module MST
sub, i.e., subgrid-level spatial–temporal neural network architecture for each subgrid.

Fig. 3. Module Msup, supervising neural network architecture.

integrated into the framework, which is formulated using⎧⎪⎨
⎪⎩
O5 = fLSTM

5 (O4)

O6 = fLSTM
6 (O5)

O7 = fLSTM
7 (O6)

.

As an advantage, LSTM can successfully capture temporal
information of a time-series data and can avoid gradient vanish-
ing and exploding. Because we focus on the status of the power
grid at the current moment ti, the feature vector at the last row in
O7, denoted byOGi

, is, therefore, obtained as the representative
feature for the corresponding subgrid.

In summary, by applying the module MST
sub to each subgrid

of G = {G1, G2, . . . , Gτ}, we can obtain a set of fixed-length
representative features, {OG1 ,OG2 , . . . ,OGτ

}, which is formu-
lated using

OGi
= MST

sub-Gi
(Zti).

C. Msup: Supervising Microservice Architecture

The proposed module Msup aims to integrate these represen-
tative features and collaboratively detect FDIAs in the power
grid G. The model architecture is shown in Fig. 3. The corre-
sponding values of the related parameters are summarized in
Table II, where f̃ c-n-a

∗ indicates a convolution layer followed
by a batch normalization and an activation ELU, f̃ l-a

3 indicates
a linear perceptron layer followed by an activation ELU, and
f̃ l-as

4 indicates a linear perceptron layer followed by an activation
function sigmoid.

Through the modules MST
sub-G∗ , the subgrid-level representa-

tive features {OG1 ,OG2 , . . . ,OGτ
} are learned to represent the

status of each subgrid. Here, U1 is obtained by concatenating
{OG1 ,OG2 , . . . ,OGτ

}. The first two layers f̃ c-n-a
1 and f̃ c-n-a

2 are
designed to further extract the hidden features for each subgrid

TABLE II
CONFIGURATION OF THE PARAMETERS IN MST

sub

and simultaneously reduce the dimension of the features, which
is formulated using{

U2 = f̃ c-n-a
1 (U1) = f̃a(f̃n(U1 ∗ W̃1 + ã1))

U3 = f̃ c-n-a
2 (U2) = f̃a(f̃n(U2 ∗ W̃2 + ã2))

where W̃1 ∈ R20×10, W̃2 ∈ R10×5, and ã1 and ã2 are the addi-
tive bias. To model the interactive relationship between a subgrid
and the remains of the subgrids, we design a network layer
f̃ c-n-a

3 , which is formulated using

U4 = f̃ c-n-a
3 (U3) = f̃a(f̃n(U3 ∗ W̃3 + ã3))

where W̃3 ∈ R5×τ×τ , and ã3 is the additive bias. The last
network layer f̃ l-as

4 aims to map the learned representative
features to a multilabel classification output, with each element
in the output denoting whether the measurement data for the
corresponding subgrid is attacked by the FDIAs. Specifically,
the layer f̃ l-as

4 models the representative features using a linear
perceptron layer followed by an activation function sigmoid,
which is formulated using

yp = f̃ l-as
4 (U4) = f̃as(U4 ∗ W̃4 + ã4) (9)

where W̃4 ∈ Rτ×τ , and ã4 is the additive bias.
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D. Loss Function

The training goal is to minimize the multilabel cross entropy
error between the true label and the model prediction, which is
formulated using

floss = −
τ∑

i=1

(yi log yp,i+(1 − yi)log(1 − yp,i)) (10)

where τ is the number of classes/subgrids, yi ∈ y is the true
label for the current measurement data, and yp,i ∈ yp is the
corresponding prediction result obtained through (9). The open-
source machine learning software Pytorch-1.7.02 is utilized to
implement and train the proposed neural network.

E. Summary

In the proposed framework, as shown in Fig 1, a smart grid is
first divided into subgrids, denoted by G = {G1, G2, . . . , Gτ}.
During the training stage, for each subgrid, a spatial–temporal
neural network, as shown in Fig. 2 or Table I, is trained to
learn a representative feature and represent the spatial–temporal
relationship between the time-series bus/line measurement data.
A supervising network, as shown in Fig. 3 or Table II, is trained to
integrate these representative features and collaboratively detect
FDIAs in the power grid. During the test stage, microservices
are deployed by subgrid operators to run the corresponding
subgrid models, whereas a supervising microservice is deployed
to communicate with other microservices of the subgrid and run
the supervising module for FDIA detection.

