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Towards Fish Individuality-Based Aquaculture
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Abstract—By bringing concepts of precision farming to
intensive aquaculture fish production, it can be optimized
to be more sustainable while focusing on fish welfare crite-
ria. This requires a shift from mass to smart production and
to consider each fish as an individual. Therefore, it is re-
quired to be able to identify each fish in a tank or sea cage.
In this article, we prove the feasibility of fish identification
using the iris as a biometric characteristic. Based on a new
dataset, captured in a controlled out of water environment:
1) a fully automated iris recognition system is presented
and utilized for the experiments and 2) the distinctiveness
and the stability of the iris pattern of Atlantic salmon (Salmo
salar) is assessed. Results prove the distinctiveness, which
indicates that the iris pattern of Atlantic salmon is suited
for biometric identification. However, the iris pattern has
a low stability, which means it changes over time. Due to
frequent interaction of fish and system, usually multiple
times a day during feeding, there is ample opportunity to
keep the biometric template up-to-date, which makes the
lack of long-term stability a nonissue. It can be concluded
that a biometric fish identification system is feasible, with
the precondition that biometric templates of each fish are
periodically updated to combat the low stability.

Index Terms—Fish iris identification, precision fish
farming (PFF).

I. INTRODUCTION

THE PRODUCTION requirement of aquaculture in the last
30 years has risen steeply and continues to do so. The

edible fish consumption per capita is rising and outpaces the
naturally occurring fish population, making this consumption
sustainable only through aquaculture production. This trend
will not decline and aquaculture production plays a crucial
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Fig. 1. Farming descision support system (FDSS).

role to ensure sustainable development in economic, social, and
environmental terms [1].

For intensive aquaculture, the fish is cultivated in tanks or
sea cages. An increase in production can often only be achieved
through a higher density of fish. This exacerbates problems in
the management of disease and health of the fish. Optimization
of fish production, therefore, also requires an improvement
of fish welfare. Toward precision fish farming (PFF) control-
engineering principles are applied to fish production, thereby
improving the farmer’s ability to monitor, control, and docu-
ment biological processes [2]. The move from mass to smart
production allows application of control-engineering principles
to individual fish instead of the population as a whole. It is all
about data, which are collected, analyzed, and exchanged almost
in real time, allowing for medication or removal of individual fish
as well as the optimization of yield per fish. Smart production re-
quires that data are assigned or linked to a set of objects or single
(living) objects in the production. Data and information enable to
improve and/or completely rethink well-established processes.

Further, regarding intensive aquaculture considering each fish
as an individual, requires noninvasive monitoring to set up a
farming decision support system (FDSS). This type of smart fish
farming as envisioned by a FDSS relies on the identification of
individual fish. Fig. 1 illustrates our vision for such a system
that follows the paradigm of ecological intensification. This
system enables to assign information about fish traits such
length, weight, sex and maturity, and fish skin color during
different growth stages to the corresponding animal or stock
record, to monitor growth status for better management [3].
Common ways for individual identification of fish are invasive
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methods relying on tagging and marking [4]. Invasive methods
may cause technical as well as health and animal behavioral
problems amplifying a problem we want to solve. Even currently
available noninvasive approaches (e.g., external colorants) may
cause behavioral alteration and pose health risks, which require
to take care of welfare issues [5]. Furthermore, invasive iden-
tification is time consuming and incurs a substantial cost. To
avoid these problems and additional cost, it would be optimal
to be able to have a noninvasive and contact free identification
method.

For this article, and the envisioned FDSS, the focus is on
noninvasive fish identification using biometric characteristics of
the fish body. Specifically, we will evaluate the suitability of the
iris for this purpose, since it is always visible (due to lack of
eyelids), permanent (as opposed to skin patterns e.g., [6]) and
has a good track record for humans and other animals (e.g., for
cow identification [7]).

The rest of this article is organized as follows. First, in
Section II, a review on related work is presented, followed by
the main contributions of this article. Section III introduces
the computation and matching of fish iris codes (FICs). The
experimental setup and evaluation are presented in Section IV,
and finally, Section V concludes this article.

II. RELATED WORK AND CONTRIBUTIONS

Literature on fish identification can be categorized based on 1)
the direction from which the fish and the biometric characteristic
is captured: lateral, dorsal, or ventral and 2) based on the utilized
feature extraction/matching approach, e.g., skin pattern or shape
features. Although there exists plenty of research, only a few
approaches make use of machine vision methods.

In the works of [8]–[10], the identification of different fish
species was examined on the basis of lateral images. The regions,
utilized for biometric feature extraction, were selected manually.
For Patagonia catfish identification in [8] skin pattern spots were
marked manually (position and size) and three reference points
set the region of interest (ROI). For 45 fish, which were captured
14 times for 254 days, a Rank-1 identification accuracy of 96%
was reported. Similarly, for Atlantic salmon identification in [9]
spots were marked manually and utilized for a specific matching
algorithm, requiring at least three spots. At the age of 12 months
most fish showed less than three spots and 17 out of the 20 re-
maining fish were identified correctly. For lionfish identification
in [10], three different ROIs were selected in which speeded
up robust features (SURF) keypoints are detected, computed,
and used for matching. For the best body part (flank) and 48
individuals, captured at one point in time, the authors report a
Rank-1 identification accuracy of 68%.

