
IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021 2411

Goal-Oriented Process Plans in a Multiagent
System for Plug & Produce

Mattias Bennulf , Fredrik Danielsson , Bo Svensson , and Bengt Lennartson , Fellow, IEEE

Abstract—This article presents a framework for Plug &
Produce that makes it possible to use configurations rather
than programming to adapt a manufacturing system for
new resources and parts. This is solved by defining skills
on resources, and goals for parts. To reach these goals,
process plans are defined with a sequence of skills to be
utilized without specifying specific resources. This makes
it possible to separate the physical world from the process
plans. When a process plan requires a skill, e.g., grip with a
gripper resource, then that skill may require further skills,
e.g., move with a robot resource. This creates a tree of
connected resources that are not defined in the process
plan. Physical and logical compatibility between resources
in this tree is checked by comparing several parameters de-
fined on the resources and the part. This article presents an
algorithm together with a multiagent system framework that
handles the search and matching required for selecting the
correct resources.

Index Terms—Multiagent, Plug & Produce, process plan,
robotics.

I. INTRODUCTION

S INCE late 1980s mass customization has become more
common and now aims at reaching production costs close to

dedicated manufacturing systems [1]. The life cycle for products
is becoming shorter, making traditional approaches for automa-
tion ineffective. There is a need to develop new control strategies
that can handle various changes without reprogramming, such
as production fluctuations, the addition of resources, and the
introduction of new products [2].

Conventional centralized approaches are dedicated to specific
tasks, forcing personal to understand much of the code and
logic, manually programmed in robots and programmable logic
controllers (PLCs) when changes are made to manufacturing
systems [3]. Instead, this article aims at spreading out the logic
and parameter data on agents related to each resource and part

Manuscript received January 15, 2020; revised March 24, 2020; ac-
cepted April 21, 2020. Date of publication May 28, 2020; date of current
version January 4, 2021. This work was supported by Miljö för Flexibel
och Innovativ Automation under Project no. 20201192 funded by the
Europeiska regionala utvecklingsfonden/VGR. Paper no. TII-20-0219.
(Corresponding author: Mattias Bennulf.)

Mattias Bennulf, Fredrik Danielsson, and Bo Svensson are with the
Department of Engineering Science, University West, 46132 Trollhät-
tan, Sweden (e-mail: mattias.bennulf@hv.se; fredrik.danielsson@hv.se;
bo.svensson@hv.se).

Bengt Lennartson is with the Department of Electrical Engineering,
Chalmers University of Technology, 41296 Göteborg, Sweden (e-mail:
bengt.lennartson@chalmers.se).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2020.2994032

in a manufacturing system. In this article, the parts are metal
pieces to be processed, and the resources are one industrial
robot surrounded by different process modules for machining
and storage. Distributing the controller on multiple agents makes
it possible to change the behaviour of a resource or part, without
considering other resources or parts. For example, if introducing
a completely new type of tool to the robot cell, our approach
requires no downtime. The tool can be calibrated in a separate
environment and data saved in its agent, before adding it to the
manufacturing system. In a traditional approach, the robot cell
commonly needs to be stopped and the robot code changed to
achieve this reconfiguration.

Manufacturing system concepts have varied over time. Ini-
tially, functional workshops were used as a norm [4]. Functional
workshop structures still exist today, due to their ability to handle
low volume products with a very diverse range of products,
but they are characterized by a low level of automation due
to their complexity [5]. The complexity of such a system can
become immense, and it is difficult to get an overview of its
flow. Moreover, if shared by many products, it will generate
complex and unpredictable flows, which are hard to balance.
It is easier to focus on resource efficiency (overall equipment
effectiveness) rather than flow efficiency in such a situation [6].

Reconfiguration and flexibility have been researched for sev-
eral decades in automation [7]. Flexible manufacturing systems
(FMSs) was developed in the 80’s [8] and reconfigurable man-
ufacturing systems (RMSs) in the 90’s [8], [9]. They both aim
at taking care of customization and short product life cycles.
Even if FMS and reconfigurable concepts are examples of exist-
ing solutions for the automation of functional workshops, and
the literature confirms the benefits of flexibility in automated
manufacturing, the industrial experience still points out several
shortcomings. FMS still have too high installation cost, due to
rigid control solutions, and RMS are still not flexible enough
to support fast reconfiguration, where machines are to be added
and removed [7]. Manufacturing systems that handle quick con-
nection and use of new devices are often regarded as Plug & Pro-
duce systems. This concept was first introduced in [10], where
multiple resources could be added, containing a local controller.

This article addresses reconfigurability by defining a new
multiagent system (MAS) framework for Plug & Produce. The
framework is general and can be applied to many manufacturing
systems, but the focus in this article is on local robotized flows
in functional workshops.

The main idea is to be agile and able to create manufacturing
systems when needed on short term notice. For Plug & Produce,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7683-7662
https://orcid.org/0000-0002-6604-6904
https://orcid.org/0000-0002-8878-2718
https://orcid.org/0000-0002-3406-3881
mailto:mattias.bennulf@hv.se
mailto:fredrik.danielsson@hv.se
mailto:bo.svensson@hv.se
mailto:bengt.lennartson@chalmers.se
https://ieeexplore.ieee.org

2412 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

the time to set it up should be measured in minutes rather than
days or months as for older concepts. The setup time can be
divided into two main parts, the hardware installation time (hard-
ware time) and the time spent on programming and configuring
the system (software time). The hardware time can be handled
by using standardized connectors and standardly sized modules.
This has been described in previous work, such as [11], [12],
where it is defined as mechatronic compatibility. Modular hard-
ware architectures have been implemented and tested in other
works such as [13], [2]. Using standardized physical connectors
and modules, it is easy to move resources around to form local
setups on demand. However, for the software time , there is also
a need for reconfiguration/reprogramming of the logical system
to integrate the added components [12], [14].

The focus of this article is to formulate a solution that avoids
the time it takes to program equipment for new tasks, i.e.,
decreasing time spent on software time. The key components
are intelligent and collaborative resources. An intelligent and
collaborative resource is not programmed in a traditional way,
such as PLC and robot control code, where logic and data are
mixed in one big integrated and dedicated solution. Instead,
each resource is assigned an agent upon activation. An agent
is a standardized software package, able to communicate and
collaborate with other agents [15]. A software agent is unique
in the world by its configuration, which is loaded when it is
instantiated. The configuration mainly describes the physical
properties and skills associated with a specific resource. In this
way, each agent becomes a unique controller for a specific
resource. When several smart resources are grouped together,
they collaborate to form a local manufacturing system. Together
they can offer more aggregated and advanced skills, depending
on the resources involved.

