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CSIE-M: Compressive Sensing Image
Enhancement Using Multiple Reconstructed
Signals for Internet of Things Surveillance

Systems
Chi Do-Kim Pham , Jian Yang , and Jinjia Zhou , Member, IEEE

Abstract—Artificial intelligence of things has brought ar-
tificial intelligence to the cutting-edge Internet of Things.
In recent years, compressive sensing (CS), which relies
on sparsity, is widely embedded and expected to bring
more energy efficiency and a longer battery lifetime to
IoT devices. Different from the other image compression
standards, CS can get various reconstructed images by
applying different reconstruction algorithms on coded data.
Using this property, it is the first time to propose a deep
learning based compressive sensing image enhancement
framework using multiple reconstructed signals (CSIE-M).
In this article, first, images are reconstructed by differ-
ent CS reconstruction algorithms. Second, reconstructed
images are assessed and sorted by a no-reference qual-
ity assessment module before being input to the quality
enhancement module by order of quality scores. Finally,
a multiple-input recurrent dense residual network is de-
signed for exploiting and enriching the useful informa-
tion from the reconstructed images. Experimental results
show that CSIE-M obtains 1.88–8.07 dB peek-signal-to-
noise (PSNR) improvement while the state-of-the-art works
achieve a 1.69–6.69 dB PSNR improvement under sam-
pling rates from 0.125 to 0.75. On the other hand, using
multiple reconstructed versions of the signal can improve
0.19–0.23 dB PSNR, and only 4% reconstructing time is
increasing compared to using a reconstructed signal.

Index Terms—Compressive sensing (CS), deep learning
approach for compressed image enhancement, multiple-to-
one mapping.
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I. INTRODUCTION

INTERNET of Things (IoT) interconnects numerous devices
including sensors, cameras, smart home products, and smart

city products in an environment. It provides a fundamental way
to communicate, store, transmit, and process sensed data, giving
better productivity and more efficient solutions for improving the
quality of human life. Surveillance systems have been pointed
out as one of the most necessary but challenging solutions in
urban developments due to large data storage requirements and
the high computational complexity in processing images and
videos sensed by cameras. Therefore, compression methods that
can adapt the requirements of 1) saving the power consumption
and prolonging the battery lifetime of IoT devices, 2) secur-
ing the data, and 3) balancing the traffic load when traveling
throughout the network are preferred in designing sensing de-
vices for surveillance systems. Traditional Shannon–Nyquist
theorem states that signals need to be sampled at twice the
bandwidth to be recoverable. In IoT systems such as remote
surveillance and astronomy satellites, the Shannon–Nyquist rate
is costly, requires ample storage space, and wide bandwidth for
transmission. Compressive sensing (CS), which requires only a
few compressive measurements to contain nearly all the useful
information, breaks the limitation stated by Shannon–Nyquist’s
theory. CS has adapted the requirements and becomes one of
the effective lossy compression methods that are considered
when designing devices for IoT applications [1]–[3]. First, in
the CS encoder, only matrices multiplication is performed. The
matrices multiplication is simple to be embedded in resource-
limited devices and ensures energy saving for IoT self-powered
devices. Second, the measurement matrix is only shared be-
tween the encoder and decoder, making the network secure.
Third, the amount of sent measurement is fixed throughout
the time, ensuring the traffic for transmission. Unlike the other
compression standards, reconstructing CS signals is to solve a
nonlinear inverse problem [4]. Since different CS reconstruction
algorithms dissimilarly model the recovery solution, choosing
a CS reconstruction algorithm for an application is challenging.
On the other hand, there is always space to further improve
the signals reconstructed by lossy compression methods. In
this article, a study on enhancing CS reconstructed images is
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Fig. 1. Proposed CSIE-M in IoT surveillance system.

proposed to improve the qualities of CS reconstructed signals
without changing the encoder and the decoder, keeping the
requirements of IoT solutions.

