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Low-Cost Inertial Measurement Unit Calibration
With Nonlinear Scale Factors
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Abstract—Inertial measurement units (IMUs) have been
widely used to provide accurate location and movement
measurement solutions, along with the advances of mod-
ern manufacturing technologies. The scale factors of ac-
celerometers and gyroscopes are linear when the range of
the sensors are reasonably small, but the factor becomes
nonlinear when the range gets much bigger. Based on this
observation, this article presents a calibration method for
low-cost IMU by effectively deriving the nonlinear scale fac-
tors of the sensors. Two motion patterns of the sensor on
a rigid object are moved to collect data for calibration: One
motion pattern is to upcast and rotate the rigid object, and
another pattern is to place the rigid object on a stable base
in different attitudes. The rotation motion produces cen-
tripetal and Coriolis force, which increases the measure-
ment range of accelerometers. Four cost functions with
different weight factors and two sets of data are utilized to
optimize the IMU parameters. The weight factor comes from
derived formula with input values which are the variance of
the noise of the sampled data. The proposed approach was
validated and evaluated on both synthetic and real-world
data sets, and the experimental results demonstrated the
superiority of the proposed approach in improving the ac-
curacy of IMU for long-range use. In particular, the errors
of acceleration and angular velocity led by our algorithm
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are significantly smaller than those resulted from the exist-
ing approaches using the same testing data sets, demon-
strating a remarkable improvement of 64.12% and 47.90%,
respectively.

Index Terms—Inertial measurement unit (IMU) calibra-
tion, low-cost IMU, nonlinear scale factors.

I. INTRODUCTION

AN INERTIAL measurement unit (IMU) is often used to
detect the acceleration and angular velocity of a moving

object. Such measurements provide important navigation infor-
mation (i.e., position, velocity, attitude, etc.) in aerospace or
other space exploration applications [1]. Thanks to the advances
of microelectrophoretical techniques, inertial sensors can be
manufactured as microelectrophoretical system (MEMS), with
considerably low cost but with increased accuracy, thereby
greatly improving the applicability of IMU in many new areas,
such as body activity classification [2], sports analysis [3], and
indoor localization [4]. However, MEMS inertial sensors still
sometimes suffer from systematic and stochastic errors [5]. Sys-
tematic errors are caused by poorly calibrated system dynamics;
thus, these errors can be eliminated in theory by involving very
careful calibration. In contrast, stochastic errors are regarded as
white noise with zero mean that comes from measurement error;
hence, such errors cannot be eliminated. IMU calibration is,
therefore, a critical process in an effort to reduce the systematic
errors.

Systematic errors are practically handled by a set of adjustable
parameters, including inaccurate scaling, sensor axis misalign-
ments, cross-axis sensitivities, and nonzero biases. These param-
eters are set as vectors or matrices in most of the implementations
of IMU calibration, [6], [7]. With the help of these parameters,
through matrix multiplication operations, the original data of
a sensor with systematic errors can be transformed into more
accurate data without systematic errors. A number of optimiza-
tion algorithms, such as “least square method” [6] and “Kalman
filter” [7], [8], are often employed to optimize these parameters.
Because of the limited size of MEMS sensor devices, the scale
factor of an accelerator is a nonlinear parameter. For instance, if
the value along the x-axis is 1 g, the scale factor is 0.9; however,
if the value is 5 g, the scale factor changes to 1.1. If the value is
−6 g, the scale factor is 1.2. The scale factor of the gyroscope
device is also nonlinear. Therefore, the scale factor must be
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nonlinearly represented in order to better reduce the systematic
errors.

Studies have attempted to nonlinearly model the scale factor
of accelerometers. A method was proposed for the calculation of
a nonlinear parameter for the scale factor of an accelerometer [9];
however, because the data for calibration is collected only in
the gravitational field, the calculated scale factor of each axis is
limited to the range of [–1g, 1g]. Such range-limited parameters,
thus, cannot be used for the tasks with large gravity value. To
overcome this, the work reported in [10] suggested rotating a
sensor around a point to detect centripetal and Euler acceleration
so as to expand the detection range of IMU accelerometer [11]–
[13]. This article used a turntable platform to create the rotation
and then to detect the accelerometer parameters, and the Kalman
filter is used to obtain nonlinear parameters. However, the radius
of rotation is calculated from a linear scale factor, which affects
the accuracy of the scale factor parameters. Therefore, the spec-
ification of the values of a radius vector remains a challenge.

This article proposes a method for obtaining nonlinear scale
factors of a sensor without using high-cost instruments to address
the aforementioned challenge. In this method, the IMU is affixed
to the surface of an object that cannot be easily deformed. To
acquire the raw data of the IMU sensor, two types of actions are
required using the object: 1) rotating the object and then placing
it on a stable base at different attitudes, 2) throwing and rotating
the object along different axes of rotation; then letting the object
to fall freely and catching it by hand. A filter algorithm in this
approach is designed to extract useful information from the raw
data. With these data, all initial parameters of the IMU sensor
are placed into four cost functions. Weighted least squares are
adopted in this work as the cost functions to optimize the param-
eters. Each cost function weight is derived from the inverse of the
variance of the cost function, which is obtained by accumulating
the variance of the noise from the sampled data. The proposed
work has been validated and evaluated by experiments. The main
contributions of this article are summarized as follows.

1) A method is proposed to obtain IMU calibration param-
eters that include the nonlinear scale factor. The method
covers a paradigm of data collection and algorithm for
calculating parameters.

2) The weight factors of the cost functions are derived ac-
cording to the variance of the noise of the sampled data.

The rest of this article is organized as follows. Section II
presents the background of the IMU error model and introduces
the four cost functions for the IMU calibration and global cost
function composed by these four cost functions. Section III
describes the calibration, static detector, Runge–Kutta integra-
tion and cumulative variance, and weight parameters of cost
function. Section IV reports the experimental results of the
proposed algorithm on synthetic and real data. Finally, Section V
concludes this article.

