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Abstract—This paper describes Team Delft’s robot win-
ning the Amazon Robotics Challenge 2016. The competition
involves automating pick and place operations in semistruc-
tured environments, specifically the shelves in an Ama-
zon warehouse. Team Delft’s entry demonstrated that the
current robot technology can already address most of the
challenges in product handling: object recognition, grasp-
ing, motion, or task planning; under broad yet bounded
conditions. The system combines an industrial robot arm,
3-D cameras and a custom gripper. The robot’s software
is based on the robot operating system to implement so-
lutions based on deep learning and other state-of-the-art
artificial intelligence techniques, and to integrate them with
off-the-shelf components. From the experience developing
the robotic system, it was concluded that: 1) the specific
task conditions should guide the selection of the solution
for each capability required; 2) understanding the charac-
teristics of the individual solutions and the assumptions
they embed is critical to integrate a performing system from
them; and 3) this characterization can be based on “levels of
robot automation.” This paper proposes automation levels
based on the usage of information at design or runtime to
drive the robot’s behavior, and uses them to discuss Team
Delft’s design solution and the lessons learned from this
robot development experience.

Index Terms—Grasping, manipulators, motion planning,
object recognition, robot control.

I. INTRODUCTION

THE Amazon Robotic Challenge (ARC) [1], [2], was launc
hed by Amazon robotics in 2015 to promote research into

unstructured warehouse automation, and specifically, robotic
manipulation for picking and stocking of products.

Low-volume, high-mix productions require flexibility to cope
with an unstructured environment, and adaptability to quickly
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and cost-effectively reconfigure the system to different tasks.
Current commercial solutions have mainly focused on automat-
ing the transport inside the warehouse, whereas only few solu-
tions exist for the individual handling of the products [3], and are
usually limited to one product type at a time.1 Currently, there
is a diversity of grippers available such as two-finger grippers
[4], VERSABALL [5], or more advanced robotic hands such as
[6] or [7] that can be customized for different applications. The
selection of the gripper for a manipulation application greatly
affects the flexibility and requirements of the grasping process.
More flexible robotics solutions are needed that benefit from
advances in artificial intelligence and integrate them with these
more dexterous and reliable mechanical designs for grippers and
manipulators.

The integration of these robot technologies into an agile and
robust solution, capable of performing on the factory floor, is
itself an engineering challenge [8]. During a robotic applica-
tion development design, decisions need to be made, e.g., about
feedback control versus planning, that entail tradeoffs between
flexibility and performance. For example, in the first ARC edi-
tion in 2015, the winning robot used a feedback approach with
visual servoing, achieving a robust pick execution that outper-
formed the competitors. However, the public media was dis-
appointed about the general speed performance of the robots
[9]. The average pick time for the winner was above 1 min
(∼30 sorts/h), while industry demands the ∼400 sorts/h
achieved by humans [2].

There were two key ideas guiding Team Delft’s approach to
building the ARC 2016 robot, which are as follows: 1) reuse
available solutions whenever possible and 2) chose them so
as to automate the system to the level required by the different
challenges in the competition, making useful assumptions based
on the structure present in the task.

To reuse available off-the-shelf solutions, Team Delft’s robot
was based on an industrial manipulator and 3-D cameras, and the
robot software was based on the robot operating system (ROS)
[10]. The ROS provides tools and infrastructure to develop
complex robotic systems, runtime communications middleware,
and the ROS open-source community provides off-the-shelf
components for many robot capabilities.

1For example: See work of Profactor GmbH at: https://www.profactor.
at/en/solutions/flexible-robotic/handling/
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Fig. 1. Products in the Amazon Picking Challenge 2016 in the tote and
in the bins of the shelf, from [12].

There is a variety of aspects that have been identified useful to
characterize robotic systems [11]: modularity versus integration,
computation versus embodiment, planning versus feedback, or
generality versus assumptions. The dichotomy planning versus
feedback in robotics represents only two (important) classes in
the spectrum of solutions. These range from open-loop solu-
tions that exploit assumptions and knowledge about the task
and the workspace at design time, to feedback strategies that
use runtime information to drive robot’s behavior and deal with
uncertainties. After analysis and reflection on the ARC robot de-
velopment experience, different levels of robot automation are
proposed in this paper to characterize the design solutions. In
Team Delft’s robot design, the different solutions were chosen
to automate every part of the robotic system to the level re-
quired. Different automation solutions render different system
properties in terms of flexibility, performance, and adaptability.