In the same way, every part in the system, that should be pro-
cessed, has a related agent representing its physical properties.
The part agents have goals that they want to reach by using avail-
able skills of the resources. Multiple process plans can be defined
in the system, describing how to reach a goal. These plans are
written like recipes rather than programs. They describe how
skills on resources should be used without specifying specific
resources or routes through the manufacturing plant. Each skill
on a resource has its own process plan for executing the skill.
These plans might require additional skills on other resources,
forming a tree of connected agents, collaborating to solve a part
goal. This further simplifies the process plans for part goals, by
hiding the chain of skills and resources needed for a specific step
in that process plan.

The use of goals and configurations associated with parts
simplifies the process of adding new products. The goals and
configuration values are the only information needed to describe
what to be done for a specific part. The process plan separates the
skills of resources from the part goals. This makes it possible
to have several potential solutions in the system that become
available, depending on what resources currently are connected
to the system.

The main contribution of this article is a new framework for
developing MASs for Plug & Produce, where no programming

Fig. 1. Simplified example of the Plug & Produce concept.

is needed when new parts are introduced. Additionally, the time
spent on programming resources is decreased drastically. This
makes it possible to add new types of products and resources
in terms of minutes rather than days in traditional approaches.
It includes a novel approach for defining process plans that
describe how to reach a specific part goal in a manufacturing
system. A recursive search algorithm is developed that can
form the tree of connected resources needed to run a given
process plan, defined for a goal. Resources are checked for both
physical and logical compatibility before added to the tree. The
framework described in this article has been implemented and
tested in our lab, based on an industrial scenario described in this
article. The framework extends a previously developed MAS in
[16] and [17].

The rest of this article is organized as follows. Section II
introduces related work and compares it to this article. Section III
introduces the Plug & Produce framework together with an
algorithm for mapping goals to resources. Section IV presents
an experiment where the proposed algorithm is tested using
an industrial scenario. Section V gives the evaluation of the
experiments conducted, and finally, Section VI concludes this
article.

II. BACKGROUND

MASs offer a distributed approach to specifying system be-
haviours, instead of writing programs with a list of low-level
sequential instructions. An agent can be instructed what to do in
terms of more high-level goals it must fulfil and communicates
with other agents to find solutions for reaching those goals [18].
In Fig. 1, a simplified example is shown where a part has the goal
to get soft edges. The part is equipped with a strategy to find one
or more process plans for this and starts to communicate with
the other agents to find a feasible solution.

Similarly to our article, Krothapalli and Deshmukh [19]
present a multiagent manufacturing system where parts and
resources are agents with communication capabilities. Parts have
a primary objective to perform specific processing. Parts com-
municate with resources or other parts by broadcasting messages
to all agents. Parts will be processed on any machine that can
perform the required process.

However, the use of MASs in manufacturing systems is still
uncommon today [20], [21]. To change this, there is a need

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2413

for simplification of configuration tools that enable system de-
signers to configure the agents without understanding the com-
plexity of the underlying MAS [20], [22]. Instead, the system
designer should be separated from low-level communication and
negotiation strategies of the agents. It is also clear that MASs
have to be easy to integrate with already existing resources in a
manufacturing system [23], [24].

A description of agents was published in 1995 by Wooldridge
and Jennings [25]. They describe an agent as some hardware
or software, operating without human intervention. Agents per-
ceive the environment and react to it. Several agents can commu-
nicate with each other through agent-communication languages.
They can also have goals that they want to reach in the world.
MASs enable devices to adapt to new situations [26], which is of
importance in a Plug & Produce system. Examples of physical
agents could be autonomous robots [27], and software agents
could be implementations of services in a system. However, the
distinction between these two is not always clear, since robotic
systems are hardware-based, while the robot controller usually is
software-based. In this article, an agent is described as a piece of
software, representing some object. The object can be physical,
e.g., a part or a resource, or it can be a software function, e.g.,
transportation planning.

Standards for multiagent design and communication were
defined already in 1997 [28] by the foundation for intelligent
physical agents (FIPA). This is an IEEE organization that fo-
cuses on developing standards for MASs [29]. FIPA presents a
collection of several specifications. Two important specifications
defined by FIPA are the “agent management specification” [30]
that describes general guidelines on how to design an MAS,
and the “agent communication language” specification [31] that
gives guidelines on how to design agent communication. Java
agent development framework (JADE) is a library for Java used
for agent implementation that follows several standards from
FIPA [32].

However, the FIPA specification and the JADE library de-
scribe nothing about how to develop a framework for manu-
facturing systems where fast reconfiguration for new parts and
resources is needed. This is the topic of which the Plug &
Produce framework presented in this article is focused.

A. Related Work

This section presents several articles with related work and
compares them with this article.

Schou and Madsen [14] describe a Plug & Produce framework
for industrial robots. They divide devices like grippers and robots
into different agents to form an MAS. The article presents a
control framework that is supposed to handle quick and easy
exchange of hardware modules. They aim at solving this by
separating the high-level task control from the hardware.

Instead, the focus of this article is on distributing the controller
on more agents. This means that the combination of agents to
form, for instance, a robot with a gripper is performed in a
completely distributed way, where the agents for the gripper and
the robot agree on how to collaborate. This further simplifies the
adding of new devices.

Järvenpää et al. [33] describe a system where combined
capabilities/skills can be described by defining a list of capa-
bilities required for the combined capability, e.g., by combining
a robot with the capability moving and a gripper with capability
holding, the combined capability transportation could become
available in the system. Similarly, Antzoulatos et al. [34] present
an MAS developed on the JADE platform that can match the
capabilities/skills of resources with product specifications. They
give resources skills like move with a robot and grasp with a
gripper. They may also form complex capabilities combining
these capabilities to create a pick and place capability. This
is done by manually defining the required capabilities to be
performed for the complex capability.

In this article, we use a different approach. For instance, a
skill transport can be defined on the gripper. The gripper cannot
perform the skill transport alone, so it has a requirement for an
additional skill move that could exist on a robot. This connection
by requirements for further skills will form a tree of connected
agents that are working together, where the knowledge of re-
quirements is entirely distributed.

