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Abstract—In industrial Internet of Things (IIoT) environ-
ments, dependability of a complex manufacturing process
in which human operators play a key role can be im-
proved by identity recognition/authentication of whoever
is involved in various stages of a production process, ac-
cording to where and when he/she is supposed to be. To
this aim, we propose an approach that exploits the dy-
namic appearance and the time-dependent local features
characterizing the face of an individual during speech ut-
terance with regard to their spatial and temporal compo-
nents. The proposed method models these dynamic facial
patterns captured from edge Internet of Things devices by
means of the Local Binary Pattern on Three Orthogonal
Planes descriptor, which effectively extract both face’s local
features and movement at the fog level of the architecture.
A deep feedforward network available in the cloud is trained
and optimized to match the extracted features to a refer-
ence database. The achieved results highlight state-of-the-
art performances of the proposed method with regard to
robustness and trustworthiness of identification, especially
for challenging IIoT scenarios.

Index Terms—Biometrics, face recognition, image analy-
sis, Industrial Internet of Things (IIoT).

I. INTRODUCTION

IN THE past few years, the diffusion of the industrial Internet
of Things (IIoT), as a network of a multitude of industrial

devices connected by communications technologies [1], has
become increasingly more pervasive in many industrial contexts.
This diffusion is supported by the promise of bringing together
smart machines, advanced analytics, and people at work to the
aim of enabling unprecedented levels of efficiency, productivity,
and performance [2].

Even though the “mainstream” application paradigm of the
IIoT typically translates in a reduced need of involving humans
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throughout the industrial process as a side effect of machines’
advanced data capture, analysis, and communication capabili-
ties, there are cases in which human operators are necessary to
the process itself. This is particularly true for complex manu-
facturing processes of mission-critical components and systems,
such as those required in aerospace and defense industry, or even
for applying the IIoT framework to the healthcare scenario. In
several cases, indeed, the advantages of an IIoT environment can
be fully exploited if the identity of the involved human operators
can be reliably assessed by the same devices they are working
with, according to where and when they are supposed to be
present in the process.

To the aim of addressing the aforementioned challenges, we
propose a highly trustworthy face recognition approach based on
dynamic features, which can be acquired, extracted, and matched
to a reference gallery, respectively, at the edge, fog, and cloud
levels of an IIoT architecture.

The main idea behind this proposal lies in the increased trust-
worthiness provided by facial motion associated with speech
for person recognition and authentication, compared to static
face representations. According to this hypothesis, indeed, a
dynamic descriptor of face local changes due to the utterance of
a given passphrase results in a time-variable biometric template
much harder to attack or counterfeit than conventional static
descriptors.

More in detail, the proposed approach to face motion repre-
sentation and matching is intrinsically more robust to presenta-
tion attacks than static descriptors, and it implies the liveness of
the subject pronouncing the passphrase.

Consequently, most of the presentation attack strategies (i.e.,
presentation to the recognition system with the goal of interfer-
ing with its operation), such as subject impersonation, finding
a look-alike, making appearance similar to the reference, and
artefact presentation, became much more difficult, if not impos-
sible, to apply with success. Malicious users should be able to
mimic not only the overall appearance of the target subject, but
also his specific facial dynamics related to the utterance of the
passphrase.

Furthermore, system’s trustworthiness is also possibly af-
fected by false rejections, which may undermine the regular au-
thentication of genuine users. This aspect, indeed, is particularly
relevant in an industrial application context, where the incorrect
recognition of authorized personnel due to a high sensitivity
threshold would possibly lead to costly operation delays and
reduced acceptability of the whole procedure.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/
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To this regard, the proposed dynamic facial signature is
designed to balance the requirement of the lowest possible
false acceptance rate (FAR) with a good robustness to a certain
degree of error in pronouncing the passphrase, thus achieving a
reduction of false rejection rate (FRR) as well.

Briefly, the contributions in the proposed approach are as
follows:

1) high recognition accuracy, coupling the distinctiveness of
face’s shape to the unique facial pattern series associated
with speech;

2) inherent trustworthiness due to the spatial and temporal
characteristics of facial dynamics;

3) reliable genuine subject authentication, even in the case
of mispronounced or partially pronounced passphrase;

4) improved robustness to presentation attacks, compared
to static approaches, due to the required dynamic facial
signature;

5) effective and efficient processing at each stage of the
biometric pipeline, thanks to the multilevel IIoT network
architecture exploited.

