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Big Data-Driven Contextual Processing Methods
for Electrical Capacitance Tomography

Andrzej Romanowski

Abstract—This paper presents a new approach to analyz-
ing measurement records from industrial processes. The
proposed methodology is based on the model of contextual
processing and uses big data from experimental process
tomography datasets. Electrical capacitance tomography is
used for monitoring noninvasive flow and for data acquisi-
tion. The measurement data are collected, stored, and pro-
cessed to identify process regimes and process threats. A
specific physical modification was introduced into the pneu-
matic conveying flow rig in order to study flow behavior un-
der extreme conditions, extending the available knowledge
base. A support vector machine was applied for data clas-
sification. This study illustrates how contextual processing
can facilitate data interpretation and opens the way for the
development of methods for detecting pre-emergency flow
patterns.

Index Terms—Big data analysis, contextual processing,
electrical capacitance tomography (ECT), industrial process
tomography.

I. INTRODUCTION

A LMOST 60% of all solid materials used in industry are
processed in the form of bulk particulates [1]. Bulk solids

are important and used widely in many fields, such as chemical
engineering, food processing, and pharmaceutical production
[2], [3]. Fully automating the operation and control of indus-
trial processes involving bulk solids still presents a challenge in
many cases [4], [2], [5], [6]. Process tomography techniques,
especially electrical capacitance tomography (ECT), could be
implemented in the control feedback loop [2], [4], [7], [8]. How-
ever, the integration of ECT into real-time monitoring and con-
trol systems has so far been limited, mainly due to inherent issues
concerning data analysis and interpretation [4], [5], such as in-
sufficient exploitation of measurement data related to process
behavior [9], [10]. Therefore, this paper presents a methodology
that extends the existing practice of modeling process monitor-
ing, in order to increase the consistency and reliability of ECT
data interpretation. This is achieved with the aid of the con-
textual data processing model (CDPM) depicted in Fig. 1. The
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Fig. 1. CDPM workflow diagram. Left: variety of data and information
input types; middle: CDPM inference engine; and right: possible output
applications (monitoring, control, research, and design).

CDPM is able to support ECT with a data-driven system, which
enhances its ability to understand process behavior [11]–[13].
Better understanding of an industrial process can lead to more
efficient monitoring and control, better design, and eventually
to its optimization [10].

The aim of this research was to improve the interpretation
of ECT output, in order to recognize specific bulk flow regimes
(e.g., risky phenomena), such as pipeline blockage threats, more
effectively. The main difficulty with performing a comprehen-
sive study of these phenomena is their infrequent occurrence,
and hence the lack of sufficient experimental data [5]. Two
schemes for increasing the volume of available quality data are
therefore proposed:

1) Aggregation and joint processing of data captured in
different settings, using typical techniques for big data
analysis.

2) Provoking the occurrence of specific events and generat-
ing more empirical data, using the artificially generated
input technique.

This study makes two major research contributions. The prin-
cipal, practical contribution is its experimental demonstration of
a new methodology for handling data produced using industrial
process tomography, which contextually incorporates additional
data into the process workflow. The main advantage of the pro-
posed data-driven workflow is that it improves detection of crit-
ical flow regimes, which pose a risk to the industrial process.
This enables preblockage flow patterns to be distinguished (c.a.
90% accuracy), even when there is such limited data available
that this would not normally be possible. Current approaches
to ECT process modeling do not support this methodology, but
they could be extended to utilize the additional information of-
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fered by analysis of broader data sources, thereby improving
performance. The methodology is validated using a binary sup-
port vector machine (SVM) classifier.

The second contribution is the CDPM itself: A theoretical
model for data processing using a contextual approach. The ap-
plication of this model expands the knowledge base that can be
derived from monitoring process data, and hence augments the
possibilities for industrial process modeling. The CDPM model
is examined and validated in the case of ECT-monitored indus-
trial pneumatic conveying, but it is easily scalable for use with
other process tomography techniques and different applications.

This paper is structured as follows. Section II presents the
key novelty of the paper, the concept, and rationale behind the
CDPM. Four categories of context-related data are presented,
which can be used for modeling and eventually monitoring flow
processes. These include the big data approach and artificially
generated inputs (AGIs), which are the main focuses of this
study. Section III describes methods borrowed from the field of
big data analysis and applied to ECT experimental data. It also
presents the proposed data handling system, as well as providing
an overview of the experimental workflow presented in later sec-
tions. Section IV covers verification of the proposed approach,
using three computational use cases: 1) testing the adequacy of
the methods for big data analysis; 2) evaluating the consistency
of the concept of AGIs, and finally 3) cross-mixed comparative
data analysis. The results are discussed alongside the subse-
quent stages of the verification process. Section IV presents a
brief experiment predicting process failure in advance. Finally,
possibilities for further research and conclusions are presented
in Sections V and VI, respectively.