II. IMU ERROR MODEL AND CALIBRATION COST FUNCTION

Biases, scale factor errors, cross-coupling errors, and random
noise exist in accelerometers and gyroscopes. Higher order
errors and angular rate-acceleration cross-sensitivity may also

present [14]. Nonlinearity errors in the scale factor determine
that the scale factor varies with specific force or angular ve-
locity. To compensate these errors, the calibration model of the
accelerometer is defined as follows:

ao + δao = T a ∗ fa(as + δas + ba,Ka). (1)

The input of this equation are the raw data of accelerometers,
which are artificially divided into two parts, true states as =
[asx, a

s
y, a

s
z]

T , and the error states δas = [δasx, δa
s
y, δa

s
z]

T . The
true statesas are the ideal measurement values in sensor frames.
The error states δas are the measurement errors that cannot be
eliminated and are independent from as. Each triad of δas is an
independent white noise with a mean value of zero. The vector,
ba = [bax, b

a
y, b

a
z ]

T , represents the bias compensation. The scale
factor function fa produces a 3 × 1 dimensional vector of 3-
order nonlinear equations for each axis

fa

⎛
⎜⎝
⎡
⎢⎣
ax

ay

az

⎤
⎥⎦ ,Ka

⎞
⎟⎠ =

⎡
⎢⎣
ka11ax + ka12a

2
x + ka13a

3
x

ka21ay + ka22a
2
y + ka23a

3
y

ka31az + ka32a
2
z + ka33a

3
z

⎤
⎥⎦ (2)

where Ka = [ka11, k
a
12, k

a
13,k

a
21, k

a
22, k

a
23,k

a
31, k

a
32, k

a
33] represents

the parameters of fa. The reason for choosing the 3-order
polynomial function is that the nonlinear system requires an
odd function and an even function. The theoretical basis of this
consideration comes from any continuous function that can be
expressed as a combination of an odd function and an even
function. The quadratic function is a simple even function; in
addition, the cubic function is a simple odd function. Therefore,
the scale factor function f is produced as a 3-order polynomial
nonlinear equation.
T a is a 3 × 3 matrix that eliminates the effects of the cross-

coupling errors and converts the data from nonorthogonal to
orthogonal. Conventionally, inspired by [15], for small angles, a
measurement aS in a nonorthogonal frame can be transformed
in the orthogonal body frame aB

aB = TaS ,T =

⎡
⎢⎣

1 −θyz θzy

θxz 1 −θzx

−θxy θyx 1

⎤
⎥⎦ . (3)

In the presented calibration method, we employ the accelerome-
ters orthogonal frame AOF [6], where θxz , θxy, and θyx become
zero. Therefore, in the case of accelerometers, T a becomes

T a =

⎡
⎢⎣

1 −αyz αzy

0 1 −αzx

0 0 1

⎤
⎥⎦ . (4)

The calibrated outputs of interferometers are also divided into
two parts: true states, ao = [aox, a

o
y, a

o
z]

T transformed from as,
and error states, δao = [δaox, δa

o
y, δa

o
z]

T transformed from δas.
The mean of δao is 03×1 and δao cannot be eliminated. The
superscript s denotes the raw data from sensor; the superscript
o represents the data is in calibrated frame; the superscript a
represents the acceleration parameters.



1030 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 18, NO. 2, FEBRUARY 2022

Similarly, the calibration model of the gyroscope is defined
as

ωo + δωo = T g ∗ fg(ωs + δωs + bg +Gg(ao + δao),Kg).
(5)

The inputs are the true state ωs = [ωs
x, ω

s
y, ω

s
z]

T and the error
states δωs = [δωs

x, δω
s
y, δω

s
z]

T in the sensor frames. The gy-
roscope bias compensation is bg = [bgx, b

g
y, b

g
z ]

T . An additional
parameter g-dependent biasGg [14] is defined as

Gg =

⎡
⎢⎣
G1 G2 G3

G4 G5 G6

G7 G8 G9

⎤
⎥⎦ . (6)

The low-cost IMU gyroscopes measure the Coriolis force [14]
to obtain the angular velocity. The specific force ao also affects
the oscillating mass. Therefore, Gg (i.e., the g-dependent bias
matrix) is employed here to remove the effect of specific force.
The scale factor function fg produces 3 × 1 dimensional vector
for each axis

fg

⎛
⎜⎝
⎡
⎢⎣
ωx

ωy

ωz

⎤
⎥⎦ ,Kg

⎞
⎟⎠ =

⎡
⎢⎣
kg11ωx + kg12ω

2
x + kg13ω

3
x

kg21ωy + kg22ω
2
y + kg23ω

3
y

kg31ωz + kg32ω
2
z + kg33ω

3
z

⎤
⎥⎦ (7)

where Kg = [kg11, k
g
12, k

g
13,k

g
21, k

g
22, k

g
23,k

g
31, k

g
32, k

g
33] represents

the parameters of fg; and superscript g represents the gyroscope
parameters.T g guarantees that the gyroscope and accelerometer
measurement refers to the same frame in the AOF case [6].
Therefore, in the gyroscope case, T g becomes

T g =

⎡
⎢⎣

1 −γyz γzy

γxz 1 −γzx

−γxy γyx 1

⎤
⎥⎦ . (8)

The outputs are the true states, ωo = [ωo
x, ω

o
y, ω

o
z ]

T , and error
states, δωo = [δωo

x, δω
o
y, δω

o
z ]

T , in the calibrated frames; in
addition, the coordinate systems of ωo are identical with that
of ao.

