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Intelligent Small Object Detection for Digital Twin
in Smart Manufacturing With Industrial
Cyber-Physical Systems
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Abstracti—Recently, along with several technological ad-
vancements in cyber-physical systems, the revolution of In-
dustry 4.0 has brought in an emerging concept named dig-
ital twin (DT), which shows its potential to break the barrier
between the physical and cyber space in smart manufactur-
ing. However, it is still difficult to analyze and estimate the
real-time structural and environmental parameters in terms
of their dynamic changes in digital twinning, especially
when facing detection tasks of multiple small objects from
a large-scale scene with complex contexts in modern man-
ufacturing environments. In this article, we focus on a small
object detection model for DT, aiming to realize the dynamic
synchronization between a physical manufacturing system
and its virtual representation. Three significant elements,
including equipment, product, and operator, are considered
as the basic environmental parameters to represent and
estimate the dynamic characteristics and real-time changes
in building a generic DT system of smart manufacturing
workshop. A hybrid deep neural network model, based on
the integration of MobileNetv2, YOLOv4, and Openpose, is
constructed to identify the real-time status from physical
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manufacturing environment to virtual space. A learning al-
gorithm is then developed to realize the efficient multitype
small object detection based on the feature integration and
fusion from both shallow and deep layers, in order to facili-
tate the modeling, monitoring, and optimizing of the whole
manufacturing process in the DT system. Experiments and
evaluations conducted in three different use cases demon-
strate the effectiveness and usefulness of our proposed
method, which can achieve a higher detection accuracy for
DT in smart manufacturing.

Index Terms—Deep neural network, digital twin, indus-
trial cyber-physical systems (CPS), object detection, pos-
ture recognition.

[. INTRODUCTION

OWADAYS, the rapid developments of cyber-physical
N systems (CPS) and Internet of Things (I0oT) in Industry 4.0
[1] have enabled an emerging virtual representation technology,
called digital twin (DT), which acts as a bridge to create high
connection, integration, and cooperation between the physical
and virtual world. Coupled with Al techniques and big data
analytics, DT becomes a significant way to realize the rapid
analysis and real-time decision-making not only for smart man-
ufacturing [2], [3], but also in modern industrial automation and
control systems [4]. More importantly, as the digitalization of
machinery and production systems becomes the basis of smart
manufacturing, DT is viewed as the biggest technology trend and
most promising technological direction for realizing real-time
monitoring, diagnosis, prognosis, and maintenance in Industry
4.0 [5].

DT equipped with CPS is characterized as a strong interlink-
age between the real world and its digital representation for smart
manufacturing [6]. In this paradigm, DT is defined as a digital
simulation model that can collect data from the physical space,
and trigger actions on the physical equipment simultaneously.
In 2003, Michael Grieves first presented the innovative concept
of DT on product life-cycle management. Recently, with the
development of industrial IoT and Al technologies, DT becomes
a new idea of tangible assets in industrial CPS, which results
in a typical simulation process by making use of quantifiable
model, soft simulation, and production data. Differing from
traditional notions of digital modeling and simulation, DT has
been identified as not only an efficient way for virtual duplication
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of a physical system, but also a key innovation in real-time
visualization. Researches have shown evidences [7] that com-
bining DT and CPS in a computational collaboration system
could efficiently assist people to better understand the manu-
facturing process, and add resilience during an evidence-based
decision-making process. It is said that DT is playing an in-
creasingly significant role for the next generation of digitalized
industry, and will become the building blocks of future smart
factories. However, it is still a challenging issue when dealing
with the interoperability, dependability, sustainability, reliabil-
ity, security, and predictability for the cyber-physical integration
in smart manufacturing [8], [9].

Previous research works usually built DT models using prod-
uct, equipment, or service data. However, in addition to sensors,
interfaces, controllers, and communications, work staffs and
their behaviors should be viewed as significant elements to
simulate and evaluate the virtual environment in smart manufac-
turing. In some high-risk workshops with complex mechanical
and electrical production, the high density of personnel may
cause safety hazards, and thus calls for strict requirements on the
distribution of personnel in different areas. Human workers need
to be recognized as an important kind of available manufacturing
resources, and even an essential factor in terms of the real-time
structural and environmental parameters of a physical asset [10],
when building a DT model to predict, estimate, and analyze the
dynamic changes for optimizations of the whole manufacturing
process.

