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Cross-Residual Deep Neural Network for
High-Precision Magnetic Flux Leakage

Defect Size Estimation
Hongyu Sun , Lisha Peng , Songling Huang , Shisong Li , Senior Member, IEEE, Yue Long ,

Shen Wang , and Wei Zhao

Abstract—Defect depth is an essential indicator in mag-
netic flux leakage (MFL) detection and estimation. The
quantification errors for defect depth are closely related
to length and width errors, and this feature has always
been used to support the operator’s judgment in defect
identification. However, the existing defect quantification
algorithms based on shallow and deep neural networks
only employed simple general network structures inspired
by the field of artificial intelligence; consequently, these
network structures lack the support of physical concepts
and result in large quantification errors regarding defect
size, especially depth. In this article, to describe and in-
tegrate the above theory into a deep neural network, we
propose a physics-informed doubly fed cross-residual net-
work (DfedResNet) suitable for MFL defect detection based
on deep learning. Physics-based MFL defect quantifica-
tion theory is studied and integrated into loss functions
during the neural network training. DfedResNet quantifies
defects in MFL data and automatically extracts deep fea-
tures of defects. The experimental results show that it ef-
fectively achieves high-precision quantification of defect
length, width, and depth simultaneously, especially defect
depth. Moreover, it considers data from all three dimen-
sions during network training, and use the originally mea-
sured magnetic signal data in place of recognized images
to avoid defect information loss and further improve the
quantification accuracy. The deep DfedResNet model pro-
posed in this article reduces defect length and width quan-
tification errors to within 0.3 mm and defect depth quantifi-
cation errors to within 0.4% t. In addition, compared with
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other network structures and traditional algorithms, Dfe-
dResNet improves defect quantification accuracy by 1–2 or-
ders of magnitude and thus achieves a high quantification
performance.

Index Terms—Cross-residual network, deep learning, de-
fect quantification, doubly fed, magnetic flux leakage (MFL)
testing, physics-informed.

I. INTRODUCTION

A S THE main carriers for the long-distance transportation of
flammable and explosive energy materials such as oil and

natural gas, pipelines have the advantages of large transportation
volumes, low cost, and environmental friendliness. However,
during long-term pipeline operation, accidents often occur due
to pipe corrosion, poor construction quality, and human-induced
damage, leading to environmental pollution, national economic
losses, and even threatening the people’s safety and property.
Nondestructive testing (NDT) methods can be used to detect
defects in a tested specimen without destroying it; thus, they
are beneficial for defect inspections of in-service industrial
facilities such as pipes, plates, and complex structures [1]–[3].
The current NDT technologies applicable to pipelines mainly
include ultrasonic testing, eddy current testing, magnetic par-
ticle testing, and magnetic flux leakage (MFL) testing. MFL
testing, which is currently a mature and widely used oil and gas
detection technology, has a good defect detection capability for
pipes with high magnetic permeability. Generally, pipelines may
be dozens or even hundreds of kilometers long; consequently,
the volume of MFL data detected by an inspection device is
rather large. Therefore, methods of effectively analyzing and
processing these data to estimate pipeline characteristics and
defect information are important for pipeline NDT.

With the advances in MFL sensor technology and the contin-
uous development of computer technology in recent years, MFL
data analytics have expanded from an initial visual recognition
to further defect quantification. In the early development stage
of MFL detection technology, due to the limitations of the
theoretical foundation and the capabilities of computer analysis
and processing, it was possible to judge only the existence
and location of defects—that is, to perform a qualitative defect
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analysis. The most common method was to visualize the MFL
defect data and obtain defect signal images. Technicians could
then qualitatively analyze the defects by observing the features
of the MFL test data depicted in the images, which were gener-
ated through approaches such as curve display, grayscale display,
and pseudocolor display. By visualizing the MFL data using
one or more complicated methods combined with technician
experience and pipe-related drawings, the collected MFL data
could be analyzed and processed. In general, artificial analysis
methods are less efficient and can easily lead to defect mis-
judgments, while visualization methods such as those described
above can enable only simple qualitative analyses of defects.
As defect MFL testing technologies have developed, more MFL
data are being collected, and defect estimation accuracy and
efficiency are becoming an important priority. High-precision
auto-quantification of defects is required.

