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Object Shape Error Response Using Bayesian
3-D Convolutional Neural Networks for

Assembly Systems With Compliant Parts
Sumit Sinha , Pasquale Franciosa , and Dariusz Ceglarek

Abstract—This article proposes a novel object shape er-
ror response (OSER) approach to estimate the dimensional
and geometric variation of assembled products and then,
relate these to process parameters, which can be inter-
preted as root causes (RC) of the object shape defects. The
OSER approach leverages Bayesian 3-D convolutional neu-
ral networks integrated with computer-aided engineering
simulations for RC isolation. Compared with the existing
methods, the proposed approach: 1) addresses a novel
problem of applying deep learning for object shape error
identification instead of object detection; 2) overcomes
fundamental performance limitations of current linear ap-
proaches for RC analysis (RCA) of assembly systems that
cannot be used on point cloud data; and 3) provides ca-
pabilities for unsolved challenges such as ill-conditioning,
fault-multiplicity, RC prediction with uncertainty quantifica-
tion, and learning at design phase when no measurement
data are available. Comprehensive benchmarking with ex-
isting machine learning models demonstrates superior per-
formance with R2 = 0.98 and MAE = 0.05 mm, thus im-
proving RCA capabilities by 29%.

Index Terms—Assembly, Bayesian deep learning, manu-
facturing, 3-D convolutional neural networks (CNNs).

I. INTRODUCTION

OBJECT shape error modeling and diagnosis are impor-
tant enablers of Industry 4.0 and provide a transforma-

tive framework integrating facilitators such as big data, in-line
3-D scanners, robotics, and AI algorithms toward achieving
near-zero-defect manufacturing. In this article, the proposed
3-D object shape error response (OSER) approach translates
into estimating and discriminating between shape error pat-
terns and linking them to manufacturing process parameters.
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Estimating at first and then reducing or eliminating these er-
ror patterns ensures dimensional product quality (as defined
by GD&T), which is a major challenge for industries such
as automotive, aerospace, and shipbuilding. Two-thirds of the
quality issues in the automotive and aerospace sectors are caused
by dimensional variations [1]. The key goal is developing a
root cause (RC) analysis (RCA) model that can identify the
relationship between shape errors and manufacturing process
parameters.

Past methods used to diagnose manufacturing dimensional
quality faults are based on: 1) statistical estimation and 2) pat-
tern matching-based approaches. These approaches have been
shown to have limitations in their applicability to complex,
high-dimensional, and nonlinear systems [2] as these used lin-
ear models between process parameters and measurements of
product dimensional quality for both systems with rigid [3] and
complaint parts [4]. Ceglarek et al. [5] used computer-aided
design (CAD)-based variation patterns and a fault matching
technique which combined principal component analysis (PCA)
and pattern similarity for fault diagnosis. This work was later
extended to include the effect of measurement noise [6] and then
generalized for multistage assembly process using state-space
model, stream-of-variation [7]. Jin et al. [8] used a Bayesian net-
work approach for estimating fixture faults using all measured
points. Bastani et al. [9] used a spatially correlated Bayesian
learning algorithm for an underdetermined system by exploiting
the spatial correlation of dimensional variation from various
error sources. In summary, the aforementioned approaches are
linear and are designed to work for relatively small number of
measurement points on each manufactured part. This signifi-
cantly limits the application of the methods for 3-D object shape
error modeling and diagnosis in manufacturing. The 3-D shape
error modeling and diagnosis used in manufacturing must have
the capability to satisfy a number of requirements with respect
to the following.

1) High data dimensionality of a batch of 3-D objects [10],
which are defined by CAD (ideal parts) and point-clouds
(nonideal parts) with millions of points for each part or
subassembly.

2) Nonlinearity due to compliant parts being constrained by
assembly fixtures and part-to-part interactions [11].

3) Collinearities due to many manufacturing systems being
ill-conditioned [12] with error patterns of key process
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parameters being near parallel, thus, yielding widely dis-
crepant results.

4) High faults multiplicity [13], [14] due to current near-
zero-defects strategies requiring to take into considera-
tion 6-sigma defects that lead to redefining defects from
binary {0, 1}, i.e., fault/no-fault, to continuous <0,1>,
i.e., the fault being measured as a level of variation with
dynamically changing threshold of acceptance, which
significantly increases fault multiplicity.

5) Uncertainty quantification in the RCA output, as the
identified RC frequently leads to costly corrective actions
[15]; it is crucial therefore to enhance the RCA model by
an uncertainty estimation of the predictions.

6) Dual data generation capability by using metrology
gages and multiphysics-simulator needed for RCA model
training. As the RCA model needs to be trained on a
very large number of fault scenarios, which cannot be
generated via real systems, and the training needs to
be done before the real assembly systems are ready for
production, there is a strong need to generate data via
high-fidelity multiphysics simulator for training RCA
model. Then, the RCA model will use point-cloud data of
real free-form surfaces obtained via robotic 3-D scanner
when implemented in a real system.