Accordingly, when human factors are involved in the virtual
models to monitor and evaluate dynamic changes of machining
conditions and manufacturing resources, it becomes a typical
problem of small object detection because the image of workers
is relatively small in some large workshops. Due to the differ-
ent postures, expressions, and illuminations, a robust model is
necessary to distinguish the background and staff accurately and
quickly. Particularly, DT based on workers’ postures and behav-
iors may focus on the macro and micro levels, respectively. At
the macro level, staffs can be viewed as the particle of movement,
which ignores the details such as the body, and focuses more on
people with the workshop location, distribution, and activity
track information. At the micro level, the body movements,
including personal postures and behavioral characteristics in
relative fixed position such as production stations, are taken into
account. Therefore, an efficient fusion mechanism needs to be
designed to seamlessly integrate the collected multidimensional
sensing data for dynamic evaluations during digital twinning. A
smart strategy is necessary to enhance the DT model with deep
learning schemes, to learn more precise features during sim-
ulations [11], which may achieve better real-time monitoring,
controlling, optimization, and rapid prediction with high-level
control functions and data exchange modules.

To improve the smart manufacturing based on a better inte-
gration of cyber and physical space, we aim to realize a DT-
enabled dynamic synchronization for physical objects during
manufacturing processes under large-scale scenes. This task
requires the real-time recognition for multiple objects with
different positions and sizes and then virtually represents them
in DT. Conventional machine learning models can hardly tackle

this situation, especially for small objects from a large-scale
scene with complex contexts. Therefore, a small object detection
model for DT (SOD-DT), aiming at capturing the precise envi-
ronmental features and real-time changes from physical space
to virtual space, is proposed to overcome the shortcomings of
conventional approaches. Specifically, a hybrid deep neural net-
work is constructed to accurately identify the real-time status
of three important targets, namely equipment, product, and
operator, as the basic environmental parameters in building a
generic DT system of smart manufacturing workshop, which can
efficiently support the surveillance of equipment positioning,
personnel distribution, and product trajectory based on digital
twinning. The main contribution of this article is concluded as
follows.

1) A framework of intelligent small object detection for
DT is designed, in which the equipment, product, and
operator are considered as three basic environmental
parameters in DT to analyze and estimate the dynamic
characteristics and real-time changes from physical man-
ufacturing space to virtual space.

2) A hybrid neural network model is constructed based on
a combination of advantages of MobileNetv2, YOLOV4,
and Openpose, in which the depthwise separable convo-
lutions of MobileNetv2 are integrated into YOLOv4 (this
part is later referred to as a newly structured network
called YOLOv4-M2) and replaces the original CSPDark-
net53, to improve the feature extraction and further benefit
the static small object detections (e.g., equipment, prod-
uct), while the Openpose is improved for long-distance
human posture recognition based on newly generated
feature maps from the integrated YOLOv4-M2, instead
of the original VGG-19.

3) Anefficient learning algorithm is developed for multitype
small object detection based on the feature integration and
fusion from both shallow and deep layers, which can be
used to model, monitor, and optimize the whole smart
manufacturing process in DT system.

The rest of this article is organized as follows. Section II
presents a review of the latest literatures related to this article.
In Section II1, a framework of intelligent small object detection
is introduced. The implementation of the proposed model and
the object detection algorithm are discussed in Section IV. In
Section V, we address the experiment and evaluation results
using a real-world dataset. Finally, Section VI concludes this
article.

Il. RELATED WORK

In this section, several related issues, including DT technology
in CPS, and machine learning used in object detections, are
reviewed, respectively.