V. EXPERIMENTS

A. Dataset for FDIA Detection

During the experiment, two power grids from the public
benchmark dataset SimBench[19] are utilized to evaluate the
performance of the proposed framework on FDIA detection.
The SimBench datasets used in this study are derived from
German power systems. The grid dataset contains exhaustive
time-series profiles for the load and generation with a resolution
of 15 min for one year. This means there are 35 136 time steps
of the measurement data, which are useful and convenient for
evaluating the performance of FDIA detection. In addition, this
dataset contains power grids with different levels of voltage,
including extra-high-, high-, medium-, and low-voltage levels.
It is, therefore, convenient to utilize this dataset and verify FDIA
detection in power grids of different voltage levels.

The details regarding these two grids are summarized in
Tables III and IV. The commercial software PowerFactory-
2017-SP4 is utilized to calculate the power flow and detect the
bad data during the stages of normal and FDIA measurement
generation.

The method in [21] presented in Section III-C is used to
establish the FDIAs. Three types of FDIAs are designed to
comprehensively evaluate the performance of the proposed
framework, categorized by the rate of change of the active power
injection (Pi) on the target bus i.

2[Online]. Available: https://pytorch.org/

TABLE III
GRID-A WITH CODE 1-MV-RURAL–0-NO_SW

TABLE IV
GRID-B WITH CODE 1-HVMV-URBAN-3.201-2-NO_SW

Fig. 4. Statistical information on Type-II FDIA data in Grid-A. (a) Active
power change at the target buses. (b) Reactive power change at the
target buses.

1) Type-I FDIAs: The rate is within the range of
(50%, 100%].

2) Type-II FDIAs: The rate is within the range of
(25%, 50%].

3) Type-III FDIAs: The rate is within the range of
(5%, 25%].

For each type of FDIA, two FDIA datasets are generated by
maliciously manipulating the voltage magnitude V m or phase
angle V a at the target bus, which is summarized as follows:

1) 35 136 Type-I FDIA data by manipulating V m;
2) 35 136 Type-I FDIA data by manipulating V a;
3) 35 136 Type-II FDIA data by modifying V m;
4) 35 136 Type-II FDIA data by manipulating V a;
5) 35 136 Type-III FDIA data by manipulating V m;
6) 35 136 Type-III FDIA data by manipulating V a.

As an illustrated example, the statistical information on the
Type-II FDIA data for Grid-A is shown in Fig. 4 .

https://pytorch.org/
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B. Deployment of the Proposed Framework

As shown in Fig. 1, in this framework, a widely distributed
power grid is first divided into region-based subgrids. In the
experiments, Grid-A is divided into five subgrids, and Grid-B is
divided into ten subgrids, as shown in Tables III and IV, respec-
tively. For each subgrid, a Docker-container-based microservice
is deployed to run the corresponding local model MST

sub. A
Docker-container-based supervising microservice is deployed
by the control center to communicate with the microservices
of the other subgrids and run the supervising module Msup for
FDIA detection. Each microservice runs in a Docker container
located in a Pod in the open-source container orchestration
engine Kubernetes.3 These subgrid microservices are run in par-
allel with the necessary computing resources. The open-source
software Kubernetes-1.2.04 and Docker-20.10.55 are utilized to
deploy the proposed microservice framework. The proposed
framework is suitable to be deployed in the low-resourced
Internet of Things environment. This is because it contains
subgrid models and a supervising model. Each subgrid model is
running locally and independently. In our experimental setting,
the storage of a subgrid model is less than 6 MB. Regarding
the runtime support, the PyTorch Mobile runtime beta release6

has provided such a function to deploy trained machine learning
models in mobile devices or edge devices (such as laptop or
Android/iOS phones).

C. Evaluation Metrics

The commonly used metrics, precision (Prec), recall (Rec),
andF1 score (F1), are utilized to evaluate the performance of the
FDIA detection [11], [13], [14], which is formulated as follows:

Prec = TP/(TP + FP)

Rec = TP/(TP + FN)

F1 = 2 × (Pre × Rec)/(Pre + Rec)

where TP denotes the number of true FDIA samples predicted as
FDIA data, FP denotes the number of normal samples predicted
as FDIA data, TN denotes the number of true normal samples
predicted as normal data, and FN denotes the number of FDIA
samples predicted as normal data. Hence, TP + FN equals the
total number of true FDIA samples in the dataset, and TN + FP
equals the total number of true normal samples in the dataset.

D. Performance of FDIA Detection

In this section, we compare the FDIA detection performance
of the proposed framework with that of two state-of-the-art
methods: M-2020 [11] published in 2020 and M-2021 [14]
published in 2021. M-2020 [11] proposed an autoencoder-based
unsupervised learning method, which is trained using only clean
or normal measurement data. In addition, M-2021 [14] proposed

3[Online]. Available: https://kubernetes.io/docs/home/
4[Online]. Available: https://v1-20.docs.kubernetes.io/docs/home/
5[Online]. Available: https://www.docker.com/
6[Online]. Available: https://pytorch.org/mobile/home/

TABLE V
COMPARISON OF TYPE-I FDIA DETECTION ON GRID-A

TABLE VI
COMPARISON OF TYPE-I FDIA DETECTION ON GRID-B

an FDIA method based on a generative adversarial network and
an autoencoder.