This article will address the above requirements as follows.
1) Requirements 1)–4) by developing a 3-D deep learning

approach. As markets get competitive in terms of prod-
uct quality, production volume, and costs, manufacturers
aim to leverage developments in the field of artificial
intelligence. Deep neural networks have revolutionized
data-intensive tasks that involve generating insights from
high-dimensional input data [16], [17]. 2-D/3-D convo-
lutional neural networks (CNNs) are known to perform
well when spatial data such as depth images, point-clouds,
mesh, and medical scans have to be analyzed for tasks
such as control systems, object detection, video analysis,
and cancer detection. Manufacturing is one of the major
domains that has benefited from this development [18].
This article proposes a 3-D CNN architecture that enables
the extraction of spatial features from point clouds and
hence, models nonlinear relationships between features
and process parameters. This approach has high perfor-
mance for nonlinear and ill-conditioned systems having
high fault multiplicity.

2) Requirement 5) by leveraging a Bayesian 3-D CNN-
based approach. Recent developments in artificial in-
telligence cautions making real-life decisions based on
point-estimates. As compared to traditional CNNs with
deterministic weights, Bayesian CNNs leverage probabil-
ity distributions over model weights and model outputs
and enable quantification of predictive uncertainty, pre-
vent overfitting, and require comparatively lesser data to
train [19]. Successful applications of the above have been
done in healthcare [20] and load forecasting [21]. Using
such models enables segregation of the uncertainties into
aleatoric and epistemic, the former quantifying the uncer-
tainty due to uncontrollable factors such as system noise,

while the latter quantifies uncertainties due to model
structure and insufficient training data [19]. The proposed
approach estimates each model parameter as a distribution
(epistemic uncertainty) while also modeling the output
estimates as parameters of a multivariate distribution
(aleatoric uncertainty). Such estimates involving different
types of uncertainties in model predictions are crucial as
these quantify when the model is “randomly guessing” as
compared to making a confident prediction. Particularly
within manufacturing environments, these uncertainty
estimates integrate a degree of confidence within the es-
timates and hence, support the decision-maker in making
cost-effective selection of corrective action(s) which can
be quite costly.

3) Requirement 6) by making the developed Bayesian 3-D
CNN from (2) compatible with point cloud data obtained
via either multiphysics-simulator or 3-D scanners and
leveraging the epistemic uncertainty estimates to perform
intelligent closed-loop training and enable model con-
vergence using a lesser number of training samples. In
turn, this reduces total data generation and model training
time. Since multiphysics-simulator is computationally
expensive and generating each sample for assembly ap-
plications can be time intensive for high-fidelity simu-
lations, it is crucial to reduce overall simulation time.
The reduction in simulation time provided by leverag-
ing the epistemic uncertainty estimates of Bayesian 3-D
CNNs is significantly higher than the increased training
time for Bayesian deep learning approaches. The ap-
proach developed in this article will utilize high-fidelity
multiphysics-simulator of the assembly process, called
variation response method (VRM) [22]. The VRM has
the capability for, first, modeling and simulating the
assembly process with compliant parts constrained by
assembly fixtures and part-to-part interactions, and then,
it enables high-fidelity point-cloud data generation of 3-D
assembled products/subassemblies with error patterns as
obtained under different sets of process parameters. The
VRM model accuracy was verified and validated for var-
ious assembly processes [22]. Additionally, the approach
is equipped to utilize data obtained from measurements
using 3-D optical scanners. 3-D optical scanners enable
real-time high-dimensional point cloud data extraction
from manufacturing systems within short cycle times.
This point cloud data can be postprocessed using align-
ment techniques to extract deviations for points, thus
enabling dual data generation and integration.

In summary, the article develops a novel 3-D OSER ap-
proach in an effort to enable RCA within manufacturing systems
using point cloud data. The proposed methodology integrates
deep learning [which addresses requirements 1)–4)], Bayesian
training enabled by Bayes-by-Backprop [23] and Flipout
[24] [requirement 5)], and multiphysics-simulator to address
requirement 6).

The key contributions of the article are as follows.
1) Propose a 3-D OSER methodology based on a novel

Bayesian 3-D CNN architecture: It builds on current
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work done in the area of 3-D object detection [16] by
expanding it to manufacturing systems where the key
goal is not to detect the object but to estimate various
shape error patterns present on the final object/product
and relate these variation patterns to manufacturing pro-
cess parameter variations within the system. To the best
of our knowledge, this is the first article to propose an
uncertainty enabled 3-D CNN-based deep learning model
for RCA of assembly systems.

2) Propose a closed-loop framework for training and de-
ployment of the Bayesian 3-D CNN model that leverages
a computer-aided engineering (CAE) simulator known as
VRM [22] to emulate the multistage assembly system.
The VRM performs sampling, which leverages the epis-
temic uncertainty estimates of the Bayesian 3-D CNN
thereby, reducing overall simulation and training time.
Given that data availability within manufacturing systems
is costly, scarce, and the data can be highly skewed, the
VRM functions as a physics-based digital twin for gen-
erating augmented data that are close to the real system
and can therefore, be used to train the proposed model.
The trained model can then be leveraged for applications
such as RCA of assembly systems using point cloud scans
obtained from 3-D scanners.

3) Verify and validate the methodology on an industrial
automotive door assembly process made of compliant
parts.

4) Benchmark 3-D OSER methodology against three cat-
egories of methods that can be leveraged to estimate
the dimensional and geometric variation of assembled
products namely: a) current linear state-of-the-art RCA
models; b) machine learning models in a multi-output
regression setting; and c) deep learning models such as
various types of CNNs and fully connected networks to
highlight the performance and the ability to fulfill the
aforementioned six requirements.