A. Cost Function of Accelerometer

The parameters in the matrix of the accelerometers can
be represented as a vector: θa = [αyz, αzy, αzx , bax, b

a
y, b

a
z ,

ka11, k
a
12, k

a
13, k

a
21, k

a
22, k

a
23, k

a
31, k

a
32, k

a
33]. For simplicity, the cal-

ibration model of the accelerometer, as defined in (1), can be
restated as follows:

ao + δao = h(as, δas,θa) = T a ∗ f(as + δas + ba,Ka).
(9)

If the sensor is in a stationary state, the resultant output force
of the corrected accelerometers is 1g. Thus, the cost function of
the accelerometer calibration can be defined as follows:

La(θ
a) =

M∑
k=1

(‖h(as
k,θ

a)‖2 − ‖g‖2)2 (10)

where the vectors as
k measured in the sensor frame are the

means of acceleration data in a temporal window tw; and the
acceleration data is collected from the sensor in different (M )
attitudes.

B. Cost Function of Gyroscopes

The unknown parameters for gyroscope calibration can be
represented as: θg = [γyz , γzy , γxz, γzx, γxy, γyx, bgx, bgy , bgz ,
kg11, k

g
12, kg13, k

g
21, k

g
22, k

g
23, k

g
31, k

g
32, kg33, G1, G2, G3, G4, G5, G6,

G7, G8, G9]. Two cost functions are employed for the gyroscope
calibration in two different states. When the sensor is in a
stationary state, the ideal output of the gyroscope is the vector
03×1 which can be defined as

L1
g(θ

g) =
M∑
k=1

‖ωs
k + bg +Ggao

k‖2 (11)

where ωs
k are the means of the gyroscope data in a temporal

window tw, and ωs
k and as

k are measured simultaneously. ao
k is

calibrated from as
k by following (9).

When the sensor is moving, the gyroscopes record changes in
the attitudes as the gravity vector changes along with the attitude
of the sensor. This means the accelerometers detect different
gravity vectors at different attitudes in the moving state, which
can be concisely represented as

ao
k + δao

k = (Rk−1,k + δRk−1,k)(a
o
k−1 + δao

k−1) (12)

where the initial gravity vector is ao
k−1, and δao

k−1 is the mea-
surement errors ofao

k−1;ao
k is the gravity vector after the change

of attitude, and δao
k is the measurement errors of ao

k; Rk−1,k

represents the rotation matrix, indicating the transformation
from the k − 1 attitude to the k attitude, and δRk−1,k is the
measurement errors of Rk−1,k that come from the error in an-
gular velocity measurement. Rotation matrixRk−1,k is derived
from the quaternion q = [q0, q1, q2, q3]

T using the following:

R =

⎡
⎢⎣

1 − 2q2
2 − 2q2

3 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q1q2 + q0q3) 1 − 2q2
1 − 2q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) 1 − 2q2
1 − 2q2

2

⎤
⎥⎦ .

(13)
The quaternion q represents the attitude. The updating of quater-
nion qn is achieved from the accumulation of the sequence
of n angular velocity ωo

i . Therefore, the cost function for the
gyroscope calibration in moving state is defended as

L2
g(θ

g) =

M∑
k=2

‖ao
k −Rk−1,ka

o
k−1‖2. (14)

C. Cost Function of Weightless IMU

As the three axes of the accelerometer are capsuled in a 3 ×
3 × 1 mm3 cubic space, for simplicity, it is presumed that the
sensitive axes of the accelerometer triad meet at one point in
this article. The error led by this presumption is neglectable in
comparison to the errors that arise from nonlinearity [16]. IMU
is always attached to a rigid ball when utilized.

When the rigid ball rotates, the acceleration as detected in
the sensor frame can be defined as [14]

as = ab + ωb × ωb × rbs + 2ωb × ṙbs + ω̇b × rbs + r̈bs
(15)

where ab denotes the inertial acceleration of the rigid body; rbs
is the radius from the center of gravity to the origin of sensor
frame; ṙbs and r̈bs are the first and second derivatives of rbs,
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(a) (b)

Fig. 1. (a) Centrifugal force in IMU. Red arrow represents centripetal
force, which is in a plane with angular velocity ω and radius r simultane-
ously vertical to angular velocity ω. (b) Euler acceleration in IMU. Green
point represents Euler acceleration, which is an arrow vertical to angular
velocity ω and radius r and point to paper inside.

respectively; ωb is the vector of angular velocity in the rigid
body frame; ω̇b is the first derivative ofωb. The termωb × ωb ×
rbs represents a centripetal acceleration. The term 2ωb × ṙbs is
known as Coriolis acceleration [14] and the term ω̇b × rbs is an
Euler acceleration (or tangential acceleration).

The term ab is the combined force of all the forces received
by the rigid body. ab includes gravity and air resistance of the
rigid body during vertical movement. Gravity accelerates the
rigid ball downward. If ignoring the air resistance, the vertical
force felt by the sensor is 03×1. Since the air resistance in the
direction of motion is related to the velocity of the rigid body,
it is necessary to reduce the impact of air resistance. If the rigid
body is thrown at the highest point, the vertical speed is 0, and
the air resistance is also 0. Controlling the height of the tossed
rigid ball will effectively reduce the vertical movement speed of
the rigid ball. The radius of the rigid ball is 0.1 m. If the height of
the rigid body tossed is 0.1 m, the maximum speed is 1.40 m/s,
and the maximum air resistance is 0.012 N.

As the rigid body rbs is a constant, ṙbs and r̈bs are 03×1. The
Coriolis acceleration 2ωb × ṙbs is 03×1. When the rigid body
is at the highest point after tossed, the sensor can only detect
centripetal acceleration and Euler acceleration

as = ωs × ωs × rbs + ω̇s × rbs. (16)

1) Centripetal Acceleration: The centrifugal force of IMU is
illustrated in Fig. 1(a), where ω represents the angular velocity;
P is the center of gravity of the rigid body; O is the origin
of sensor frame. The radius r is the vector from O to P . The
centripetal acceleration fC(ω, r) is calculated as

fC(ω, r) =

⎡
⎢⎣

(ω2
y + ω2

z)rx − ωxωyry − ωxωzrz

−ωxωyrx + (ω2
x + ω2

z)ry − ωyωzrz

−ωxωzrx − ωyωzry + (ω2
x + ω2

y)rz

⎤
⎥⎦ (17)

where ω = [ωx, ωy, ωz]
T and r = [rx, ry, rz]

T .
2) Euler Acceleration: If a subject throws a rigid body to

rotate in the air, the resultant force from the hand does not
completely act on the rigid center of gravity. The resultant
force causes the rigid body’s rotation axis to precess around a
certain axis. The change in the rotation axis produces the Euler
acceleration. Due to the conservation of energy, the combined
speed of rotation is constant so that the combined speed will be
used in the determination of weightlessness of rigid bodies.