Convolutional neural network (CNN) is well-known for learn-
ing complex functions where the designed filters are not flex-
ible enough to model. In recent years, CNN has been widely
applied and has obtained remarkable results in image quality
enhancement. In this work, we take the next step toward an
artificial intelligence of things (AIoT) approach for enhancing
CS reconstructed images sensed by IoT devices (Fig. 1). Images
are sensed and encoded in IoT cameras before being sent to the
IoT cloud. Unlike the existing image enhancement works, where
enhancing the image relies on a single degraded image [5]–[11]
or neighboring frames [12], [13], this work takes advantage of
different CS reconstructed images with different qualities and
introduces a deep learning based compressive sensing image
enhancement framework using multiple reconstructed signals
(CSIE-M). At IoT cloud, compressed data are decoded by
the commonly used CS reconstruction algorithms: L1 equality
constraints via primal-dual algorithm (L1EQPD) [14], spectral
projected-gradient for L1 (SPGL1) [15], orthogonal matching
pursuit (OMP) [16], and sparsity adaptive matching pursuit
(SAMP) [17]. In learning multiple-to-one mapping, it is neces-
sary to decide which branch an image should be input. Therefore,
a no-reference quality assessment module, namely Scorenet,
is proposed to score and rank reconstructed images before
feeding them to the quality enhancement network by order of
quality. In the quality enhancement module, a multiple-input
residual recurrent network (MRRN) is proposed for enhancing
the reconstructed images by exploiting and enriching useful
features via a recurrent mechanism. MRRN takes the best quality
image, which will be added to the enhanced feature for the
main branch. The two lower quality images are input to the
supporting branches. Finally, enhanced images at the IoT cloud
are displayed in monitoring devices for surveillance solutions or
transfer to other image processing tasks such as recognition and

detection. The experimental result shows that CSIE-M improves
1.88–8.07 dB peek-signal-to-noise (PSNR) compared to the
main input image on various sampling rates (SRs) from 0.125
to 0.75.

This work’s main contributions are summarized as follows.
First, a CSIE-M is designed for the first time. In CSIE-M, a
no-reference quality assessment module scores and ranks recon-
structed images before feeding them to the quality enhancement
module. Second, the proposal outperforms the state-of-the-art
works in distorted image enhancement. Finally, a study on the
number of input images is also conducted to show the effect
of using multiple inputs on enhancing the reconstructed image
quality.

II. RELATED KNOWLEDGE

A. Compressive Sensing

Given sensed signal x that can be represented by a n× 1
sparse vector s in the domain ψ, CS encoder simply calculates
the m× 1 measurement y by

y = Φx = Φψs (1)

where Φ is the m× n measurement matrix fixed in the encoder
and the decoder [4]. The commonly designed measurement
matrices include random matrices, binary matrices, and struc-
tural matrices. The quotient of m and n defining the system’s
compression ratio, also known as sampling rate, represents the
amount of data sent to the decoder. The process of decoder, on
the other hand, is more complicated. In the CS-based image
compression, the decoder reconstructs the image x back into the
pixel domain by solving an underdetermined matrix equation
where m < n. Therefore, reconstructing x at the decoder is
solving an ill-posed problem. There have been many CS recon-
structing algorithms including greedy algorithms, convex opti-
mization, and gradient-based algorithms. The proposal adopts
L1 optimization that include L1EQPD [14] and SPGL1 [15],
and greedy algorithms include OMP [16] and SAMP [17] for
CS image reconstruction.

B. Deep Learning Based Distorted Image Enhancement

Image enhancement is one of the essential components in
image processing and image-display applications [18], [19].
Concerning deep learning based distorted image enhancement,
single image enhancement [5]–[11], and the multiframe en-
hancement, [12] and [13] are mainly focused in removing
compression artifacts and denoising. Zhang et al. [5] introduce
a denoising convolutional neural network (DnCNN) that can
deal with different Gaussian noise levels, single image super-
resolution, and JPEG image artifacts caused by different quality
factors. For denoising real-noisy images, Anwar and Barnes
[7] introduce a novel single-stage blind real image denoising
network (RIDNet). In RIDNet, local skip connections, short skip
connections, and long skip connections are utilized to exploit
low-frequency information over the feed-forward. Jia et al.
[6] introduce a content-aware loop filtering scheme based on
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Fig. 2. Proposed CSIE-M architecture. Sensed signal is compressed by CS in cameras. At the decoder, compressed data (measurement) is
recovered by different CS reconstruction algorithms. Reconstructed images are judged by the no-reference quality assessment module Scorenet
and fed to the quality enhancement network MRRN by order of quality scores for producing the enhanced image.