A. DT Technology in CPS

DT is becoming an important technology when mapping
physical space to cyber space in DT-enhanced human—machine
interface, so as to optimize the decision-making ability of
production management or smart manufacturing [12]. The CPS
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interface can be used for data insertion and data visualization
during digital twinning in a data-driven way [13]. Based on DT-
enhanced simulations in CPS, environment factors and human
behaviors can be effectively regulated during the manufacturing
process. In addition, due to the high self-awareness in CPS,
human abilities and behaviors have become key factors when
modeling the intelligent system based on DT technology. For
example, Zhou et al. [14] presented a human—cyber-physical
system by integrating human behaviors in intelligent
manufacturing, which was considered as a new generation of
digital manufacturing with three main factors: human, network,
and physical system. IoT sensors and cameras were used to
design an IoT-based DT for energy-efficient CPS [15], which
could improve the work efficiency based on human knowledge
management, transfer, and application in smart manufacturing.
Generally, one important step in DT is to create a virtual model
to truly reproduce the geometry, attributes, behaviors, and rules
of physical entities. Dai et al. [16] proposed a DT network which
combined the DT with industrial IoT network for the modeling
of network topology. They developed a deep reinforcement
learning mechanism to deal with the computation offloading
and resource allocation problem. Schluse et al. [17] focused
on experimental DTs, which were used in virtual testbeds for
simulations of hybrid application scenarios. Cai et al. [18] dis-
cussed the development of virtual machine tools based on DTs.
They aimed to utilize the manufacturing data and sensory data
to model the machine-specific features, which might benefit the
diagnosis and prognosis in cyber-physical manufacturing. Leng
et al. [19] utilized the DT technology to handle the security issue
in industrial IoT environments. They built a blockchain-based
manufacturing framework, in which a DT model was employed
to synchronize the physical and cyber systems. However, re-
cent researches have few considerations on characteristics of
multiple objects in terms of their real-time changes during the
whole manufacturing process, especially when dealing with the
multisource, heterogeneity, large-scale, and high-noise scenes
of DT in industrial CPS. Data collected from multiple sensors
may need to be efficiently fused, to improve the robustness and
reliability, and enhance the model expansibility for DT.

B. Machine Learning for Object Detection

The emergence of machine learning technology, such as CNN,
has greatly improved the performance of object detection. For
example, Wu et al. [20] introduced a so-called funnel-structured
cascade detection framework, in which distributed classifiers
were built to extract shape-indexed features for multiview face
detection. Jang et al. [21] built a task-specific architecture to
handle the face-related classification based on single-shot learn-
ing analysis. They used the fully convolutional neural network
with two parallel branches to facilitate detections of multiple
objects with different sizes. Building deeper and more efficient
learning models is a primary trend to solve detection tasks of
multiple objects. Ren et al. [22] integrated a region proposal
network with Faster R-CNN, to improve the detection of high-
quality region based on full-image convolutional features. Zhu
et al. [23] proposed a multiple classification method based on
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unsupervised learning. They designed an integrated framework,
which could realize the object localization, class discovery, and
detector training simultaneously. Tang et al. [24] considered
visual and semantic similarities into a weakly supervised learn-
ing process, which could improve the detection performance
based on the highlight of category-specific differences. Shen
et al. [25] introduced a two-stage leaning model based on the
fully convolutional neural network for multitask learning. They
used two scale-associated side outputs in each stage of neural
network, to improve the efficiency in extracting skeleton pixels
based on multiple scales. Han er al. [26] presented a specific
Bayesian-based framework for geospatial object detection, in
which a weakly supervised learning model was constructed
to identify the high-level features from spatial and structural
information. Sangineto et al. [27] focused on the design of a
training protocol based on self-paced learning. They consid-
ered the reliability between different subsets of data during the
training process, and used the fully-supervised Faster R-CNN
architecture to build the deep network based classifier for weakly
supervised object detection.

I1l. FRAMEWORK OF SMALL OBJECT DETECTION FOR DT

In this section, we first introduce two important issues on
real-time target recognition in a DT scenario for smart manu-
facturing workshop. The basic framework for intelligent small
object detection in digital twinning is then discussed with two
core network modules.

A. Problem Scenario

DT builds a complex system with mutual mapping, timely
interaction, and efficient collaboration among human, ma-
chine, and environment between physical and virtual space to
achieve an on-demand response. It needs to precisely describe
the proximity of digital models and physical entities. Thus,
three important elements, the equipment, product, and operator,
are considered as the basic environmental parameters in terms
of their dynamic characteristics and real-time changes, to feed
back to the virtual space through various sensors, in order to
model, evaluate, and optimize the whole manufacturing process
during digital twinning. As shown in Fig. 1, the equipment,
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workpieces, and operators are included in the digital twinning
of a smart workshop floor assembly line. Video or picture
sequences captured through surveillance cameras are utilized to
provide high-fidelity information to quickly detect and recognize
these targets for DT. Specifically, the following two issues on
real-time target recognition in practical applications are focused
on, to enhance the accuracy of simulation and prediction results
in DT system.