The current main defect quantification methods based on
MFL testing can be divided into indirect methods [4] and direct
methods [5], [6]. In an indirect method, such as an iterative
method using threshold feedback or a mapping method using
an established defect feature library, the defect parameters are
estimated indirectly based on the MFL signal. However, indi-
rect methods are time-consuming and difficult to apply in the
industrial field. In contrast, a direct method straightly obtains
the length, width, and depth of a defect from corresponding
measured signals. These methods have the advantages of fast
speed, ease-of-use, and offer substantial advantages for offline
MFL data analysis. The drawback of the direct methods is that
they have a relatively low defect quantification accuracy. Thus,
there is a need for industrial applications to develop suitable ap-
proaches for selecting an effective direct quantification method
and improving its quantification accuracy.

The following processes are required to achieve defect quan-
tification in industrial MFL–NDT: collection and storage of
MFL test data, defect location, and feature extraction, and finally,
quantitative model establishment and defect size estimation.
However, the following problems arise during these processes.
The first is incomplete utilization of the test data: in most MFL
testing, only the x-axis detection data are used, while the y-
and z-axis data are discarded [7]. Second, feature extraction
is difficult and complicated; it relies on prior knowledge and
the designer’s subjective judgment. Several methods have been
developed for extracting features from MFL signals, including
statistical methods, frequency-domain transforms, and other
intuitive feature extraction methods. The third problem is that
the datasets are typically small, and the network structures are
not targeted; that is, the theory of MFL testing has not been
incorporated into the construction of neural networks [8]. In
summary, many issues remain to be addressed in the available
MFL defect quantification methods for industrial applications;
these shortcomings lead to low defect quantification accuracy
and poor operational reliability.

A deep learning system uses a multilayer neural network
constructed through stacking to adaptively extract the required
features during the training process, thereby avoiding the need
for complex signal processing steps [9], [10]. Deep learning
methods have broad application prospects in computer vision,

natural language processing, and other fields and have been
extended to various fields related to industrial information and
applications, such as NDT [11], [12]. As a typical application of
deep learning in NDT, Luo [13], Munir [14], and Melville [15]
compared feature-engineering-based shallow neural networks
and deep neural networks and obtained consistent conclusions:
the shallow machine learning classification models require fea-
ture engineering as an auxiliary preprocessing method, while
a deep convolutional neural network (CNN) can automatically
extract high-level information without complicated feature en-
gineering. However, in the field of MFL testing, to the best of our
knowledge, except for one study on the use of shallow CNNs for
defect detection [16], there have been few related works using
deep learning. Combining the advantages of deep learning with
MFL testing theory and related features has great application
potential for solving existing problems in the industrial NDT
field, such as the need for high-precision location, classification,
and quantification of defects.

In this article, we propose a doubly fed cross-residual deep
neural network (DfedResNet) suitable for MFL defect detection
based on deep learning. The physics-informed DfedResNet can
automatically extract deep features from defects and achieve
high-precision defect length, width, and depth quantification.
In terms of a physics-informed network, a doubly fed structure
is used to simulate the operator’s defect quantification logic.
In addition, we adopt discrete convolution operations using the
Sobel operator to enhance the network’s physical understanding.
Moreover, a 3-D synchronous quantification method is then used
to achieve the mutual coupling of various quantification factors
(length, width, and depth) and solve the problem of the low
quantification accuracy for defect depth.

The rest of this article is organized as follows. Section II
describes the steps in the construction of an MFL defect dataset,
including data collection from a traction test, defect data ex-
traction, and data augmentation. Section III describes the MFL
quantification theory, explain the improvement of the network
structure, and highlight how the “physics-informed” works in the
DfedResNet’s training. Section IV describes the training process
is introduced, and the training results are reported. Subsequently,
the performances of various network structures and traditional
algorithms for defect quantification are compared and discussed.
Finally, Section VI concludes this article. We hope that this
article will enable the effective application of deep learning in
NDT from the perspective of physical knowledge.

II. DATASET COLLECTION

When a deep neural network is to be used for MFL defect
detection, a sufficiently large dataset is required to capitalize
on its advantages; however, obtaining sufficient experimental
data is almost always difficult. Although it is possible to obtain
defect data from a pipeline length of over 100 km from an actual
engineering inspection, it is almost impossible to obtain accurate
values for all the defect sizes. In contrast, using a finite length of
the traction-test pipeline (approximately 100 m), the number of
artificial defects with precise sizes that can be created is limited.
Therefore, for dataset collection, a certain amount of pipeline
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Fig. 1. Experimental configuration with an MFL-PIG. (a) Traction test with the inspector. (b) Structure of the inspector. (c) x-axis magnetic signals
obtained as part of the detection data. Semitransparent 2-D color image in (c) shows the projection of the MFL curve values on the scan-channel
plane. Dotted cubes highlight the MFL curves and 2-D images corresponding to different defects, and the corresponding defect photos are also
displayed.

inspection data was first collected; then, the defect data were
extracted and labeled; and finally, the MFL dataset was enhanced
through data augmentation techniques.