1) Case I: Type-I FDIA Detection: Type-I FDIA datasets with
large power injection within the range of (50%, 100%] are
first utilized to evaluate the performance of FDIA detection.
Tables V and VI summarize a comparison between the proposed
framework and the state-of-the-art methods, respectively.

As shown in Table V, the proposed framework achieves the
highest precision of 99.154%, recall of 99.479%, and anF1 score
of 99.316%. Regarding the F1 score, the proposed framework
improves by approximately 2.96% and 1.67%, respectively,
compared with M-2020 [11] and M-2021 [14]. Regarding the
recall, the proposed framework achieves an improvement of
approximately 3.50% in comparison with M-2020 and an im-
provement of 1.78% compared with M-2021. For the precision,
the proposed framework improves by approximately 2.43% in
comparison to M-2020 and 1.56% compared to M-2021.

As shown in Table VI, the proposed framework achieves the
highest precision of 99.162%, recall of 99.354%, and F1 score
of 99.258%. Compared with M-2020, the proposed framework
improves by approximately 2.45% in terms of precision, 3.72%
in recall, and 3.08% in F1 score. Compared with M-2021, the
proposed framework achieves improvements of approximately
1.58%, 1.95%, and 1.76% in precision, recall, and F1 score,
respectively.

These improvements in precision, recall, and F1 score can
be explained as follows. In M-2020, the temporal relationship
between historical measurement data is modeled using an au-
toencoder network. However, only normal measurement data
are used to train the network. M-2021 improves this method and
integrates malicious measurement data into the training process.
As shown in Tables V and VI, M-2021 achieves a better perfor-
mance in terms of precision, recall, and F1 score. Compared
with M-2021, the proposed framework takes into account the
feature distributions of the subgrids and spatial–temporal rela-
tionship of the bus/line measurement data. From Tables V and

https://kubernetes.io/docs/home/
https://v1-20.docs.kubernetes.io/docs/home/
https://www.docker.com/
https://pytorch.org/mobile/home/
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TABLE VII
COMPARISON OF TYPE-II DETECTION ON GRID-A

TABLE VIII
COMPARISON OF TYPE-II DETECTION ON GRID-B

VI, we can see that the proposed framework achieves significant
improvements in terms of the precision, recall, and F1 score.

2) Case II: Type-II FDIA Detection: Type-II FDIA datasets
with moderate power injection within the range of (25%, 50%]
are utilized to evaluate the performance of FDIA detection.
Because the power injection change ratio is less than in a
Type-I FDIA, the detection of a Type-II FDIA is more difficult
than that of a Type-I FDIA. Tables VII and VIII summarize
the comparison between the proposed framework with other
state-of-the-art methods.

As shown in Tables VII and VIII, the proposed approach
achieves the best performance in terms of precision, recall,
and F1 score at 99.235%, 98.814%, and 99.024%, respectively,
on Grid-A and 99.234%, 98.717%, and 98.975%, respectively,
on Grid-B. Compared with M-2020, the proposed framework
achieves improvements of approximately 2.52% and 2.53% in
terms of precision on Grid-A and Grid-B, respectively, approx-
imately 3.14% and 3.47% in terms of recall, and approximately
2.83% and 3.00% in terms of F1 score. Compared with M-2021,
the proposed framework improves by approximately 1.65% and
1.66% in terms of precision on Grid-A and Grid-B, respectively,
approximately 1.38% and 1.66% in terms of recall, and approx-
imately 1.51% and 1.66% in terms of F1 score.

Compared with the detection performance on Type-I FDIA
datasets, there is a slight degradation in recall and F1 score for
all three methods. As an advantage, the proposed framework
continuously achieves the best accuracy in comparison with the
other two methods.

3) Case III: Type-III FDIA Detection: The Type-III FDIA
datasets with a smaller change in power injection within the
range of (5%, 25%] are utilized to evaluate the performance of
FDIA detection. As the power injection change ratio is smaller
than that of the Type-I and Type-II FDIAs, the measurement
data are not as disturbed. Hence, the detection of the Type-III
FDIA is more difficult than that of the other two types of FDIAs.
Tables IX and X summarize the comparison among the proposed
framework and the state-of-the-art methods, respectively.