multiple CNN models (CACNN) for improving the performance
of the high efficiency video coding (HEVC) by enhancing the
quality of decoded frames. In [8], the authors introduce attention-
guided denoising convolutional neural network (ADNet). AD-
Net combines dilated convolutions, standard convolutions, and
an attention mechanism for real-noisy image denoising and blind
denoising. In [9], both noise removal and noise generation tasks
are trained in a Bayesian network that learns the joint distribution
of the pairs of the clean and distorted images. The authors
in [10] propose a block artifact removing convolutional neural
networks (BARCNN) for JPEG image enhancement. BARCNN
can be integrated to the receiver side to enhance image quality
without any additional cost on the IoT node ends. Building upon
DnCNN, the authors in [11] propose a theoretically grounded
blind and universal deep learning image denoiser, namely blind
universal image fusion denoiser (BUIFD), for additive Gaussian
noise removal. Recent approaches [12], [13] take advantage of
the temporal correlation between adjacent frames to enhance the
low-quality image by using its neighboring high-quality video
frames. Apart from these works, this work proposes a deep
network that enriches and synthesizes useful information via
a recurrent mechanism performing on extracted features of CS
decoded images.

III. PROPOSED CSIE-M FRAMEWORK

A. Overview of the CSIE-M Framework

As mentioned above, there have been many approaches for
solving the nonlinear inverse problem at CS decoder. Differ-
ent CS reconstruction methods model the solution differently,
resulting in images being recovered with different qualities.
Using different CS reconstructed images provides more rep-
resentations for CNN to exploit and enhance the performance
in recovering the original signals. To make full use of this
property, we propose a deep learning based CSIE-M that learns
a multiple-to-one mapping from the reconstructed images to the
original one (shown in Fig. 2).

First, a sensed signal is encoded by CS in sensors or cameras.
At the decoder, different CS reconstruction algorithms perform
on the compressed data to obtain different reconstructed images.
Let X = {xalg, alg ∈ {L1EQPD, SPGL, OMP, SAMP}} indi-
cate the images reconstructed by the four algorithms L1EQPD,
SPGL, OMP, and SAMP. In CSIE-M, the highest quality re-
constructed image takes the highest responsibility in generating
the enhanced image. The other inputs are considered additional
features generated by designed filters: CS reconstruction al-
gorithms. We propose a no-reference quality ranking module
including a deep learning based no-reference image quality
assessment (IQA) Scorenet for scoring and ranking CS recon-
structed images. Scorenet predicts the quality score zalg of image
xalg as

zalg = fscorenet(xalg). (2)

Images in listX are sorted based on the corresponding quality
scores in listZ. The best quality imagex1, the second best quality
image x2, and the third best quality image x3 are fed to MRRN
denoted as fMRRN, and the enhanced image Ie can be formulated
as

Ie = fMRRN(x1, x2, x3). (3)

B. No-Reference Quality Assessment Module: Scorenet

In reality, the original image does not always exist. There-
fore, full-reference metrics PSNR and structural similarity in-
dex (SSIM) cannot be used for assessing the distorted image
quality. In this work, we propose a deep learning based no-
reference quality assessment module, called Scorenet, to guide
the enhancement module. Our Scorenet simulates full-reference
IQA metrics: estimating the difference between the distorted
image and the reference image. Scorenet (shown in Fig. 3)
includes two main components: the reference generative net G
for generating the pseudo-original image and the quality-score
prediction networkS predicting the quality score of the distorted
image. Given the distorted image x, our objective is to infer the
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Fig. 3. Proposed Scorenet architecture. A distorted image is input to
the reference generative net G for the corresponding pseudo-original
image. Distorted image and the pseudo-original image are then split
into 224 × 224 patches by a stride of 40 before being fed to quality-
score prediction net S. The final predicted score of the input image is
the average score of all patches.

quality score z. In full-reference IQA tasks, quality scores can be
calculated by comparing the distorted image and the reference
image. Scorenet simulates the full-reference IQA by estimating
the pseudo-original image y′ = fθG(x) where fθG(x) indicates
the learnt mapping of reference generative net G. Predicting
score z of an image x can be formulated as

z′ = fscorenet(x) = fθS (x, fθG(x)) (4)

where θG and θS denote the learnt parameters of G and S,
respectively. In general, the reference generative net G has the
same purpose of the quality enhancement module MRRN: to
generate undistorted images. We design the reference gener-
ative net and the quality enhancement module to share some
architectures and the loss function. The difference between the
reference generative net architecture and MRRN architecture is
the number of inputs, where the prior takes one, the latter takes
three.