II. CONTEXTUAL ECT DATA PROCESSING

Contextual data, contextual information, and contextual sig-
nal processing are different terms used to refer to methods
and algorithms with context-aware, context-enabled, or context-
driven features. These features can enhance computer systems
and applications by broadening the input in comparison to clas-
sical standalone solutions [19]. Research related to context and
context-awareness has been ongoing in computer science, cog-
nitive science, artificial intelligence, and general engineering
disciplines for over three decades, and is expected to remain
central to continuing innovation over the coming years [15].
Many papers describe contextual computing as a fundamen-
tal requirement for interactive systems and mobile computing
[16]. Some discuss the data-oriented perspective in broader ICT
applications [17]. Yet, there has so far been less work utilizing
contextual data processing techniques to solve engineering prob-
lems, such as issues relating to industrial control, measurement,
or instrumentation [18], [16]. Numerous definitions of context
and context-awareness have been offered, but the majority of
studies have focused on the circumstances and settings that
have an impact on the real meaning of the situation or activity.
These conditions may be interpreted as external or complemen-
tary signals, parameters, and information sources, which assist
the computerized systems to aggregate a more comprehensive
input set for the job at hand. In other words, they help provide
a wider picture of the ecosystem interface.

Fig. 2. Simplified schema of the CDPM for a pneumatic conveyor
pipeline installation.

For the purposes of industrial process monitoring, the follow-
ing categorization of context-related data (i.e., prior, external or
contextual inputs, external with respect to the main measure-
ment tool) is proposed:

1) Expert knowledge (EK) denotes the entire body of
knowledge (derived from well-known rules, phenomena
physics, expert observations, and theoretical models) re-
garding the investigated field. Inputs that fall into this
category are independent of the experimental settings.

2) Peripheral sensor inputs (PS) are additional, extra contri-
butions to the main computer system and complementary
to the theoretically modeled behavior of the investigated
object. These inputs can vary significantly in different
experimental settings.

However, there may not be enough domain-related or ex-
pert knowledge available, in which case neither the first nor
the second category will provide sufficient support. Moreover,
modeling of related phenomena can too expensive or too diffi-
cult to conduct. Despite incorporating all available information
from the EK or PS categories, the uncertainty surrounding the
process will still be too high.

There are two other potential methods that can extend the
desired capabilities of the system:

3) Big data-derived analysis (BDD) is a methodology taken
from the broader field of big data. Tools and methods
borrowed from the field of big data analytics can help to
draw general conclusions regarding phenomena that are
usually so peripheral that they are treated as statistically
insignificant and negligible.

4) AGIs are introduced to provoke specific performance pat-
terns. They are especially important when the patterns are
of significant importance and/or if they are infrequent and
hence difficult to capture and study outside the laboratory;
in-the-wild. AGI are particularly helpful when studying
the responses of a system, to learn the origins of particular
phenomena that occur during normal operation.

Fig. 2 shows a schema of the monitoring and control system
(on the right) based on ECT measurements (upper left), coupled
with a CDPM in a pneumatic conveying process. The CDPM
depicted in the lower left corner of Fig. 2 takes as its inputs ECT
measurements and inferences based on EK, PS, BDD, and AGI
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Fig. 3. EBDDFS (right) composed of experimental data from ECT mea-
surements of various types (left).

elements. The complete CDPM configuration brings various
benefits, such as regularization of inverse problem-solving based
on PS and/or EK [5], [19], [20].

However, this paper is focused only on exploring the BDD
and AGI elements. The BDD module is responsible for using
the broader experimental data, using big data paradigms. The
AGI element introduces the AGI, so that the behavior of the
system (and how that behavior is reflected in the main mea-
surements) can be investigated. It is planned in further research
to deploy this approach for the construction (or alteration) of
a theoretical model of the system, which could be applied in
online monitoring strategies.

III. EXPLORING BIG DATA PARADIGMS FOR PROCESSING

DATA FROM EXPERIMENTAL PROCESS TOMOGRAPHY

Big data is sometimes described in terms of five Vs, which
stand for velocity, volume, value, variety, and veracity. In this pa-
per, we begin with volume and focus mainly on variety, in order
to generate extra value. Velocity and veracity will be explored
in future research. Big data usually refers to huge amounts of
data, produced by humans both explicitly (documents, photos,
videos, social network entries, etc.) and implicitly (as records of
various activities), as well as by other systems connected to the
Internet (such as sensors, transceivers, and webcams) [21], [22].
The term is also used to refer to some scientific data, such as as-
trophysical records or so-called big experiment data. Rarely is it
applied in the context of conventional experiments and standard,
moderately-sized research projects. The reasons are usually the
rare and transient nature of the phenomena, the limited amount
of data produced and the local character of the study.