TABLE IX
COMPARISON OF TYPE-III DETECTION ON GRID-A

TABLE X
COMPARISON OF TYPE-III DETECTION ON GRID-B

As shown in Tables IX and X, the proposed approach achieves
the best performance in terms of precision, recall, and F1 score
at 99.203%, 98.409%, and 98.804%, respectively, on Grid-A
and 99.202%, 98.274%, and 98.735%, respectively, on Grid-
B. Compared with M-2020, the proposed framework achieves
improvements of approximately 2.51% and 2.52% in terms of
precision on Grid-A and Grid-B, respectively, approximately
3.24% and 3.66% in terms of recall, and approximately 2.87%
and 3.09% in terms of F1 score. Compared with M-2021, the
proposed framework improves by approximately 1.63% and
1.64% in terms of precision on Grid-A and Grid-B, respectively,
approximately 1.63% and 1.99% in terms of recall, and approx-
imately 1.63% and 1.82% in terms of F1 score.

E. Advantages of the Proposed Framework

1) Data Privacy: The proposed microservice-based frame-
work provides a scheme for data privacy preservation. In tradi-
tional methods, all measurement data collected from the power
grids need to be transmitted to the control center. There is
no guarantee of data privacy. In the proposed framework, data
privacy is mainly guaranteed by a scheme, in which the mea-
surement data collected by each subgrid operator are not shared
with the other operators. During the entire training process,
measurement data for each subgrid are consistently held by
the local operator; in addition, only a feature representation
for each subgrid is transmitted to the supervising module for
collaborative training. Therefore, the proposed framework is
privacy preserving.

2) Comparison of Latency: Because smart grids are usually
distributed remotely, the massive measurement data continu-
ously generated at each time step need to be transmitted to
the operation center for subsequent processes. In the proposed
framework, measurement data for each subgrid are transmitted
to a local operator instead of a distant control center. Therefore,
at this stage, the proposed framework will significantly reduce
the data latency. For example, for Grid-B in our experiments, the
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amount of transmission data for a fixed length feature representa-
tion is only 1% of the transmitted raw measurement data required
for the conventional centralized methods. In addition, the pro-
posed framework can effectively utilize parallel computations
for each subgrid. Therefore, compared with conventional meth-
ods in which all measurement data are transmitted to the distant
control center, our proposed method undoubtedly achieves a low
latency.

3) Detection Performance: As discussed in Section V-D,
compared with state-of-the-art methods, the proposed frame-
work achieves significant improvements in terms of the preci-
sion, recall, and F1 score evaluated on two benchmark datasets
in three types of FDIAs.

4) Efficient Utilization of Computing Resources: The pro-
posed framework can efficiently utilize computing resources.
First, models trained for subgrids can efficiently run in mi-
croservices in a parallel manner. Each subgrid microservice
is independent of the others. Second, because the container-
based microservices in the proposed framework only need to be
allocated necessary computing resources, this framework can
efficiently utilize such resources.

F. Limitation and Future Research Direction

This article proposes a subgrid-oriented privacy-preserving
microservice framework based on a deep neural network for
FDIA detection in smart grids. Compared with conventional
methods, the proposed framework can effectively model the fea-
ture distributions between subgrids and extract spatial–temporal
representations for the subgrids. The experimental results eval-
uated on the three types of FDIAs show that the proposed
framework achieves a state-of-the-art performance. However,
as one limitation of the proposed framework, it cannot be used
to identify the exact location of the FDIAs (which bus or line is
attacked) in the subgrids. In other words, the proposed frame-
work can only detect which subgrids are attacked. Identification
of more specific locations of buses and lines being attacked will
be a good research question.

VI. CONCLUSION

In this article, we proposed an efficient subgrid-oriented
privacy-preserving microservice framework based on deep neu-
ral networks for FDIA detection in smart grids. Our article
focused on the FDIAs, which are usually launched by external
attackers who aim to compromise the power system by injecting
well-designed false data into the measurement data. As the false
data are designed according to power flow equations, FDIAs can
pass the conventional residual-based bad data detection system.
To defend against FDIAs from external attackers, we proposed
the subgrid-oriented deep neural network framework by con-
sidering: 1) the spatial–temporal relationship between buses
and lines; 2) the feature distributions between subgrids; and 3)
the normal measurement data and malicious measurement data.
Hence, the framework can detect FDIAs by learning patterns
from the normal and malicious measurement data. Experimental
results show that the proposed framework achieved a state-of-
the-art performance. When the microservices are deployed in

the cloud, cloud security mechanisms such as the existing 4Cs
(cloud, clusters, containers, and code) Cloud Native Security
tools can be used against various external/insider attacks. How
to improve these security tools is beyond the scope of this article.
Our framework can provide local system privacy protection
against attacks from insiders (participants in the framework as
local operators), because of its local model training function.
The comprehensive experimental results on two public power
grids showed that, compared with the state-of-the-art methods,
the proposed framework achieves significant improvement in
terms of the precision, recall, and F1 score.
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