We define the basic convolution layer in our network
as Conv(k, s) with k kernels size s× s. For the reference
generative net G, the distorted image is first fed into two
convolution groups, and each group is defined as Conv(32, 3) →
ParametricRectifiedLinearUnit(PReLU) →
Conv(32, 3) → PReLU. In reference generative net G, PReLU
activation function follows all the convolution layers except the
final one. We set stride and padding to one during convolution.
The main part of the reference generative net G is the recurrent
dense skip connection block (explained in Section III-C), also
used in MRRN. Feature maps output from the recurrent dense
skip connection block are synthesized in the final Conv(32, 3)
producing an enhanced feature. This enhanced feature is added
onto the distorted image x for a pseudo-original image y′.

In the quality-score prediction net S, rectified linear unit
(ReLU) activation function follows all the convolution layer

Conv(32, 3). Our network, inspired by the VGG16 model [20],
aims to infer the quality score, given the pair of a distorted
image and the corresponding pseudo-original image. Image is
first split into 224× 224 patches with a stride of 40. A pair of 224
× 224 patches from the distorted image x and pseudo-original
image y′ are fed to a group of siamese convolution layer that in-
cludes Conv(32, 3) → ReLU → Conv(32, 3) → ReLU. We use
a siamese convolution on both the distorted and pseudo-original
images to extract comparable feature maps. The rest of the net
then focuses on finding the difference between these feature
maps. Feature maps after siamese convolutional layer will be
pooled by a pooling layer with a window of 2 × 2 to the size
of 112 × 112. Pooled feature maps from two inputs will be
concatenated before feeding into the network. The output from
the final fully connected layer is the predicted mean opinion
score (MOS) score of a patch. The score of the entire image is
the average score of all patches. L2 has been chosen as the loss
function. TrainingS onN training samples becomes minimizing
loss function LS

LS =
1

2N

N∑

i=1

(zi − fθS (xi, y
′
i))

2. (5)

C. Quality Enhancement Component: Multiple-Input
Residual Recurrent Network

Recently, Li et al. [21] introduced an image super-resolution
feedback network (SRFBN) which has achieved outstanding re-
sults in image super-resolution tasks. Inspired by [21], this work
introduces a feedback mechanism for enhancing the quality of
input images. Our network architecture MRRN (Fig. 2) includes
the main branch, two supporting branches, a recurrent dense skip
connections block (RDBlock), and a global skip connection for
residual learning. x1, x2, and x3, respectively, denote the best,
the second best, and the third best quality images by order of the
predicted MOS scores. The original image before CS encoding
is denoted as y. The goal of our quality enhancement module is
to learn the mapping fMRRN between the input images x1, x2,
and x3 and the target enhanced image y′

y′ = fMRRN(x1, x2, x3; Θ). (6)

Input images are fed into a group of Conv(nf , 3) → PReLU →
Conv(nf , 3) → PReLU in each branch. In the quality-score
prediction net S, the first convolution group extracts the same
features from the distorted image and the pseudo-original image.
The rest of the network S aims to find the differences between
these features. MRRN, on the other hand, aims to keep the diver-
sity of extracted features from different input images. Therefore,
convolution layers for each input are preferred over a siamese
convolution layer. We formulate the output feature map f at
convolution layer lth at branch k as

fkl = PReLU(fkl−1 ∗ wk
l + bkl ) (7)

where wk
l and bkl are, respectively, the learnt weight and bias of

convolution layer lth in branch k and fk0 is {xk, k = 1, 2, 3}.
After the first two convolution layers, nf feature maps in each
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branch will be concatenated to a convolution layer f3

f3 = PReLU(cat(f 1
2 , f

2
2 , f

3
2 ) ∗ w3 + b3) (8)

where cat (f1, f2, . . . ,fn) denotes the concatenate operation for
the list of the feature maps f1, f2, . . ., fn on channel dimension.
Later, the output from the fourth convolution layer f4 is input
to the RDBlock. Stride for every convolution layer is set as one.
To keep the size of input image through doing convolution, all
the paddings are set as (s− 1)/2.

Feedback mechanism. We introduce the RDBlock that inte-
grates the two elements: depth and skip connections. In RD-
Block, no information is omitted: The extracted low-level fea-
turesF r

in are reused in each loop and inside the RDBlock, and the
high-level features F r−1

out are also used to fine-tune the low-level
feature input F r

in of RDBlock. RDBlock does recurrence for R
times; each r = {1, 2, . . ., R} corresponds to an output ŷr of
the network. In the loop rth, RDBlock returns an output of F r

out
given a pair of F r

in and F r−1
out

F r
out = RDBlock(F r

in, F
r−1
out ). (9)