The rest of the article is organized as follows. Section II
formulates the object shape error estimation problem, presents
the proposed Bayesian 3-D CNN architecture, the steps involved
in architecture optimization, and the overall steps required to
train and deploy the model. Section III presents the industrial
case study. Finally, Section IV concludes this article.

II. METHODOLOGY

A. Object Shape Error Estimation in Manufacturing

Multistage assembly systems can be mathematically ex-
pressed as a state-space model where different states correspond
to different stages of the manufacturing system [3]. The input is
an object (set of parts to be assembled) entering the assembly
process. Within the process, object shape errors can be intro-
duced in any of the stages due to one or multiple variations in
the process parameters and are further propagated through the
stages (see Fig. 1). Any object o at its design nominal shape
is characterized by a set of nominal points P o = {pok}, k =
1, . . . , no, where p0k is a vector consisting of the x-,y-, and
z-coordinates of the kth input point and no represents the total

Fig. 1. Object shape error propagation in assembly systems.

number of points on object o. The object here represents a
single subassembly which is assembled in a single station, which
can be understood as a collective reference to all parts used
in this assembly station. In practice, the points correspond to
mesh nodes in the computer-aided design model of the object
when considering CAE simulations and to actual points within
the point cloud when considering the 3-D scan of the object.
do = {dok} denotes the deviation of each point k after the
nominal objectohas gone through different stages of the process,
dok is a vector comprised of deviations of each point in x-,y-, and
z-axes on object o. An assumption made in this article is that the
assembly process has a single station which includes multiple
stages s = 1, . . . , 4 involving objects/parts—positioning (P),
clamping (C), fastening (F), and release (R). Stage s = 0 is used
to represent the incoming parts that includes deviations from the
previous processes, such as part fabrication. As the object o goes
through multiple stages, the set of points are represented as P s

o,
while ds

o represents the deviations.
As the main goal of this article is object shape error estimation,

the article extends the problem formulation in object detection,
which only considers the set of points {pok} [17], by including
deviations for each point {dok} as additional features. This adds
the required discriminative ability in the data, hence, enabling
object shape error estimation. Thus, the object shape error for
object o after stage s can be represented as

xs
o = (P s

o,d
s
o) . (1)

On the other hand, the set of all process parameters across
all stages are denoted by y where y = {y1, . . . , yh}, h denotes
the total number of process parameters. The deviation of points
at each stage s for object o can be expressed as the sum of all
deviations accumulated in all stages from stage 0 up to stage s

ds
o =

s∑
j=0

dj
o (2)

where d0
o represents the shape error of incoming object o caused

by upstream manufacturing processes. After each stage s, the
actual points of the object o with error can be written as

P s
o = P o + ds

o. (3)

At the end of the final assembly stage s = 4, the object shape
error data for the assembly P s=4 is collected and decomposed
into the nominal points P and their deviations ds=4 by using
alignment techniques [10], where P s=4,ds=4 are now a collec-
tive reference to the set of all incoming objects that have been
assembled. The measurement system error ε is considered to
be negligible (ε ≈ 0). The object with errors is represented as a
point cloud of nonideal parts

xs = {(pk,d
s
k)} = (P ,ds) (4)
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where ds
k can be considered as features at each point pk.

The aim of the Bayesian 3-D CNN model training is to
learn assembly process transfer function f(.) (equivalent to state
transition matrix in [7]). The function f(.) is parametrized by
weights and biases of a CNN that can accurately estimate the
process parameters y given the point cloud data of nonideal xs

parts collected from the system

y = f (xs) . (5)

The high accuracy of the 3-D CNN in estimating all assembly
process parameters y provides the underlined capability of the
OSER approach for high RC isolability. Essentially, within
assembly systems, RCs are estimated as a subset of the estimated
process parameters

RC ⊆ y. (6)

Based on the requirements and the production phase of the
assembly system, the exact definition of an RC may differ but
the key requirement to conduct RCA under any definition is
to accurately estimate all process parameters y. Hence, the
proposed OSER approach aims to do the aforementioned by
estimating f(.) as specified in (5).

B. Three-Dimensional Object Shape Error Voxelization

In the presented OSER approach, the simulation output repre-
sented as mesh or point cloud data {(pk,d

s
k)} (4) is transformed

to voxel grids {V u,v,w}with discrete voxel coordinates (u, v, w)
in the following way—for all points pk = (xk, yk, zk) that fall
within a voxel grid {V u,v,w} , the maximum value of dk =
(x̃k, ỹk, z̃k) characterizes the features of the corresponding
voxel grid and is represented as {V u,v,w,d}. The voxelization
techniques used in object detection [17] are applied to construct
the initial voxel structure of the object and for each unique
object, the voxel features are characterized by the shape error
dk. The key difference is that in object detection, voxel grids
are characterized by either binary voxels or voxels containing
RGB values for each point instead of real values of shape
error dk, as in the OSER approach. Although binary voxels,
traditionally used in object detection retain the spatial structure,
the granularity of voxelization required to discriminate between
minor differences in the shape error will make the problem
computationally infeasible and hence, limit performance. In the
proposed approach, the nominal object is voxelized and each
voxel is characterized by real vales of the shape error dk. This
is critical in representing the geometric variations with the re-
quired granularity for effective RCA. This efficiently retains all
information about the spatial structure of the object as well as the
components of object shape errors. Given the alignment ensures
a fixed orientation, there is no need for data augmentation to
achieve rotation invariance.