1) Multitype Small Object Detection: In practical manufac-
turing scenarios, due to the different spatial dimensions
of the site, cameras are usually installed in the farther and
higher parts of the workshop, to capture the structural
and environmental information of all the targets for DT.
Objects in the image are about 10-30 pixels, which can
be viewed as a typical detection problem of small targets
with multiple types.

2) Long-Distance Human Posture Recognition: As one sig-
nificant dynamic environmental parameter in digital twin-
ning, the operator’s behavior is highly autonomous and
uncertain. Due to the different angles and distances of
cameras, operators’ whole-body features are usually un-
available. Traditional algorithms based on key points of
human skeleton are prone to be difficult for existing
virtual entity models to objectively depict the physical
objects.

Summarily, when the target pixel is too small and the feature
information is sparse, most of the current convolution opera-
tions of deep learning are performed in regions with low target
expectations, which often leads to a large waste of computational
resources and low execution efficiency. This kind of images
of small targets has few features after multilayer convolution
processing, which becomes extremely difficult to meet the needs
of detection and regression, especially when handling changes
in ambient light and smoke from a complex background envi-
ronment. Therefore, it is necessary to improve the robustness of
the detection algorithm, and realize the mapping and interaction
between physical and digital space within an acceptable time in
digital twinning.

B. Framework of Small Object Detection
in Digital Twinning

Specifically, the proposed SOD-DT first integrates the depth-
wise separable convolution network of MobileNetv2 into
YOLOV4 and replaces the original CSPDarknet53, which can
provide the rich semantic information for the prediction layer.
The fusion of shallow and deep features is then used to increase
the accuracy of small target detection. In particular, the human
region is extracted as the input for the Openpose-based posture
recognition, which may better detect the operators’ actions by
removing the background interference.

As the basic framework shown in Fig. 2, generally, we mainly
focus on two specific modules to realize the intelligent small
object detection in digital twinning. First, the depthwise separa-
ble convolutions of MobileNetv2 are integrated into YOLOv4,
as a newly structured network called YOLOv4-M2, for feature
extraction in SOD-DT, which is also used for static small object
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Framework of intelligent small object detection in digital

detections (e.g., equipment, product) in digital twinning. Oper-
ations based on depthwise separable convolutions are improved
using smaller convolutions to reduce the number of operations
and parameters. Furthermore, the generated feature map of
YOLOV4 is extended based on the integration of different feature
samplings, to facilitate the prediction of small objects. Second,
parts of features extracted from YOLOv4-M2 are further fused
as input of the Openpose network, which replaces the original
VGG-19, so as to save the computing resource and alleviate the
gradient disappearance and performance degradation in too deep
convolutions. Thus, the improved Openpose network based on
feature fusion from shallow and deep layers in the integrated
YOLOV4-M2 can reduce the unnecessary background noises,
and focus on learning precise human skeleton features to en-
hance the detection accuracy in long-distance human posture
recognition for DT.

IV. MECHANISM OF INTELLIGENT OBJECT DETECTION
IN DIGITAL TWINING

In this section, we discuss the detailed mechanism and imple-
mentation of the proposed SOD-DT, including the hybrid neural
network architecture, feature fusion based on the integrated
YOLOv4-M2, long-distance human posture recognition, and
multitype object detection algorithm.