A. Experimental Data Acquisition

To obtain the experimental data, an X65 stainless steel pipe
with a diameter of 273 mm and a wall thickness of 5 mm was
selected for a traction test. The pipeline contained 243 standard
artificial defects, with lengths and widths ranging from 10 to
50 mm and depths ranging from 10 to 50% t, where t denotes
the thickness of the pipe wall. Fig. 1(a) shows the actual traction
system and the MFL pipe inspection gauge (PIG) used. As
shown in Fig. 1(b), the MFL-PIG consists of four main sections
described as follows:

1) A battery section that provides power for the MFL-PIG
during the inspection process, ensuring an uninterrupted
energy supply throughout the entire detection process.

2) A recording section that saves the magnetic and nonmag-
netic data collected by the sensors and control, collects
and records the signals from the sensors through the
pulses periodically obtained by the mileage wheel.

3) A detection section that converts the MFL signal of a
defect in the pipeline into an electrical signal and collects
some necessary nonmagnetic data (such as temperature,
speed, pressure, and mileage). This section is mainly
composed of a magnetization device, various sensors,
and signal processing circuits. The magnetization device
uses permanent magnets to magnetize the tube wall to a
near-saturation state to generate a magnetic leakage signal
at the defect. A hall sensor uses the potential difference
produced by the Hall effect to detect the magnitude of the
leakage magnetic field, and the signal processing circuits

amplify and filter the signals to improve the signal-to-
noise ratio.

4) A navigation section that drives the detector to move
forward through the pipeline by relying on the pressure
difference between the fluid ahead and behind the PIG.
This section is mainly composed of multiple sets of
leather bowls.

The above sections are connected by Cardan joints to improve
the ability of the detector to pass through deformed sections of
the pipeline. During the inspection, the sampling rate of the
sensors was 1 mm per scan, and the circumferential spacing
of each channel was 2.7 mm. Fig. 1(c) shows examples of
x-axis magnetic signals obtained as part of the detection data.
Defect photographs corresponding to each detection signal are
also shown. These standard defects are precision processed by
electron discharge machining machine tools. The length and
width processing error for a given defect is less than 4 μm,
and the depth error is less than 0.01% t. By observing the
amplitudes and sizes of the signals, it can be found that these
four defects have different cross-sectional sizes and depths. After
the MFL-PIG had successfully collected the pipeline inspection
data, further defect information extraction was conducted.

B. Defect Data Extraction

The data collected by the MFL-PIG included signals of vari-
ous defects as well as signals indicating no defects. However, a
dataset to be used for network training must contain standardized
data. Therefore, the original inspection data was processed to
extract the defect information. Fig. 2 shows a flowchart of the
dataset construction process and a schematic diagram corre-
sponding to each step.



1632 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 3, MARCH 2022

Fig. 2. Defect data extraction with size standardization and labeling. Four MFL curve figures on the left show the dataset construction methods in
the order of their labels. Corresponding flowchart is shown on the right, where the defect data is extracted using the threshold method.

First, it was necessary to locate and identify the defects in the
input data; we used a threshold-based method for defect data
extraction. As shown in Fig. 2, the magnitudes of the magnetic
data values were compared between each data point and the
average value of the channel in which the point was located. If
the current value was 10% higher than the average value and
at least one adjacent data point also satisfied this condition, the
point was judged as valid defect data. Thereafter, a set of such
valid defect data points was taken as a defect set. To separate the
data for different defects, the following method was used: if the
number of nondefect data points between two valid defect data
points exceeded a certain distance (ten scans or two channels),
those defect points were judged to belong to two different defect
sets.

To train a deep neural network, the input data must all have the
same structure before they can be fed into the network. However,
as Fig. 2 shows, the size of each defect set was different; thus,
it was necessary to standardize the defect data. To this end, the
center of each original defect dataset was taken as the center of
the corresponding new standardized set; then, all the detection
data from the 31 channels and 81 scans around it were extracted
to form the standardized defect dataset. In addition, data size
normalization was ensured by performing data interpolation in
the circumferential direction. Notably, these datasets included
not only the x-axis magnetic data but also the y- and z-axis data.
In addition, although the shape of each defect dataset was (81, 81,
3), the data were not treated as an image during the preprocessing
and training process; instead, the magnetic data values of the
original detection signals were directly used, thereby preserving
as much of the information contained in the collected signals as
possible for subsequent defect feature extraction to improve the
quantization accuracy.