C. Uncertainty Estimation

Given the uncertainties of the system and the availability of
only a limited dataset, a deterministic estimate of function f(.),
as shown in (5), is not feasible. Hence, by leveraging Bayesian
inference, a prior distribution can be allocated over the space of

possible functions p(f), which represents a prior belief of the
possible functions f(.). Given a dataset, a likelihood p(y|f,xs)
is defined to model the function from which the observation
is generated, and hence, given a dataset (xs,y), the posterior
distribution over the functions p(f |xs,y) can be inferred. The
function is characterized by model parameters ω represented by
fω (weights and biases for neural networks) and the posterior
over the function can be inferred by estimating the posterior
over the parameters ω. In Bayesian neural networks, this is
achieved through Bayes-by-Backprop [23] and Flipout [24].
Given a dataset the posterior can be written as

p(w|xs) = p(y|xs, w), p(w)/p(y|xs) (7)

For complex models such as deep neural networks, it is not
analytically possible to infer the true posterior for all model
parameters p(w|xs, y); hence, an approximating variational dis-
tribution qθ(ω) parameterized by θ, such as normal distribution,
is used to approximate the posterior. This approach is known
as variational inference [25]. The approximating distribution
should be as close as possible to the true posterior, which is
achieved by minimizing the Kullback–Leibler (KL) divergence
with respect to θ

KL(qθ(ω)||p(w|xs)) =

∫
qθ(ω) log qθ(ω)/p(w|xs)dω. (8)

Using the estimated variational distribution q∗θ(ω), the pro-
cess parameter distribution quantifying the uncertainties for a
new data point xs∗ can be obtained using

p (y∗|xs∗,xs,y)

≈
∫

p (y∗|xs, ω) p (w|xs,y) dω = : q∗θ (y
∗|xs∗) . (9)

D. Bayesian 3-D CNN Model Architecture

Building on the work done on voxel-based approaches for
3-D object detection such as VoxNet [17], the research proposes
a Bayesian 3-D CNN architecture to enable object shape error
estimation. The 3-D convolutions aggregate features from the
input, which are then utilized by the fully connected layers and
mapped to process parameters. The model consists of three
3-D convolutional Flipout layers, a 3-D max-pooling layer,
followed by three fully connected Flipout layers; the final layer
estimates parameters of the predictive distribution for all process
parameters. The convolution can be represented as

vxyzab

=ReLU

(
βab+

∑
m

Pi−Li∑
p=0

Qi−Mi∑
q=0

Ri−Ni∑
r=0

wpqr
ab v

(x+p)(y+q)(z+r)
(i−1)m

)
(10)

where vxyzab represents the layer output value at position (x, y, z)
in the ath layer and bth feature map. ReLU is the rectified
linear unit activation function [26]. βab represents the bias;
m represents the number of filters from the previous layer;
(Pa, Qa, Ra) and (La,Ma, Na) represent the kernel dimensions
and stride lengths in the three directions, respectively; wpqr

ab

represents the weights of the connections. The convolution oper-
ation as in (10) is done consecutively for the three convolutional
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Fig. 2. Bayesian 3-D CNN model architecture of the OSER method.

layers. In 3-D max-pooling operation, the resolution of the
feature map is reduced by taking the maximum value of the
local neighborhood of the layer outputs. Given the Bayesian
framework, each parameter of the Bayesian 3-D CNN model
follows a distribution. In the case of neural networks, it is
not feasible to assign informative priors; hence, noninformative
prior distributions are placed over the model parameters. Each
parameter is approximated using variational inference approach
assuming that the posterior follows a normal distribution. The
overall model has 1 997 286 trainable parameters. Output nodes
have linear activation units. Fig. 2 shows the proposed Bayesian
3-D CNN model architecture with annotated hyperparameters.

E. Architecture Selection and Optimization

Hyperparameter optimization for Bayesian 3-D CNNs is done
to maximize performance and eliminate architectures that are
more likely to overfit. As this is computationally intensive, in
order to perform optimization in a computationally feasible
manner, the following steps were involved.

Step 1 – Set baseline: VoxNet [16], which is a 3-D CNN
architecture used for object detection consisting of two 3-D
convolutional layers, one max-pooling layer, and two fully
connected, is set as the baseline. A dataset consisting of 1500
samples is generated to conduct k-fold cross-validation (k = 6).
The hyperparameters are split into two categories: Category one
consists of the number of convolutional layers NC = {2, 3, 4}
and number of dense layers ND = {1, 2, 3} and category two
consisted of the number of filters in each 3-D convolutional
layer, filter size for each 3-D convolutional layer, and number
of hidden units in each dense layer.

Step 2 – Grid search for category one hyperparameters:
In this step, grid search for category one hyperparameters are
conducted and each selection is evaluated using k-fold cross-
validation (see Fig. 3). For computational feasibility, category
two hyperparameters are kept constant and equal to the VoxNet
architecture values. NC = 3 and ND = 3 were obtained as the
optimal hyperparameters having the minimum cross-validation
mean absolute error (MAE) average of 0.08 mm.