A. Integration of YOLOv4 and MobileNetv2 for Feature
Fusion and Extraction

YOLOV4 for object detection is mainly divided into two parts:
feature extraction and target prediction. The feature extraction
is mainly conducted by the CSPDarknet53 network, in which
features represented in each convolution layer are different. The
shallow layer contains a large amount of detailed information,
such as shapes, textures, and boundaries, which is easily lost after
too many convolution and pooling operations. Contrastively, the
feature map generated in the deep layer is in smaller size but
contains rich semantic information. To improve the accuracy
and real-time performance for small object detection, we inte-
grate the MobileNetv2 and YOLOv4 as a new YOLOv4-M2
network in the following way: i) using the depthwise separable
convolution network of MobileNetv?2 to replace CSPDarknet53
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INPUT AND OUTPUT OF CONVOLUTIONS
Layer Input Convolution Output
HXWXt
L HXW XD 1x1
yrexp % D
Lyrgep HXW XtxD K X K, stride = S ?X?Xt
X D
H W w
L —X—Xt*D 1x1 —X—XN
Ypro st s7s

in YOLOV4 for feature extraction, which can efficiently reduce
the computational cost; and ii) selecting convolution layers,
Conv3-3, Conv4-3, and Conv7, into a new layer with the same
channel and pixel, which realizes feature fusion of detail features
from the shallow layer and semantic features from the deep layer.

In detail, the depthwise separable convolution network for
feature extraction, which is employed to reduce network param-
eters and convolution operations, is designed with three basic
layers. The first layer is the expansion layer Lyreg,. A 1 X
1 convolution is used to expand the number of channels in
the input data. The second layer is the depthwise convolution
layer Lyrgep. A 3 X 3 convolution without pooling layer is
used to filter the inputs from the first layer. The third layer is
the projection layer Lyrpr,. A 1 x 1 convolution is used to
project the high-dimensional data into the low-dimensional one.
In addition, the linear activation function is used to alleviate the
information loss or even corruption instead of the original ReLU
in the first and second layers.

Table I shows the detailed design of input and output in each
layer. The input size in the first layer is H x W, and the number
of input channels is D, while the number of output channels in
the third layer is N. The size of the convolution kernel in the
second layer is K , and the stride is .S. The expansion factor
ist (0 < t < 1). For example, when we set K = 3, and
D = N, the time complexity of this convolution operation can
be eight or nine times less than that of the standard convolution.

The detailed structure of the newly designed YOLOv4-M2
is shown in Fig. 3, in which the MobileNetv2 part is used for
feature extraction, while the YOLOv4 part is used for object
detection. Specifically, the resolution of input data is resized to
320 x 320, and transformed toa 10 x 10 x 1024 feature map, as
the input of YOLOvV4 to enhance the further static small target
predictions.

Before conducting feature fusion based on the mentioned
three convolution layers, Conv3-3, which is located in the shal-
low layer of YOLOvV4-M2, needs to reduce the size, but expand
the perceptual field of feature map with key information. The
dilated convolution is employed for downsampling during this
process, which can be described as follows.

1
Sin = 7 [Sout + 2 —7(k—1)]+1 (1

where « is the value of fill pixels, r is the dilation rate, [ is the
step length, k is the size of convolution kernel. Sy, is the size
of the output feature map, and Sy, is the size of the input feature
map.

Furthermore, feature channels in Conv4-3 and Conv7 need
to be compressed, respectively, so as to reduce the number
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TABLE Il < - - -
RESULTS OF FEATURE MAP EUSION Algorithm 1: Multitype Object Detection.
' Input: Frame set P = {p; |i = 1,2, ..., n}
Sizes of feature map Number of channels Output: Prediction result set Q _ {Qz}

Conv3-3  Downsampling: 40x 40 ~20x 20 256 Initialize convolution kernel & = 3, Q = 0;
Conv4-3 Keep as: 20x 20 512 - 256 for each frame pi € P do:
Conv7 Upsampling: 10x 10 -20x 20 1024 — 256

of parameters and further improve the real-time detection per-
formance. Given an input feature map, the size of which is
H x W x D, the detailed compression operation can be
described as follows:

| H W
Cd:HxW Z ZEdhw

h=1lw=1

@)

where C indicates the output of the compression operation in
the dth channel, E ., is the pixel in the Ath row and wth column
of the dth channel.

After the compression, the activation function used in each
channel can be improved and described as follows:

@ = o (M (L (M(z2)))) (3)

where 2 is the output after the compression, M (x), M,(x) are
the functions of fully connected layers, £ indicates the linear
function, and o indicates the Sigmoid function.

Based on these, the operation of weight reassignment for each
channel can be described as follows:

“

where weony 18 the original weight, Fi,,. indicates the feature
map after the compression, and W (x) indicates the operation of
channel-wise multiplication.