The present work runs counter to this established approach.
First, the size of the data produced during experiments with ECT
can be substantial. Second, applying big data-related techniques
such as data mining and machine learning to localized and dis-
connected data creates new opportunities. A specialized data
aggregation and storage system for remote and “disconnected”
experiments is also required [23], [24], [35].

Fig. 3 shows in a simplistic way how the measurement data
from ECT-based experiments are aggregated. On the left, the
basic experimental dataset is seen as a package of files arranged
in sequences representing time series, documented in different
representations. A single measurement sequence taken using the

ECT device may contain three types of file: 1) raw measurement
data; 2) binary data; and 3) reconstructed images accompanied
by a single calibration file (omitted in Fig. 3 for simplicity).
The raw measurements are usually stored as text files (.txt or
.csv file formats). The binary files differ depending on the ECT
equipment used (.mes, .bin or similar file formats). Images are
saved as bitmaps (both uncompressed and compressed) or text
values (.tif, .bmp, .jpg for rendered images and .txt, .csv, etc. for
text-stored image-ready formats). In this study, we used only
raw data and images. Such experimental ECT datasets can be
4 GB in size (for 300 s @ 200 fps for twin 16-electrode sensors)
up to 1 TB+ [for two-dimensional (2-D) images and raw data]
or even 100 TB+ (for 3-D).

The ultimate goal of this research is to create new opportu-
nities for data mining, by linking incoherent experimental data.
This can be accomplished using the proposed flexible compu-
tational environment, designed to explore the volume and vari-
ety of ECT experimental data (especially for joint exploration
of experiments originating in different, remote settings) [23],
[32]. The basic workflow for tomographic data analysis using
the big data approach passes through the following consecutive
steps:

1) Multiexperiment data linking into a MapReduce-based
distributed framework; metadata-based indexing.

2) Classification stage: model definition (including data la-
beling for supervised learning classifiers) and training.

3) Verification of the proposed approach.
The first step is to set up a distributed computing environ-

ment, such as the Hadoop-based (or Apache-Spark) system, or
a similar open source or proprietary networking/cloud comput-
ing service [24]. A simplified schema of how the experimental
ECT data is organized into the Experimental Big Data Dis-
tributed File System (EBDDFS) is presented in Fig. 3. A vari-
ety of tomographic data types and files are reorganized across
the network of computing resources. Efficient organization of
data within the EBDDFS also depends on preprocessing and
on extensive metadata description of the recorded files. This
work used standard map-reduce arrangements, yet dedicated
and more efficient BDD implementations such as [23] could be
employed and tested in future versions [21], [35].

This specific distributed organization of data based on the
map-reduce algorithm ensures proper handling and delivery of
information, whenever it is necessary to call up particular fea-
tures or patterns from the data. Initially, the system works on the
available experimental data, but it is possible to add freshly cap-
tured data after system initiation virtually on-the-fly. In future,
whenever the BDD “Velocity” factor begins to play the crucial
role in the system, then so-called lambda architecture could be
implemented [25]. Tests and development were conducted from
Hadoop 1.0 up to Hadoop 2.7 over several years. Initial work
was conducted on three workstations (1 server PC, 1 worksta-
tion PC, and 1 laptop) and the maximum size of the network was
26 PC workstations located in three LAN segments. The sys-
tem is scalable. The tests presented in this paper were conducted
within a distributed, yet locally managed, secure closed network
at the Institute of Applied Computer Science, Lodz University
of Technology.
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The crucial path of the proposed big data computational ap-
proach workflow is the classification stage. This is where the
EBDDFS system serves as a data container for further data ma-
nipulations. The machine-learning based module (SVM-based
classification in this example) handles additional operations on
the retrieved data, such as mining for particular features or pat-
terns resident in the data that are not otherwise observable or
detectable. The procedure for model training and deployment
is in accordance with SVM best practices [26]. Data from the
EBDDFS are firstly divided into training and testing sets. Clas-
sification algorithms are then used, according to standards com-
monly applied in the fields of pattern recognition and stock
market trade predictions [27], [28]. The performance of the sys-
tem is usually analyzed with the aid of a comparison between the
output classification decisions and expert-labeled data, which is
treated as a benchmark to assess the accuracy of the system
[29], [30].