F r−1
out at r = 1 is set as F r

in. For r ≥ 2, the output feature maps
F r

out are stored and be concatenated with theF r
in for the next loop

until r = R. In training recurrent neural network, the feedback
mechanism receives the information from previous loop (r −
1)th to further improve the input of the recurrent mechanism.
We denote g0 as the input of the RDBlock

g0 = cat(F r
in, F

r−1
out ). (10)

Our RDBlock is built from nine convolution layers and dense
skip connections. In each loop rth, the input g0 and feature
maps from the lower level layers are concatenated and fed to the
higher level ones. Let gj,j∈[1,9] denote output from convolution
layer jth. In our RDBlock, all layers jth, excluding the final
one, synthesize information from (j − 1) previous layers and
the input g0. The final layer g9 takes only feature maps output
by convolution layer g8. The output of each convolution layer at
layer jth, j < 9, in the RDBlock is defined as

gj = PReLU(cat(g0, g1, . . ., gj−1) ∗ wj + bj). (11)

Convolution layer jth with j ∈ [1, 8] in RDBlock takes an input
of (j + 1)× nf concatenated feature maps and outputs nf
feature maps. In this work, we set the value of nf to 32 for all
convolution layers in RDBlock, and the number of loopR is set
as four. There is no PReLU activation for the final convolution
of MRRN. The enhanced feature from each loop will be added
onto the best quality image input x1 for the output ŷr. There
is only one ground-truth label y0 for R outputs of the network.
In testing, only output from the final loop yR is considered the
result of the network. However, all the outputs ŷr are used to
calculate the loss function

L(Θ) =
1

M.R

M∑

i=1

R∑

r=1

Ir ‖ yi0 − ŷir ‖1 (12)

where M is the number of training samples, and Θ denotes the
learned network parameters. L1 loss is used to optimize the

TABLE I
SROCC AND LCC COMPARISON ON TID2013 DATASET OF OUR SCORENET

COMPARED TO THE WIDELY USED METRIC PSNR AND SSIM

Note: Blue indicates the best result.

network parameters. Ir is the importance of output r in the
outputs list. Following [21], we set Ir to 1 for all the outputs.

IV. EXPERIMENTAL RESULTS AND COMPARISON

A. Experiment Settings

MRRN settings. For training MRRN, we use images with
different sizes from DIV2K [22] for the training set and images
from BSD500 training set [23] for evaluating during training.
Set 5 [24], Set 14 [25], Urban100 [26], and 200 images from
the testing set of BSD500 [23] are used for testing. The inverse
fast Walsh–Hadamard transform and binary Hadamard matrix
are applied for transforming and measuring the input images.
The other CS reconstruction algorithms and other matrices can
replace the reconstruction algorithms and measurement matrix
used in CSIE-M. Images in the training and testing sets are fed to
the Scorenet to get the ranking scores and then fed to the quality
enhancement module MRRN by order of quality scores.

Scorenet settings. For training Scorenet, we mostly focus on
the dataset TID2013 [27], which is commonly used for learning
no-reference IQA tasks. TID2013 contains a total of 3000 im-
ages generated by 24 types of distortions. We randomly divide
reference images into 80% for training and 20% for testing as the
no-reference IQA works have done [28]. Distorted images will
go to the set that its reference image belongs to, ensuring no over-
lap between the training and testing sets. In testing, 20% images
in the testing set are used for evaluating our Scorenet. Like the
other IQA works [28], we evaluate the efficiency of our Scorenet
via Spearman’s rank order correlation coefficient (SROCC) and
the linear correlation coefficient (LCC). The higher SROCC
and LCC represent the higher correlation between the predicted
scores and the human-ranked MOS scores.

Training settings. Our experiments on the CSIE-M frame-
work are conducted on Pytorch 1.0.0 with NVIDIA Tesla V100
GPUs’ support. Adam optimization is used in training all the
networks in CSIE-M. In training MRRN, the learning rate starts
at 0.0001 and is divided by 2 every 300 epochs. The commonly
used PSNR and SSIM metrics are applied for evaluating quality
enhancement results. For these metrics, the higher value indi-
cates a better result. Four models for four SR of 0.125, 0.25, 0.5,
and 0.75 are trained and converged in different training epochs.