Table II shows the results of feature map fusion of Conv3-3,
Conv4-3, and Conv7 in terms of their sizes and numbers of
channels. It is noted that the upsampling in Conv7 is conducted
based on the standard deconvolution in YOLOv4. Following
this way, the extracted feature maps of Conv3-3, Conv4-3, and
Conv7 can be seamlessly stitched together as one new feature
map, which will be further utilized to enhance the dynamic
small target prediction based on long-distance human posture
recognition.

w (wC0I1V7 Fconv) = Weonv * Feonv

B. Long-Distance Human Posture Recognition

The Openpose can be viewed as a parallel convolutional
network model, in which one convolutional network works
for locating the key points of the human body, while another
one is responsible for connecting the candidate key points to
form a limb [28]. In addition, the VGG-19 network is used in
the original Openpose to extract the features, then feeds them
into the parallel convolutional networks, which usually suffer
gradient disappearance and performance degradation issues as
the number of convolutions increases. Accordingly, as discussed
above, a new feature map f, based on the fusion of Conv3-3,
Conv4-3, and Conv7 from YOLOv4-M2, is utilized as the ex-
tracted features to input into Openpose instead of the original
VGG-19, which may efficiently enhance the nonlinear fitting

Resize p; to the regular pixel 320 x 320;

Extract the feature f; using Lyrexp, Lyrdep, and
Lyrpeo with k;

6 for j = 1to 3 do:

7 Send f; to YOLOV4 to generate Predict Pre;;;
8: qi = q; U Pre;j;;
9.

0

1

1
2
3: Initialize predict result ¢; = () for p;;
4:
5

end for

Transform Conv3-3 to size 20 x 20 by Eq. (1);

Compress channels in Conv4-3 to size 256 by Eq.

(2);

12: Transform Conv7 to size 20 x 20 by Eq. (1) and
compress its channels to size 256 by Eq. (2);

13: Reactivate each channel by Eq. (3);

14: Reassign weights for each channel by Eq. (4);

15: Generate the new feature fc, as input for
Openpose;

16: Use Openpose to generate Predict Pre;q;

170 qi=q; UPrey;

18: Q = QUg;
19: end for
20: return (;

ability of the network, and further improve the accuracy in
long-distance recognition.

As shown in Fig. 3, the whole learning scheme in Openpose
can be viewed as a “two-branch and multistage CNN”. At
Stage 1, Branch 1 produces a set of confidence maps S based
on the input f;ew, Which is used to describe the detected human
joints, while Branch 2 produces a set of so-called part affinity
fields L, which is used to assemble the connected joints to pre-
dict the human skeleton. In the following each Stage ¢, the input
will consist of three parts such as the original few, and S;_1,
L,_ from the previous stage. Predictions from the two branches,
S; and L;, along with fyy, Will be associated together for
the next stage and finally refine the human posture recognition.
During this process, frew, integrating the advantages from the
shallow and deep layers, can be further refined to emphasize the
skeleton features from the complex large-scale scenes, so as to
benefit the long-distance posture recognition in digital twinning.

C. Multitype Object Detection Algorithm

The detailed algorithm for multitype object detection is illus-
trated in Algorithm 1.

According to Fig. 3, to realize the multitype small object de-
tection in digital twinning, we first resize the resolution of input
data to 320 x 320 and feed it into MobileNetv2 for feature ex-
traction. Given an input frame set P = {p; |i = 1, 2, ..., n},
for each p;, a 10 x 10 feature map can be generated after the
depthwise separable convolutions, which is further employed
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for Predict Pre;;. We then use the upsampling of the 10 x 10
feature map to generate a 20 x 20 feature map, and integrate
it with a 20 x 20 feature map from the previous convolution,
which is further employed for Predict Pre;,. Likewise, we use
the upsampling of the 20 x 20 feature map to generate a 30 x
30 feature map, and integrate it with a 30 x 30 feature map from
the previous convolution, which is further employed for Predict
Pre;;. Accordingly, the comprehensive results integrated based
on Predict Pre;;, Pre;;, and Pre;; using YOLOv4 are utilized
for detections of static small objects (e.g., equipment and prod-
uct) from large-scale scenes in digital twinning. Meanwhile, as
aresult of feature fusion from the shallow and deep layers in the
integrated YOLOvV4-M2, a newly generated feature map frew,
based on the integration of convolution layers, Conv3-3, Conv4-
3, and Conv7, is used as input for the parallel convolutional
network in Openpose. Predict Pre;4 is utilized to improve the
long-distance human posture recognition, which can enhance
the detection of dynamic small objects (e.g., operators) from
complex manufacturing environments in digital twinning.