Domain experts, whether professionals or experimental re-
searchers, tend to expect certain specific flow patterns asso-
ciated with to emergency events, such as pipeline blockages,
under particular flow rig settings, and current flow conditions.
Nonetheless, little has been published beyond standard, normal
operation flow regime maps [10], [31]. This topic has been ad-
dressed previously only in [32], which investigated the question
of possible similarities in the flow regime patterns of bulk solid
pneumatic conveyors in pre-emergency states. Unfortunately,
no quantitative evidence was provided to support the conclu-
sions of the study. It was conducted with the aid only of a visual
data analysis system for joint comparison of ECT preblockage
data [33]. The current approach extends this methodology with
a computational system that could provide a basis for industrial
applications.

In summary, so far most historic data related to process be-
havior has not been utilized [5], [9]. To our knowledge, there
has been no attempt to jointly analyze ECT data originating in
different experimental settings [10]. Using methods taken from
the field of big data, we propose a new data-driven workflow,
with the main aim of improving the interpretation of ECT data
[9], [35]. This contextual approach extends the knowledge base,
which is of particular importance to domain experts [4], [5] and
branches of industry employing bulk solids processing in gen-
eral [1], [18]. Furthermore, the AGI element of the contextual
approach first introduced in [32] is quantitatively tested here for
the first time. Thanks to the proposed EBDDFS system, data
manipulation and mining is less intensive in terms of compu-
tational resources than classical approaches to processing ECT
data [11], [12], [21].

IV. RESULTS AND DISCUSSION

The three-stage verification procedure implemented in this
study is presented schematically in Fig. 4. First, the big data
paradigm (BDD) is applied to experimental data from two dis-
tinct, remote locations, captured on two different flow rigs, in
order to computationally verify the feasibility of its application
to ECT data and pneumatic conveyor flow (see Section IV-A).
Second, AGIs are used to both improve understanding of the

Fig. 4. Three-stage verification procedure: (a) BDD feasibility anal-
ysis for data from remote locations; (b) verification of AGI data; and
(c) comparative analysis of data.

process and prepare extra data input for populating the big
dataset used in computational experiments (see Section IV-B).
Third, all comparative verification is conducted using the
datasets from stages one and two (see Section IV-C).

The first stage, BDD analysis, aims at proving the feasibility
of the proposed concept, while the two later stages are de-
signed to show how the proposed system could perform, as
AGI contributes to both the “big data environment” and “expert
knowledge” modules of the CDPM workflow model.

A. Data Pretreatment and Experimental Settings

In order to identify emergency situations, i.e., flow behavior
that may lead to pipeline blockages, preliminary statistical data
processing was conducted for each of the experimental dataset,
preparing a set of features for classification. The following pa-
rameters were analyzed: mean concentration, autocorrelation
SD, slug frequency and distribution, slug length, and slug length
distribution. The data from EBDDFS were first pretreated from
image sequences and raw data into discrete series of values,
such as matrices and vectors. The selection of parameters was
made based on previous work [11], [32], [31]. The minimal time
window for analysis was set to 30 s. Tracking changes in these
values within the assumed time window allows for classification
of the labeled datasets using any standard binary classifier.

The very first tests were conducted using a Hadoop Mahout
library and the Naı̈ve Bayes classifier. Some initial results ob-
tained using the Bayes classifier for pneumatic flow regime
detection were presented previously. However, it was decided
to change from Naı̈ve Bayes to the SVM technique, since good
results had been reported in a number of studies dealing with
similar problems [19], [20], [34].

The following features were finally selected for SVM classifi-
cation: mean concentration, average slug length, slug length dis-
tribution, slug occurrence frequency and distribution, and mean
interslug gap SD. All of these parameters were calculated for a
fixed 30 s time window. In order to avoid certain attributes from
dominating others due only to their greater numerical ranges,
linear scaling in the range of [−1,1] was applied [26]. Tests and
development were continued over five years, from Hadoop 1.0
to Hadoop 2.7 and in Mahout 0.11. While initial SVM devel-
opment was conducted using MATLAB and LIBSVM, the final
implementation was made using a custom Python-based plug-in
for TomoKIS studio, a process tomography software suite [11].
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Fig. 5. Pneumatic conveyor flow installation in the Tom Dyakowski Pro-
cess Tomography Lab, Lodz University of Technology.

TABLE I
BDD EXPERIMENTAL DATASETS: UMIST AND LODZ

The SVM models were developed for the radial basis function
kernel with a coarse grid search for adjusting penalty (C) and
kernel (γ) parameters [34].