B. Ablation Studies

Study on Scorenet. Table I presents the ten-time average
of SROCC and LCC metrics of our Scorenet compared to the
widely used full-reference IQA metrics PSNR and SSIM. Ob-
serve from Table I that our Scorenet performs closer prediction to
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TABLE II
PSNR AND SSIM ×10−2 COMPARISON OF THE ENTIRE PROPOSAL WITH
AND WITHOUT SCORENET IN N-INPUT MRRN AT SAMPLING RATE OF 0.5

the human eyes (presented in MOS score) than the full-reference
IQA metrics PSNR and SSIM. In detail, we obtain SROCC
relative improvements of 28.02% and 21.02% compared to
PSNR and SSIM metrics, respectively. In the LCC metric,
improvements of 30.52% and 21.88% are achieved compared to
PSNR and SSIM metrics. These results show an adequate ability
of Scorenet to guide MRRN on enhancing the reconstructed
image quality.

To verify the effectiveness of the proposed Scorenet, Scorenet
has been replaced by a random-based input ranking. We perform
a ten-time random-based input ranking and average these results
for comparison. Table II shows the quality comparison of using
random-based ranking and Scorenet-based ranking. As observed
from Table II, applying Scorenet can gain up to 1.127 dB and
4.8 × 10−3 on average PSNR and SSIM improvements com-
pared to randomly setting the input images of MRRN when it
comes to three-input MRRN. On the other hand, CSIE-M with
multiple-input images and Scorenet can significantly improve
the reconstructed image quality compared to using one input
image or randomly set the order for multiple input images.

Study on the number of input images. This experiment
validates the effect of the number of input images on the
performance of enhancing CS reconstructed images. We train
our dataset on single-input, two-input, three-input, and four-
input MRRN. The N-input MRRN takes N images ranked by
the no-reference quality ranking module. To fully evaluate the
performance of N-input MRRN, reconstructing time is also
considered besides PSNR and SSIM. Table II shows the PSNR
and SSIM of N -input network, N ∈ {1, 2, 3, 4}. We choose an
SR of 0.5 for validating this experiment. Obtain from Table II, the
three-input MRRN obtains the highest performance compared
to the other N-input MRRNs. From single-input MRRN to
two-input MRRN, average PSNR and SSIM have significantly
increased by 0.19 dB and 0.002, respectively. It is well-known
in learning deep networks that more the representations that
are obtained, the better the results that can be achieved. In
learning to enhance CS reconstructed images, other supporting
images x2 and x3 can be considered the representations obtained
from special filters: CS reconstruction algorithms. Moreover,
the reconstructing time increases the amount of 5 ms from
single-input MRRN to two-input MRRN. That has shown the
advantage of multiple-input MRRN compared to single-input
MRRN: The image quality is significantly improved, and the
running time slightly increases. We report the small differences
in performance of multiple-input CSIE-M networks, and the best

performance, over the test images, belongs to the three-input
MRRN.

Performance on other CS reconstruction algorithms. We
present the CSIE-M performance on different CS reconstruction
algorithms in Table III. In this experiment, four other CS recon-
struction algorithms from convex optimization algorithms that
include two-step iterative shrinkage/thresholding (TwIST) [29]
and group-sparse basis pursuit (GroupBP) [30], and from greedy
algorithms that include compressive sampling matching pur-
suit (CoSaMP) [31] and stagewise orthogonal matching pursuit
(StOMP) [32] have been used. Over the testing sets, quality
difference between images reconstructed by the above algo-
rithms is up to 1.5, 2.07, 3.22, and 2.79 dB PSNR, while the
CS reconstruction algorithms used in the original proposal is up
to 0.04, 0.07, 0.33, and 0.2 dB PSNR at SRs of 0.125, 0.25, 0.5,
and 0.75, respectively.

Table III illustrates the quantitative results (PSNR and SSIM)
comparison among the combinations of CS reconstruction algo-
rithms: the proposed CSIE-M, the combination of the other four
CS reconstruction algorithms (CSIE-M*), the combination of
the greedy algorithms (CSIE-M**), the combination of convex
optimization algorithms (CSIE-M***), the other combinations
of CSIE-M used greedy algorithms and other convex optimiza-
tion algorithms (CSIE-M****), the combination of CSIE-M
used convex optimization algorithms and the other greedy al-
gorithms (CSIE-M*****). It can be seen that CS reconstruction
algorithms used in CSIE-M obtain the highest quality in terms
of PSNR and SSIM over all the SRs. Generally, the other
combinations reduce the quality of the enhanced images up to
an amount of 0.136 dB PSNR and 3.8×10−2 SSIM on average.
Also, note that even though two CS reconstruction algorithms
are shared between some groups, the results are different since
the input images fed to the network are different. For example,
OMP, SAMP, and L1EQPD reconstructed images of foreman
(Set14) have been fed into MRRN as the best quality, the second
best quality, and the third best quality images, respectively.
Meanwhile, the feeding order in CSIE-M** is, respectively,
StOMP, OMP, and SAMP reconstructed images. It concludes
that choosing the top-three CS reconstruction algorithms and
the order of input images of MRRN takes a high responsibility
on generating high-quality images.