In [11], [12] dorsal head view images were assessed as bio-
metric characteristic. For Chinook salmon identification in [11],
the ROI was marked manually, the spot pattern was binarized
and the spot centroid coordinates were used as biometric fea-
tures. Results show 100% identification accuracy for fish that
developed a pattern, which was only the case for 42% of all fish
(=295 fish captured seven times over 251 days). Castillo et al.
[12] used a reverse image search engine to assess delta smelt
identification based on three manually selected ROIs. Fish were
captured at three points in time and for the fusion of the two

best areas, an identification rate of 94% for adjacent sessions
and 59.2% between the first and the last session was reported.

In [5], naked-eye and computer-assisted identification of ar-
mored catfish based on ventral images, captured in laboratory
and field conditions, were evaluated. The computer-assisted
approach is based on scale invariant feature transform key
points. ROIs were selected manually and results for 120 com-
parisons from the laboratory and 224 comparisons from the
field data showed an identification accuracy (Rank-1) of 82.2%
and 93.8%, respectively. These prior works have following two
major shortcomings.

1) Manual annotation of the ROI and/or the utilized biomet-
ric information/pattern is required. Such an approach is
well-suited for small-scale experiments, but it is not ap-
plicable on a large scale, i.e., for intensive aquaculture and
the envisioned FDSS. For example, Dala-Corte et al. [5]
reported that for 225 comparisons, 17 min were required
for computer assisted identification.

2) Related literature has shown that the skin pattern is not
universal; some fish do not form them and are not stable
once formed. That is, the assessed skin patterns change
over time and some fish showed no pattern at all or only
formed them at some later stage of growth. This can even
vary for minimal divergence from a base strain of fish;
for example, [6] showed that some Zebrafish mutations
show no more pattern at all.

Regarding these shortcomings, we will look at iris patterns
in Atlantic salmon as member of the Salmonidae family. All
members of this family have eyes and are lidless, making the iris
a universal trait. The basic layout of the iris biometric toolchain
known from human iris biometric identification will be used
(and be described later). While this solution sounds reasonable,
the following has been evaluated in order to see if the iris is a
usable biometric characteristic.

1) Localization and Orientation of the Iris: To establish
fully automated fish identification, it is required to detect
the iris region automatically and to rotationally prealign
each iris preliminary to feature extraction and matching.
Hence, for the Atlantic salmon iris, a segmentation ap-
proach is introduced, and a set of rotational prealignment
strategies is tested.

2) Stability: The lifespan of an intensive aquaculture fish
is short, but the fish grows rapidly within this timespan.
Thus, another contribution of this article is to evaluate
the stability of the Atlantic salmon iris pattern, i.e., if and
how the pattern changes over time.

3) Automatic Iris Recognition System: In contrast to other
works in this field, the evaluation is done using state-of-
the-art biometric system evaluation protocols and met-
rics. Regarding fish iris image processing and biometric
identification a fully automated system will be assessed.

4) R3 Research Principles: Replicability, Reproducibility
and Reusability. In order to repeat, improve or develop
new methods for fish iris biometry a database is required.
Thus, we make public the acquired database of fish iris
images (see Section IV-A) including source code and
libraries at a GitHub repository.1

1[Online]. Available: https://github.com/rschraml/fishid
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Fig. 2. Illustration of the pipeline to generate the fish iris code (FIC) from a segmented image.

To sum up: Our contribution is a state-of-the-art based fish
iris identification system based on a universal trait. However, we
note that the main objective of this article is to assesses the basic
feasibility of such a system and that the experimental evaluation
is based on fish iris images acquired in a controlled out of water
environment.

III. FISH IRIS CODES

The first step in the biometric toolchain is to acquire an
iris image for which a fish iris code (FIC) is computed in
four consecutive steps (see Fig. 2): iris segmentation, rotational
prealignment, iris normalization, and feature extraction.

A. Fish Iris Anatomy

The anatomy of fish eyes is similar to the human eye anatomy
on a basic level. Considering the human eye, we are looking at
the stroma, a fibrovascular layer connecting the sphincter (for
closing the iris) and dilation (for opening the iris) muscles or
the eye. The layer consists of fibers (fibro-), some running in
a circular pattern, but mostly radially mixed with nerves and
blood vessels (-vascular). In addition to the fibres, the dilation
muscle also runs along the radial axis. The formation of the fibres
in the stroma is different for individuals and stable over time,
which makes it a perfect candidate for biometric recognition of
humans. If the stroma contains pigments, it appears dark and
the structures are not apparently visible. To counteract this, the
human iris is captured with near-infrared cameras where the
pigmentation does not interfere with image acquisition.

For fish there are differences pertaining the iris, which are
not uniform over classes of fish. Iris of different fish species can
differ in terms of muscle, shape, and function, which leads to
a noncircular iris pattern, for example. As such the usability of
the iris for fish identification has to be judged for different fish
classes and species. For salmon, the iris is nonfunctional in that it
does not open or close to moderate light, i.e., it does not exhibit
a photometric response. Instead, the salmon uses retinomotor
movement of photoreceptors and retinal pigmentation to change
the light exposure of rods and cones [13], [14]. The iris is
well-formed and prominent despite its vestigial function. It is
an extension of the epithelial pigment layer of the retina (which
is used to moderate illumination) [15]. The pupillary opening
shows rounded diamonds shape (see Fig. 2).