The parameters/models were validated initially for 10-fold,
and later for 5-fold cross-validation only, since the accuracy
obtained exceeded 90% (maximum 96.74%) in all cases. The
specific acceptable parameter values found were C = 2 and
γ = {0.125; 0.008}. Performance was not analyzed in detail,
in usual terms of sensitivity, specificity, positive predictive, and
negative predictive values, since the focus was not the SVM
algorithm itself. For this domain of application, only correct
detection of possible pipeline blockages is important [10], [19].

The data were recorded during experiments using two dif-
ferent flow rigs in two different universities (the University of
Manchester and Lodz University of Technology). The experi-
mental data from these two locations will henceforth be referred
to as UMIST and LODZ data, respectively. The experimental
conditions were comparable in both cases: polyamide pellets of
similar spherical shape were used as the conveyed medium; the
pipeline diameter and airflow conditions were almost the same
(in the same range of values). A segment of the pneumatic flow
rig at Lodz University of Technology is pictured in Fig. 5.

No significant differences in data acquisition speed were ob-
served for 50 fps and 67 fps, taking into account the dynamics
of the pneumatic flow process of particulates [4], [7] (see Table I
for details).

B. Initial Big Data-Driven Approach: Mining for Pipeline
Preblockage Patterns in ECT Data From Two Different
Flow Rigs

In the first stage of the investigation, a comparative analysis
was conducted of the SVM classifications applied to the UMIST
and LODZ experimental measurements. The main goal was to
train the models for SVM-based classification of experimental

Fig. 6. Verification of experimental datasets: (1.1) UMIST data only;
(1.2) LODZ data only, and (1.3) UMIST and LODZ data combined.

datasets, to recognize those that tended to end with a pipeline
“blockage,” thereby detecting blockage threats in the analyzed
data [11], [34]. Fig. 6 shows a simplified schema of the three
combinations of data employed in the proposed verification ap-
proach. Results for model training and performance are given in
three combinations: for distinct UMIST data (denoted as 1.1 in
Fig. 6), for LODZ data (1.2 in Fig. 6) and for a MIXED dataset
(1.3 on Fig. 6), using an aggregate of UMIST, and LODZ data
together.

1) Model Training and Tests: Model training and testing was
conducted for several different input dataset arrangements. Data
gathered from EBDDFS for training constituted only a fraction
(usually about 2/3) of all data (the other 1/3 was taken for model
testing). As the total number of available experiments in this case
is N = 211 (calculated as N = NU + NL ), the fraction taken
for model training is K1 = 140. First, training was conducted
in the following four configurations:

1) Full experimental datasets (from full length measurement
sequences, i.e., 300 or 280 s for LODZ data and UMIST
data, respectively);

2) 120 s measurement sequences corresponding to the very
final 2 min of the flow period;

3) 60 s measurement sequences corresponding to the very
final minute of the flow period; and

4) 30 s measurement sequences, corresponding to the final
30 s of the recorded flow period.

For each training dataset length, three different compositions
of datasets were considered. Table II presents the composition
of these datasets. They include experimental datasets ending
with pipeline blockages. For example, row 1A shows classifica-
tion results from a model trained with K1 = 140 experimental
datasets (out of a total N = 211 datasets from both the LODZ
and UMIST sets). The fraction of “blockage” datasets is 16 and
all came from LODZ experiments (R1L = 32 “blockage” ex-
periments available in LODZ data). This particular combination
is indicated in the third column of Table II by the “16/32 LODZ”
entry. Row 1B gives the results for UMIST data (4/40 UMIST)
and so on.

2) Discussion of Outcomes: Each of the rows in Table II was
populated with the average of five different results records. This
means there were always five distinct training/testing composi-
tion sets, drawn randomly yet preserving a fixed ratio of R1/L
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TABLE II
MODEL VERIFICATION FOR UMIST AND LODZ DATA

from the entire set of experimental data. Fully randomized train-
ing sets gave poor results (c.a. 50% accuracy and below), due
to the small number of R1, especially in UMIST data. The stan-
dard deviation (SD) was then calculated for these sets of five.
During the stage of supervised learning, the model was trained
with data manually labeled by the expert as falling into one of
two categories: “blockage” (measurement datasets recorded just
before a blockage in the pipeline) versus “other” (measurement
datasets recorded under normal operating conditions).

The results presented in Table II show that the proposed ap-
proach performs at least sufficiently well with the experimental
data to reach more than 90% accuracy. The best results for each
combination are marked with a grey background. Classification
results for the LODZ training data tested against LODZ (LODZ-
LODZ) test data were better than for UMIST test data (LODZ-
UMIST). Classification results for MIXED training data tested
against UMIST (MIXED-UMIST) test data performed better
than LODZ-UMIST and remained between LODZ-UMIST and
LODZ-LODZ, as may be anticipated. The MIXED-MIXED
configuration performed well in all cases and achieved in the
best results around 90% accuracy. Models trained with 120 s as
well as 60 s datasets showed better results than models trained
with full and 30 s datasets. Distribution manifested by SD had
smaller values for models trained with full measurement datasets
and demonstrated the greatest variation for models trained with
30 s experimental datasets.