Section II discusses the requirements posed by the ARC
2016 competition scenario, and analyses the challenges it
poses to robot perception, manipulation, and task planning. In
Section III, the levels of the robot automation are presented, and
used to explain Team Delft’s robot concept in Section IV. The
performance of the system is discussed in view of the levels of
automation in Section V, and some lessons learned are reported.
Finally, Section VI provides concluding remarks.

II. MANIPULATION IN THE AMAZON ROBOTICS CHALLENGE

The ARC stems from a broader and fundamental research
field of robotic manipulation in unstructured environments. The
two tasks for the 2016 challenge [12] involved manipulating
diverse, small-sized products to pick and place them from an
Amazon shelving unit (the shelf) structured in 12 bins, to a
temporary container (the tote), as is illustrated in Fig. 1. We
begin this section by providing further technical details of the
challenge, followed by a comparative analysis of the challenge
to relevant scientific problems.

A. The Amazon Robotics Challenge 2016

The challenge for the year 2016 was titled Amazon Pick-
ing Challenge and consisted of two tasks to be autonomously
performed by a robotic system.

1) Picking Task: This task consisted of moving 12 products
from a partially filled shelf into the tote. Some target products

could be partially occluded or in contact with other products,
but no product would be fully occluded. Each of the 12 bins
contained exactly one target product as well as any number of
nontarget products and every target product is only present in a
single bin. The tote is initially empty in this task.

2) Stowing Task: This task was the inverse to the pick task:
moving the contents of the tote (12 products) into the bins of
the shelf, which already contain some products. The products in
the tote could be partially or completely occluded below other
products. There was no target location for the products in the
tote, but different score for stowing them into more cluttered
bins. No restrictions were given on how to place the products in
the shelf bins, apart from not damaging them or the shelf and
not protruding more than 1 cm.

In both tasks, the robot had 15 min to fulfil the order, which
was specified by a task file, and report the final location of all
the products in an analogous output file. The task file contained
information of what products were located in which bin or tote
and it identified the target products. The task file did not contain
information about the physical location of products within their
respective container. The target products could be handled in
any order and all the product could be moved to any bin, as
long as the final contents of each bin and the tote were cor-
rectly reported in the output file. The performance of the robot
was evaluated by giving points for correctly placed items and
subtracting penalty points for dropping, damaging or misplac-
ing items (i.e., incorrectly reporting its location in the output
file). The amount of points for a specific operation would de-
pend on the difficulty of the object and the cluttering of the bin.
The time to accomplish the first successful operation would be
the tiebreaker.

B. Manipulation in Unstructured Environments

The ARC scenario is representative of the challenges in han-
dling applications in a warehouse or the factory floor. The robot
has to perform a few simple tasks in a closed environment, but
it is only semistructured. Unlike dynamic, open environments
where autonomous robots have to cope with unbounded levels
of uncertainty, here it is limited. However, uncertainty is still
present in the target products characteristics, their position and
orientation, and the workspace conditions.

The set of 39 product types used in the competition includes
books, cubic boxes, clothing, soft objects, and irregularly shaped
objects. They were chosen to be representative of the products
handled on a daily basis at an Amazon warehouse. They pre-
sented realistic challenges for perception, grasping, and manip-
ulation: reflective packaging, wide range of dimensions, and
weight or deformable shapes.

The products are stored mixed in any position and orientation
inside the shelf’s bins, partially occluding each other, sometimes
placed at the back. Bins could be too cluttered even for a hu-
man hand to easily pick the target item. The shelf construction
with metal parts and cardboard divisions resulted in wide toler-
ances and asymmetries. Besides, the narrow opening of the bins
(21 cm × 28 cm) compared to their depth (43 cm) limited the
maneuverability inside, and caused difficult dark lighting con-
ditions. The highly reflective metal floor of the bins contributed
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to the challenges for any vision system. In addition, the position
of the entire shelf had +/−3-cm tolerance.

The variety of shapes, sizes, and weights of the objects also
posed an interesting challenge for object manipulation. This va-
riety entailed studying and applying different grasp synthesis
methods such as pinch grasping [13], [14] and suction grasping,
successfully used in the previous edition of ARC [11]. The lim-
ited space for manipulation discarded cage grasping strategies.
Regarding grasp synthesising, despite the extended literature
on grasping of unknown objects [15], the fact that the products
were known well in advance made fine-tuned heuristics promise
much better performance, as early tests demonstrated.