Step 3 – Hyperband for category two hyperparameters: The
optimal values for category one hyperparameters are fixed and
further hyperband [27] is leveraged to obtain the optimal values
for category two hyperparameters given its ability to speed up
the random search process through adaptive resource allocation
and early stopping.

Fig. 3. Grid search for category one hyperparameters.

TABLE I
OBJECT DETECTION AND OSER COMPARISON

Step 4 – Deterministic to Bayesian model: The final step
includes replacing the deterministic layer with Bayesian Flipout
layers and then training using Bayes-by-Backprop. Various
learning rates and prior distributions for the model weights
were tested. Standard normal distribution provided the best
balance between weight initialization and weight exploration,
which was inferred by conducting an uncertainty versus error
calibration study. The training hyperparameters that provided
the best uncertainty calibration and ensured that the model
performance was greater than or equal to the deterministic coun-
terpart were selected as the final Bayesian 3-D CNN architecture
training hyperparameters. The key changes from the baseline
architecture of object detection that enable the fulfillment of the
aforementioned six requirements are summarized in Table I.

F. Model Training and Deployment

Training of the model is done in a closed-loop framework
using data generated by VRM. The key motivation behind using
a closed-loop framework as opposed to an open-loop framework



SINHA et al.: OBJECT SHAPE ERROR RESPONSE USING BAYESIAN 3-D CONVOLUTIONAL NEURAL NETWORKS 6681

Fig. 4. Model training and deployment framework.

is to minimize the bottle-neck computation, i.e., multiphysics
simulation using the VRM model. Although this increases the
number of training iterations, nonetheless, the overall time of
VRM simulation and training is significantly reduced, as fewer
samples need to be generated. The key steps of the proposed
framework are summarized as follows (see Fig. 4).

Step 1 – Sampling: Process parametersy are sampled from the
allowable ranges. Latin Hypercube Sampling [28] is used to gen-
erate initial process parameter sample values given it distributes
samples optimally across the h−dimensional process parameter
space by stratifying the possible ranges. The consecutive sets of
samples are generated using Monte Carlo (MC) sampling based
on the uncertainty σ(ŷ) of the model.

Step 2 – VRM simulation: The samples are used as input to the
VRM to simulate the assembly process and generate the output
mesh from which the point cloud and deviations of each point
are extracted after the desired stage s of the assembly system,
as in (4), xs = {(pk,d

s
k)}.

Step 3 – Model training: The point cloud and deviation data of
object shape errors along with the respective process parameters
(xs = ({(pk,d

s
k)},y) are used for model training. Note thatxs

is voxelized {V u,v,w,d} before it is used for training. Bayes-
by-Backprop and Flipout are applied for model training. The
loss function optimized while training comprises of the sum of
KL divergence for each layer (9) and the negative log-likelihood
(11) of the predictive distribution

− lnL = 1/2[ln(|Σ|) + (y − μ)TΣ−1(y − μ) + h ln(2π)].
(11)

The KL divergence term quantifies the divergence between
the standard normal prior and the learnt posterior and hence,
prevents overfitting by penalizing weights for diverging from
the prior. Group normalization [29] with four groups is used
after each convolutional layer. This also prevents overfitting and
accounts for the small minibatch size due to GPU memory size
constraints and aids in stabling the training process. Weights
of the network are initialized using normal initializer [30]. The
Adam method for stochastic optimization was used to optimize
the loss function while training [31]. The initial learning rate
is fine-tuned to α = 0.0005 and monotonic KL annealing was
leveraged to ensure the model initially learns the object shape
error and process parameter relations before applying the KL

penalty for uncertainty quantification. The learning rate fine-
tuning, monotonic KL annealing, and ReLU activations pre-
vent gradient vanishing. The predictive distribution is modeled
as a multivariate normal Nh with h components (the same
number of components as the number of process parameters
h), y ∼ Nh(μ, Σ) where each component corresponds to a
process parameter; hence, the mean across all components of
the multivariate distribution corresponds to the set of process
parameters y. The distribution is assumed to have a diagonal
covariance matrix Σ. The scale parameters in the diagonal are
assumed to be fixed since the noise has been assumed to be
negligible.

After each iteration of training, the model is evaluated on
the validation set. For evaluation, MC sampling from the model
is done and the sample means ȳ and standard deviations (SDS)
σ(ŷ) are estimated for each process parameter.σ(ŷ) represents
the epistemic uncertainty while the fixed scale parameters of the
predictive distribution represent the known aleatoric uncertainty
[19]. Given the assumption of negligible measurement noise,
aleatoric uncertainty is considered to be negligible and hence,
the overall uncertainty in the prediction can be assumed to be
equal to epistemic uncertainty σ(ŷ). This uncertainty is used
for sampling in the next iteration.