Next, each set of defect data needed to be correctly labeled
in accordance with the processing drawings for the defect, in-
cluding its length, width, depth, hours, and mileage, as shown in

Fig. 2. Finally, the extracted, standardized, and labeled three-axis
magnetic data were stored in a standardized format and used as
the input to the network.

C. Data Augmentation

Due to the limited number of the artificial defects, it is difficult
to create a dataset sufficiently large to meet the requirements
for training of a deep neural network. Therefore, augmentation
methods were applied to expand the dataset. Peng proposed an
interpolation operation for MFL signals based on the premise
that for defects with the same length and width, the MFL signal
intensity is approximately linear with the defect depth [17]. The
length and width increments of the artificial defects were 5 mm,
the depth increment was 20% t, and there were 243 defects
in total. Accordingly, by using the depth interpolation method
expressed in (1) and (2) with the depth increment set to 1% t,
the number of defect datasets was increased from 243 to 3321.
Thus, the dataset was augmented by more than a factor of 13 to
meet the requirements for training a deep learning model:

Bj30 −Bj10

30 − 10
i+Bj10 = Bji (i = 11, 12, . . . , 29;j = x, y, z)

(1)

Bj50 −Bj30

50 − 30
i+Bj30 = Bji (i = 31, 32, . . . , 49;j = x, y, z)

(2)

where Bji denotes the j-axis magnetic data for the defect with a
depth of i% t.

III. PHYSICS-INFORMED DFEDRESNET DESIGN

A. MFL Quantification Theory

Before considering the integration of physical information
into neural networks, it is necessary to analyze the MFL defect
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Fig. 3. Magnetic dipole model of a rectangular defect on steel.

quantification theory. The current feasible MFL defect quan-
tification is generally carried out for the length and width with
low accuracy, and the actual depth cannot be accurately judged
due to its inconsistent characteristics. Nevertheless, it is still
necessary to obtain defect length and width values first before
back propagation of network errors. This process is essential for
correcting the quantitative logic of the neural network from the
perspective of physical knowledge.

The MFL analytical model is usually established based on the
magnetic dipole method, and Fig. 3 shows the magnetic dipole
model of a general rectangular defect.

Assume that the magnetic dipoles are evenly distributed on
the defect surface along the magnetization direction, for each
magnetic charge element dp = σs�y�z, the element magnetic
field dH at a distance r is given as

dH=
dp

4πr3
· r (3)

where σs is the surface magnetic charge density, the x-axis
direction is denoted as the magnetization direction, and the
z-axis direction is perpendicular to the specimen surface. By
integrating the element magnetic field dH generated by each
magnetic dipole, H(x, y, z) can be calculated:

H(x, y, z) =

∫∫
S

dH (x, y, z) =

∫∫
S

dp

4πr3
· r. (4)

For a rectangular defect with size l×w×d, the x-component
and y-component of magnetic leakage fields are given by

H(l,w,d)
x (x, y, z)

=
σs

4π

∫ 0

−d

∫ w/2

−w/2

⎛
⎜⎝

x+l/2

((x+l/2)2+(y−y′)2+(z−z′)2)
3/2 −

x−l/2

((x−l/2)2+(y−y′)2+(z−z′)2)
3/2

⎞
⎟⎠dy′dz′

(5)

H(l,w,d)
y (x, y, z)

=
σs

4π

∫ 0

−d

∫ w/2

−w/2

⎛
⎝

y−y′

((x+l/2)2+(y−y′)2+(z−z′)2)
3/2 −

y−y′

((x−l/2)2+(y−y′)2+(z−z′)2)
3/2

⎞
⎠dy′dz′.

(6)

Assuming an odd function in quantifying the defect length:

g (x)

=
σs

4π

∫ 0

−d

∫ w/2

−w/2

⎛
⎜⎝ x(

x2 + (y − y′)2 + (z − z′)2
)3/2

⎞
⎟⎠dy′dz′.

(7)

We can obtain

H(l,w,d)
x (x, y, z) = g (x+ l/2) + g (−x+ l/2) (8)

and

g′ (x) =
σs

4π

∫ 0

−d

∫ w/2

−w/2

⎛
⎜⎝ (y − y′)2+(z − z′)2 − 2x2

(
x2+(y − y′)2+(z − z′)2

)5/2

⎞
⎟⎠dy′dz′

≤ σs

4π

∫ 0

−d

∫ w/2

−w/2

⎛
⎜⎝ (y−y′)2+(z−z′)2

(
(y−y′)2+(z−z′)2

)5/2

⎞
⎟⎠dy′dz′=g′(0) .