B. Fish Iris Segmentation

For iris recognition the pupillary boundary, i.e., between pupil
and iris, and the limbic boundary, i.e., between iris and sclera (the

Fig. 3. CNN-based segmentation results for fish #0F571E captured in
four time delayed sessions. As shown, the iris is growing significantly
from Session 1 to 4, accompanied by changes in the iris pattern.

white of the eye in humans), need to be detected. This allows 1)
to segment the ROI containing the biometric information and 2)
to polar transform this ROI to an uniform rectangular represen-
tation. Traditional human iris segmentation approaches are not
well-suited as they often rely on the circular shape of the human
iris. For example, we mention the segmentation approaches
contrast-adjusted Hough transform (CAHT) [16] and weighted
adaptive Hough and ellipsopolar transform (WAHT) [17]. Pre-
liminary experiments using a traditional morphological-based
segmentation approach led to poor results, which are not worth to
be considered. However, recent research showed segmentation
approaches based on convolutional neural networks (CNN),
which are well-suited for human iris segmentation. For instance
Hofbauer et al. [18] showed that a CNN-based semantic segmen-
tation approach outperforms traditional approaches like CAHT
in case of low quality databases. Based on this insight, the inap-
plicability of traditional iris segmentation methods and the insuf-
ficient results with the tested morphological approach a CNN-
based semantic segmentation approach, requiring groundtruth
data, has been envisioned. Thus, for all images in the utilized
database the pupil (=inner boundaries shown in Fig. 3) was
detected in a semiautomated manner. The black pixels of the
pupil where clustered, holes where filled and the boundaries
were corrected manually to avoid under/over segmentation. The
limbic boundary (=outer boundary) was approximated based
on the pupillary boundary. Basically, by a circle the center of
which is defined as the pupil center of mass (CM). The radius
is 2× larger as the mean distance between the CM to pupillary
boundary vector lengths. The semiautomated estimated pupil-
lary boundary and approximated limbic boundary are supposed
to bound the groundtruth for the iris.

CNNs are a multilayered class of artificial neural networks
that gained great success in resolving many key computer vision
challenges such as visual segmentation. The network archi-
tecture we used to segment the fish pupil is identical to the
“SegNet-Basic” fully convolutional encoder–decoder network
[19]. The network’s encoder architecture is organized in four
stocks, containing a set of blocks. Each block comprises a
convolutional layer, a batch normalization layer, a ReLu layer,
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and a pool layer with kernel size of 2 × 2 and stride 2. The
corresponding decoder architecture, likewise, is organized in
four stocks of blocks, whose layers are similar to those of
the encoder blocks, except that here each block includes an
up-sampling layer. The decoder network ends up to a soft-
max layer, which generates the final segmentation map. The
network implementation is realized in the Caffe deep-learning
framework. As ground-truth data the semiautomated segmented
pupils were utilized. In order to perform, the segmentation on
all available images in the database and yet keep the training
and testing separate, we used the twofold training scheme. In
particular, we divided the whole database into two equal parts,
and used one part as our testing data and the other one as our
training data. Then, we switched the training and testing folds,
and so we obtained the pupillary boundary for each iris image
in the database. The limbic boundary was approximated in the
same way as for the semiautomated segmentation. Exemplary
results are shown in Fig. 3.

C. Rotational Prealignment and Polar Transformation

During matching of two FICs rotation compensation can be
performed by comparing shifted versions of the FICs. However,
the available fish iris data shows exceptionally strong rotational
differences between images of the same iris (see Fig. 3). Com-
pensating for such large angular differences is too slow. The
goal of rotational prealignment preliminary to feature extraction
is to reduce the rotational differences to an extent where they
can be compensated in the matching phase without undue loss
of speed. For this article two different prealignment strategies
(PCA, MAX) have been implemented which are assessed in
the experimental evaluation (see Fig. 2). Both strategies rely on
the observation that the fish pupil is not circular and thus it is
assumed that a prealignment vector (Θ0) can be determined. For
the first strategy, principal component analysis (PCA) is applied
to the points of the pupillary area, which leads to two perpen-
dicular eigenvectors giving the major axes of the pupillary. The
dominant axis is then used as prealignment vector. For MAX the
pupillary boundary is first smoothed with a Gaussian filter and
the vector with the maximum CM to pupillary boundary distance
is utilized as prealignment vector (Θ0). In the experiments, it
was observed that for both approaches it happens that for iris
images captured at different dates the prealignment can lead to
90° flipped versions.