The Euler acceleration is illustrated in Fig. 1(b), where ω̇ is
the first derivative of ω. Note that the directions of ω and ω̇

are not in parallel in most cases; then the Euler acceleration is
calculated as follows:

fE(ω̇, r) =

⎡
⎢⎣
ω̇zry − ω̇yrz

ω̇xrz − ω̇zrx

ω̇yrx − ω̇xry

⎤
⎥⎦ (18)

where ω̇ = [ω̇x, ω̇y, ω̇z]
T . Using (17) and (18) to rewrite (16),

the cost function of the IMU in weightless situation is then
defined as follows:

Lweightless(θ
a,θg, r) =

N∑
j=1

‖ao
j − fC(ω

o
j , r)− fE(ω̇

o
j , r)‖2

(19)
where N is the number of frames of data in the weightless state
detected by the static detector operator; ω̇ in the term fE(ω̇, r)
can be calculated using

ω̇j =
ωj−2

12Δt
− 2ωj−1

3Δt
+

2ωj+1

3Δt
− ωj+2

12Δt
+O(Δt4) (20)

whereωj−2,ωj−1,ωj ,ωj+1,ωj+2 are samples of the gyroscope
in interval Δt.

D. Global Cost Function

The weights of the cost functions are used to constitute a
global cost function, which can be defined as

L(θa,θg, r) =

M∑
k=1

C1(‖h(as
k,θ

a)‖2 − ‖g‖2)2

+

M∑
k=1

C2‖ωs
k + bg +Ggao

k‖2

+

M∑
k=2

C3‖ao
k −Rk−1,ka

o
k−1‖2

+

N∑
j=1

C4‖ao
j − fC(ω

o
j , r)− fE(ω̇

o
j , r)‖2

(21)

where the weight coefficients C1,C2,C3, and C4 enable the
cost functions to have the same contribution to the global cost
function during parameter optimization. The weight coefficients
are the reciprocals of the variances of the cost functions, which
will be detailed in Section III-C. The following section intro-
duces the procedure of the calibration algorithm.

III. CALIBRATION PROCEDURE

The proposed calibration protocol is shown in Fig. 2, which
consists of a data collection part and a parameter calculation part.
In the data collection stage, two types of raw IMU data (RD1
and RD2) must be collected from different sensor motions. For
RD1, the sensor is set at M different poses. Each pose is stably
placed for at least tw s. In addition, the time of the first pose
placed is set to Tinit s, longer than tw. The transition from a pose
to another pose is manually controlled. Thus, data of the sensor
in stationary and movement can be then acquired.
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Fig. 2. Diagram of calibration protocol.

The parameter calculation is performed in two steps: Step
1 initializes the parameters θa, θg , and r. Through filtering,
the raw data RD1 is divided into stationary data and movement
data; the raw data RD2 is for the presumption of weightless IMU
(denoted as “weightless data”). The stationary data are fed into
the cost functions as specified in (10) and (11), with T̂ a, K̂a, b̂a,
b̂g , and Ĝg being the output. The movement data and T̂ a, K̂a,
b̂a, b̂g , Ĝg are substituted into the cost function defined in (14),
leading to the pre-estimated parameters T̂ g and K̂g . Note that,
for simplicity, only the first columns k11, k21, k31 of K̂a and K̂g

are calculated; the other items are set as 0. Then, the weightless
data and T̂ a, K̂a, b̂a, b̂g, ĜgT̂ g, K̂g are used to calculate the
radius r̂ from the center of the sensor to the center of the rigid
object. Step 2 optimize the initialized parameters set in Step 1 in
an effort to optimize the global cost function as defined in (21).

The Levenberg–Marquardt (LM) algorithm is employed here
to minimize these cost functions as demonstrated by (10), (11),
(14), (19), and (21). After several iterations, if the difference
between the cost function of the current parameters and the cost
function of the previous step parameters is less than a preset
threshold, then the parameters have reached the optimal values.
Note that the LM algorithm is merely used as an optimization
tool, which solves the optimization problem of 45 parameters
in the cost function. It is difficult to simultaneously optimize
45 parameters for general problems. If the initial values are not
selected properly, it is easy to fall into local optimums, which
makes the calibration failed. The calibration algorithm proposed
in this work might fall into the local optimum only in setting the
initial value.

For the convergence issue, first of all, IMU has an absolute
calibration parameter, in the case of excluding random walks.
Second, the absolute calibration parameter has the minimum
value under each subcost functions (10), (11), (14), (19), and
global cost function (21). In the calculation of the initial value,
if the initial parameters θ̂a, θ̂g, and r̂a satisfy the minimum
subcost function value, the estimation is close to the absolute
calibration parameter. Therefore, substituting these initial values
into the global cost function can obtain a closer estimation of
the absolute calibration parameters.

A. Static Detector

As discussed earlier, the streams of raw data RD1 and RD2 are
divided into three forms: stationary, movement, and weightless

Fig. 3. Example of static detector for RD2. The red line represents the
static detector.

data. In the static state, although a bias is existing, the resultant
velocity of rotation does not change. Conversely, the gyroscope’s
value will change during the movement. In the weightless state,
the resultant velocity of rotation is constant.