V. EXPERIMENT AND ANALYSIS

In this section, we evaluate the performance of the proposed
model and method for object detection in digital twinning based
on three different use cases, comparing with several baseline
learning algorithms.

A. Dataset

A real surveillance video dataset was utilized to conduct the
evaluation experiment, in which each kind of object samples
has nearly 5000 images. We divided the labeled data into 3000
images for training and 2000 images for testing. The size of
training images is 320 x 320 x 3. All experiments have been
run on a server of Intel Xeon E2288@3.4GHz CPU, 64GB
RAM, NVidia GeForce GTX 1080 Ti GPU, Linux, Python 3.7,
TensorFlow r2.0.

Three well-known machine learning algorithms, namely,
Faster R-CNN, YOLOV3, and SSD, are employed as the base-
line methods for performance comparisons. Four widely used
metrics, including Precision, Recall, F1, and Accuracy, are
employed and calculated for evaluations, according to whether
the actual objects have been correctly recognized or not.

B. Learning Performance Comparison

Fig. 4 shows the training efficiency of our proposed SOD-DT
comparing with the three baseline methods. X-axis indicates the
number of iterations, and Y-axis indicates the values of error
rate.

We iterated 400 times to demonstrate the training process.
Basically, the error rates of all the four methods decline sharply
in the first 50 iterations, and become relatively stable after 150
iterations. Benefitting from the integrated neural network for
feature learning and fusion, the proposed SOD-DT obviously
outperforms the other three methods, and its error rate fluctuates
smoothly after 100 iterations.

—— Faster R-CNN
3.5 1 — YOLO V3
— ssSD
3.0 1 =—_GO0D-DT-
2.5 1
2
@
T 2.0
o
£
w
1.5
1.0 A
0.5 1
0 50 100 150 200 250 300 350 400
Iterations
Fig. 4. Training process comparisons of different methods.

We then demonstrate the performances of four methods in
three different cases, considering the distance between the cam-
era and target in real manufacturing environments, i.e., Distance:
8—10 m, Distance: 15-20 m, and Distance: 8—10 m in a blurry
environment. The results based on precision—recall curves are
shown in Fig. 5.

Fig. 5(a)-(c) shows the performances of four methods in
distance between 8 and 10 m, 15 and 20 m, and 8 and10 m
in a blurry environment, respectively. It is noted that the camera
distance in Fig. 5(c) is as the same as Fig. 5(a), but the light
intensity is reduced by 30% to blur the overall environment in
the experiment. In general, our SOD-DT performs better than
the other three methods in all three cases. Performances of all the
four methods basically achieve the same level when the detection
distance is relatively close to the object as shown in Fig. 5(a).
According to Fig. 5(b) and (c), although the performances of all
the four methods degrade in both cases of 15-20 m and 8—-10 m
blurry environment, due to the longer camera distance, lower
resolution image, and even worse manufacturing environment,
our SOD-DT degrades slightly and obviously outperforms the
other three methods. This result indicates that our method for
small object detection is more suitable to tackle the complex
scene in DT system, because these scenes may usually result in
a certain loss of information of target’s features, and drop down
the detection performances of conventional learning models.

C. Object Detection Efficiency for DT

We go further to evaluate the practical applicability of the
proposed method in some real manufacturing scenes. Table III
shows the comparison results in terms of mAP (mean average
precision), accuracy, F1, frames per second (FPS), and average
detection time (ADT). Both the cases of detection distance in
8—10 m and 15-20 m are applied in the comparison evaluation.