III. LEVELS OF AUTOMATION

The performance and flexibility of a robotic application de-
pends on the assumptions and design decisions made to address
uncertainty. A proper understanding of these decisions is es-
pecially important in robots that perform more traditional au-
tomation tasks, but with challenging flexibility in not so-well
structured environments, such as the ARC. For this, a charac-
terization of the solutions in levels of robot automation is pro-
posed, based on the experience gained developing Team Delft’s
robot. Our model is inspired by that of Parasuraman et al. [16].
While that framework supports decisions about which functions
to automate, and to what extend, with a focus on the human
interaction factor, the model presented here applies to the case
of full automation of a function. It provides a basis for decid-
ing how to automate those functions, in view of the uncertainty
present and the reliability required. The main criteria to differ-
entiate automation solutions is the timing of the information
used to drive the behavior of the system. Assumptions are prior
information that is used at design time to determine a certain
behavior, reducing the flexibility of the system, but generally
optimizing its performance. On the other hand, closed control
loops in a robotic system use runtime information to adapt the
system behavior to the actual circumstances on-the-fly.

In traditional automation, the environment and the task are
fixed and assumed perfectly modeled. This allows to fix at design
time the sequence of operations and open-loop robot motions.
Uncertainty is reduced to minor allowed deviations on the prod-
uct placement and geometry, which are accommodated for by
robust and compliant hardware designs. This “level 0” automa-
tion allows to maximize the motion’s speed leading to very high
performance. However, it has no flexibility: robot’s behavior is
fixed during design, no runtime information is used to adapt to
deviations.

Open-loop automation solutions typically include error han-
dling mechanisms so that the robotic system can accommodate
for foreseeable events during its design. These “level 1” so-
lutions introduce sensing capabilities in the system to verify a
posteriori the result of actions. For example, in suction-based
object handling the pressure in the suction cup can be checked
to confirm a successful grasp or to detect dropping the object.

In “level 2” of robot automation, more advanced and rich
perception is used to drive the robot behavior at runtime, fol-
lowing the so-called sense-plan-act paradigm. The complete

sequence of control actions is computed based on a predefined
model of the world and initial run-time sensor information that
accommodates any run-time uncertainty. A typical example is
a vision-based solution that locates target objects. The limita-
tions of this approach are well known in robotics and artificial
intelligence fields [17].

In feedback control (“level 3”), action is dynamically com-
puted at a certain frequency using runtime sensor information.
Often, the target variables cannot been sensed at the desired
frequency, or they are not directly accessible at all. In these
cases, an estimation is used to close a feedback loop at runtime.
The controller of a robot manipulator, closing a control loop for
its joint state, is an example of “level” present in Team Delft’s
robot.

Finally, a “level 4” solution uses predictions in addition to
the current sensor information to optimize its response to an
uncertain environment. This is the case in systems that use any
flavor of model predictive control [18], in which a more or less
complex model of the system dynamics is used to optimize the
control action based on the predicted evolution.

The selection of the level of automation for each specific
problem in a robot manipulation application implies a tradeoff
between flexibility, performance, and resources. In the following
sections, the Team Delft robot for the ARC 2016 is discussed, ex-
plaining the rationale for the different technological approaches
chosen following the model of “levels of automation.”

IV. ROBOTIC SYSTEM OVERVIEW

Based on the analysis of previous experiences in the ARC
[2], [11], Team Delft’s solution targeted three key performance
objectives to maximize scoring in the competition: be able to
complete all the tasks, robustness, and speed. The design ap-
proach to address them was to develop the robot automation
level more efficient considering the uncertainty challenges in
the tasks, and to reuse the existing hardware and software com-
ponents.

A. System Requirements

The performance objectives were decomposed into specific
system requirements for robot manipulation. Completing the
picking and stowing tasks requires the robot to handle all the
products in any position in the shelf and the tote. This entails
the following requirements.

Req. 1: To recognize and locate any of the products in any
place inside the shelf or the tote.

Req. 2: To reach any location inside the bins with enough
maneuverability.

Req. 3: To achieve and hold a firm grasp on all different
products.

Robustness is a must in real-world applications that need to
perform with almost no downtime. In the competition, only one
attempt2 was allowed for each task, so any failure leading to
the robot stopping or crashing is fatal. Speed is also critical

2A reset was allowed: The task could be restarted from the beginning but
with a penalty [12].
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Fig. 2. Team Delft’s robot setup in the APC workcell.

for production systems. In Team Delft’s strategy, speed allows
the robot to perform several attempts to pick a target difficult
to grasp, and also move other objects for clearance, during the
15 min allowed for each task. This simplifies the manipulation
actions needed, leading to a more robust system.