(9)

We can see from (9) that when x = 0, the slope of g(x) is the
largest. Therefore, when x= l/2, Hx(x) has a component g(x+l/2)
with the maximum slope, and the slope of g(−x + l/2) has less
influence than the former. Therefore, Hx(x) have a maximum
slope near x = l/2. Combined with the odd function features of
g(x), it can be inferred that the minimum slope of Hx(x) will
appear near x = −l/2.

In fact, at the edge of the defect, the wall thickness of the
ferromagnetic material suddenly decreases, where the magnetic
field will change sharply. The maximum/minimum value of the
MFL signal’s slope appears near the defect length’s edges, which
can provide a reference for the quantification of the defect length
and guide the neural network’s training logic. In addition, the
errors in the above theory will also be corrected in the network
training.

Assuming a function h(x, y) in quantifying the defect width:

h (x, y) =
σs

4π

∫ 0

−d

⎛
⎜⎝ 1(

x2 + y2 + (z − z′)2
)1/2

⎞
⎟⎠dz′. (10)

Similar to the length quantification, we can get

H(l,w,d)
y (x, y, z) = h (x+ l/2, y + w/2)

− h (x+ l/2, y − w/2)

− h (x− l/2, y + w/2)

+ h (x− l/2, y − w/2) (11)

h (x, y) ≤ σs

4π

∫ 0

−d

⎛
⎜⎝ 1(

(z − z′)2
)1/2

⎞
⎟⎠dz′=h (0, 0) .

(12)
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Fig. 4. Architecture of the deep DfedResNet: initial layer, cross-residual layer, and doubly fed regression layer. MFL quantification theory behaves
as the physical and network structures: Defect length quantification method based on the first derivative threshold of magnetic data is shown in (5,
9), and the defect width quantification method based on the magnetic data subregion threshold is shown in (6, 12).

It can be seen from (12) that when x = y = 0, the value of
h(x, y) is the largest. Moreover, when (x, y) are, respectively,
at the four vertices of the rectangular defect, namely (−l/2,
−w/2), (−l/2, w/2), (l/2, −w/2), and (l/2, w/2), Hy(x, y) has
maximum, minimum, minimum, and maximum components,
respectively. Compared with the maximum value, the influence
of other components is smaller. Therefore, near the above four
points of the defect, the vertical component of the MFL signal
will have its maximum/minimum value.

In general, by calculating the x-axis signal’s first derivative
threshold and the y-axis signal’s threshold positions based on the
above equations, we can obtain the theoretical value of defect
length and width. However, theoretically speaking, errors still
exist in the quantification of defect length and width, and it is
difficult to apply it to the prediction of defect depth. In addition,
the data collected by the PIG in the actual engineering contains
noise and sudden changes, which will weaken the theoretical
quantification accuracy of the defect size. Therefore, we can use
the automatic extraction capabilities of deep neural networks

to compensate for the shortcomings of traditional quantification
theories.

B. Network Architecture Design

Traditional CNNs have achieved outstanding successes in
various fields in computer vision because of their ability to
gradually and automatically extract image features through local
receptive fields [18], [19]. However, it is difficult to use a CNN to
identify defects directly and further quantify them because of the
difficulty of recognizing and interpreting in MFL signal images.
Therefore, to maximize the retention of the defect features, we
standardized the input to the network in this article, and the input
values consisted of the magnetic field intensity data collected by
the sensor.

Fig. 4 shows the proposed DfedResNet structure, which can be
divided into three parts: the initial layer, the cross-residual layer,
and the doubly fed regression layer. The proposed method is a
physics-informed deep learning model based on neural network
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as the backbone, MFL testing theory as the mechanism, and
a large number of actual experiments as the big data support.
To extract the deep features of the input MFL defect data, we
propose a 17-layer deep neural network called DfedResNet,
which contains weight-updated layers, including convolutional
layers, pooling layers, fully connected layers, and batch normal-
ization layers, as well as static layers such as flatten layers and
a preprocessing layer. The convolutional layers automatically
learn the features of the input data at various levels and perform
dimensionality reduction and feature extraction on the input
through convolution operations. In addition, the smaller initial
receptive fields capture the local and detailed information from
the input data, while the receptive fields of the subsequent
convolutional layers increase layer by layer to capture more
complex and abstract information. After multiple convolutional
layer operations, abstract representations of the input data at
various scales are obtained [14]. Then, the pooling layers use
a downsampling method to further reduce the dimensionality
of the data based on the output from the convolutional layers.
We use maximum pooling (max-pooling) layers to reduce the
model size, increase the calculation speed, reduce the probability
of overfitting, and improve the network’s robustness for feature
extractions. In a dense layer (or a fully connected layer), all
the input and output nodes are connected, and such a layer
can be regarded as the “classifier” of a neural network. The
regression output of the last dense layer represents the char-
acteristics of the input data in accordance with certain defined
labels, such as the length, width, and depth of a defect. A batch
normalization layer normalizes its input through transformation
and reconstruction, thereby substantially improving the speed of
network training and convergence, without the need for dropout
or special parameter initialization, which reduces the complexity
of hyperparameter debugging. The forward propagation process
in a batch normalization layer can be expressed as follows [20]:

1
α

α∑
i=1

xi → μ → 1
α

α∑
i=1

(xi − μ)2 → σ2 (13)

xi − μ√
σ2 + ε

→ x̂i → γx̂i + β ≡ BNγ,β (xi) → yi (14)

where (13) calculates the mean value and variance of the batch,
(14) normalizes, scales, and shifts the data, α is the number
of minibatches, ε is a constant added to the variance of the
minibatch data, andγ andβ are learnable identity transformation
parameters.

In DfedResNet, the initial layer includes an input layer, a
preprocessing layer, a convolutional layer, a max-pooling layer,
and a batch normalization layer. The inputs to the network are
formatted as tensors with a shape of (100, 81, 81, 3), where 100
is the batch size, 81×81 is the size of the data matrix for a defect,
and 3 represents the number of spatial axes (x, y, and z) of the
detection data. To further extract defect information and filter
out redundant data, the preprocessing layer subtracts the base
signal corresponding to the absence of a defect from each set
of input data, and outputs the calculated result. The subsequent
convolutional and pooling layers perform the initial extraction
of defect information to ensure that the initial layer is trainable.

As shown in Fig. 4, the cross-residual layer includes two
discrete convolution operations, four convolutional layers, four
max-pooling layers, and two batch normalization layers. In
MFL testing, although it is relatively easy and intuitive to
quantify the length and width of a defect, it is more difficult to
quantify the defect depth accurately. This is because the length
and width information of a defect correspond to the position
information in the detection data, which can be extracted via
a simple threshold-based method [21]. Defect depth, which is
an important index for evaluating the health of a sample, is
difficult to quantify with high accuracy. Therefore, the defect
depth estimation requires complex methods. A previous study
on depth estimation revealed that the quantization accuracy is
unsatisfactory because identifying the depth of a defect requires
information such as its length, width, and signal amplitude to
be comprehensively considered [22]. In other words, the same
defect signal may correspond to different combinations of defect
dimensions [23]. Therefore, based on the above analysis, the
depth of a defect is accurately quantified by first determining
the length and width of the defect and then using the additional
features from the input data. Accordingly, in the cross-residual
layer, the two discrete convolution operations are used to extract
the horizontal and vertical features of the data using the Sobel
operator [24]; these features correspond to the length and width
of the defect, respectively. In addition, because the discrete
convolutions are not updated during network training, to avoid
feature information loss during the initial training stage and
overfitting caused by redundant information later in the training
process, cross-residual connections are adopted in this layer
to accelerate error backpropagation and improve the training
speed and performance [25]. Overall, the cross-residual layer
separately extracts the length and width information from the
defect data and improves the training speed and performance
through identity mapping.

Theoretically, when quantifying defect depth, it is necessary
to obtain the length and width information in advance. Therefore,
the doubly fed regression layer concatenates the two output
tensors from the cross-residual layer to form the input to the
defect depth discrimination network and more accurately quan-
tify defect depth. The doubly fed regression layer includes two
convolutional layers, two max-pooling layers, one batch normal-
ization layer, and nine dense layers. The network loss function
includes all three quantitative indicators, making it possible to
simultaneously estimate the length, width, and depth of defects
while improving the quantization accuracy, and thereby avoiding
the time-consuming and incomplete feature extraction short-
comings of methods based on multiple regression calculations
[7].

C. Physical Consistency in Model’s Loss Function

Differences between the forward calculation result of each
iteration of the neural network and the true value are calculated
in loss functions; thus, it guides the next training in the correct
direction:

argmin
f

{Loss (Opred,Oreal)} . (15)
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We can now introduce a term using physical concepts based
on (5, 6) and (9, 12) in the neural network loss function as shown
in (16):

argmin
f

{Loss (Opred,Oreal)

+λphysLoss.PHY (Opred,Ophys)} (16)

where λphys represents the weight of physical concepts in neural
network training, and the first item in (16) is the experience loss
item using the mean square error (MSE), the second term denotes
the inconsistency loss between the predictions and theoretical
results. Real labels and theoretical features both contribute to
the network training: the introduction of theoretical values can
correct “bad labels,” prevent the network from learning features
that we do not concern about, and still have better performance
and generalization capabilities under small datasets such as the
NDT field. As shown in Fig. 4, physics-informed hybrid losses
are introduced in DfedResNet, which improve the network
structure and guide the training of the network accordingly.