According to the proposed operation flow, a sequence of
frames captured during speech by devices at the edge of the
IIoT network is processed at the fog level to extract dynamic
local features related to the lower half of face using a variant of
the Local Binary Pattern [3], namely the Local Binary Pattern on
Three Orthogonal Planes (LBP-TOP) descriptor. The resulting
feature vector is then compared to a reference gallery through a
(previously trained) deep feedforward neural network available
at the cloud level of the architecture.

The experiments conducted show state-of-the-art recognition
accuracy along with high robustness to the way the sentence is
pronounced by the genuine subject, good independence from
the choice of the sentence, and a fast matching time, enabling a
near-real-time response to the input query compliant to industrial
operation requirements.

The rest of this article is organized as follows. Section II
resumes a selection of works related to this article. Section III
describes the proposed approach to facial dynamics biometrics.
Section IV describes the IIoT environment, in which the pro-
posed approach has been tested. Section V presents the results
of experiments carried out. Finally, Section VI concludes this
article.

II. RELATED WORKS

Security issues and authentication strategies represent some
of the most complex and crucial challenges related to the data
interchange among the sensing, network, and application layers
characterizing the Internet of Things (IoT) [4].

These challenges can be even more significant in the con-
text of IIoT, where radio-based, acoustics-based, light-based,
image-based, gesture-based, and biometrics-based authentica-
tion mechanisms have been proposed, as reported in [5].

Biometrics, in particular, exploits the something-the-user-
have authentication paradigm to the aim of end-user-to-device
authentication. Most diffused biometrics used for this purpose
are fingerprints, iris, and face.

The latter is arguably the most suited to the IIoT context, since
it is contactless and does not require specialized hardware but a
digital camera, which is often (or can be easily) embedded in a
variety of devices and equipment.

Usually, health signals, i.e., electrocardiogram (ECG) signal,
is not strictly considered a biometric signature. However, since
ECG reveals heart condition and cardiac risks, it has also been
explored in healthcare IIoT approaches, to the aim of combining
“things” and humans.

Works such as [6] and [7] propose architectures for tracking,
monitoring, and storing people’s health status and related data
in elder people.

In this line of research, a more generalized approach to
combine biometrics-based authentication and the IoT for smart
health applications is proposed in [8].

However, even in more mainstream IIoT applications and
services, security and privacy are paramount, as discussed in [9].
To this regard, Guo et al. [10] explore the potential benefits and
technical difficulties related to the incorporation of biometric
technologies into the IoT, focusing on reducing the risk of
unauthorized access, tampering, and even reverse engineering
of IoT devices.

Mainly aiming at cloud-based IIoT architectures, the authors
of [11] propose a two-factor user authentication methodology for
privacy preserving by means of user’s smartcard and biometric
signature, adopting a fuzzy biometric verification approach for
the user and bitwise XOR plus cryptographic hash coding at the
smart-devices’ end.

The advantages of biometrics in enabling more secure end-to-
end communication solutions among interconnected devices and
services within IIoT environments are highlighted in [12], where
user’s face recognition by means of mobile devices increases the
security of the IoT infrastructure.

In [13], the authors focus on the wireless sensor network com-
ponent of the IIoT to address the limitations of typical protocols
through a biometrics-empowered authentication protocol with
elliptic curve cryptography, which results to be more reliable
and effective than other state-of-the-art protocols.

The potential of biometrics for enhancing security and privacy
can be even greater for fog and edge computing, which are
particularly suited to IoT and IIoT scenarios when mobility,
scalability, and reliability are required.

This is the observation behind [14], where an approach to
enhance security of face biometrics by means of visual cryp-
tography and zero-watermarking is proposed. In [15], the pro-
tection of fog computing environment in IIoT applications is
addressed through a hybrid biometric smartcard authentication
method, exploiting a combination of a short (maximum eight
characters long) person identification number and fingerprint
biometrics.

To the aim of achieving identity consistency between physical
and cyber-space in the IoT, the authors of [16] propose a face-
biometrics-based identification and resolution method enabled
through fog computing to save bandwidth and reduce computing
load of both identification and resolution tasks.