The variance-based static detector operator as reported in the
work of [17] is used here as a shear. From this, the variance of
the gyroscopes, [ωt

x;ω
t
y;ω

t
z] is defined as

ς(t) = vartw(
√

(ωt
x)

2 + (ωt
y)

2 + (ωt
z)

2) (22)

where vartw() is an operator to compute the variance in a time
window, tw s, and t represents a time point which is the center
of the time window.

A threshold is defined as the multiplication of the square of the
variance magnitude ςinit from (22) and n for all data captured in
the initialization period of Tinit. The length of Tinit is calculated
by Allan variance [18]. To classify data, a simple check is built
to determine whether the value of ς(t) is less or greater than the
thresholdnςinit. The result of the static detector is separated into
M segments of stationary data and M–1 segments of movement
data. Fig. 3 shows the segment of three-axis angular velocity in
RD2. The static detector is shown by a red line, which indicates
that the sensor is in a weightless state.

B. Attitude Integration and Cumulative Variance

The attitude of the sensor is expressed in the form of a
quaternion q. The differential of q describes the quaternion
kinematics, which can be expressed as [19]

⎡
⎢⎢⎢⎣
qk+1

0

qk+1
1

qk+1
2

qk+1
3

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

cos θ
2 − θx

θ sin θ
2 − θy

θ sin θ
2 − θz

θ sin θ
2

θx
θ sin θ

2 cos θ
2

θz
θ sin θ

2 − θy
θ sin θ

2
θy
θ sin θ

2 − θz
θ sin θ

2 cos θ
2

θx
θ sin θ

2
θz
θ sin θ

2
θy
θ sin θ

2 − θx
θ sin θ

2 cos θ
2

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
qk0
qk1
qk2
qk3

⎤
⎥⎥⎥⎦

(23)
where [θx, θy, θz] = [ωx, ωy, ωz]Δt is three-axes angular
in unit time from three-axes angular velocity, and θ =√
θx

2 + θy
2 + θz

2.
In the presence of noise δω in angular velocity measurement,

the attitude update of IMU is similar to Gaussian process. Then
calculate the variance of the accumulated error, assuming that
the variance of the cumulative altitude error of the kth time
is D[qk + δqk] = [σ2

qk0
, σ2

qk1
, σ2

qk2
, σ2

qk2
]T . The derivation of the
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cumulative altitude error of the k + 1th time is as follows:

D

⎡
⎢⎢⎢⎣
qk+1

0 + δqk+1
0

qk+1
1 + δqk+1

1

qk+1
2 + δqk+1

2

qk+1
3 + δqk+1

3

⎤
⎥⎥⎥⎦

≈D⎡
⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

1 − θx+δθx
2 − θy+δθy

2 − θz+δθz
2

θx+δθx
2 1 θz+δθz

2 − θy+δθy
2

θy+δθy
2 − θz+δθz

2 1 θx+δθx
2

θz+δθz
2

θy+δθy
2 − θx+δθx

2 1

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣
qk0 + δqk0
qk1 + δqk1
qk2 + δqk2
qk3 + δqk3

⎤
⎥⎥⎥⎦

⎤
⎥⎥⎥⎦

≈

⎡
⎢⎢⎢⎢⎣

σ2
qk0

+ Δt2

4 ((qk1 )
2σ2

ωx
+ (qk2 )

2σ2
ωy

+ (qk3 )
2σ2

ωz
)

σ2
qk1

+ Δt2

4 ((qk0 )
2σ2

ωx
+ (qk2 )

2σ2
ωz

+ (qk3 )
2σ2

ωy
)

σ2
qk2

+ Δt2

4 ((qk0 )
2σ2

ωy
+ (qk1 )

2σ2
ωz

+ (qk3 )
2σ2

ωx
)

σ2
qk3

+ Δt2

4 ((qk0 )
2σ2

ωz
+ (qk1 )

2σ2
ωy

+ (qk2 )
2σ2

ωx
)

+Δt2

4 (ω2
xσ

2
qk1

+ ω2
yσ

2
qk2

+ ω2
zσ

2
qk3
)

+Δt2

4 (ω2
xσ

2
qk0

+ ω2
zσ

2
qk2

+ ω2
yσ

2
qk3
)

+Δt2

4 (ω2
yσ

2
qk0

+ ω2
zσ

2
qk1

+ ω2
xσ

2
qk3
)

+Δt2

4 (ω2
zσ

2
qk0

+ ω2
yσ

2
qk1

+ ω2
xσ

2
qk2
)

⎤
⎥⎥⎥⎥⎦ . (24)

C. Weight Parameters of Cost Function

The weight coefficients C1, C2, C3, and C4 are derived
from the reciprocals of the variances of the cost functions.
When the calibration parameters are accurate, the variance
of the cost functions is originated from the white noise of
the measurement data. The variances [σ2

as
x
, σ2

as
y
, σ2

as
z
]T and

[σ2
ωs

x
, σ2

ω2
y
, σ2

ωs
z
]T in the sensor frame are obtained by the

statistics of RD1 at the beginning Tinit interval. The vari-
ance σ2

ao of δao in calibrated frame is [σ2
ao
x
, σ2

ao
x
, σ2

ao
z
]T =

[ka11
2σ2

as
x
, ka21

2σ2
as
y
, ka31

2σ2
as
z
]T , whilst the variance σ2

ωo of δωo is

[σ2
ωo

x
, σ2

ωo
x
, σ2

ωo
z
]T =[kg11

2
σ2
ωs

x
, kg21

2
σ2
ωs

y
, kg31

2
σ2
ωs

z
]T . The parame-

ters such as ka11 and kg11 are obtained from the pre-estimation

of θ̂
a

and θ̂
g
. The effects of T a and T g are ignored when

calculating the calibrated frame variances. For the convenience
of calculation and expression, the three components of σ2

ao

are replaced by their mean values σ̄2
ao =

σ2
ao
x
+σ2

ao
y
+σ2

ao
z

3 , σ̄2
ωs =

σ2
ωs
x
+σ2

ωs
y
+σ2

ωs
z

3 , and σ̄2
ωo =

σ2
ωo
x
+σ2

ωo
y
+σ2

ωo
z

3 , respectively.
The variance of the cost function as specified in (10) is

D[‖h(as, δas,θa)‖2 − ‖g‖2]

= 2(σ4
ao
x
+ σ4

ao
y
+ σ4

ao
z
) + 4[aox

2σ2
ao
x
+ aoy

2σ2
ao
y
+ aoz

2σ2
ao
z
].