The most significant observation is that the MIXED-MIXED
configuration performed consistently better than UMIST-
UMIST and was very close or outperformed LODZ-LODZ ar-
rangements (which were significantly better, by about 8%, only
for 30 s datasets). This proves that the big data approach en-
ables joint analysis of normally disconnected data (originating
in remote locations in different experimental settings), bringing
novel benefits and raising the quality of ECT industrial process
data interpretation.

C. AGI Tests

The second stage of the verification phase employed an ar-
tificially introduced obstacle for contextual processing of data

TABLE III
MODEL VERIFICATION FOR AGI

(see Fig. 5). The contextual approach based on AGI was first
introduced in [32]. However, a proof-of-concept study, it did not
conduct any extensive tests using AGI, either to reveal its utility
for CDPM or provide any quantitative results.

This study focused on an investigation of slug flow in the
horizontal section of an industrial pneumatic conveyor. The set-
tled layer occurs between two consecutive material aggregates
(in contrast to plug flow, when looking at the vertical sections
of pipeline installations). Therefore, the proposed modification
forces a specific flow regime that is relevant to stable slug flow
yet quite close to unstable slug flow (when looking at the experi-
mental flow regime map) [10]. In other words, this modification
alters the properties of the flow installation in such a way that
it is easier to obtain a larger settled layer between the moving
slugs. More details of the flow regime map and the rationale
behind this routine can be found in [31].

The main experimental setup parameters were kept the same
as in the previous experiments labeled LODZ (this time labeled
AGI for ease of distinction). The data acquisition speed was
66.7 fps for the approximate duration of each experimental set
of 300 s. The total number of O = 107 experiments includ-
ing R2 = 27, which ended with a pipeline blockage was deter-
mined. As in the previous case, model training and testing were
conducted for several different input dataset configurations. The
fraction of experimental data for model training was this time
K2 = 71 out of O = 107. The same four configurations (full ex-
perimental datasets, 120, 60, and 30 s) were examined, and two
different compositions of datasets are taken into account for each
configuration. These are shown in Table III as pairs of rows, as
in Table II. Consistent with the experimental results presented in
Table II, each of the rows in Table III is populated with the aver-
age of five different results records. Five distinct training/testing
composition sets were drawn randomly from the set of exper-
imental datasets (yet preserving the fixed ratio of “blockage”
datasets drawn from R2 to the rest of the datasets, as given in
the “Training set composition” column). The SD was calculated
for those sets of five. Other conditions, such as classification
goals and preprocessing criteria, were the same as for Table II.

It can clearly be observed that the larger the fraction of R2
(“blockage”) datasets in the model training data, the more ac-
curate the results of the classification. This regularity is mani-
fested by the differences between the classification results for
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TABLE IV
SUMMARY OF EXTENDED MIXED COMPARATIVE DATASETS

corresponding pairs of rows A and B. However, it can be es-
timated that a content of R2 datasets below 10% (i.e., several
fewer than 10 in absolute values) in the training set may lead to
underfitting of the model. In addition, the SD factor is greater
for larger R2 fractions in the model training data. To sum up, the
overall results are satisfactory, since classification is maintained,
in most cases, at 90% accuracy. Therefore, it can be concluded
that AGI data constitute a promising option as an input for
CDPM models. This method can be applied to enlarge available
data samples, which is important for modeling and analysis of
infrequent events, sparsely represented within datasets.

D. Extended Mixed Data Comparative Analysis

Finally, extensive comparative tests were performed of input
datasets in different mixed configurations, in order to verify the
feasibility of the proposed approach.

1) Model Training and Tests: Table IV shows details of the
input data taken from EBDDFS. Model training and testing were
conducted for several corresponding input dataset arrangements
(full length, 120, 60, 30 s).

The performance of the proposed approach was verified us-
ing a combination of three differently trained models, tested
with four permutations of the data. First, the model was trained
for LODZ and UMIST experimental data (indicated as BDD
in the “Training set” column of Table V, rows 1–4). Second,
AGI-based data was used for training (indicated as AGI in the
“Training set” column of Table V, rows 5–8). Next, the model
was trained with a mix of both LODZ and UMIST plus AGI data
(indicated as MIXED (U+L+A) in the “Training set” column of
Table V, rows 9–12). Finally, model testing was conducted for
test datasets drawn from the following four sources: 1) LODZ;
2) UMIST; 3) AGI, and 4) MIX of all. Note that 1) and 2) are
elements of the BDD collection.