MAE between the model estimates ŷ = ȳ and actual value
y across all process parameters h (12) are used as the metrics for
model performance evaluation given the ease of interpretation
and given that the model outputs are continuous and real valued.
Training is stopped when MAE is below the required threshold
ε. The threshold value for this metric is determined based on
the quality requirements for a specific product as required by
design tolerances and the accuracy of the measurement system.
The model is trained within the measurement system accuracy.
For example, automotive body assembly process tolerances are
within [−1 mm, 1 mm], and the 3-D optical scanner used has a
repeatability of 0.05 mm and accuracy within 0.15 mm

MAE =
∑
h

|y − ŷ|/h. (12)

Step 4 – Model deployment: After training, the model can be
deployed within an actual system. The data collected from the
3-D scanner P s is aligned to obtain point cloud and deviations
xs = {pk,d

s
k} and then, voxelized V u,v,w,d before it can be

given to the trained model for conducting RCA inference. Infer-
encing estimates the process parameters for a given xs (5) using
MC sampling from the trained model. Using these samples,
process parameters (distribution mean) ȳ and their uncertainty
(distribution SD) σ(ŷ) can be estimated. The sample mean ȳ
is considered as the model estimate ŷ, while σ(ŷ) quantifies
the uncertainty. Further, the RCs can be inferred as a subset of
ŷ (6). The work has been implemented using Python 3.7 and
TensorFlow - GPU 2.0 [32] and TensorFlow-Probability 0.8.
A python library, Bayesian Deep Learning for Manufacturing
[33] has been developed to validate and replicate the results
of the methodology. For this article, both, the data generation
and evaluation of the OSER methodology have been done using
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Fig. 5. Assembly process parameters.

Fig. 6. PCFR stages of the assembly process.

VRM. Two Nvidia Tesla V100 32 GB GPUs are used for model
training and deployment.

III. CASE STUDY

A. Assembly Setup

For verification and validation of the proposed OSER ap-
proach, an automotive assembly of two components, namely,
the door inner and hinge reinforcement are selected. The as-
sembly setup and parameters are shown in Fig. 5. The assembly
process is controlled by the six (h = 6) parametrized process
parameters y1, y2, . . . , y6 (depicted using yellow symbols in
Fig. 4). Assembly parameters such as pin-hole, pin-slot, and
NC blocks for the door inner are considered constant (depicted
using green symbols in Fig. 5) and are not parameterized. Data
are collected after stage s = 4. The point cloud is characterized
by n = 10 841 points, which are preprocessed and voxelized to
(u, v, w) = (64, 64, 64) voxel grids. The deviation features d
include deviations in all directions for all points (x̃k, ỹk, z̃k).
The assembly consists of four stages (see Fig. 6): Stage 1
involves positioning (i) the door inner on the pin-hole, pin-slot,
and the three NC blocks (not parameterized; marked in green
in Fig. 1) and (ii) hinge reinforcement using the pin-slot (y1),
pin-hole (y2, y3); Stage 2 comprises of clamping two parts to-
gether using three NC blocks with clamps (y4, y5 and y6); Stage
3 involves fastening/joining the two parts using self-piercing
riveting (SPR); and finally, Stage 4 involves releasing the clamps
(y4, y5 and y6) after the fastening is completed. The training
range for all process parameters is [−1 mm, 1 mm] while the
validation range is [−2 mm, 2 mm]. Point cloud and deviation
data {(pk,d

4
k)} are collected after release, i.e., Stage 4 (see

Fig. 5). The data are voxelized {V 64,64,64,3} and used as model
input and the process parameters y1, y2, . . . , y6 are used as
model outputs.

After starting with 200 initial samples for model training,
200 samples are adaptively added during each iteration of the
closed-loop training based on the uncertainty estimates, and the

model is trained on the combined dataset including all previous
samplings to ensure that there is no catastrophic forgetting
(using 200 samples provided an optimal trade-off between VRM
simulation time and model training time). These samples and
outputs are used for training the Bayesian 3-D CNN model.
The diagonal scale parameters for all process parameters in the
covariance matrix are fixed at 0.001. A validation set of 300
samples is generated within the validation range, and after each
iteration, the trained model is evaluated on the validation set.
During the evaluation for each of the 300 samples, 1000 MC
samples are drawn from the trained model. The sample means are
considered as the estimate for the process parameters while the
sample SDs quantify the uncertainty for each process parameter
for the given sample. RCs can be inferred from the process
parameter estimates. The closed-loop training is stopped when
average MAE across all process parameters for the validation
set is below the threshold which is selected to be 0.05 mm for
automotive assembly applications as the impact of variations
less than 0.05 mm is not detectable by the 3-D scanner. After
this, the model is ready for deployment with measurement data
collected from 3-D optical scanners, followed by alignment
and voxelization. For each measurement, MC samples from the
trained Bayesian 3-D CNN model can be drawn to estimate
process parameter mean and SDs (uncertainty). Measurement
data collection is done using WLS400A mounted on an ABB
robot.

In summary, the industrial assembly process selected for case
study consists of the following.

1) High dimensionality point cloud (10 841 points).
2) Nonlinearity, as induced by fixturing (N-2-1, where N =

6), two compliant parts, and part-to-part interactions
(door inner to hinge reinforcement).

3) Collinearity induced by fixturing, as locators
y4, y5, and y6 are within 5° of collinearity (−3° to
2° deviation from y-axis).

4) High fault multiplicity, as we take into consideration 6-
sigma defects at the level of variation within 3-D scanner
accuracy (<0.05 mm) that significantly increases fault
multiplicity from zero to six process parameters mani-
festing errors (100% fault multiplicity).

The door assembly requirements are: 1) product: Design
tolerances of door assembly: <−1.0, 1.0> [mm]; 2) process:
Fixturing calibration and commissioning is achieved within
<−0.1; 0.1> [mm]; and 3) shape error detection: Using the
3-D optical scanner for measurement.