Park et al. [35] present an agent communication framework
for rapid reconfiguration of distributed manufacturing systems.
They separate physical and logical reconfigurability and identify
that both are required for a manufacturing system to be effec-
tively reconfigured. A system has been developed that is able to
perform automatic layout change detection in the manufacturing
system, using infrared sensors between modules.

In addition, our work considers the physical and logical
compatibility of resources when combining skills into complex
skills.

Agents can communicate in order to get information about
each other, or they can use a centrally stored knowledge base
about the resources in the system, to avoid broadcasting. In
[36], such a knowledge base is used for MAS planning of
manufacturing sequences.

In this article, we have avoided a central knowledge base, and
each agent instead builds up their own knowledge base.

Sutton et al. [37] describe hierarchical reinforcement learning
with options. For example, an option that describes how to open
a door consists of three components, a policy, a termination
condition, and an initiation set. The policy describes the actions
defined for reaching a final state, in this case: reaching, grasping
and turning the doorknob. The terminating condition is the
knowledge that the door has been opened and the initial state
defines the requirement that the door should be present.

The options described in [37] have similarities to the process
plans presented in this article since both describe a set of actions
to be taken in order to reach a final state. Both approaches are
used for planning the behaviour of an agent, moving around
in a physical environment. However, it should be noted that our
framework is applied and verified in an industrial manufacturing
system and that the focus in this article is not planning. Instead,
our focus is to decrease the time to add new parts and resources
to a manufacturing system.

Vallèe et al. [38] show a MAS that uses ontologies for
expressing concepts and properties of agents in the system.
This is done to ensure a common understanding between agents

2414 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

when communicating. This was done to avoid traditional agent
approaches where reasoning about concepts is hardcoded into
the agent’s behaviors.

In this article, agents also share a common understanding of
concepts, without any hard coding. This is part of the agent
configuration and can be changed without reprogramming.

III. PLUG & PRODUCE FRAMEWORK

To achieve physical flexibility, the system described in this
article uses self-aware and independent Plug & Produce process
modules. Several modules can be grouped together to form an
automated local manufacturing setup. To handle such a flexible
system, a controller that adapts to available resources is neces-
sary. To implement the controller, a distributed control strategy
based on a MAS framework is adopted.

A MAS consists of many single agents that can interact with
each other. Two types of agents are considered, part agents and
resource agents. Part agents have goals and use process plans
to reach them. A process plan translates design information
(goals) into a sequence of operations (skills) needed to produce
a part with the desired properties. To run a process plan on a
part agent, several skills and variables are required to exist on
resources in the agent network. In this article, this is noted as
demands. Resources also have plans that define how their skills
are executed. These plans might require additional skills to exist
on other resources in the agent network. A search algorithm
distributed on each agent is used to find this tree of connected
interfaces between agents.

Agents always interact with each other through interfaces,
meaning that a resource used by a part must have an interface that
is compatible with one of the parts interfaces. This ensures that
they are compatible both physically and logically. The demands
introduced earlier should be seen as requirement specifications
for what skills and variables an interface needs to have. The
interface can, for instance, describe that a grinding wheel is
compatible with a motor. If an interface with the keyword
“ifTool” exists on a grinding wheel, then a motor to be connected
to it also needs an interface with that keyword, to ensure physical
compatibility. Interfaces also need to have compatible signals,
i.e., variables. If the wheel requires to set the speed of the motor
on variable RPM = 500, then that variable must exist on the
motors interface and be able to handle that speed. In this way,
physical and logical compatibility is checked to match resources
by searching interfaces.

A. Multiagent System

In the proposed Plug & Produce framework an agentabelongs
to the set of agents A, i.e., a ∈ A. Two types of agents exist,
parts p and resources r, see Fig. 2. A part p is included in the
set of parts P, while a resource r is a member of the set of
resources R. Hence, p ∈ P and r ∈ R. The set of all agents A
consist of all resources R and parts P , i.e., A = R ∪̇P . Parts
and resources have different agent strategies, where parts are
trying to reach goals, while resource agents represent available
physical or virtual resources.

Fig. 2. Diagram with classes for part and resource agents, which have
different strategies for part and resource.

Fig. 3. Diagram, showing the agent configuration classes and their
relations to each other, i.e., the agent ontology.

Goals can be described quantitatively by specifying parame-
ters together with the goal, e.g., SoftEdges(RPM:= 500), where
the soft edges should be produced with a speed of 500, in the case
that it is achieved by grinding. A resource agent has no goals,
but can be used by part agents. In this way, a resource agent will
facilitate the production of parts in the manufacturing setup by
offering services, e.g., grinding, transportation, or path planning.
The core idea is to be able to plug in all kinds of resources, needed
to handle the on-going manufacturing. Resources not needed can
be inactive or unplugged and stored for later use.

Each agent a ∈ A has a configuration. The configuration is
created manually and may apply to several agents, e.g., several
parts of the same type. It is through the configuration that goals,
skills, interfaces, variables, and demands are defined, without
programming. Once the configuration is downloaded to an agent,
it becomes unique for that specific agent instance. In Fig. 3, the
agent configuration classes and their relations to each other are
shown. This ontology is used by all agents in the system to share a
common understanding of how data is constructed. Furthermore,
when these classes are instantiated with configuration data, all
agents must understand the naming of skills and variables. This
requires all agents to follow some naming standards in order to
communicate.

All agents have at least one associated interface, if ∈ I . An
interface represents a point of interaction between two agents
that are compatible both physically and logically. The interface

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2415

defines the compatibility between agents by defining its skills
s ∈ S and configuration variables v ∈ V . Hence, an interface if
is defined by the tuple

if = 〈Sif , Vif 〉
where Sif ⊆ S, and Vif ⊆ V . A variable v can, for instance, be
a coordinate for a resource, a path for a robot, or a motor start
signal. A skill on a resource r is defined by a name together with
a process plan πs for executing the skill, forming the tuple

s = 〈name, πs〉 .
A single skill s represents a service, presented through an

agent interface that can be utilized by other agents on request.
However, a skill is only available if certain demands are fulfilled.
For instance, the skill grip on a robot gripper has a demand for a
robot to be mounted on. The robot needs to have the skill move
and certain variables available. In some cases, a demand includes
several skills that must exist on the same resource instance. For
example, if a part needs a gripper for transportation, the same
gripper must have the skills pick and place. It would not make
sense if these skills were on two different physical grippers.