Also on this topic, Hu et al. [17] work on the confiden-
tiality, integrity, and availability properties associated with the
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aforementioned face identification and resolution framework in
fog-computing-enabled IoT.

As a further evolution of the last two approaches, a uni-
fied cloud-enabled parallel matching of face identifier for IoT
authentication and resolution of physical objects is described
in [18], providing an effective improvement over the previous
methods.

Finally, the work by Karimian et al. [19] investigates the im-
plications of the next generation of IoT devices and technologies
in the light of the incorporation of biometrics into the IoT design
for a ubiquitous distributed authentication strategy delivering the
Internet of Biometric Thing (IoBT) paradigm.

Though the aforecited works show the advantages of bio-
metrics in general and particularly face for improving security
through object and person authentication in IIoT environments,
even biometrics can be forged, and face is no exception to this
rule.

To address this challenge, a dynamic face descriptor is pro-
posed along with an edge–fog–cloud architecture to efficiently
capture, process, match, and resolve it, providing greater accu-
racy and trustworthiness against counterfeits.

The dynamic facial features exploited in this article are related
to the way the uttering of a short sentence, captured through a
frames sequence, locally affects the shape and texture of the
lower portion of the face.

It is worth to remark that the proposed approach differs from
lip-feature- and lip-motion-based methods, since our method is
not limited to the lip component of the motion but is designed
to analyze the entire surrounding area instead.

This distinction applies to any of the works based on stacked
sparse autoencoders [20], particle-filter-based motion track-
ing [21], color and geometric components [22], orientation
maps [23], [24], hidden Markov models [25], statistical anal-
ysis [26], deep neural networks [27], [28], recurrent neural
networks [29], multiboosted learning [30], support vector ma-
chines [31], [32], time-series matching [33], or Gaussian mixture
models [34].

Moreover, the adopted LBP-TOP descriptor is capable of
embedding both spatial and temporal characteristics of dy-
namic facial patterns, which are crucial for dependable subject
identification.

III. METHOD DESCRIPTION

As briefly anticipated in the previous sections, the proposed
approach takes advantage from a three-level architecture de-
signed to distribute the main steps of a general biometric pipeline
among different kinds of nodes for maximum processing effi-
ciency and result effectiveness.

More in detail, the acquisition step, in charge of capturing the
dynamic biometrics and preprocessing it in real time to send a
normalized video stream the next level, is located at the edge
level.

The following step is aimed at extracting a (dynamic) feature
vector from the previously acquired video and is performed
on fog nodes, while the matching of the input to the reference
templates is performed in the cloud, thus realizing an Industrial
IoBT framework.

Fig. 1. Schematic view of the overall processing architecture for the
proposed method.

In fact, as shown in Fig. 1, the proposed approach can be
logically divided into three different layers in order to provide
the best results in effectiveness and process efficiency.

The functionalities at the different layers are explained in
detail in the following subsections, but the key idea is that
different tasks are performed at different networking levels.

The level closest to the humans is the edge where the sensing
activities are performed: here, at this level, the devices (mostly
industrial tablet PCs and smartphones) performed the biomet-
ric acquisition, video-preprocessing, and sample normalization
tasks. Those activities are the most privacy invading, since such
devices are the only equipment that interact with human and that
capture biometric data. Therefore, having such separation, it is
fundamental to achieve a privacy-preserving sensing activity on
humans.

In addition, at this level, there is the biggest amount of data to
be processed, since the acquired video samples are not moved
on the network and remain confined at this level (i.e., the edge
level). This results in a very limited processing load (from a
CPU perspective) and, from a networking prospective, in a quite
limited amount of data to be moved across the network and to
be sent to the upper level of the architecture (i.e., the fog level).

The main challenge at the edge level is to keep the biometric
data as much private as possible by not exposing the video sam-
ples over any kind of communication network, since everything
is processed locally.

Another important challenge to face up is to try to reduce
the amount of data to propagate at the fog level. It is worth to
note that the edge nodes communicate mostly using 4G/5G or
Wi-Fi connections, thus using not so large bandwidth. In fact,
it is well known that the IIoT is populated by different kinds
of distributed devices that can communicate with a very low
power consumption. Usually, such devices are referred to as
LR-WPAN, that stands for low-rate wireless personal area net-
work. The standard behind the LR-WPAN is the IEEE 802.15.4
[35], [36].
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The second level is the fog level that receives the processed
data from the lower level (i.e., the edge level). From a networking
perspective, this level can be seen as a local area network aggre-
gating several edge nodes. At this level, the privacy-preserving
requirement can be easily achieved, since all the traffic coming
from different edge nodes can be logically separated using the
IEEE 802.1Q standard [37] to partition (and isolate) segment
of (physical) LAN into different virtual LANs (the so-called
VLANs).