D. Normalized Polar Transformation

Features are extracted from a normalized iris texture. Note
that no image enhancement has been applied to the iris texture.
The iris is polar transformed using Daugman’s rubber-sheet
model [20], this is in essence an unrolling of the iris texture,
and stretching to a uniform size. This normalization corrects
two factors which can lead to a different iris texture area: 1) The
distance and angle between the camera and iris can vary, which
introduced a scale change and geometric distortion; and 2) as
the fish grows, so does the skeletal and soft tissue, including
the eye. The polar transformation on the other hand allows for
a rotation of the eye to be expressed as a horizontal shift, which
is much easier to compute. Such a rotation can happen due to a

rotation of the fish in the water or of the eyeball in the eye-socket.
For our normalized polar transformation, Θ0 (calculated in prior
steps) is used as initial vector used to unroll the iris into the polar
domain which is positioned on the left edge of the transformed
fish iris (see Fig. 2). For normalization each pixel in the polar
image is stretched according to the length of Θnorm, which is
specified as the largest pupillary to limbic boundary vector. For
the transformation bicubic interpolation is applied.

E. Feature Extraction

For feature extraction and matching of FICs, we use the
open University of Salzburg Iris Toolkit (USIT) [21]. A note on
transfer learning and domain specific improvement: To transfer
knowledge from one domain (human iris) to another (fish iris),
we simply used the USIT methods as is to see what does work
and what does not. Specifically, the one-dimensional (1-D)-
Log-Gabor [16] based feature extraction worked very well and
we kept that as is, the segmentation on the other hand did not
work at all, mostly due to a difference in the shape of the iris
and periocular tissue, so most of our attempts to improve the
knowledge transfer fell into this part (=feature extraction) and
the polar transformation of the iris biometric toolchain.

1-D local Gabor features are extracted from a number of 1-D
signals. To generate the 1-D signals from the texture, we first
split the texture into horizontal bands with a height of roughly
8% of the distance from pupillary to limbic boundary. Then, the
remaining verticality is removed by averaging the values for each
horizontal position. This combination of information along the
radial axis counteracts sampling artifacts due to resolution and
different pupillary dilations. Since the outer boundary is only an
approximation we will not use the outermost parts (about 20%)
in the comparison since they might contain scleral or noneye
textures. The Gabor filter used has a real and an imaginary
component, which roughly equate to an edge (change in signal)
and a line (constant signal) filter. This relates to radial edges and
lines features in the unrolled image.

Note: To reduce the size of the FIC, we only use the signs
of the line and edge filters, which represent the absence of lines
and edges, respectively.

IV. EXPERIMENTS AND RESULTS

A. Salmon Iris Image Database (SIIDB)

SIIDB was captured 2018 by the authors within the AquaEx-
cel2020 TNA project AE050006, FISHID. SIIDB is hosted at
https://github.com/rschraml/fishid. For image acquisition 330
adult Atlantic Salmon (∼1kg, 42–46 cm length) were selected
initially. The cultivation period is usually between 12 to 18
months in tanks and between 12 to 24 months in sea cages. For
iris image acquisition the USB microscope Dino-Lite AM3113T
(no additional light) was utilized. A spacer [see Fig. 4(a)] was
utilized to keep the distance, roughly constant. Each fish was
anesthetized [see Fig. 4(b)] and one iris (head showing to the
left) was captured several times (8–16×) with minor rotations
caused by movements of the fish. Unusable images due to blur of
focus problems were removed. The database is subdivided into
a short-term (ST) and a long term (LT) dataset. A schematic

https://github.com/rschraml/fishid
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Fig. 4. SSIDB: Utilized sensor and exemplary lateral image of an
Atlantic salmon fish from the LT dataset. (a) Dino-Lite AM3113T with
spacer. (b) Fish with ID #0F571E –Session 1.

Fig. 5. Testset structure overview.

Fig. 6. Exemplary iris images of the ST (row 1) and LT dataset (row
2 and 3).

overview of the database structure is illustrated in Fig. 5.
The ST dataset are composed of iris images from 330 different
salmon fish, which were captured within one week. For the LT
dataset, a subset consisting of 30 fish from Session 1 (S1) was
captured again in three subsequent sessions (S2,S3,S4) with
approximately two months time span in between. Exemplary
iris images for four different fish of the ST dataset and two fish
of the LT dataset are depicted in Fig. 6.

B. Experimental Setup

For all fish iris images in the LT and ST dataset FICs
were computed for different rotational prealignment strategies,

which results in a set of configurations (MAX, PCA, MAXOPT,
PCAOPT) as described in Section III-C.

Furthermore, two additional configurations based on PCA
and MAX were used, utilizing four FICs per iris image. One
FIC is the same as for regular PCA and MAX and the other
three have a 90°, 180°, and 270° rotational offset from the first.
These configurations are denoted as PCAROT and MAXROT. The
goal is to avoid errors caused due to 90° rotated versions of
the same fish iris. During matching the best match (=highest
similarity) between the four FICs of each iris is determined
and used as matching score (MS). One baseline configuration
(NO) is computed without applying rotational prealignment.
All configurations were computed for semiautomated (GT) and
CNN segmented (CNN) fish irides in SIIDB.