Since available resource interfaces are unknown at the plan-
ning stage, they are defined as abstract interfaces u ∈ U =
{u1, u2, . . . , unu

}. When executing a process plan at runtime,
mapping of the abstract interfaces in U to resource interfaces
in I is carried out by an interface mapping algorithm, presented
in Section III-C. The algorithm generates demands du ∈ D =
{d1, d2, . . . , dnd

} and

du = {Su, Vu} .
Thus, a demand du defines skills and variables that an abstract

interface u should be able to satisfy.
In addition to interfaces, parts also have an associated set of

goals, Gp ⊆ G, where one goal g ∈ Gp. A goal represents a
result that a part should achieve with available resources, e.g., to
get soft edges. The part and resource agents can thus be described
as tuples

p = 〈Gp, Ip, Vp〉
r = 〈Ir ,Vr〉 .

Note that interfaces contain skills that have process plans.
Hence, resource agents with skills carry their own process plans.
To find a solution that solves a part goal, we need to map goals on
parts with skills on resources. This is typically done by a process
plan. As already has been mentioned, a process plan translates
design information (goals) into a sequence of operations (skills)
needed to produce a part with the desired properties. Process
plans can be generated automatically or designed manually by a
human. For industrial manufacturing, it is difficult for softwares
to create a process plan that meets specific demands. This is
knowledge that today is more suitable to be defined manually
by humans [39], [33].

All process plans in the system are defined and included in
the set Π = ΠG ∪̇ ΠS , where one plan is π ∈ Π. The process
plans for part goals in ΠG are general and shared among all
parts. Process plans for skills πs ∈ ΠS are instead defined for a

Fig. 4. Example of a process plan with five skills
{Load,Transport,Grinding,Transport,UnLoad} and six states,
where the initial state is q0 and the final state is qf .

specific skill s on a resource r, describing how that skill should
be executed.

In this article, a process plan π defines a sequence of
skills (s1, s2, . . . , snπ

), that should be executed in a specific
order. Process plans for goals πg only describe the solution for
a single goal. However, there may be several ways to achieve
that goal. This is managed through the fact that several process
plans in the set Πg may exist for the same goal g. For each goal
g ∈ Gp, there must exist at least one process plan inΠ. A process
plan, πg or πs, can be formulated as a finite state automaton

π = 〈Q,S, δ, q0, Qf 〉
where Q is the set of states in the process plan, S is the set of
all skills, δ : Q× S → Q is the transition function, q0 ∈ Q is
the initial state, and Qf ⊆ Q is the set of acceptable final states.
This means that a process plan may include possible alternative
sequences of skills. In Fig. 4 an example is shown of a process
plan πg solving the goal g = SoftEdges, where the single final
state qf is the only element in Qf .

B. Agent Strategies

As soon as a new part or resource is added to the manufactur-
ing system, a corresponding agent a is instantiated representing
that specific object. The idea behind the agent concept is that
each object should be independent, self-aware, and autonomous.

Part agent strategy: A part agent p will start by trying to
fulfill the first goal g in the set of personal goals Gp, by finding
all process plans Πg ⊆ ΠG that describe how to reach that goal.
When a goal is reached the agent continues with the next goal.
When all goals in Gp have been achieved, the part agent p is
deleted, and the corresponding part is considered as completed.

To select the most suitable process plan for a specific goal
g, each plan πg ∈ Πg is checked for availability by asking all
resource agents in the agent network if they have any of the skills
required inπg and has a compatible interface for interaction. The
compatibility between interfaces could for instance deal with the
interaction between a gripper and a robot. A resource might need
to ask other resources to assist in order to fulfil a desired skill.
In Fig. 5, this is illustrated, where a part p has three goals in
Gp = {g1, g2, g3}. The first goal g1 has two alternative process
plans Πg1 = {π1

g1
, π2

g1
} that can solve g1. Both these plans are

checked for availability. However, in the figure, only plan π1
g1

is
described. Plan π1

g1
has two demands, d(s1, v5) for skill s1 and

d(s2, v4, v3) for skill s2. This means that s1 has to execute on an
interface containing a v5 variable and s2 needs to execute on an
interface that has a v4 and a v3 variable. The agent searches the
network and finds the interfaces if3 and if4, respectively.

When each plan in Πg1 is checked for availability (by running
the algorithm described in this article), the one with the lowest

2416 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

Fig. 5. Process plan that achieves the goal g1 is checked for availability. The first plan π1
g1

requires skills that exist on another agent through the
interfaces if3 and if4, where if4 requires additional skills that exist on if1 and if2.

cost is selected, i.e., selected plan πg1 = min(Πg1). In this way,
an agent can minimize the cost (execution time) by selecting the
most effective process plan. After a plan is selected, each skill
in the plan is executed on resource agents in the network. The
following steps summarize the part agent strategy.

Part Agent Strategy:
Step 1: Find next goal g in Gp that is not yet reached.
Step 2: Find available process plans Πg that fulfill g.
Step 3: Select the process plan πg with the lowest cost.
Step 4: For each skill in the selected plan, execute it on a

resource agent.
Resource agent strategy: In the same way as for the parts,

each resource is handled by an agent that is instantiated when
the resource is connected to the system. Each resource agent can
execute associated skills. A skill can be executed on request from
other agents and is only available if the demand du is fulfilled
for that skill. Several agents that cooperate in this way can be
viewed as an aggregated agent capable of more complex actions,
as illustrated in Fig. 5. For each skill s on a resource r a process
plan πs is configured with knowledge about the execution of
that skill. In contrast to the process plans in ΠG for part goals,
a plan πs for skill s only describes the use of a skill belonging
to a specific agent type. For instance, for agents close to the
hardware there might be a need for setting I/O values. In Fig. 5
it is shown that the plan πs2 for executing the skill s2 on interface
if4 requires additional skills s3, s4, s6 and finds if1 and if2 for
the demands d(s3, v2) and d(s4, v1). Skill s6 is a local skill and
is locally executed. Since all skills for process plan πs2 exist, if4

becomes available.

C. Interface Mapping Algorithm

In this article, a process plan needs to be connected to in-
terfaces on resource agents in the network. This results in an
executable process planπe. When running the interface mapping
algorithm, process plans inΠ are connected with resources in the
network through interfaces, forming a set of executable plansΠe.
Hence, Πe contains the executable versions of the plans inΠ. For
part goals, the single executable process plan πe that can reach
that goal with the lowest cost is selected. The cost is specified
on each resource skill and can be of any type as long as it is
expressed as an integer number. In the scenario presented in this
article, the cost is the execution time for a process plan. The

cost for one process plan includes the costs for all process plans
needed to execute in the underlying tree of connected interfaces.