(25)

The variance of the cost function (11) is

D[ωs
k + δωs

k + bg +Gg(ao
k + δao

k)]

=

⎡
⎢⎣
σ2
ωs

x
+G1

2σ2
ao
x
+G2

2σ2
ao
y
+G3

2σ2
ao
z

σ2
ωs

y
+G4

2σ2
ao
x
+G5

2σ2
ao
y
+G6

2σ2
ao
z

σ2
ωs

z
+G7

2σ2
ao
x
+G8

2σ2
ao
y
+G9

2σ2
ao
z

⎤
⎥⎦ . (26)

The variance of the cost function (14) can be expressed as

D[ao
k + δao

k − (Rk−1,k + δRk−1,k)(a
o
k−1 + δao

k−1)]

=

⎡
⎢⎣
g2(4σ2

qm + 8σ4
qm) + 2σ̄2

ao

g2(4σ2
qm + 8σ4

qm) + 2σ̄2
ao

g2(4σ2
qm + 8σ4

qm) + 2σ̄2
ao

⎤
⎥⎦ . (27)

In this equation, the cumulative error σ2
qm is led by the angular

velocity error. For the convenience of calculation, the variance of
each component ofqm is set as a common value, and the variance
iteration formula of a single component can be expressed as⎧⎪⎪⎨

⎪⎪⎩
σ2
q0 = 0

σ2
q1 ≈ Δt2

4 σ̄2
ωo

σ2
qi+1 ≈ (1 + 3Δt2

4 ω̄2)σ2
qi +

Δt2

4 σ̄2
ωo

(28)

where ω̄ is the average of the absolute value of the angular
velocity in the movement data.

The variance of the cost function (19) is

D[ao + δao − fC(ω
o + δωo, r)− fE(ω̇

o + δω̇o, r)]

=

⎡
⎣ω

2
maxσ̄

2
ωo [(2r̂x − r̂y)

2 + (2r̂x − r̂z)
2 + (r̂y + r̂z)

2]
ω2

maxσ̄
2
ωo [(2r̂y − r̂x)

2 + (2r̂y − r̂z)
2 + (r̂x + r̂z)

2]
ω2

maxσ̄
2
ωo [(2r̂z − r̂x)

2 + (2r̂z − r̂y)
2 + (r̂x + r̂y)

2]

+σ̄4
ωo(4r̂2

x + r̂2
y + r̂2

z) +
65σ̄2

ω(r̂2
y+r̂2

z)

72Δt2 + σ̄2
ao

+σ̄4
ωo(4r̂2

y + r̂2
x + r̂2

z) +
65σ̄2

ω(r̂2
x+r̂2

z)

72Δt2 + σ̄2
ao

+σ̄4
ωo(4r̂2

z + r̂2
x + r̂2

y) +
65σ̄2

ω(r̂2
x+r̂2

y)

72Δt2 + σ̄2
ao

⎤
⎥⎥⎥⎦ (29)

whereωmax is obtained by counting the weightless data, which is
the maximum absolute value of the angular velocity of the three
axes; r̂x, r̂y , and r̂z are the three components of the pre-estimated
r̂.

From (25) to (29), to summarize, the weight coefficients can
be obtained by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C1 =
1

6σ̄4
ao + 4g2σ̄2

ao

C2 =
1

σ̄2
ωs + 3(Ĝmax)2σ̄2

ao

C3 =
1

2σ̄2
ao + g2(4σ2

qm + 8σ4
qm))

C4 =
1

max(29)

(30)

where Ĝmax is the largest absolute number in the matrix Ĝ.

IV. EXPERIMENTS

The proposed algorithm was validated and evaluated on both
synthetic data and real-world data. In particular, the synthetic
data was generated to simulate the sensors under different
motions with artificial parameters. The parameters led by the
proposed algorithm were then compared with the artificial pa-
rameters, and the variance of difference values between the two
sets of parameters was presented and analyzed. The proposed
algorithm has also been applied to real-world benchmark data set
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for a comparative study in reference to the results obtained from
the existing algorithms using the same IMU data. The compar-
ative study was conducted using two measurement approaches,
including the measurement of the accuracy of centripetal accel-
eration for accelerometer and the measurement of the accuracy
of the attitude updating for the gyroscopes. In the third part of
the experiments, the calculated parameters are applied to the
real application scene, and a state detector is designed to detect
whether the rigid body with an IMU device is in a falling state.

A. Experiment on Synthetic Data

The synthetic data contains two sets of data streams: RD1 is
the sensor static-movement data and RD2 is the sensor data on
rigid body in free fall with spinning. At first, noise-free data in
the two sets is generated. Second, distort parameters of T ,K,
and b are added to transform the generated data. Third, the
Gaussian noise ν with 0 mean and σa for accelerometers and
σg for gyroscopes is added. The following equations complete
the conversion process for the accelerometers and gyroscopes:

as
syn = f−1

a ((T a)−1ao
syn,K

a)− ba + νa (31)

ωs
syn = f−1

g ((T g)−1ωo
syn,K

g)− bg −Gga
o + νg. (32)

In RD1 generation, n1 = 40 different accelerometer vectors are
randomly created under the condition that all norms of these
vectors are ‖g‖. Expand each of accelerometer vectors with
[0,0,0] gyroscope vector to be a sequence data in time t1 = 3 s
as stationary data. Calculate the angular velocity by dividing
the angle between accelerometer vectors ao

i−1,syn and ao
i,syn

in t2 = 2 s. Meanwhile, the accelerometer vector area gradual
linear transformation process from ao

i−1,syn to ao
i,syn in t2 = 2 s.