For each configuration and all combinations of FICs MSs are
computed. MSs which are computed between FICs from the
same session are denoted as session MSs and MSs computed
between FICs from different sessions as temporal MSs (see
Fig. 5). Session MSs are computed for the ST dataset together
with the data of S1 from the LT dataset. The corresponding
score distribution (SD) is denoted as S1all. Furthermore, session
MSs are computed for the different sessions of the LT dataset,
which results in four different SDs denoted S1, S2, S3, and S4,
respectively. Temporal MSs are computed between the different
sessions of the LT dataset that leads to six different comparisons:
S1↔S2, S2↔S3, S3↔S4, S1↔S3, S2↔S4, and S1↔S4. Note
that each session and temporal SD is further subdivided into an
intra and interclass SD, which correspond to the genuine and
impostor SDs in biometrics [22]. Genuines are MSs computed
between FICs from the same fish and impostor MSs are com-
puted between FICs from different fish.

a) Fish Iris Distinctiveness and Stability: The results for ST
and LT evaluations present an insight into the distinctiveness
(same session performance) and stability (change over time)
of the Atlantic salmon fish iris. Both are quality criteria of a
biometric characteristic. Distinctiveness is the main prereque-
site and expresses that the biometric characteristic enables the
distinction between different individuals. Stability is crucial
for the robustness of a biometric system and expresses that
the biometric characteristic does not change or vary over time.
Intrinsic changes mainly result from ageing. Extrinsic changes
are caused by different acquisition conditions, e.g., light or
position (rotation, tilt, and camera distance) of the fish.

In the following, we experimentally assess fish iris distinctive-
ness and stability. The session SDs enable to draw conclusions on
the distinctiveness of the fish iris and the temporal SDs enable to
assess fish iris stability. Furthermore, results for semiautomated
and CNN-based segmentation enable to draw conclusions on
the theoretical performance, as well as for a fully automated
biometric system.

C. Results and Discussion

The experimental evaluation is done in four steps. 1) It is
assessed how much rotation is in the data. Since rotation neg-
atively influences the MSs we need to ascertain if rotational
prealignment is required or if rotation compensation in the
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Fig. 7. EERs for different rotation compensation shifting values [X-axis: Rotation compensation in ±Bit, Y-Axis: EER in %].

matching stage is sufficient (Section IV-C1). Thus, rotational
differences in the session and temporal SDs are assessed by
comparing the results of the baseline configurations where no
rotational prealignment (NO) is applied. 2) We assess the basic
suitability of the different rotational prealignment strategies by
analyzing the verification performances for the temporal and ses-
sion SDs (Section IV-C2). 3) Identification performance results
are presented. Results for the temporal and session SDs reflect
real world scenarios in terms of repeated identification with no
time delay and varying time delays for tracking and monitoring
of a fish (Section IV-C3). 4) Finally, the presented results are
contrasted with the results presented in related literature.

1) Rotation Compensation Performance: In order to get an
impression of the rotation, which is contained in the LT and
ST dataset an analysis of the verification performances of NO
for the session and temporal SDs is performed. For verification
performance evaluation the equal error rate (EER) is a general
benchmark. Basically, the question is if shifting during matching
is sufficient to overcome rotational variations, i.e., to show the
need for rotational prealignment. To avoid side affects caused
by segmentation errors the semiautomated segmented fish irides
(GT) were utilized.

It is expected that with an increasing shifting value the EER
decreases until a lower boundary is reached. Therefore, the
shifting value in the matching stage is varied from 0 to 16 for
the session SDs and from 0 to 64 (stepsize 2) for the temporal
SDs and it is assessed how the EERs change. A shifting value of
1 corresponds to a rotation of 360°/512 = 0.7°, where 512 is the
width of the polar transformed and normalized iris. This means
that the maximum amount of rotation, in case of the temporal
SDs, which has been compensated for is +/− 44.8°.

The charts in Fig. 7 show the EERs achieved for different
shifting values and the different session- and temporal SDs,
respectively. For the session SDs rotation compensation in
the matching stage is sufficient to achieve good performances
(EERs<4%) with a shifting value set to 16. Even with a lower
shifting value of 8 EERs below 9% are achieved. However,
rotation compensation is required to attain acceptable EERs
for the temporal SDs. The difference between the session and
temporal SDs can be attributed to the data acquisition. Within a
session the rotational variation for the iris images of a fish were
nominal and mainly caused by body movements of the fish. For
each new acquisition session each fish was once again positioned
on a table, which leads to stronger rotational differences in the

temporal SDs. For the temporal SDs in the right chart of Fig. 7,
it is obvious that this shift-based rotation compensation is not
sufficient to overcome the rotational variations. Even with very
high shifting values no acceptable EERs are achieved. Whereas
for the session SDs a shifting value of 16 is suited to achieve
EERs below 4%, for the temporal SDs all EERs stay over 39%.
While it would be possible to use a higher shift-based rotation
compensation this affects the outcome in terms of timeliness,
i.e., matching would take longer, as well as in performance
since interclass FIC matches are also improved, see [23] for
research on this topic as pertaining to the human iris. Based
on these results, it can be concluded that for fish iris images
captured at different dates (as present in the LT dataset) rotational
prealignment is required, in addition to rotation compensation in
the matching stage. This finding also applies to data recorded in
a realistic application, since this will result in different rotations
of the iris from the same fish.

The low EERs (<4%) for the session SDs already give a first
evidence that the fish iris shows a high distinctiveness, i.e., it
enables to discriminate between fish in the individual sessions
(S1all = 330 fish). On the other hand, the temporal SD EERs are
affected by external variations (i.e., rotational variations) and it
is not possible to draw conclusions on the stability of the fish
iris.