A general algorithm has been developed that is implemented
in all agents (parts and resources), taking a plan π as input and
determine if it is available or not. If the plan π is available,
an executable process plan πe is returned, describing what
resources, interfaces, and variables to use for the skills in the
plan.

The algorithm works by generating demands du for each
abstract interface u in the process plan π. These demands are
then broadcasted to resources in the agent network that reply if
they fulfil the demand du or not. The algorithm can be divided
into three main steps.

Step 1: Find all demands D in π. Individual demands
du consist of required skills Su and variables Vu

D = {d1, d2, . . . , dnd
}

du = {Su, Vu} .
Step 2: Each identified demand du, in step 1, must be

fulfilled by an interface on a resource. Hence,
the algorithm requires abstract interfaces U =
{u1, u2, . . . , unu

}. For each demand du, search in-
terfaces in I to check if they can perform all needed
skills Su with the required variables Vu. The agent
a running this algorithm has a set of local interfaces
Ia, where one local interface is defined as ifa ∈ Ia.
For each interface if ∈ I that meet the demand du,
check if it is compatible with any of the local agent’s
interfaces ifa ∈ Ia. If they are compatible, store
them locally as potential interfaces Ip

for each abstract interface u in U{
du = {Su, Vu}
Ipu = { if ∈ I | if fulfils du Λ if compatible with ifa ∈ Ia}

.

Step 3: From the potential interfaces Ip, choose the ones
with the lowest cost and store as selected interfaces
Is. If π is feasible, then generate an executable
process plan πe containing the selected interfaces
Is together with the original plan π. Return this as
the result of the algorithm

for each element u in U : {Is = min (Ipu)
πe = 〈π, Is〉.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2417

Fig. 6. Real industrial Plug & Produce demonstrator at University
West and a simulation model. This demonstrator was used for testing
the proposed Plug & Produce framework presented in this article. It
was developed in close collaboration with GKN Aerospace, a company
producing metal parts for the aeronautics industry.

IV. EXPERIMENTS

In this section, the proposed framework for Plug & Pro-
duce is evaluated. An existing Plug & Produce demonstrator
at University West, has been developed in close collaboration
with industry, see Fig. 6. The simulation shown, contains three
process modules. Module 1 is an operator-assisted unload station
for parts, module 2 is an operator-assisted load station for parts,
and module 3 contains a motor that has an attached grinding tool.
The demonstrator has ten slots (1–10) for process modules. To
decrease the hardware time, identical connectors are used for
all modules. Thus, it is possible to quickly connect modules on
available slots, and with one single cable connect power, air and
network. Each slot has a fixture with positioning pins that makes
sure that modules are placed correctly. This avoids recalibration
of positions, in order to reduce the software time.

The framework described above has been implemented and
tested using this demonstrator. Indeed, it is possible to use the
conventional agent framework JADE for implementing the agent
communication needed for our algorithm. However, we have
chosen the agent handling system (AHS) described in [17]. This
AHS has been used in the implementation of our algorithm since
it includes support for the OPC UA protocol, which is compatible
with various industrial devices. OPC UA was developed by
OPC foundation and is a platform-independent protocol for
communication in industrial automation [40].

The goal for the Plug & Produce demonstrator in this work
is to make soft edges on metal engine parts for the aeronautic
sector. With the proposed Plug & Produce framework it should
be easy to set up a local robot cell attached to an existing manu-
facturing flow. A local cell should be easy to set up when needed,

TABLE I
PROCESS PLAN FOR A GOAL g, DESCRIBING HOW TO MAKE SOFT EDGES

BY DEFINING A SEQUENCE OF SKILLS Su USING VARIABLES Vu.

Note that the Abstract Interfaces a, b, c, and d are Unmapped in the Process Plan and
Will be Identified During Runtime by the search Algorithm.

e.g., to handle rush orders or variations in supply/demand. In the
demonstrator, several process modules can be plugged in and out
to quickly change the manufacturing setup.

A. A Scenario for Soft Edges

The robot cell considered contains the following
resources: R = {Robot, Gripper 1, Gripper 2, Motor,
GrindingWheel, Load station, Unload station}, see Fig. 7.
In this scenario, the cost refers to the execution time of a
process plan. One metal part p is introduced to the system
and a corresponding agent is instantiated with the goal
g = SoftEdges. Several process plans Πg may be formulated
for the specific goal g.

The process planπg in Table I solves the goal g = SoftEdges,
using the abstract interfacesU = {a, b, c, d}.The plan describes
the following sequence of skills.

1) The metal part p appears at the load station (in Fig. 7
referred to as Part).

2) The part is transported (using the skill Transport) to a
grinding wheels StartPos using a gripper connected to
the part on GripLocation.

3) The grinding wheel that is pre-mounted manually to a
motor should start to rotate with the speed defined on
RPM.

4) The robot moves the part against the grinding wheel based
on the predesigned path GrindPath that is attached to the
part agent.

5) The grinding wheel is stopped.
6) The part leaves the system by moving to the unload station

position LeavePos.
7) The part is removed from the system and the agent is

deleted.

B. Evaluating the Algorithm

This section describes each step in the algorithm, considering
the process plan in Table I and the resources in Fig. 7. The

2418 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

Fig. 7. Using interfaces to connect a part with resource skills. Available interface connections are illustrated by red lines with a circle marking the
connection point.

algorithm in this example explains how the metal part agent will
run this algorithm, i.e., this example describes the algorithm
from the part perspective.

Step 1: The process plan πg has four demands du ∈
D, based on the abstract interfaces U = {a, b, c, d}
in πg . The demands consist of demanded skills Su

and variables Vu, forming the set D of all demands
for U

Sa = {Load}
Sb = {Transport, MoveAlong}
Sc = {Grinding}
Sd = {Unload}
Va = { }
Vb = {From, To}
Vc = {Speed, StartPos}
Vd = {LeavePos}
da = {Sa, Va}
db = {Sb, Vb}
dc = {Sc, Vc}
dd = {Sd, Vd}
D = {da, db, dc, dd} .