This is also very important since the IEEE 802.1Q stan-
dard contains provisions for a quality-of-service prioritization
scheme, such as the IEEE 802.1p [38]. Industrial environment
is fundamental to guarantee enough communication bandwidth
to all involved devices mainly to avoid any kind of denial-of-
service attacks coming from some compromised devices oper-
ating at the edge level.

At this level, the available bandwidth is bigger than the one
at the edge level, and it can be esteemed in a scale of 1–10 GB.
Therefore, we can state that both the networking and the pro-
cessing load are considerably bigger than the lower level. In
particular, from a processing load point of view, the fog level
is responsible for processing the video samples and performing
the feature extraction. The latter can be performed on a mid-size
server that can operate within a mid-size factory/plant.

The last level of the proposed architecture is the cloud. The
cloud level receives all the data from the lower levels (edge
and fog) and is responsible for the biometric signature match-
ing. This is achieved by using a deep feedforward network
for checking the reference database and perform the template
matching.

At this stage, from the processing load point of view, we
experience the maximum load. Also, from a networking point
of view, we can say that there will be a fair and fast access to
the Internet in order to interact with the cloud service provider
on which all the processing are performed. Anyway, since most
of the data processing is done at the lower levels, a bandwidth
similar (around 1–10 GB) to the one at the fog level will be
enough.

Regarding the aspects of privacy concerning the video clips,
we can state that first of all no video clip is spread outside
the edge/fog and, second, in this case, we can use the privacy-
preserving functionalities provided by most of the cloud service
providers [39]–[41].

The whole three-level architecture resumed above is designed
to achieve near-real-time operation and response, which are
likely to be considered a key requirement of an industrial-grade
identification system, where minimal personnel distraction and
interruption of the working routines should be guaranteed.

A. Edge Level: Acquisition

The first layer of the proposed architecture is made up by
heterogeneous edge devices, possibly including smartphones,
industrial tablets, embedded PCs, and any other kind of con-
nected devices equipped with a camera and suited to perform
a preliminary processing typically requiring limited computing
resources.

Fig. 2. Full set of 59 facial landmarks detected for cropping the region
of interest, which is the region below the imaginary line passing between
landmarks #2 and landmark #12, highlighted in red.

Subject acquisition is a double-step process: the recording of
video footage via a digital camera and its preprocessing (prior
to image analysis) to normalize it with regard to the number
of frames. This latter step implies a resampling process to the
aim of obtaining a clip whose length is consistent to the length
of any gallery samples. Each frame of the resulting sequence
is, therefore, analyzed by a face detector [42] that allows us to
identify the image region in which the subject’s face is present.

Subsequently, up to 59 facial features are found on the face
crop previously detected by means of an efficient landmark
predictor based on [43]. By exploiting these numbered land-
marks, the frame is cropped again retaining only the lower face
region comprised below the ideal line connecting landmark #2
to landmark #12 (see Fig. 2).

This choice is based on a specific analysis we conducted by
testing the recognition accuracy achieved with three different
cropping regions, respectively, including the whole face (except
the hair), everything that is below the eyebrows (crop line pass-
ing between landmarks #22 and landmark #16), and everything
that is below the nose (crop line passing between landmarks #2
and landmark #12).

The latter cropping region resulted the most discriminant and,
at the same time, the smaller with regard to the number of pixels,
so that the subsequent LBP-TOP feature descriptor would work
more on less pixels with a relevant computing-time advantage.

Finally, the video segments thus obtained are converted into
grayscale, spatially resampled to a resolution of 200×200 pixels
and sent in this compact form to the fog nodes for further
processing.