2) Rotational Prealignment and Verification Performance
Analysis: The verification performances, expressed as EERs,
for the different rotational prealignment strategies as well as
the session- and temporal SDs enable to draw first conclusions
on the stability. The results allow to determine to which degree
the verification performance is affected by intrinsic changes of
the fish iris and if prealignment is suited to overcome extrinsic
changes, i.e., rotational variations. Also, it is not clear how the
results for the session SDs, which show less rotational variations,
are affected by rotational prealignment. Again, all results were
computed for the semiautomated segmented fish irides to avoid
side effects. Results for CNN-based segmentation enable to
investigate the feasibility of a fully automated fish identification
system and how it impacts the verification performances.

Results are summarized in Table I. Based on the insights of
the rotation compensation analysis all EERs are computed with
shifting values 16 and 32. It is not clear if a shifting value of
32 always improves the EER. Basically, a higher shifting value
increases the chance to find the correct rotational alignment of
two FICs from the same fish, but it also increases the risk of
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TABLE I
VERIFICATION PERFORMANCES (EERS [%]) FOR THE SESSION AND TEMPORAL SDS, DIFFERENT ROTATIONAL PREALIGNMENT CONFIGURATIONS,

ROTATION COMPENSATION SHIFTING VALUES 16/32 AND FOR SEMIAUTOMATED (GT) AND CNN SEGMENTED (CNN) FISH IRIDES

Irrelevant EERs are replaced as follows: Session SDs EERs worse than 5% are replaced by a star (∗). Green colored results signalize
all EERs < 1% in the session SD results. For the first four columns in the temporal SDs EERs worse than 20% are replaced by a
slash (/). For the S2↔S4 EERs results worse than 30% and for S2↔S4 EERs worse than 35% are replaced by a plus (+) and minus
(−), respectively. For all temporal SDs yellow colored results highlight EERs < 10%.

finding a rotational alignment of two FICs from different fish at
which they are more similar to each other.

Results for GT and NO show that for the session SDs a shifting
value of 16 is sufficient to achieve acceptable EERs<4%, which
improves to EERs <1.04% when shifting with a value of 32. As
already stated, this indicates the distinctiveness of the salmon
fish iris pattern. Fortunately, the EERs for the CNN results of
NO (SHIFT 16 and 32) are close to the GT EERs, which indicates
that the employed CNN segmentation performs well and enables
to set up a fully automated system.

When considering the temporal EERs for NO (GT&CNN)
two assumptions can be made: 1) as already concluded in
Section IV-C1 there is more rotational variation in the temporal
SDs compared to the session SDs and 2) the salmon fish iris
definitely changes over time. The first assertion is shown by
comparing the NO temporal SD results (GT&CNN) to all others
where rotational prealignment, as well as a shift of 16, is applied.
In contrast to the session SDs the EERs of the temporal SDs
improve when applying rotational prealignment. This means that
in case of the session SDs, which contain only little rotational
variations, some of the rotational prealignment strategies add
rotation to the data (EERs increase) and for the temporal SDs the
majority of strategies reduce rotational variations significantly,
i.e., the EERs decrease.

Results also show that for all prealignment strategies the
higher shifting value 32 improves the EERs for the majority
of results. Another interpretation of the results is that the current
prealignment is future work and should be improved. Due to
the good performance of the CNN-based segmentation most of

the results are similar to the GT results. Thus, all subsequent
conclusions hold for GT as well as for CNN. For the session
SDs, S1, and S4 the results for SHIFT 16 and SHIFT 32 show
that PCA performs better than MAX. For S2 and S3 there is no
significant difference.

Contrary to the session SDs, for the temporal SDs MAX
significantly outperforms PCA, especially when considering the
SHIFT 16 EERs. Fig. 8(a), and (b) illustrates the cumulative MS
distribution functions (CDF) for the different intraclass temporal
SDs of MAX and PCA (GT), respectively. Furthermore, the
interclass CDF computed over all temporal SDs (GT) is shown.
The CDF of a SD gives the probability that a certain MS exists,
which is less or equal to that MS. The CDFs of certain intraclass
SDs and the interclass SD are used to observe their overlap
and to draw conclusions about their separability. It is easy to
see that compared to PCA for MAX the intraclass CDFs shift
away from the interclass CDF. However, there still remains an
intersection with the interclass CDF for all temporal CDFs where
S4 is involved. This is also reflected by the high EERs achieved
for all temporal SDs, which indicates that the salmon iris pattern
changed from S3 to S4. This is further substantiated by the fact
that for the session SDs and S4 with SHIFT 32 and NO (GT)
an EER of 1.04% is achieved. Thus, it is very likely that the
high EERs for all temporal SDs with S4 are caused by internal
variations of the iris, i.e., growth of the fish eye and changing
iris pattern.

Considering MAXROT and PCAROT the session SDs show that
the EERs (see Table I) increase significantly compared to NO.
Note that EERs worse than 5% are replaced by a star (*) in the
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Fig. 8. Intra-/Interclass CDFs of the temporal SDs and selected rotational prealignment strategies (GT, SHIFT 16) [X-Axis: MS, Y-Axis: Cumulative
Probability]. (a) MAX. (b) PCA. (c) MAXROT.