Step 2: For each abstract interface u ∈ U, the related de-
mand du is broadcasted to resource agents in the
network that reply if they have an interface that
meets the demand du. The local agent (in this case
the part p) checks if any of the found interfaces
are compatible with the local agents interfaces. If

they are compatible, they are added to the potential
interfaces Ip, in this case, representing a total of four
interfaces on resources. Hence,

Ipa = {if Buffer}
Ipb = {if GripMetal}
Ipc = {if Grind}
Ipd = {if Buffer}

Ip = {Ipa , Ipb , Ipc , Ipd} .

For this specific case, there is only one element in
each set Ipu, however, more alternatives could be
available if multiple compatible resources would be
available for the same skill.

Step 3: From the potential interfaces Ipu, select the interfaces
with the lowest cost Is, where

Is = {min (Ipa) ,min (Ipb) ,min (Ipc) ,min (Ipd)}

and use the selected interfaces Is to map the plan πg

to physical resources in the agent network. Save the
mapped process plan as an executable process plan

πe
g = map (πg, I

s) .

The algorithm that was described turns process plans πg into
executable process plans πe

g . Since several process plans πg ∈
Πg for a goal g can exist, Πe

g is formed, where πe
g ∈ Πe

g .
Since each element inΠg is an alternative process plan that can

reach the goal g = SoftEdges, the executable process plan πe
g ∈

Πe
g with the lowest cost for reaching the goal is now chosen. This

makes the plan ready to run since the abstract interfaces U =
(a, b, c, d) are now mapped to interfaces on physical resources
in the agent network.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2419

TABLE II
NUMBER OF ACTIVITIES THAT USES SOFTWARE TIME, COMPARED BETWEEN
CASES 1, 2, 3, AND 4, WHEN USING THE PLUG & PRODUCE FRAMEWORK

V. EVALUATION

The main motivation for this article is to minimize software
time spent on programming and configuration of Plug & Produce
systems. From the presented Plug & Produce framework, four
cases can be identified that highly affect the software time,
cases 1–4. Four separate activities are observed that contribute
to software time: (A1) preparing goals, (A2) creation of process
plans, (A3) defining interfaces and (A4) programming, as given
in Table II. The introduction of new parts relates to activity A1
and A2 while the preparation of resources relates to activities
A2, A3, and A4. Activity A4, i.e., programming, regards to
the time spent on adapting a resource to the Plug & Produce
framework. In order to adapt a resource to our framework, some
code must be written to make it compatible with the Plug &
Produce framework.

Case 1—Creating a new robot cell: All new resources not pre-
viously prepared for the Plug & Produce framework have to
be programmed (A4) and configured, i.e., creating interfaces
with skills (A3) and plans for running those skills (A2).
Hence, if all resources are new, there will be a considerable
time spent adapting them to the Plug & Produce framework.
However, this is a one-time effort. If new goals and plans are
introduced, they will require time for creating goals (A1) and
defining process plans (A2). The use of the proposed frame-
work simplifies the programming (compared to traditional
central control) since no dependencies or communication
between resources have to be defined.

Case 2—Changing, modifying or replacing a part: In this case,
the agent configuration must be updated to reflect this. It might
also be necessary to change the physical configuration of the
robot cell. For minor changes like adjusting how soft the soft
edges should be or what paint to use when painting a part,
only the goals (A1), plans (A2) and their related variables are
modified. This case shows the main benefits of the presented
Plug & Produce framework, since no programming or config-
uration has to be performed when changing goals or process
plans. This can be compared with a traditional central control,
where reprogramming commonly has to be performed.

Case 3—Adding a new resource: If a new resource is introduced,
then it has to be adapted to the Plug & Produce framework
by plans (A2), interfaces (A3) and programming (A4). The
benefit of using the Plug & Produce framework is that the
resource can be developed and tested offline without inter-
rupting ongoing manufacturing. In the same way as case 1,

TABLE III
TIME COMPARED BETWEEN CASES 1, 2, 3, AND 4. THESE NUMBERS WERE

FOUND DURING A CLOSE COLLABORATION WITH GKN AEROSPACE.

∗Note that Each Value in Cases 2, 3, and 4 are Percentages Out of the Total Time of
Case 1.

the programming is simplified by letting the agent system
manage all communication.

Case 4—Recycling of manufacturing systems: In an industry
with needs for flexibility, a robot cell will not last forever.
When rebuilding, moving, or recycling a robot cell, it is
desirable to reuse the resources, corresponding programming
and agent configurations. Reused resources can drastically
decrease the deployment time. The Plug & Produce frame-
work use a distributed approach for the controller of each
agent. This makes it possible to configure one resource or part
without considering any other objects in the system. Hence, an
agent configuration can effortlessly be moved together with
the resource to another robot cell. The agent configuration
can be compared to a software driver for a USB device with
plug and play functionality. Additionally, the code written
inside the resources, like robot code and PLC code in the
process modules, can be reused, since it has no dependencies
with any other device in the system. Device code and agent
configuration will only be modified if the resource should
receive new functionalities, e.g., adding a new sensor or
button.

Case comparison: In Table II, each activity that adds to the
software time has been counted and sorted into the cases 1, 2,
3, and 4. These cases are taken from the presented scenario in
Fig. 7 and assumes that the Plug & Produce framework is used.
The scenario requires one goal, one plan, 11 interfaces and four
resources. In the first case, all 11 Interfaces and four resources
must be configured and programmed together with one goal and
process plan defined. In the second case, a part is modified,
needing a new goal and process plan to be defined. None of the
interfaces needs to be changed, and no programming is required.
In the third case, one new process module is configured and
programmed, resulting in one interface and one program needed
to be created, together with one process plan to be defined for
solving its skills. In the fourth case, recycling is performed of one
process module without using any software time. The number
of activities needed for each case is given in Table II.

The time consumed on the various activities has been mea-
sured and confirmed during collaboration with GKN Aerospace.
From this data, it was found that out of the total time consumed
in case 1 (100%), a goal (A1) took less than 1%, a plan (A2)
1%, one interface (A3) ∼5%, and programming of one device
(A4) ∼10%. This is shown in Table III.

2420 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 17, NO. 4, APRIL 2021

The time (case 1) for the 11 interfaces was 57% and the time
for programming 4 devices was 41%, as given in Table III. We
can also see that case 2 uses only a total of 2% of the total time
needed for cases 1 and 3 requires a total of 16% of the total time
of case 1, while case 4 required no software time.