B. Fog Level: Feature Extraction

At this level, fog nodes take in input the preprocessed video of
the lower face region of the subject pronouncing the passphrase
to extract local spatial–temporal features. To this aim, a compu-
tationally less demanding version of the Volume Local Binary
Pattern dynamic textures descriptor [44], namely LBP-TOP, is
adopted. This more efficient descriptor, indeed, considers only
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Fig. 3. LBP-TOP descriptor generation. From a sequence of frames
capturing the motion in the region of interest, local spatial and temporal
features are extracted according to three orthogonal planes Y T , XT ,
and XY (where temporal dimension T corresponds to Z spatial axis)
and represented through concatenated histograms.

three orthogonal planes for analyzing the local features and is
extensively described in [45].

The LBP-TOP technique reduces the number of possible
patterns by 2(3p+ 2) (when considering only three planes in
the Z dimension) to 3 × 2p, where p represents the number
of neighboring points. In this article, 36 spaced points were
used on a circumference of radius 6, centered on the pixel of
interest. The patterns thus obtained are then scaled into integers
that can be represented on 8 bits. The binary patterns obtained
are extracted from theXY ,XZ, andY Z planes. The histograms
obtained from the three planes are linked together obtaining a
single vector of features (see Fig. 3).

A useful extension of the original operator is the so-called
uniform pattern, which can be used to further reduce the length
of the feature vector. Indeed, some binary patterns occur more
often than others in image textures. An LBP code is said to be
uniform when it contains only binary patterns that have at most
two transitions 0–1 or 1–0. The histogram relative to an LBP
technique with uniform pattern will have a distinct bin for each
uniform pattern, while it will have a single bin for all nonuniform
patterns.

In the specific case, considering the value of the LBP code
expressed on 8 pixels (with possible values between 0 and 255),
there are 58 different uniform patterns, and therefore, the final
histogram will consist of 59 bins, where the 59th represents the
“other” class.

C. Cloud Level: Matching and Decision

At the cloud level, the feature vector resulting from previ-
ous levels of processing is, therefore, matched to a reference
database by means of a (previously trained) fully connected deep
feedforward neural network outlined in Fig. 4.

The network provides in output a percentage of probability
of belonging to each class, for each sample shown in the testing
phase. The class with the highest percentage is then selected
without the use of particular thresholds.

The choice of parameters, activation functions, and archi-
tecture was determined on an experimental basis; a series of

Fig. 4. Network layout of the fully connected deep feedforward network
architecture used in the proposed method. The number of input nodes
n is determined by the dimensions of the feature vector, whereas the
number of output nodes m is equal to the number of subjects in the
database.

tests were, therefore, performed, modifying the combinations
of these variables, and the best architecture and setup obtained
a recognition accuracy of 98.83% on the test set. The rectified
linear unit activation function was chosen for the input layer;
for the three hidden layers, the sigmoid activation function was
preferred; and the softmax was selected for the output layer. The
number of input nodes was set equal to the size of the feature
vector, while the number of output nodes is determined by the
number of subjects in the database.

The network was implemented through the Keras framework
with Tensorflow backend; the optimizer and the evaluation met-
ric used are, respectively, stochastic descending gradient and
accuracy. All the other parameters of the network, such as the
number of epochs, batch size, learning rate, momentum, decay,
and dropout, have been optimized experimentally.

The best performing configuration resulted to be the follow-
ing: epochs = 20, batch size = 32, learning rate = 0.1, decay =
0.000001, and momentum = 0.

IV. TESTING ENVIRONMENT

The IIoT environment, in which the proposed approach has
been experimented, is an assembly and repair facility of mission-
critical systems for aerospace and defense applications. In this
environment, typically, three main kinds of activities take place:
assembling (from on board mounting of electronic components
up to board installing/wiring into larger units), testing (of boards
and units throughout the assembling path and during diagnos-
tic activities within repair procedures), and disassembling (of
systems, subsystems and boards for local testing and repair).

This industrial context and the related manufacturing and
servicing processes are strictly regulated by formally defined
procedures, which, necessarily, involve the active presence of
highly specialized workers and technicians, which have to be
present in the right location at the right time according to a
detailed operating schedule associated with each activity. In
such an environment, there is a clear advantage in identify-
ing/authenticating personnel at various locations by means of
different kinds of devices they have at hand.
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In this particular case, industrial tablet PCs have been used
at the edge level for ubiquitously acquiring the subjects to be
authenticated, while the local intranet and the related processing
servers have been used, respectively, to transfer the captured
video clips to the fog level and to process them for feature
vector extraction before sending it to the deep learning network
implemented via Google Cloud services.