IV. NETWORK TRAINING AND RESULTS

Network training and reasonable hyperparameter settings are
important factors in improving network performance. The num-
ber of filters and the kernel size for each convolutional layer are
specified in Fig. 4, and a rectified linear unit nonlinear activation
function is applied after convolution [26]. In addition, the max-
pooling operation for 2-D spatial data is used to downsample
the input representation by taking the maximum value over a
window with a (2, 2) pooling size; this window is shifted by a
stride of two pixels in each dimension, and the padding mode is
set to “same.” To improve the generalizability of DfedResNet,
in this article, the entire dataset was divided into a training set,
a validation set, and a test set at a ratio of 8:1:1. Moreover,
the Nadam (Adam [27] with Nesterov momentum) optimizer
was selected in preference of traditional training optimization
algorithms and the learning rate was set to 0.0001. Adopting the
Nesterov momentum vector rather than the traditional momen-
tum vector in Adam places stronger constraints on the learning
rate and has a more direct impact on the updating of the gradient.
To make the model approach the local or global optimal solution,
a learning rate decay was used to ensure that the loss would
not undergo large fluctuations during the later training stages.
During network training, the number of training epochs with no
improvement was limited to 10, and the learning rate decay was
set to 0.5. Furthermore, to increase the training efficiency and
reduce model overfitting, an early stopping method was applied
for network training, and the best network weight was saved
when the training was stopped. MSE loss was used to solve the
regression problem for defect quantification. We used Google’s
open-source deep learning platform TensorFlow because of
its streamlined and flexible interface design, which provides
the ability to quickly build network models and achieve rapid
deployment in industrial systems. The software versions we
used were TensorFlow 2.4, CUDA 11.1, and Python 3.8. The

hardware platform parameters were as follows: an i9-10900K
CPU, an RTX-3080 GPU, and 64 GB of memory.

Fig. 5 shows the training results for the proposed DfedResNet
model, including the initial layer, cross-residual layer, and dou-
bly fed regression layer, obtained by feeding the three-axis defect
data shown at the top left into the network. The base values were
subtracted from the data for each axis in the preprocessing layer;
subsequently, the sigmoid activation function was used to con-
vert the data tensors into figures (for display purposes only), and
the results were then multiplied by 255. Note that these figures
are merely a form of visualization, not the data themselves. For
the initial figure, the red, green, and blue colors correspond to the
x-, y-, and z-axis data, respectively. For the output images of the
subsequent layers, the first three channels were used to generate
the RGB values for display. Fig. 5 shows that the cross-residual
layer initially extracts the basic features of the input (length and
width), and then, through tensor concatenation and convolution,
the doubly fed regression layer further identifies the higher level
features of the data, such as the characteristics related to the de-
fect depth. The output predictions of the network indicate that the
size of the defect used for this example is 40.1786 mm× 44.8861
mm× 16.1475% t. Based on the generated data labels, as shown
in Fig. 2, the labeled size of this defect is 40 mm × 45 mm ×
16% t, which is extremely close to the network’s output.

Fig. 6 shows the evolution of the loss and the learning rate
decay on the training and validation datasets throughout the
network training process. The learning rate decayed by half
in the 73, 84, 104, and 139 epochs, and early stopping was
triggered in the 150th epoch, at 134th epoch the best weights
were saved. As the training and testing losses show, the model
converges quickly and successfully without overfitting. Based
on the network prediction results shown in Fig. 6, the mean
prediction errors for the defect length and width are both within
0.3 mm, and the prediction error for the defect depth is less
than 0.4% t. Because the defects studied in this article are all
standard artificial defects, the MFL defect signal is relatively
smooth; therefore, the quantization accuracy of the defect can be
less than the sampling interval. Therefore, the deep DfedResNet
model proposed in this article can adaptively and synchronously
extract the deep features of defects and demonstrates very high
quantitative performance.

Aiming at the black box problem of deep NN, the network’s
design basis is verified and explained visually using the popular
interpretable method named Grad-CAM++ [28]. We calculated
the network’s gradients using a single backpropagation to obtain
the saliency maps. Fig. 7 shows the saliency maps for defect
length, width, and depth estimation. Compared with Fig. 4, the
saliency maps in Fig. 7 have better interpretability. Fig. 7 shows
that DfedResNet effectively identifies the signal features of
defects and increase the weights associated with these features.
In other words, the network’s attention effectively shifts based on
the training goal: when estimating defect length and width, the
network’s weights are automatically concentrated on the axial
and circumferential boundaries. In addition, when estimating
defect depth, the network’s weights are both concentrated on
the boundaries and amplitudes.
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Fig. 5. Training results for the proposed DfedResNet model, including the initial layer, cross-residual layer, and doubly fed regression layer,
obtained by feeding the three-axis defect data shown at the top left into the network.