The time varying data accelerometer vector and angular velocity
is the movement data. The stationary data and movement data
are alternately connected.

In RD2 generation,n2 = 100 set of accelerometer vectors and
angular velocity ωo under weightlessness in t = 1 s is obtained
by (33). This equation describes two combination movements:
rotation and coning motion.⎡

⎢⎣
ωo
x,syn

ωo
y,syn

ωo
z,syn

⎤
⎥⎦ =

R(qrand)√
ω2

set + 802

⎡
⎢⎣
sin(ψ(t))ωset

cos(ψ(t))ωset

80

⎤
⎥⎦ (33)

where R(qrand) is a rotation matrix, which is obtained by
substituting a randomly generated quaternion qrand in (13).
ωset = 2π[ 1

4 rand() + 3
4 ]Vspin is used to randomly generate an-

gular velocity vectors, where rand() is a function to obtain a
random number with a mean of 0 and a variance of 1. Vspin is
the velocity of the rigid body when it is rotating in the air; Vspin

is set to 7.ψ(t)) = 0.8t+ 2πrand() is a function that generates
a sequence of rotation axes. The angular acceleration ω̇syn is
derived from (33). The ao

syn is obtained by substituting ωsyn and
ω̇syn into (17) and (18). The sampling frequency of the entire
synthetic data is fixed to 100 Hz.

Twenty sets of RD1 and RD2 are randomly generated using
the above method so as to obtain 40 sets of parameters for the
proposed algorithm. Then, the means and variances of each
parameters are calculated for the linear model and nonlinear

TABLE I
COMPARE PARAMETERS

model. The experimental results are listed in Table I; for each
calibration parameter, the three subtables in the upper part are:
set values, calculated mean of the linear model, and calculated
means of the nonlinear model; the two subtables of the lower
part are: standard deviations of the linear model and standard
deviations of the nonlinear model.

The calculation results show that under the conditions of the
data generated by the nonlinear model, the calculation results of
the nonlinear parameters are closer to the true values than those
of the linear model; in addition, the variances of our method are
also smaller than those of the linear model.

B. Experiment on Real-World Data

So far, IMU calibration does not have a consensus public data
set. In this article, we try to use the most simple tools without
the dependency of the accuracy of the tools to obtain more
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Fig. 4. Hollow steel ball and IMU sensor. The IMU sensor is fixed on
the hollow steel ball.

accurate calibration parameters through calibrations. However,
we can find only one method, i.e., the work of Tedaldi et al.
[6], which does not depend on the accuracy of tools. Moreover,
the work of Tedaldi et al. work has the most citations on the
IMU calibration during recent years. Other methods must rely
on precise equipment, such as [20] and [21]. Several methods
must use instruments designed by themselves [22], [23]. It is
extremely difficult for us to reproduce these devices. Hence, our
method is only compared with the work of Tedaldi et al. work
in real-world data.

In this experiment, the IMU sensor ICM42605 from In-
vensense was used for calibration. The full scale range of
ICM42605 is ±2000 dps (degrees per second) for gyroscope
and ±16 g for accelerometer. The parameters are set as follows:
for RD1, M = 20, Tinit = 60 s, Tw = 2 s, and n = 6; for RD2,
N = 100, tw = 0.05, and n = 1000. A hollow steel ball was
used as the rigid body in the experiment. The IMU sensor was
mounted on the surface of the ball, as shown in Fig. 4. To collect
RD1, the ball was manually switched to a different posture for
a period tw. To collect RD2, the ball was thrown vertically and
rotated, the rotation axis is random, and 200 sets of data were
collected under such conditions.

The accuracy of the algorithm was accessed by an indirect
method to avoid the use of a professional measuring instrument.
The test data RD3 was collected by throwing the hollow steel ball
vertically, catching the ball and placing it on the stable base; this
was repeated for ten times and then ten data sets were collected.
The accuracy of the acceleration calibration was determined by
calculating the difference between the acceleration measurement
and the centripetal force and the Euler force. The accuracy
of the gyroscope calibration was accessed by examining the
angle between the gravity calculated by the attitude and the true
gravity. Note that the more accurate the gyroscope is calibrated,
the smaller the angle becomes.

The acquisition of RD1 is also applicable to the calibration
algorithm of Tedaldi D [6], which is a linear model. In this
experiment, a set of calibration parameters is calculated by the
algorithm Tedaldi D. Four combinations of the parameters, in-
cludingLinear,Quadratic,Cube, andAll are calculated using
the proposed algorithm. Here, Linear indicates that the scale
factors of the calibration model is linear and the g-dependent
bias Gg is ignored; and in the calculation process, only RD1 is

TABLE II
CALCULATED PARAMETERS

used and C4 in the global cost function is set to 0; Quadratic
and Cube, respectively, indicate that the scale factors of the
calibration model are quadratic and cube, and the g-dependent
biasGg is ignored. All indicates that all parameters mentioned
in this article are calculated. The calculated parameters that
are obtained by Tedaldi D and the proposed algorithms are
summarized in Table II.

The accuracies of the acceleration calibration from different
sets of parameters as listed in Table II are summarized in
Table III. In particular, the RD3 is extracted by the static detector
operator, and the error is calculated by

L(θa,θg, r) =

S∑
j=1

‖ao
j − fC(ω

o
j , r)− fE(ω̇

o
j , r)‖2. (34)

Note that a smaller error indicates better accuracy of the cali-
bration parameters. S represents the number of frames of RD3
in a weightless state.

The accuracies of the gyroscopes calibration from different
sets of parameters are listed in Table IV. A performance indicator
is designed as the cos value of the angle between the two vectors
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TABLE III
PARAMETERS USED TO COMPARE ACCELEROMETERS

TABLE IV
PARAMETERS USED TO COMPARE GYROSCOPES

ao
j andRj−1,ja

o
j−1

L(θa,θg) =
S+1∑
j=2

ao
j
TRj−1,ja

o
j−1

‖ao
j‖‖ao

j−1‖
. (35)

The closer the cos value to 1, the more accurate the calibration
parameters are. The parameter r was not used in the models in
Tedaldi D and Linear in the process of calculating the perfor-
mance indicator, but r was used when calculating All.