Study on numbers of iteration R of the recurrent dense
skip connections block. In this experiment, we find the corre-
lation between R and network performance. The investigation
is conducted on the three-input network under the SR of 0.5.
We separately train five CSIE-M models in which the recurrent
iteration R is set as 1, 2, 3, 4, and 5. In Table IV, a clear trend
is performed: the larger the R is, the better the quality of the
image. At R = 1, the network is considered a traditional neural
network. It obtains the lowest image quality compared to using
the recurrent neural network where R ≥ 2. The reconstructing
time between different R’s is about 4 ms if the number of loops is
increased by one. This experiment will consider the performance
and training time of different R’s. For R = 1, the network takes
45 h to converge. For recurrent network R ≥ 2, it takes about
three days for training the network whose recurrent iteration is
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TABLE III
CSIE-M PERFORMANCE IN TERMS OF PSNR AND SSIM COMPARISON ON DIFFERENCE COMBINATIONS ON CS RECONSTRUCTION ALGORITHMS

Note: Blue indicates the best result and orange indicates the second best result. Reconstruction algorithms for inputs: CSIE-M: L1EQPD, SPGL, OMP, and SAMP. CSIE-M*:
TwIST, StOMP, GroupBP, and CoSaMP. CSIE-M**: SAMP, OMP, CoSaMP, and StOMP. CSIE-M***: GroupBP, SPGL, L1EQPD, and TwIST. CSIE-M****: SAMP,
OMP, TwIST, and GroupBP. CSIE-M*****: CoSaMP, L1EQPD, SPGL, and StOMP.

TABLE IV
STUDY ON NUMBERS OF THE RECURRENT ITERATION R OF THE NETWORK UNDER PSNR AND SSIM ×10−2 AT SAMPLING RATE 0.5

Note: Averages are calculated over the number of images. Blue indicates the best result and orange indicates the second best result.

TABLE V
ΔPSNR AND ΔSSIM×10−2 COMPARISON TO THE STATE OF THE ARTS

Note: Blue indicates the best result and orange indicates the second best result.

2, 3, and 4. ForR = 5, it takes more than three days to converge
on the DIV2K dataset. Observing from Table IV, the network
with R = 5 shows the best performance; however, on the other
hand, the training time increases. The recurrent iteration of four
has average performance while the complexity is in the middle.
The following experiments take a feedback iteration of four for
analysis.

C. Overall Results

Table V shows our results in ΔPSNR and ΔSSIM×10−2

of our proposal CSIE-M compared to the main input x1 since
x1 takes the highest responsibility in generating the enhanced
image. Generally, CSIE-M strongly improves the quality of CS

reconstructed images. In the PSNR evaluation metric, the best
and the lowest improvements belong to the SR of 0.75 and
0.25, respectively. In other words, CSIE-M improves an average
PSNR of 2.01, 1.88, 3.89, and 8.07 dB for the SRs of 0.125,
0.25, 0.5, and 0.75, respectively. Under the SSIM evaluation,
the best and the lowest improvements belong to the SR of 0.125
and 0.25, respectively. Notably, CSIE-M shows outstanding
results on dataset Urban100 which contains aliasing edges and
complex scene structures. We obtain improvements of 4.71 dB
PSNR and 7.04 × 10−2 SSIM on average over all the SRs on
Urban100.

Comparison to the state of the art: For a fair comparison,
we retrain the related work models DnCNN [5], RIDNet [7],
CACNN [6], ADNet [8], and BUIFD [11] on our training set.
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Fig. 4. PSNR and SSIM comparison to the pretrained state of the art in distorted image enhancement under sampling rates of 0.125–0.75.