Fig. 9. Intra-/Interclass distribution charts for selected temporal SDs
and selected rotational pre-alignment strategies (GT, SHIFT 16). [X-
Axis: MS, Y-Axis: Probability]. (a) S1↔S2. (b) S3↔S4.

table. An explanation for this effect is that four FICs per iris
and additional shifting significantly increases the risk of finding
rotational alignments where the iris of different fish are similar
to each other. However, the MAXROT EERs for the temporal
SDs are superior to all other results. This is independent of the
shifting value, confirming the assumption that if the rotational
prealignment works further shift based compensation beyond
what is required for a single session is not needed. Interestingly,
PCAROT is not suited to improve the verification performances
of the temporal SDs. The corresponding intraclass CDFs for
the temporal SDs of MAXROT (GT, SHIFT 16) are shown in
Fig. 8(c). Compared to the MAX CDFs in Fig. 8(a) it is obvious
that the intersection of the intraclass CDFs with S4 and the
interclass CDF decreases. Finally, Fig. 9 enables to compare
the intraclass and interclass SDs for the temporal SDs S1↔S2
and S3↔S4 (GT, SHIFT 16) computed with NO, MAX and

MAXROT. For NO the charts illustrate that rotational misalign-
ment causes an overlap of intraclass SDs with the interclass
SDs. Considering MAX this overlap is significantly reduced by
rotational prealignment and rotation compensation. For MAX
there still is a high overlap of the interclass and interclass
SD, which is reduced when applying MAXROT for rotational
prealignment.

3) Identification and Real-World Scenario Performances:
By considering the identification performances for the session
and temporal SDs first conclusions on the feasibility of salmon
fish iris identification in a real-world scenario can be drawn.
Hence, the CNN-based segmented fish irides were utilized for
the identification performance experiments.

Basically, session SDs indicate the feasibility of ST identifi-
cation and temporal SDs show the performance for LT identi-
fication. Identification performances are assessed based on the
Rank-1 recognition rate (RR). In Figs. 10 and 11, the Rank-1
RR for the rotational prealignment strategies and the session
and temporal SDs are summarized, respectively. The temporal
SDs results are comparable to the verification results for SHIFT
16 and the general statements are the same. Summarized, PCA
performs better than MAX and MAXROT and PCAROT improves
the performance for S4 slightly. With PCA, except for S4, all
Rank-1 RRs are higher than ∼98.5%. The best performance for
S4 is achieved with PCAROT showing a Rank-1 RR close to
∼96%.

Results confirm that the salmon fish iris is highly distinc-
tive and enables ST fish identification. However, same as for
the verification results the identification performances for the
temporal SDs again show that intrinsic variations, i.e., aging,
cause decreasing Rank-1 RRs. Again, the best performances
are achieved with MAX and MAXROT. The best performance
is shown for the temporal SD S2↔S3 with ∼80% followed by
S1↔S2 and S1↔S3. Again, this indicates that the iris changed
significantly from the S3 to S4. Even S1↔S3 with ∼65% is
better than ∼50% achieved for S3↔S4 with a shorter time-span
between the acquisition sessions. Together with the verification
performance results, it can be concluded that the robustness of
fish iris biometrics suffers from a missing LT stability of the fish
iris. However, the S1↔S2, S2↔S3, and S1↔S3 results indicate
that identification in a real-world scenario is feasible but the
system needs to consider this issue by updating the biometric
templates of each fish (FIC) in short periods. Especially, at an
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Fig. 10. Session SDs (CNN, SHIFT 16) – Identification performance evaluation [Y-axis: Rank-1 recognition rate (RR) %].

Fig. 11. Temporal SDs (CNN, SHIFT 16) – Identification performance evaluation [Y-axis: Rank-1 RR %].

age over 6 months this becomes crucial as the pattern changes
significantly at this age.

This is also an interesting result with regard to the biometry
of the human iris, since the human iris shows ageing effects,
although the severity of the impact is controversial (see [24]).
The fish under study have now also shown an ageing effect,
which can much more readily observed and researched owing
to the faster life cycle of the Atlantic salmon.

4) Comparison to Related Literature: Finally, the Atlantic
fish iris identification results are compared and discussed with
the literature presented in Section II. Different to the low stability
of the Atlantic salmon iris, the results for Patagonian catfish in
[8] showed that the lateral skin spot pattern has a high distinctive-
ness as well as LT stability. A direct comparison of the results is
not feasible, as the approach in [8] relies on I3S [25], which is a
computer-aided photo identification application for underwater
animals. With the help of this software, three reference points
and all spots in each lateral image were annotated manually
and the software performed the matching. If the authors achieve
similar results in the future with an automated method, the
approach would have great potential in terms of distinctiveness
and stability.

If the skin pattern is used as a characteristic it is often not clear
if it is present for all fish of the same species and if this pattern is
present at all ages. The results for Atlantic salmon identification
in [9], which are based on the lateral opercolum pattern indicate
the nonsuitability as a biometric characteristic because some
fish showed no pattern or it disappeared. Similarly, in [11], the
absence of the dorsal head view pattern of Chinook salmon for
a large amount of individuals has been reported.