Fig. 6. Training process and test results of the proposed network.

Fig. 7. Saliency maps for defect length, width, and depth estimation.

V. DISCUSSION OF DIFFERENT METHODS

To verify the advantages of the DfedResNet model proposed
in this article, we considered different network structures to
verify the contribution of the doubly fed cross-residual structure
of the model and to demonstrate the advantages of using three-
axis input data for defect quantification. Figs. 8(a)–(i) shows the
training results for a uniaxial CNN (with only convolutional and
dense layers), a three-axis CNN, and the proposed DfedResNet.
The horizontal axis in each figure shows the defect signal label,
while the vertical axis shows the value predicted by the network.
The blue baseline represents the case in which the predicted

result is exactly equal to the actual defect size. By comparing
the degree of dispersion of these data points, it can be found
that the DfedResNet model proposed in this article yields the
best quantitative accuracy. During network training, we repeated
the training process for each network three times and averaged
the prediction results to reduce the influence of random factors.
The training and test results are listed in Table I, which shows
that better defect quantification accuracy is achieved by using
the inspection data from all three dimensions, resulting in an
error between two and three times smaller than that of the
prediction results based on data from a single axis (the x-axis).
In addition, the prediction error of the doubly fed cross-residual
structure network used in this article is significantly smaller—by
a factor of 5–10—than the prediction error of the aforementioned
three-axis CNN. These comparisons prove the effectiveness of
the proposed DfedResNet architecture for the high-precision
quantification of defects.

In this article, to verify the advantages of the proposed Dfe-
dResNet compared to the traditional methods used in industrial
applications, we also used the same dataset to test several dif-
ferent defect quantification methods that have previously been
proposed. To our knowledge, VT-CNN, which adaptively rotates
the 3-D structures of defects to perform defect quantification
[7], is the most advanced algorithm available for this purpose at
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Fig. 8. Training results for a uniaxial CNN (with only convolutional and dense layers), a three-axis CNN, and DfedResNet. Red dots represent the
network prediction results plotted versus the actual defect size, and the blue line represents the baseline for the deviations of the predictions.

TABLE I
AVERAGE ERRORS OF DIFFERENT NETWORK STRUCTURES

TABLE II
PREDICTION ERRORS OF DIFFERENT ALGORITHMS

present. In addition to VT-CNN, we also compared our method
with a support vector machine [29] and a backpropagation neural
network [30] to quantify the defects in the same dataset. Table II
shows the prediction errors of these algorithms, from which it
can be seen that the DfedResNet model proposed in this article
has obvious advantages in defect quantification, with an average
error 9–18 times lower than those of both the advanced VT-CNN
algorithm and the traditional methods.

VI. CONCLUSION

To address the problems presented by MFL-NDT in indus-
trial applications, we proposed a physics-informed DfedResNet
suitable for defect detection. We first extended deep learning
theory to the MFL field and improved it to make it suitable for
MFL defect inspection based on the ability of deep CNNs to
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automatically extract high-level features from input defect data
for defect size prediction. Besides, we studied the physics-based
MFL defect quantification theory and integrated it into loss
functions during the neural network training. In addition, based
on the multiple combined characteristics of defect depth, length,
and width, we developed a DfedResNet structure that effectively
reduces the MFL defect quantization error by a factor of 5–10
relative to the theoretical level achievable by a basic CNN. For
network training, we use detection data from all three dimen-
sions as the network input and also used the actual detection
data in place of the traditional MFL image pixel values, thereby
further reducing the defect quantization error by a factor of 2–3
by avoiding defect information loss. Ultimately, the DfedResNet
model proposed in this article reduces the quantization errors for
defect length and width to within 0.3 mm and the quantification
errors for defect depth to within 0.4% t. These results demon-
strate the effectiveness of the proposed network structure.

Due to the difficulty of quantitatively describing actual de-
fects and limitations of the detector model, this article does
not involve quantifying real defects with complex contours,
or a quantification algorithm to address pipelines of different
sizes. In the future, deep NNs could be developed based on
the reconstruction method of complex defect opening contours.
Therefore, a comprehensive analysis of pipeline inspection data
consisting of different pipe diameters should be performed to
obtain a quantitative strategy for MFL testing with generalizable
capabilities.
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