This result clearly shows that the presented Plug & Produce
framework can decrease the software time compared to tradi-
tional approaches. In case 1, the programming is simplified by
letting the agents solve all dependencies and communication be-
tween resources. Case 2 shows that the change of part goals and
plans has a low influence on the software time. In case 3, a new
process module was added similarly to case 1. In case 4, there
was no software time needed. The reason is that resources can
be integrated automatically if they were previously prepared for
the Plug & Produce framework. The hardware time to physically
install a module was, during the conducted experiments, found
to be around one minute. This time is the same for any of the
process modules, as long as they use the standardized hardware
connectors mentioned above. This implies that if a framework
that works as described in this article would be used as a standard,
then a company could buy a resource that is delivered with
configuration data much like a USB device for a computer that
is delivered with a driver. Then there would be no time spent on
the programming (A4) or interface activities (A3) of Table II,
thus avoiding the activities with the highest software time when
a new robot cell is created.

VI. CONCLUSION

In this article, a framework for Plug & Produce was formu-
lated. This includes a new way of describing process plans
with unmapped resources by formulating abstract interfaces.
The mapping of resources to process plans was accomplished
by generating demands for interfaces on other resources in
the agent network. A mapping algorithm was described that
can connect resources to form trees of collaborating agents.
This algorithm runs on every agent in the system, making the
search distributed. The algorithm was implemented and tested
in a physical demonstrator, which verified that the proposed
Plug & Produce framework works.

The main benefit of the proposed framework was that it makes
it possible to add new types of products faster in terms of minutes
rather than days in traditional approaches. It also encapsulates
resources so that they have no dependencies between each other.
This makes it much easier to develop resources and to move
them between manufacturing systems, without adapting them
to specific new scenarios.

REFERENCES

[1] S. Hu et al., “Assembly system design and operations for product variety,”
CIRP Ann. Manuf. Technol., vol. 60, no. 2, pp. 715–733, 2011.

[2] M. Onori, N. Lohse, J. Barata and C. Hanisch, “The IDEAS project: Plug &
produce at shop – floor level,” Assem. Automat., vol. 32, no. 2, pp. 124–134,
2012.

[3] Z. Pan, J. Polden, N. Larkin, S. V. Duin and J. Norrish, “Recent progress
on programming methods for industrial robots,” Robot. Comput.-Integr.
Manuf., vol. 28, no. 2, pp. 87–94, 2012.

[4] T. Blecker and G. Friedrich, Mass Customization: Challenges and Solu-
tions. New York, NY,USA: Springer, 2006.

[5] M. R. Pedersen et al., “Robot skills for manufacturing: From con-
cept to industrial deployment,” Robot. Comput.-Integr. Manuf., vol. 37,
pp. 282–291, 2016.

[6] G. Lanza, J. Stoll, N. Stricker, S. Peters, and C. Lorenz, “Measuring global
production effectiveness,” in Proc. 46th CIRP Conf. Manuf. Syst., 2013,
pp. 31–36.

[7] H. Elmaraghy, “Flexible and reconfigurable manufacturing systems
paradigms,” Int. J. Flexible Manuf. Syst, vol. 17, no. 4, pp. 261–276, 2005.

[8] P. Coletti and T. Aichner, Mass Customization: An Exploration of Euro-
pean Characteristics. New York, NY, USA: Springer, 2011.

[9] Y. Koren et al., “Reconfigurable manufacturing systems,” CIRP Ann.,
vol. 48, no. 2, pp. 527–540, Aug. 1999.

[10] T. Arai, Y. Aiyama, Y. Maeda, M. Sugi, and J. Ota, “Agile assembly system
by plug and produce,” CIRP Ann. Manuf. Technol, vol. 49, no. 1, pp. 1–4,
2000.

[11] L. Ribeiro, J. Barata, M. Onori and J. Hoos, “Industrial agents for the
fast deployment of evolvable assembly systems,” in Industrial Agents,
Amsterdam, The Netherlands: Elsevier, 2015, pp. 301–322.

[12] A. Zoitl, G. Kainz and N. Keddis, “Production plan-driven flexible assem-
bly automation architecture,” in Industrial Applications of Holonic and
Multi-Agent Systems, New York, NY, USA: Springer, 2013, pp. 49–58.

[13] M. Hvilshøj and S. Bøgh, ““Little helper” - An autonomous industrial
mobile manipulator concept,” Int. J. Adv. Robot. Syst, vol. 8, no. 2, pp. 1–11,
2011.

[14] C. Schou and O. Madsen, “A plug and produce framework for industrial
collaborative robots,” Int. J. Adv. Robot. syst., vol. 14, no. 4, pp. 1–10,
2017.

[15] M. Skilton and F. Hovsepian, The 4th Industrial Revolution - Responding
to the Impact of Artificial Intelligence on Business, Cham, Switzerland:
Palgrave Macmillan, 2018.

[16] B. Svensson and F. Danielsson, “P-SOP – A multi-agent based control
approach for flexible and robust manufacturing,” Robot. Comput. Integr.
Manuf., vol. 36, pp. 109–118, 2015.

[17] M. Bennulf, F. Danielsson and B. Svensson, “Identification of resources
and parts in a plug and produce system,” in Proc. 29th Int. Conf. Flexible
Automat. Intell. Manuf., 2019, pp. 858–865.

[18] V. Mařík and J. Lažanský, “Industrial applications of agent technologies,”
Control Eng. Pract., vol. 15, no. 11, pp. 1364–1380, Nov. 2007.

[19] N. K. C. Krothapalli and A. V. Deshmukh, “Design of negotiation protocols
for multi-agent manufacturing systems,” Int. J. Prod. Res., vol. 37, no. 7,
pp. 1601–1624, 1999.

[20] P. Leitão, V. Mařík and P. Vrba, “Past, present, and future of industrial agent
applications,” IEEE Trans. Ind. Informat, vol. 9, no. 4, pp. 2360–2372,
Nov. 2013.

[21] P. Leitão and S. Karnouskos, “A survey on factors that impact industrial
agent acceptance,” in Industrial Agents, Amsterdam, The Netherlands:
Elsevier, 2015, pp. 401–429.

[22] P. Leitão, “Agent-based distributed manufacturing control: A state-of-the-
art survey,” Eng. Appl. Artif. intell., vol. 22, no. 7, pp. 979–991, Oct. 2009.

[23] W. Shen, Q. Hao, H. J. Yoon and D. H. Norrie, “Applications of agent-
based systems in intelligent manufacturing: An updated review,” Adv. Eng.
Informat., vol. 20, no. 4, pp. 415–431, Oct. 2006.