Key performance indicators (KPIs) used for assessment of
the results are as follows: 1) MAE <0.05 mm and 2) R2>0.95
for the model to have the capability to explain more than 95%
variance in the process parameters under the assembly system
requirements 2)–4).

B. Results

The KPIs of model performance are summarized for all
y1, . . . , y6 in Fig 7. The model convergence is shown in Fig. 8.

The model converges with average MAE across all process
parameters equal to 0.05 (below the required threshold) and
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TABLE II
BENCHMARKING RESULTS

Fig. 7. MAE and R2 across all process parameters.

Fig. 8. Bayesian 3-D CNN OSER convergence.

average R2 equal to 0.98 after ten iterations of closed-loop
training, which included a total of 2000 samples being gener-
ated adaptively. For validation purposes, this study trained both
Bayesian 3-D CNN and a deterministic version of the model,
i.e., 3-D CNN with the same architecture as in Fig. 2.

C. Benchmarking and Discussion

The benchmarking analysis is conducted by using the six
requirements as listed in Section I. The case study and results
along with analysis of collinearity, multiplicity, and uncertainty
are used to demonstrate the capabilities of the proposed approach
to fulfill the aforementioned requirements.

The benchmarking analysis of the proposed 3-D OSER ap-
proach is discussed on two levels.

1) OSER Versus Currently Used Approaches at Production
Phase When Point Cloud Data are Available: The benchmark-
ing is conducted for two scenarios: 1) RCA and 2) RCA with
uncertainty quantification.

a) RCA: As discussed in Section I, the state-of-the-art
models used for assembly process RCA, such as [9] and [34],
are linear and can be classified as regularized linear regression
approaches (see Table II). Hence, their upper limit performance
can be estimated by using regularized linear regression on all
point deviations d within the point cloud. They also use a limited
number of sampled points from the point cloud on a single part
(less than 100 out of >10 000), which additionally limit their
performance for assembly processes. The OSER methodology
validation against the six requirements as presented in Section I
is as follows. Requirement 1) is fulfilled by the proposed vox-
elization approach which ensures that irrespective of the dimen-
sionality of the point cloud, it is transformed into a sparse tensor
of dimensions (64, 64, 64, 3) which preserves information in
terms of the object spatial structure and point deviation features.
This also enables the application of the OSER-based models
that require a regular data structure as input. Second, the model
performance of the state-of-the-art regularized linear regres-
sion approaches is at MAE = 0.41 mm and R2 = 0.76 (see
Table II), which is unsatisfactory as compared to the required
MAE<0.05, R2 >0.95. This is because the regularized linear
regression model can explain only the linear variance in the sys-
tem. By comparison, the proposed OSER model demonstrates
good performance atMAE = 0.05, R2 = 0.98, hence fulfilling
requirements 2)–4). Fig. 9 compares the performance of reg-
ularized linear regression (i.e., upper limit for state-of-the-art
approaches) with the proposed OSER approach under different
levels of fault multiplicity and collinearity. For example, in
scenarios 1–3 (fault multiplicity up to 50%), both approaches
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Fig. 9. Performance under different levels of fault collinearity and mul-
tiplicity (from single fault y1; and two-fault y1, y2; … up to all parameters
being simultaneously at fault y1, y2, . . . , y6).

have similar performance. However, in scenarios 4–6, as the
fault multiplicity increases to 4, 5, and 6 parameters being si-
multaneously at fault, i.e., 100% of parameters, and also induced
by the designed collinear relation between process parameters
and input, the performance of the linear model decreases, while
the OSER approach exhibits performance above the required
threshold (R2 >0.95).

The benchmarking also comprehensively assesses the OSER
against existing deep learning and machine learning techniques
[35] in ways that are not currently used for RCA of assembly
processes (see Table II). This article implemented these tech-
niques and applied them for the aforementioned case study.
CNN-based deep learning methods where selected as they retain
spatial information while learning which is essential for object
shape error estimation. Each model is compared in its ability
to fulfill the aforementioned six requirements. Table II shows
the implemented benchmark approaches and the results. The
multiview 2-D CNN (MV-CNN) [36] approach considers six
2-D projections of the object shape error. Gridding is performed
on each projection. Each projection has an input dimension of
64 × 64 × 3. Each of the six projections is given as input to the
MV-CNN consisting of six heads. These are pooled before the
fully connected layers. Depth-based CNN [37] considers a single
projection along the y-axis with dimension 64 × 64 × 4. The
first three channels consist of the shape error (d) while the fourth
channel consists of the y-coordinate of the nominal point-cloud
P o. Both 2-D CNN-based approaches have same hyperparame-
ters as the OSER (but only considering 2-D convolutions and
2-D max-pooling). The deep dense neural network is given
the flattened vector of shape error d = Flatten {(x̃k, ỹk, z̃k)}
as input. It consists of two hidden layers (1024, 512 nodes,
respectively) with ReLU activations and a linear output layer
with six nodes. All machine learning models take a transformed
input of d = Flatten {(x̃k, ỹk, z̃k)} as input. PCA is used for
the transformation and reduced features explaining 99% of the
variance are retained. Comparison for requirement 1) is done
on the basis of transformation used for input. Shape error vox-
elization retains information pertaining to the 3-D structure and
shape error features, while projection retains only 2-D spatial
structure. Flattening eliminates all information related to the
spatial structure while PCA also eliminates information explain-
ing 1% of the variance. Comparison for requirements 2)–4) are
done on performance attributes, namely, accuracy (MAE) and
goodness-of-fit (R2). Comparison for requirement 5) is done