V. EXPERIMENTS

The experiments described in the following were conducted
on a custom-built database, containing short video clips of
subject acquisition pronouncing brief sentences. More in detail,
48 subjects (33 of which were males and 15 females, selected
to maximize interclass variability with regard to age, gender,
and phenotype) were enrolled in the gallery by capturing their
face through a camera embedded in an industrial equipment and
featuring 1280 × 720 pixels of sensor resolution at 30 frames/s
of acquisition rate. Edge node processing power was provided
by an industrial-grade PC by Machine Vision, Inc., featuring a
quad-core Intel i7@ 3.2 GHz with 16 GB of RAM, integrated
GPU, and a 128-GB solid-state drive.

For each one of the enrolled subjects, the database contains
three passphrases recorded throughout eight sessions over a span
of five months under mildly controlled conditions. The temporal
distance among the different acquisitions resulted in a rather
ample intraclass variability of the same subject in the course of
different sessions, for example, due to change of the hairstyle,
growth of beard, and presence or absence of glasses.

The sentences pronounced were the following ones: “My face
is my key to this system”; “Please, authenticate me”; “This key
is my system to my face,” where the third sentence is deliberately
a reassembling of all the words of the first sentence in a different
order.

It is worth noting that a resampling operation has been neces-
sarily performed on all video samples from all subjects in order
to obtain a uniform feature vector, compensating the rather large
variations in the number of frames associated with the utterance
of each passphrase due to subject-characteristic speaking speed,
passphrase-specific difficulties in memorizing and correctly re-
peating them (particularly for the third sentence which has no
sense), and session-dependent utterance speed. Such factors,
indeed, determined a variable length in the unprocessed videos
ranging from a minimum of 90 frames to a maximum of 238
frames that have been normalized.

Three experiments were designed and carried out to evaluate
the effectiveness of the proposed method within the IIoT test-
ing environment. In all these three experiments, only the first
passphrase “My face is my key to this system” was used for
the training of the deep feed forward network (DFFN) network,
partitioning the available samples into 75–25% sized subsets,
respectively, for the train set and the test set.

In the first experiment, the same passphrase used for train the
network was also used to test it. The overall performance of
the biometric components of the system (from edge to fog and
cloud levels) is graphically outlined by the receiver operating
characteristic (ROC) (see Fig. 5) and FAR/FRR (see Fig. 6)

Fig. 5. ROC curve resulting from the first experiment. The area under
the curve highlights a remarkable performance.

Fig. 6. FAR/FRR curves with equal error rate point located at 0.05%.

curves, which both show an almost ideal behavior, as further
confirmed by the equal error rate (EER) value of 0.05 and a
cumulative match curve (CMC) (see Fig. 7) of 98.8% already at
rank 1, 99.7% at rank 2, and reaching 100% at rank 3.

In other terms, the system is able to perform a correct classi-
fication in almost all cases, even with a low decision threshold.
Note that in the CMC curve, only the first five out of 48 rank
have been reported in order to magnify the behavior between
ranks 0 and 3.

In the second experiment, the network was tested on the third
sentence “This key is my system to my face” (featuring misplaced
words of the first sentence), unknown to the training process, and
built to test the ability of the approach to correctly recognize
a genuine subject even in case some words are unwillingly
misplaced. Unsurprisingly, in this test, the percentage dropped
slightly to 98.1%.

In the third experiment, the alternative passphrase “Please,
authenticate me” was used for testing the robustness of the
system to a wrong passphrase pronounced by a genuine subject.
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Fig. 7. CMC curve depicting the recognition performance for the first
five ranks.

TABLE I
RESULTS OF THE THREE MAIN EXPERIMENTS

In this case, the resulting accuracy was 97.7%, still a very high
value. Finally, we wanted to verify the weight of the dynamic
component of the feature vector (peculiar to the proposed ap-
proach) by providing in input to the system a fake video made
up of a sequence of the same image of a genuine subject. The
resulting accuracy was a mere 57%, proving the high sensibility
of the method to the way the face locally moves and not just to
its shape.