[24] S. Karnouskos and P. Leitão, “Key contributing factors to the acceptance
of agents in industrial environments,” IEEE Trans. Ind. Informat, vol. 13,
no. 2, pp. 696–703, Apr. 2017.

[25] M. Wooldridge and N. R. Jennings, “Intelligent agents: Theory and prac-
tice,” Knowl. Eng. Rev., vol. 10, no. 2, pp. 115–152, 1995.

[26] C. Carabelea, O. Boissier and F. Ramparany, “Benefits and requirements
of using multi-agent systems on smart devices,” in Proc. Euro-Par Parallel
Process., 2003, pp. 1091–1098.

[27] L. Steels, “When are robots intelligent autonomous agents?,” Robot. Auton.
Syst., vol. 15, no. 1/2, pp. 3–9, 1995.

[28] “FIPA 97 Part 1 Version 1.0: Agent management specification,” Found.
Intell. Phys. Agents, Geneva, Switzerland, 1997.

[29] S. Poslad, “Specifying protocols for multi-agent systems interaction,”
ACM Trans. Auton. Adaptive Syst., vol. 2, no. 4, pp. 15–24, 2007.

[30] “FIPA agent management specification,” Found. Intell. Phys. Agents,
Geneva, Switzerland, 2002.

[31] “FIPA ACL message structure specification,” Found. Intell. Phys. Agents,
Geneva, Switzerland, 2002.

[32] F. Bellifemine, G. Caire and D. Greenwood, Developing Multi-Agent
Systems With JADE, New York, NY, USA: Wiley, 2007.

[33] E. Järvenpää, M. Lanz and R. Tuokko, “Application of a capability-based
adaptation methodology to a small-size production system,” Int. J. Manuf.
Technol. Manage., vol. 30, no. 1/2, pp. 67–86, Apr. 2016.

BENNULF et al.: GOAL-ORIENTED PROCESS PLANS IN A MULTIAGENT SYSTEM FOR PLUG & PRODUCE 2421

[34] N. Antzoulatos, E. Castro, L. d. Silva, A. D. Rocha, S. Ratchev and
J. Barata, “A multi-agent framework for capability-based reconfigura-
tion of industrial assembly systems,” Int. J. Prod. Res., vol. 55, no. 10,
pp. 2950–2960, 2017.

[35] J. W. Park, M. Shin and D. Y. Kim, “An extended agent communica-
tion framework for rapid reconfiguration of distributed manufacturing
systems,” IEEE Trans. Ind. Informat., vol. 15, no. 7, pp. 3845–3855, 2019.

[36] S. Rehberger, L. Spreiter and B. Vogel-Heuser, “An agent-based approach
for dependable planning of production sequences in automated production
systems,” Automatisierungstechnik, vol. 65, no. 11, pp. 766–778, 2017.

[37] R. S. Sutton, D. Precup and S. Singh, “Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,” Artif.
Intell., vol. 112, no. 1-2, pp. 181–211, 1999.

[38] M. Vallée, M. Merdan, W. Lepuschitz and G. Koppensteiner, “Decentral-
ized reconfiguration of a flexible transportation system,” IEEE Trans. Ind.
Informat., vol. 7, no. 3, pp. 505–516, Aug. 2011.

[39] D. Smale and S. Ratchev, “A capability model and taxonomy for multiple
assembly system reconfigurations,” IFAC Symp. Inf. Control Problems
Manuf., vol. 42, no. 4, pp. 1923–1928, Jun. 2009.

[40] W. Mahnke, S.-H. Leitner and M. Damm, OPC Unified Architecture, New
York, NY, USA: Springer, 2009.

Mattias Bennulf was born in Levene, Vara,
Sweden in 1992. He received the B.S. degree
in computer engineering and M.S. degree in
robotics and automation from University West,
Trollhättan, Sweden, in 2014 and 2015, where
he is working toward the Ph.D. degree in pro-
duction technology with a focus on multiagent
technology used in manufacturing systems.

Fredrik Danielsson was born at Orust,
Sweden, in 1972. He received the Ph.D. degree
in mechatronics from De Montfort University,
Leicester, U.K., in 2002.

From 2003 to 2015, He was the Head of the
Robot and Automation education at advanced
level with University West. Since 2008, he has
been the Head of the Flexible Automation Re-
search Group at the Department of Engineering
Science, University West. He has co-authored
of more than 70 peer reviewed papers in inter-

national journals and conferences. His current main research interests
include flexible automation, multi-agent control systems, virtual commis-
sioning, AI and robot systems.

Bo Svensson was born in Mariestad, Sweden,
in 1959. He received the M.S. degree in electri-
cal engineering in 1984 and the Ph.D. degree in
automation in 2012 from Chalmers University of
Technology, Gothenburg, Sweden.

He was a Design Engineer with SAAB Space
AB from 1984 to 1987. From 1987 to 1994,
he was a System Engineer with SAAB Auto-
mobile AB. Since 1994, he has been a Senior
Lecturer with the Department of Engineering
Science, University West, Trollhättan, Sweden,

with teaching and research. His current research interest include flexi-
ble industrial automation, plug and produce, multiagent system control,
human-robot collaboration, safety, and simulation-based optimization.

Bengt Lennartson (Fellow, IEEE) was born in
Gnosjö, Sweden, in 1956. He received the Ph.D.
degree in automatic control from Chalmers Uni-
versity of Technology, Gothenburg, Sweden, in
1986.

Since 1999, he has been a Professor of
the Chair of Automation, Department of Elec-
trical Engineering. From 2004 to 2007, he
was the Dean of Education with Chalmers
University of Technology. Since 2005, he has
been a Guest Professor with University West,

Trollhättan, Sweden. He contributes to hybrid and discrete event sys-
tems for automation and sustainable production. He has co-authored of
two books and more than 300 peer reviewed papers in international jour-
nals and conferences. His current research interest include AI planning
and learning, discrete event and hybrid systems, and robust feedback
control.

Prof. Lennartson was the General Chair of the 11th IEEE Conference
on Automation Science and Engineering (2015), and the 9th Interna-
tional Workshop on Discrete Event Systems (2008) and an Associate
Editor for Automatica (2002–2005) and IEEE TRANSACTION ON AUTOMA-
TION SCIENCE AND ENGINEERING (2012–2015).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