This time, only a single arrangement of the input datasets
was applied for each training dataset period (i.e., there was no
fixed ratio for the RT/ST fraction within the training set). How-
ever, each row shows results for ten distinct training/testing
sets, drawn randomly from the entirety of the available data.
This means that columns presenting the results show the av-
erage percentage. The SD was then calculated for each set of
ten. The other conditions, such as classification goals and pre-
processing criteria, as well as the number of datasets used for
model training, were kept the same as for Tables II and III.

2) Mixed Data Tests Results Discussion: The data used
for model training in Table V were randomly sampled from
EBDDFS. As a consequence, there is no fixed fraction of
“blockage” datasets within each training dataset used for model

training, and the RT/TT ratio is therefore accidental. The reason
behind this totally randomized selection of training datasets was
the desire to more closely approximate future scale-up scenar-
ios, in which it is assumed there will be a massive amount of
available data to draw on. The results of this randomized model
training (see Table V) are generally not as good as the classi-
fication results obtained using carefully prepared training data
(see Tables II and III). For example, when looking at the BDD
results for LODZ in Table II, accuracy reached 85%, whereas
in Table V it drops for MIXED by about 16–17%. However, the
SD remains at a comparable level in both cases, which in turn
indicates that the general level of variation was much the same.

The AGI-based model performed well, except in the worst
case with UMIST data. With UMIST data, accuracy dropped to
almost 50%, yet some reasonable decrease in accuracy may be
logically expected in this particular case. On the other hand, the
AGI model obtained approximately 80% accuracy for MIXED
data. The MIXED data results were the best or equally as good
as the others in most cases. For both LODZ + UMIST and for
MIXED (U + L + A) data, up to 90% accuracy was obtained.
At the same time, the SD was also the greatest for MIXED
data. It reached a maximum of 12% and dropped by 4–5% for
separate classifications of UMIST and LODZ data, for which
the accuracy was lower in general. An interesting feature is
that the SD was smallest for AGI with MIXED data, while it
was greater for LODZ + UMIST BDD and the largest for fully
MIXED (U + L + A).

The most important results can be seen in the lower right
corner of Table V, which show fully MIXED data tested with a
model trained on fully MIXED data. This is the most accurate
quadrant of the table; better than the other configurations by at
least 2–3% and more on average. There are notable values, with
accuracy exceeding 92% for 120 s sequences tested with 120 s
and full models with an SD of just 7%. The 60 s and 30 s tests
reached almost 90% and 87% accuracy, respectively, with SD
within the range of 7–10%.

The best results in terms of both accuracy and stability were
usually obtained for 120 s segments. A visual comparison is
shown in Fig. 7 for the 120 s datasets. These results are taken
from Table II (BDD analysis for carefully prepared training
sets) and supplemented with others gathered using the same
methodology, but for totally randomized training sets. The two
types of results are assembled with results for MIXED (U +
L + A) data.

As can be seen from Fig. 7, the results for MM (last bar on
the right) obtained with totally randomized learning composi-
tions yet composed of fully mixed data were at least equally as
accurate (c.a. 92%) as those for LODZ-LODZ (c.a. 91%) and
MIXED-MIXED (c.a. 89%). The darker bars show L-LODZ and
M-MIXED sections. It is worth emphasizing that the MM re-
sults were even better than those shown using the lighter bars for
the same compositions: LODZ-LODZ (c.a. 83%) and MIXED-
MIXED (c.a. 81%) (L-LODZ and M-MIXED sections, respec-
tively). Yet, the greatest advantage of the proposed methodology
can be seen by comparing the MM and lighter bars in general,
especially the MM and UMIST-UMIST data. These are ran-
domized compositions of training sets for very limited blockage



1616 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 15, NO. 3, MARCH 2019

TABLE V
EXTENDED COMPARATIVE VERIFICATION FOR MIXED DATA

Fig. 7. Visual comparison of results for 120 s segments. L, U, and M
stand for Lodz, UMIST, and MIXED testing datasets, while the words
below describe training datasets. Each left-hand bar indicates results
for randomized training data and each right-hand bar (darker) indicates
results from Table II and carefully prepared training data. The last, dark-
est, bar on the right with MM subscript shows the results for cross-
comparative mixed data from Table V. Numerical values on top of the
bars indicate percentage accuracy.

data, which result in the inability to correctly recognize the pro-
cess regime at all (see c.a. 30% results for UMIST randomized
training datasets). Similar outcomes were observed for 30 s and
60 s segments as well as for Full datasets. The best results varied
by 1–2% for MM and LODZ-LODZ data, but the overall pattern
remained the same.