A quantitative summary of the aforementioned results,
achieved in each of the three experiments, is found in Table I. The
experiments proved that facial dynamics can not only represent
a highly salient descriptor of an individual, but also their results
are intrinsically much more difficult to forge by malicious users
(compared to any static face descriptor) since they are time
dependent in a way that is peculiar to whom is speaking, due to
his/her anatomical and behavioral characteristics [46].

The temporal component of the facial descriptor, indeed,
provides both uniqueness and reliability to the feature vector, as
proved by the very low FAR and high GAR shown in the plots of
Fig. 5 and 6. Furthermore, an implicit (yet indirect) liveness test
is performed during acquisition, since only a time-changing face
appearance could be a valid input to the processing pipeline.

As highlighted in the introduction, another aspect deserving
investigation, since it is tightly related to the trustworthiness
of the identification procedure, is the length of the sentence
necessary for the recognition to take place successfully.

Fig. 8. FAR/FRR curves for 1/3 length passphrase. Equal error rate
value is 0.15%.

Fig. 9. FAR/FRR curves for 2/3 length passphrase. Equal error rate
value is 0.09%.

The experiment carried out to this aim consists of measuring
the performance of a model trained on a complete passphrase
and tested on a partially pronounced passphrase. The complete
passphrase used for training is again “My face is my key to this
system.” Therefore, to obtain partial-passphrase video clips, the
original complete-passphrase videos have been edited in two
versions (“My face is my key” and “My face is”) whose lengths
are approximately 2/3 and 1/3 of the full length.

The aforementioned editing of video samples has been per-
formed by means of a script. With this configuration, the per-
centage obtained for recognition by pronouncing one-third of
the passphrase is 89.81%, while that obtained by pronouncing
two-thirds of the passphrase is 97.79%. Remembering that the
result obtained by testing the same model on the complete
ordered sequence is 99.49%, it is useful to analyze the graphs
relating to the crossover error rate shown in Fig. 8 and 9 and
compare them with that of Fig. 6.
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TABLE II
SYSTEM TRUSTWORTHINESS FOR A THRESHOLD SET AT 0.88

Unsurprisingly, the minimum EER value is obtained with
the full passphrase (0.05), though 2/3-length passphrase achieve
EER = 0.09 and 1/3-length passphrase still reach a reasonably
good EER = 0.15. It is also easy to note that the FAR curve
becomes more and more segmented according to the length of
the pronounced sentence. This is due to the increase in system
performance, which has a lower number of false positives and,
therefore, has a “step” trend in the FAR.

Furthermore, another sign indicating the reliable behavior of
the system is the steepness, with which the FAR curve tends to
zero. Also, as regards the FRR, the slope of the curve provides
valuable indications. In the first case, the growth is immediate,
and even for low threshold values, the percentage of FRR in-
creases considerably. By increasing the length of the passphrase,
in contrast, the FRR values remain lower, and consequently, the
ability of a system to recognize genuine subjects increases.

These results demonstrate that the dynamic characteristic
extracted on a shorter subsequence is sufficient to obtain discrete
performance, but the use of a longer passphrase leads to a
considerable increase in the robustness of the system. Overall,
the experiments confirm the validity of the proposed approach
and its trustworthiness with regard to person identification in
challenging industrial contexts, as summarized in Table II.

VI. CONCLUSION

In this article, we presented a method for identify-
ing/authenticating persons operating within a three-level IIoT
environment by means of a dynamic biometric signature. Fa-
cial motion around the mouth region captured by edge-level
devices was processed at fog nodes for extracting discriminant
features through the LBP-TOP local spatial–temporal descriptor
and further matched to a reference gallery via a deep network
implemented on the cloud.

The proposed approach and the related edge–fog–cloud archi-
tecture proved to be highly effective in increasing the trustwor-
thiness of the IIoT environment, thanks to the intrinsic difficulty
in forging such a time-dependent descriptor. The experiments
conducted on a custom-built database resulted in state-of-the-art
recognition accuracy reaching 98.7% at rank 1 and showing high
robustness to the way the passphrase is pronounced if the subject
is genuine, yet reliable rejection of imposters even with a low
decision threshold.

Future research will concern experiments aimed at assessing
the efficiency of the three-level architecture compared to a more
conventional solution based on local processing. An extension
of this article could also include the audio component of the
speech samples for implementing a bimodal biometric system

to further improve both accuracy and reliability of the proposed
method.
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