The ranking of the precisions from low to high of different
parameters are summarized in Tables III and IV, including
Tedaldi D, Linear, Quadratic, Cube, and All. In particular,
Linear and Tedaldi D shared identical data and model param-
eters, but Linear has achieved relatively better performances
for the global cost function for the overall optimization of the
parameters. Quadratic has shown a better performance than
Linear for the accelerator and angular velocity. Compared with
Linear and Quadratic, Cube had an essential improvement in the
acceleration and angular velocity. All has one more parameter,
g-dependent biasGg , than Cube. The average reduction percent-
age of the accelerometers error is 64.12% in Table III, obtained
by:

∑
(1 −L(θaall,θ

g
all, rall)/L(θ

a
Tedaldi,θ

g
Tedaldi, rall))/N . Also,

the average reduction percentage of the gyroscopes error
is 47.90% in Table IV, obtained by:

∑
(1 − arccos(L(θaall,

θgall))/ arccos(L(θ
a
Tedaldi,θ

g
Tedaldi)))/N .

By observing Tables III and IV, the g-dependent biasGg does
not substantially improve the accuracy of the IMU calibration,
compared to Cube. The reason is that the accuracy of the MEMS
sensor used in this experiment cannot accurately calculate the
true g-dependent bias Gg . To summarize, the nonlinear scale
factor has led to better performance over a larger range of
the sensor, and the global cost function further improved the
accuracy.

TABLE V
PARAMETERS OF IMU IN IPHONE

The models and algorithms presented in this article outper-
formed those referenced approaches utilized in the experiments.
In the calibration model, the scale factor of the sensor conforms
to a linear property in a small range, that is, a fixed value, but the
scale factor varies if a larger range of the sensor is used, which
led to the necessity of a nonlinear scale factor. This is achieved
by globally optimizing the cost function such that all parameters
are optimized in the same time. In addition, the weights of the
subcost functions also ensure that the calibrated parameters are
achieved for an optimal solution.

C. Experiment on Application Scene

In the experiment, a state detector is designed to detect
whether a rigid body (a mobile phone) with an IMU device is in
the falling state. The rigid body in the experiment is chosen as
“iphone 8,” and the “Phyposx App” in the iphone is utilized to
collect the IMU data.

Using the algorithm mentioned above, we calculate the pa-
rameters of the IMU. In the collection of RD1, the iphone was
placed in different attitudes for 20 times. In the collection of
RD2, the iphone was thrown up by different rotation axes and
different rotation speeds. The iphone was thrown for 12 times
in the experiment. Note that a soft bed surface was chosen for
the throwing place to avoid breaking the iphone.

The parameters present in Table V are the processed results by
our IMU calibration method. Our method successfully generated
the parameters for T a, T g , Ka, Kg , Ba,Bg , Gg , and r. The
position of the iphone’s gravity center in the IMU coordinate
system is [−14.174,−20.610, 1.9555] mm.

Fig. 5 illustrates the position of IMU in the phone’s coordinate
system. The origin is the gravity center, assuming that the gravity
center of the iphone is in the device’s physical center.

The IMU data and parameters calculated by our algorithm are
substituted into (19) to obtain the loss. A threshold was set at
2.5 m/s2. If the loss is less than the threshold, the rigid body is
judged as in a falling state (if an object is static, the result of (19)
should be 9.8 m/s2).

Fig. 6 illustrates the falling state detector results of the IMU
data, which was collected when the iphone was thrown up for
other eight times. The detector’s data is shown on the top and
IMU raw data is on the bottom of the figure. At the top of Fig. 6,
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Fig. 5. Position of IMU in the phone’s coordinate system. On the left
side, the pink point is the calculated IMU position. On the right side, the
position pointed by the red arrow is the real position of the IMU in an
iphone 8.

Fig. 6. Falling state detector and the raw data of IMU. The upper part
is the falling state detector. The middle and bottom parts are the raw
data of accelerometers and gyroscopes, respectively.

the red line is the acceleration of the resultant force that removes
centripetal force and Euler force. The blue line is the acceleration
that comes from normalizing the raw data of accelerometers. The
black line is a falling state detector. If the line is on the value 100,
this situation indicates that the iphone is in a falling state. This
figure illustrates that our method can successfully detect almost
all the falling states. However, in Fig. 6, the second and fifth
falling states were not detected. The reason is that the original
angular velocity data of the Y-axis of the gyroscope went beyond
the measurement range of the iphone, i.e., the detector device has
not obtained the real angular velocity data; thus, the judgment
fails.

V. CONCLUSION

This article presented a method for the calculation of the
parameters of IMUs when they are used in a large range, in which
the scale factors are nonlinear. By placing the IMU in a rigid
object in free fall and rotation states, a large amount of data from
the accelerometer and gyroscopes can be obtained, which pro-
vides the necessary data for calculating nonlinear scale factors

of the IMU. In the calibration process, the global cost function
was used, and each of the subcost functions was weighted to
ensure the global optimum. The experiments on the synthesis
and real-world data sets showed that the proposed model and
algorithm are feasible; the performance of this method is better
than that of Tedaldi’s method: The errors of acceleration and
angular velocity led by our algorithm are significantly smaller
than those resulted from the existing approaches, demonstrating
a remarkable improvement of 64.12% and 47.90%, respectively.
In the application scene, a falling state detector with the proposed
IMU calibration was designed and demonstrated our approach’s
effectiveness.

There is still room for improving this work. For example, the
calibrated IMU can be integrated with a camera to create a brush
writing motion capturing system. Thus, a data set including the
handwriting trajectories of the Chinese characters or English
letter can be conveniently obtained.
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