Based on these results, the proposed CDPM concept has been
verified. In particular, the results obtained for cross-comparative
experiments with fully MIXED data validate the model’s effi-
cacy for ECT-monitored pneumatic conveying of bulk solids.

E. Toward Predicting Process Threats

The final experiment to be presented in this paper was de-
signed to investigate whether the validated CDPM approach
could be further developed to predict process threats. Models
were trained with 30, 60, and 120 s flow fragments (as shown in
Table V). They were tested on data composed of flow fragments
taken from earlier moments of flow, before a “blockage.” This
means that these fragments were associated with flow periods
shifted back in time with respect to the end of the dataset. Note
that the data were randomly drawn from EBDDFS (as shown
in Table V). Table VI shows the results of classification for test
data taken from flow fragments ending 30, 60, and 120 s before
the flow end (or before the “blockage” occurred), respectively.

The results show that the best performance for detecting pro-
cess threats was achieved by 60 s-trained models (82–86% accu-
racy), especially when the data was shifted 30 s or 60 s before the
end of the flow. Similar scores were obtained for the 30 s-trained

TABLE VI
TOWARD DETECTING PROCESS THREATS

model, but only for data shifted 30 s ahead. The 120 s-trained
model performed acceptably (∼80%) with a 60 s shift only. The
results for 60 s/60 s showed the lowest SD, but still reached
SD = 6.72. The greatest SD = 12.25 was found for 30 s/120 s.
Generally, the distribution of results in Table VI is rather hetero-
geneous, and much more thorough research is required. How-
ever, there is clearly potential for the future development of
these methods for predicting pre-emergency states.

V. DIRECTIONS FOR FUTURE WORK

The initial experiment to predict process failure presented
in Section VI needs further testing, including using larger data
samples, before it can be considered an efficient fault fore-
casting method. When the data “velocity” factor increases and
whenever the requirement for real-time dynamic data processing
becomes important, the implementation of recent advancements
in big data will be necessary, such as lambda architecture [21]
and parallel analytics [36]. The methodology presented in this
paper is scalable, thanks to the proposed EBDDFS. However,
some specific improvements in terms of the computational en-
vironment are possible, by switching to state-of-the-art big data
processing methods, such as those proposed in [25].

The proposed CDPM model, which aggregates multiple data
processing methods, needs more research for other tasks, such
as regularization of inverse problems and direct determination of
process parameters (quantitative analysis). An interesting area
that could be explored in future is definition of the specific
kernel parameters used in such prediction methods for SVM
classification. This should be correlated with analysis of the
SD of results obtained for different time windows. It seems that
longer periods (such as 120 s) have less variance, so γ parameters
with lower values fit better, while higher γ values fit better
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prediction models with shorter time windows (such as 30 s),
which have higher variance in comparison to full length data.

The most promising avenue for future development is com-
bination of the computational approach presented here with
human-intelligence-based data processing methods, such as
crowd sourcing analysis of scientific data [29], [33], in order
to develop flexible and more effective data processing systems.
Tests could be conducted to adjust the measurement datasets ob-
tained from processes with various dynamics and using different
sampling frequencies. This might involve additional preprocess-
ing with respect to the time domain and the development of
methods for cross-modality and data fusion in future distributed
systems [12], [18].

VI. CONCLUSION

This work presents the first attempt to use a big data-driven,
contextual data computational environment for ECT-monitored
industrial process modeling. This can be achieved with the aid
of a dedicated data processing system, such as the EBDDFS
presented here, which helped improve the efficiency of mea-
surement dataset analysis for a pneumatic conveying process.
The primary impact of this paper is derived from the CDPM
model for the verification of contextual data, which is aided by
computational experimental tests using SVM-based supervised
learning models. The big data-driven methodology presented in
this work helps, in particular, to jointly analyze datasets that
are normally treated as incoherent. Such data may come from
diverse origins, but as long as it retains a common denomina-
tor it is possible to be collectively interpreted, employing the
methods described in this work.

The other key contribution of this research is verification of
the use of AGI as a legitimate element of the CDPM concept.
It was shown that AGI can be a reliable resource and enhance
the available knowledge base regarding infrequent phenomena.
Moreover, the proposed CDPM model, which uses the big data
approach and SVM classification, verified a framework for fu-
ture data mining of measurement records, as well as for predict-
ing process behavior. The presented approach has been shown
to be scalable in terms of data volumes. Demonstrated for ECT
and the pneumatic conveying process, it is generalizable to other
process tomography modalities, as well as to other multiphase
processes [19], [22].
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