Fig. 10. Convergence comparison for all benchmarking models.

on the ability to quantify and segregate uncertainties. Finally,
comparison for requirement 6) is done on overall training time,
which is inclusive of the CAE simulation time and model training
time. Although the proposed model has higher model training
time, the overall training time is significantly lesser due to the
ability to leverage the epistemic uncertainty to generate infor-
mative samples leading to faster convergence with only ∼2000
samples. All other models are trained using random sampling
until convergence. Fig. 10 summarizes the convergence of the
entire set of benchmarking models. The hyperparameters of the
machine learning models were optimized using grid search.
For statistical quantification of accuracy and goodness-of-fit,
20 runs of training and testing are conducted using a set of
4000 randomly sampled data points for training and 300 for
validation within the validation range. The mean and SD for
each model, averaged across six process parameters, have been
reported. The model performance of the proposed OSER model
is significantly better in terms of accuracy and goodness-of-fit.
Result from ANOVA followed by post hoc Tukey-HSD test at
95% significance level considering two sources of variations
(model type and process parameter) showed the differences to be
statistically significant. This comes at the expense of increased
model complexity.

b) RCA with uncertainty quantification: As discussed
in Section I, the identified RCA frequently leads to costly
corrective actions conducted in the manufacturing environ-
ment; therefore, it is crucial, especially for 6-sigma faults to
have decision-driven RCA directed toward informing choices
by uncertainty quantification of solving problems. The OSER
methodology provides the SD of the predicted process parameter
distributions σ(ŷ) that quantifies this uncertainty hence, ful-
filling requirement 5). Although the performance of the OSER
with 3-D CNN and OSER with Bayesian 3-D CNN models are
similar, the latter can quantify and segregate the aleatoric and
epistemic uncertainty while estimating the process parameters.
To demonstrate the capability of the model in quantifying the
uncertainty on unseen samples, evaluation is done on 500 sam-
ples within the training range [−1 mm, 1 mm] and 500 samples
outside of the training range [−2 mm, 2 mm]. The SD across all
observations has been averaged and compared for each process
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Fig. 11. Process parameter distribution SDs.

parameter y1, . . . , y6. Results are shown in Fig. 11. Additionally,
the epistemic uncertainty estimates enable closed-loop training,
reducing overall training time.

2) OSER Versus Approaches at Design Phase When No
Point Cloud Data are Available: In manufacturing environments,
the availability of a comprehensive dataset inclusive of all fault
scenarios is not feasible; hence, augmenting the dataset with
high-fidelity multiphysics simulation enables training and de-
ployment of deep learning approaches during the design phase
of a new product/production system introduction. Given that the
proposed OSER approach transforms the simulation mesh nodes
output and scanned point cloud output to the same voxelized
shape error that is compatible with 3-D CNN, it enables this
integration, hence fulfilling requirement 6). This provides the
capability for modeling and simulation of the assembly process
and conducting system diagnosability and resilience analysis.
Currently, none of the approaches provide this capability for
object shaper error RCA at the design phase.

IV. CONCLUSION

This article presented an OSER approach which is relevant
to manufacturing industries where dimensional and geometric
variations can be quantified as object shape errors. This is also
relevant to areas such as robotics, computer-aided detection,
stamping, machining, and additive manufacturing where RCA
of dimensional variations translates to estimating object shape
error patterns and relating them to process parameters. Transfer
learning can be leveraged for application in these domains with
exponentially lesser training samples [18], a focus for future
work. The proposed approach leveraged a Bayesian 3-D CNN
model trained within a closed-loop framework using a multi-
physics simulation (VRM) model, to estimate shape errors and
relate them to process parameters while quantifying uncertainty.
This could then be deployed on real data collected from 3-D sur-
face scanners and thereby, enabling more effective and efficient
decision-making for control and correction of manufacturing
systems. The approach was benchmarked against state-of-the-
art assembly RCA models and other machine learning models
to highlight statistically significant better model performance
while fulfilling the manufacturing system design requirements.
Leveraging such automated RCA models ensured early estima-
tion and elimination of process variations before they become
defects, which could improve the quality and productivity of
the system by reducing scrap and machine downtime. This also
eliminated the need for trial-and-error approaches for RCA,
which is often ineffective and inefficient. Future work aims

to explore scaling up the work to multistation assembly sys-
tems. Various encoder–decoder-based CNN architectures, such
as U-Net [38] and Pointnet [16], that enable process parameter
estimation for a heterogeneous set of process parameters, i.e.,
continuous and categorical as well as enable object shape error
estimation in-between stages/stations could be explored to com-
prehensively perform RCA on multistation systems. Approaches
for uncertainty guided continual learning will also be explored
that enable transfer learning to different manufacturing systems
while simultaneously retaining knowledge of previous assembly
systems. The future work also aims to develop a life-long contin-
ual learning approach leveraging Bayesian 3-D CNNs, which is
crucial for continuously changing manufacturing environments.
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