For the image denoising works [5], [7], [8], [11], we set the CS
reconstructed images as the noisy input image, and the original
image is set as the clean ground truth. For enhancing the decoded
image by HEVC [6], we assign the network to take an input and
a ground truth of reconstructed images and the corresponding
original image, respectively. All the settings are default. No noise
or preprocessing is added to the training data of these related
works. Since MRRN and related works’ inputs are from differ-
ent CS reconstruction algorithms, it is better to compare how
much quality improvements each approach can obtain. In this
comparison experiment, we assume the highest quality image
in PSNR for the related works. While the difference in image
quality of the related works’ input and CSIE-M main input x1

is 0.02 dB PSNR, the proposal significantly improves the image
quality in PSNR and SSIM. In other words, the related works
increase from 1.39 to 6.69 dB, where ours is from 1.88 to 8.07 dB
in average PSNR improvement over the testing images. In terms
of SSIM, our improvement is 4.59 × 10−2 to 6.32 × 10−2 while
that of others are from 1.45 × 10−2 to 5.68 × 10−2 on average.
Our proposal shows significant improvements compared to the
related works in a high SR of 0.75 and complex structures such
as edge and aliasing in the test set Urban100. At an SR of 0.75,
CSIE-M scores an improvement of 8.07 dB and 5.7 × 10−2 in
terms of PSNR and SSIM, where the related works are up to
6.69 dB PSNR and 5.16 × 10−2 SSIM improvement in average.

We also make a comparison to the pretrained related works
(Fig. 4). In this experiment, we compare our models using
training from scratch and using the pretrained model with the
related works [5], [7], [8], [11]. Noisy images from DIV2K
and Flickr2K created by BUIFD [18] at noise levels of 10, 15,
and 20 are first used for training MRRN. After convergence,
the pretrained model is used as initialized network weights for
training on our dataset. Pertaining to applying transfer learning
to MRRN, it has been recorded that image quality improvements
have been increased by averages of 0.13 dB PSNR and 4 × 10−3

SSIM compared to training from scratch. Compared to the re-
lated works, both pretrained and training from scratch CSIE-Ms
obtain 0.3–2.9 dB PSNR and 0.8 × 10−2 to 2.3 × 10−2 SSIM
improvements compared to the related works.

We perform the rate-distortion (RD) curves to visualize the
coding performance of CSIE-M compared to the related works

Fig. 5. RD-curves of CSIE-M and related works on sampling rates
0.125–0.75.

(Fig. 5). In these charts, the horizontal axis and vertical axis
indicate the four SRs and the corresponding PSNR of the images
refined by CNN. We randomly pick images from Set5, BSD500
testing set, and Urban100. It can be seen that at each SR, our
proposal CSIE-M exceeds the related works in the PSNR metric.
Generally, the RD curves of CSIE-M and the related approaches
are distinct. In the complex scene of img_004 and img_041 of
Urban100, there are significant improvements compared to the
related works. Moreover, the improvement of CSIE-M is more
stable than related works. In img_041, BUIFD shows third place
in terms of PSNR at SRs of 0.125 and 0.25, sixth place at SR
0.5, and second place at SR 0.75.

Fig. 6 visualizes the CS enhanced images by CSIE-M and the
related works under SRs of 0.125–0.75. From top to down, every
two rows are images reconstructed from SRs of 0.75–0.125. It
can be observed from Fig. 6 that CSIE-M returns the enhanced
image with sharper edges than the related works. CSIE-M
removes compression artifacts such as ringings and aliasing.
At the low SRs of 0.125 and 0.25, CSIE-M sharpens the local
details such as blurring edges and aliasing. At high SRs of
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Fig. 6. Visualizations of reconstructed images enhanced by DnCNN [5], RIDNet [7], CACNN [6], ADNet [8], BUIFD [11], and CSIE-M (ours) under
the sampling rates of 0.125–0.75, and the ground-truth label.
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0.5 and 0.75, where more information is sent to the decoder,
CSIE-M tends to produce better structures in the enhanced
images.

V. CONCLUSION

Different from the other image compression standards, such
as JPEG and JPEG2000, CS can reconstruct many images with
different qualities. Using this property, this is the first time to
propose a deep learning based CSIE-M. In the decoder, recon-
structed images are scored and ranked by a no-reference quality
ranking module before feeding to the quality enhancement mod-
ule. In the quality enhancement module, low-level and high-level
features extracted from CS reconstructed images were exploited
and enriched by the proposed RDBlock. As a result, 1.88–
8.07 dB PSNR improvements under the SRs of 0.125–0.75 were
obtained. We further experimented on the effectiveness of CSIE-
M with and without the no-reference quality ranking module.
The result showed that 1.127 dB PSNR can be improved when
using the no-reference quality enhancement module. Moreover,
our framework CSIE-M, which utilizes multiple-input images
to enhance the reconstructed image quality, outperformed the
one-to-one learning networks. The proposal can be integrated
into IoT imaging systems to enhance the CS reconstructed
images, giving better visual quality for end users and a promising
approach for designing AIoT systems.
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