The results presented by [12] for delta smelt identification
based on dorsal head view images are comparable to ours in
terms of stability. Even if the pattern was localized manually,
results for automated matching indicated that the pattern changes
over time and matured fish show more distinctive patterns. On

the contrary, our results show that the distinctiveness of Atlantic
salmon based on the iris pattern could get a little worse with older
age. A comparison regarding the distinctiveness is not possible
because the fish sample size was smaller and no results for one
point in time (=session SDs in this article) were presented.

Compared to our session SD results the experiments for ar-
mored catfish identification using ventral images [5] and lionfish
identification using lateral images [10] showed poorer recogni-
tion accuracies, although manual localization was performed.

It can be concluded, that the suitability of the skin pattern as a
biometric characteristic must be examined closely, same as for
the iris pattern. In the future approaches with automated skin
pattern localization should be sought by the community.

The basic advantage of the iris is that most fish species show
a visible iris pattern which is likely suited as a biometric char-
acteristic to set up a FDSS. Additionally, as shown in this article
the iris pattern can be localized automatically which enables
automated identification.

V. CONCLUSION

Fish identification is a basic tool required to move from mass
to smart production in intensive aquaculture. Noninvasive meth-
ods are fast, cheap, and beneficial for fish welfare. Biometric
approaches based on the individuality of the skin pattern lack
of visible patterns in general and missing patterns in various
life phases of a single fish. Therefore, this article demonstrated
the principal feasibility of Atlantic salmon fish identification
using iris images as biometric characteristic. Distinctiveness and
stability of the salmon fish iris were assessed based on a ST and
LT dataset.

Results for 330 different fish in the ST dataset showed that
the fish iris is highly distinctive. For all subsets in the ST
dataset identification rates of over 95% could be achieved. The
stability of the fish iris was assessed based on the LT dataset.
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Due to different rotational alignments between iris images
of the same fish captured at different points in time a set of
rotational prealignment strategies were applied and evaluated.
Experiments showed that rotation compensation in the matching
stage, even with a high shifting value, is not sufficient to achieve
acceptable EERs. The best results for the LT dataset were
achieved with the rotational prealignment strategy MAX, which
uses the maximum length pupillary CM to boundary vector for
alignment. An additional improvement could be achieved by
enrolling four 90° rotated templates of each iris (MAXROT),
reducing errors caused by rotational prealignment resulting in
at most 45° rotational error in iris images.

Results showed that the verification performances decrease
with an increasing time span between the different acquisi-
tion sessions. Interestingly, results for the first two (S1↔S2
= 14.96%) and the last two successive sessions (S3↔S4 =
19.6%) sessions are worse than for the middle sessions (S2↔S3
= 9.87%). This leads to two main conclusions: 1) The salmon
fish iris shows a weak stability, i.e., due to ageing (=size and
pattern changes). 2) The variations caused from ageing from
month 2 to 4 and 6 to 8 are much stronger than in-between from
month 4 to 6.

Results achieved with semiautomated segmented fish irides
were compared to those computed with a fully automated CNN-
based approach. The results showed that automated segmenta-
tion is possible and comparable to that achieved with the semiau-
tomated segmented irides. This was crucial in order to establish
a fully automated fish identification system. Additionally, for
a real-world scenario the identification performance of the LT
dataset is of relevance and the identification rates for MAXROT

on the different subsets vary between 28% and 80%. Based on
the missing stability of the salmon fish iris and the accuracies
for the successive subsets S1↔S2= 72.00%, S2↔S3= 80.00%
and S3↔S4 = 51.00% the following conclusion can be made:
Salmon fish iris identification is feasible in a real-world scenario
with the precondition that the biometric template of each fish in
the database of the biometric system is updated periodically,
especially when the fish gets older than 6 months. In human
biometrics this is referred to as adaptive biometric systems.

A. Future Work

It was not feasible to consider the impact and change of
pigmentation with age in this article. The change in pigmentation
can be disregarded for short time spans. However, given the de-
crease in identification performance between image acquisition
sessions that are further apart in time, this may be the reason for
the decrease.

Future work needs to consider a realistic environment, i.e.,
underwater iris images of swimming fish. For example, fish
could be forced to pass through a narrative tube with their lateral
side to the camera at a relatively constant distance similar to what
explained in [26] and [27]. In order to compensate for differences
between iris images from different sessions future experiments
should consider iris image preprocessing.

Furthermore, the use of near-infrared imaging could improve
the identification performance since the iris is likely pigmented

given that it is an extension of the epithelial layer. It is known
that the speed of adaptation and the pigmentation of the epithelial
layer changes, stronger pigmentation with increasing age [15].
The impact on the pigmentation of the iris is unknown but is
likely to happen. Independent of visible light or near infrared
imaging, an appropriate illumination as common in human iris
imaging needs to be considered. However, special care must be
taken to ensure that the lighting does not pose any health risks
or impacts fish welfare.

Finally, the use of other or additional biometric performance
metrics should be considered in future work. The use of other
metrics will depend in particular on the respective application
or the focus of the investigation.
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