According to the results in 8—10 m, the proposed SOD-DT
takes an ADT of 13.9 ms with mAP at 78.2% and accuracy at
91.8%, while Faster R-CNN, YOLOV3, and SSD take 33.6, 24.6,
and 36.4 ms, respectively, but result in relatively lower mAP and
accuracy. Additionally, when the distance increases to 15-20 m,
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Fig. 5. Comparison performance based on precision—-recall curves. (a) Distance: 8—10 m. (b) Distance: 15-20 m. (c) Distance: 8—10 m in a blurry

environment.

TABLE IlI
OBJECT DETECTION PERFORMANCE COMPARISONS BASED ON DIFFERENT METRICS

Distance between Mean Average Precision Real-Time Average Detection
target and camera Methods (mAP)g(%) Accuracy (%) | F1 (%) Performance (FPS) Time %ADT) (ms)

8-10m Faster R-CNN 64.3 74.4 68.3 32 33.6

SSD 67.7 78.2 71.2 31 36.4

YOLOV3 71.1 83.4 73.5 44 24.6

SOD-DT 78.2 91.8 78.9 69 13.9

15-20m Faster R-CNN 53.7 67.4 62.1 18 58.2

SSD 522 71.9 64.8 21 54.1

YOLOv3 53.8 72.1 64.7 24 53.8

SOD-DT 67.1 84.2 72.3 47 29.5

although the ADT of the SOD-DT increases to 29.5 ms, and
mAP and accuracy decrease to 67.1% and 84.2%, respectively,
the performance is even better than the other three methods in
both detection efficiency and accuracy.

Furthermore, we investigate the performance on real-time
status detection of the four methods based on FPS. As shown in
Table III, when the detected target is around 8—10 m away from
the camera, the proposed SOD-DT improves FPS by 115.6%
compared with Faster R-CNN, 56.8% compared with YOLOV3,
and 122.6% compared with SSD. When the distance increases
to 15-20 m, the results of FPS for all the methods decrease
due to the fact that targets become smaller in a relatively more
complex environment. It is observed that FPS of Faster R-CNN
decreases by 43.8%, YOLOV3 decreases by 45.5%, SSD de-
creases by 32.3%, and only our SOD-DT decreases by 31.9%.
These results indicate that our proposed method can efficiently
handle a real-time detection scenario for DT.

Finally, Fig. 6 demonstrates the small object detection eval-
uation based on the three use cases in a real DT manufactur-
ing environment, in which the objects are mainly composed
of equipment devices, products, and human operators. Scores
demonstrated in Fig. 6 indicate that fusion of multilevel fea-
tures based on our hybrid deep neural network can effectively
improve the capability of small object detection in complex DT
applications.

VI. CONCLUSION

In this article, to facilitate the modeling and cooperation be-
tween a physical manufacturing system and its virtual represen-
tation, we investigated the small object detection problem in the
complex and large-scale scene of smart manufacturing for DT.

A framework of SOD-DT was presented to identify, analyze,
and estimate the dynamic changes and real-time status of three
important elements: equipment, product, and operator in physi-
cal manufacturing space, which could be employed to describe
the basic environmental parameters in building a generic DT
system of smart manufacturing workshop. A hybrid deep learn-
ing model was constructed based on a seamless integration of
three neural networks, including MobileNetv2, YOLOv4, and
Openpose. Specifically, the depthwise separable convolutions
of MobileNetv2 were integrated into YOLOvV4 to improve the
feature extraction instead of the original CSPDarknet53, which
was further utilized to enhance the static small object detections
(e.g., equipment and product). The feature map generated from
the integrated YOLOv4-M2, instead of the original VGG-19
of Openpose, was then used as input for the parallel convolu-
tional network in Openpose, to enhance the long-distance human
posture recognition. Finally, an efficient learning algorithm was
developed to realize the multitype small object detection based
on the integration and fusion of different feature samplings from
shallow and deep layers, which could benefit the modeling,
monitoring, and optimizing of the whole manufacturing process
in DT system. Experiments and evaluations conducted in three
different use cases demonstrated that our proposed SOD-DT was
more suitable to cope with the complex situation in large-scale
scenes for DT system, compared with three baseline learning
algorithms.

In the future, we will further investigate more deep learning
schemes to enhance the detection accuracy of multiple objects.
More evaluations in different manufacturing scenes will be
conducted to improve the model and algorithm with better
efficiency.
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