B. Robot Concept

Team Delft’s robotic system is shown in Fig. 2. It is based
on an industrial manipulator mounting a 3-D camera to scan
the contents of the shelf’s bins and a custom, hybrid gripper
featuring a suction cup and a pinch mechanism. An additional
fixed camera allows scanning the tote contents. The selection
of this hardware will be justified together the explanation of the
main robot functionality each device supports, in Sections IV-C
to IV-C.

The ARC competition requires the robot to operate au-
tonomously to complete tasks defined in a computer file that
defines the current inventory of the shelf and the tote, and for
the pick task, the target product in each bin to be placed in the
tote. Team Delft’s solution for the picking and the stowing tasks
is to decompose them into a plan of pick&place operations that
is sequentially executed by the robot arm.

1) Task Planning: For the picking task, the picking order of
each target is computed to maximize scoring and minimize risk,
considering the points for each product, system’s confidence to
handle each product from experimental results, and the need
to move occluding objects (see rightmost flow in Fig. 3). This
way the plan of the pick&place operation for all targets in the
task is created. The plan is updated at the end of each operation
according to its success or any fallback triggered (see failures in
the right side of Fig. 3), as will be explained in Sections IV-F.
For the stowing task, a simple heuristic selects as a target the
detected product that is closer to the tote opening, since all the
contents in the tote have to be stowed.

2) Pick&Place: The pick&place operations required to han-
dle the products in the competition have a fixed structure in a
closed, semistructured environment: pick target X that is located
in bin Y or the tote, and place it on the tote or bin Y’. Therefore,
a “level 2” robot control solution was designed, consisting of

a sequence of actions that follows the sense-plan-act paradigm.
The general steps and the main actions depicted in Fig. 3 are as
follows.

1) Sense: The system uses the 3-D camera information of
the target’s container (bin or tote) to detect and estimate
the 6-D pose of the item, and to obtain collision informa-
tion of the container to later plan the motions, in the form
of a filtered Pointcloud of the cluttering of the container.
In the pick task scenario, the robot has to previously move
to obtain the camera information for the target bin. Ad-
ditionally, the actual position of the bin is also estimated,
for a more detailed collision model of the environment.
In the stow task, a Pointcloud model of the tote is used,
since its pose is perfectly known.

2) Plan: Using the estimated pose of the target item and its
known characteristics, the system computes the grasping
strategy and a grasp candidate (a pose for the gripper
to pick the object). The sensed Pointcloud information
is integrated in an octomap with the known environment
geometry, stored in the universal robot description format
to generate a collision-free plan to approach the grasp
candidate pose, pick the product, and retreat from the
shelf.

3) Act: The previous motion plan is executed as a feedfor-
ward action, including gripper configuration and activa-
tion on the way to pick the item. Pick success is confirmed
with the pressure in the suction cup (for suction-based
grasps). If so, the robot moves to drop the item in the tote
using offline generated trajectories.

Thanks to the structure of the environment, to place the prod-
ucts a robot automation “level 0” solution was designed that
uses predefined motions to drop them either in the tote or the
shelf’s bins in a safe manner to comply with the competition
rules. In the case of placing the items in the tote, it is divided in
six predefined drop locations, and the task planner logic makes
sure that no heavy products are dropped where fragile items
have been placed and no more than three products are dropped
in the same location, so that the objects do not protrude from
the tote. In the case of moving occluding items to another bin,
the task planner logic selects the least cluttered bin from those
that no longer need to be accessed (to keep the environment
static). The robot moves to a fixed location in that bin, making
use of the assumption that thanks to gravity any cluttering is in
the lower part, and any standing items will be toppled inwards.

Sections IV-C to IV-E describe the solutions designed for all
the robot capabilities required for the previous actions, grouped
into object detection and pose estimation, and grasping and robot
motion, including the main hardware and software components
involved.

C. Vision-Based Perception

To address Req. 1, the robot needs to recognize and locate the
objects captured by the camera, knowing what the object is and
where it locates in the image.

1) Cameras: To scan the bin an industrial camera system
is mounted on the gripper. It includes a Ensenso N35 3-D
camera that provides low-noise Pointcloud data, and an IDS
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Fig. 3. Schema of Team Delft’s sense-plan-act workflow for picking a product X from the shelf’s bin Y. The sense step consists of: 1) detection of
the target item and estimation of its 6-D pose, and 2) obtain collision information inside the bin, in the form of a PointCloud.

UI-5240CP-C-HQ high-definition camera that provides RGB
images. An array of LEDs improves robustness to lighting con-
ditions. A similar system is fixed on a pole to scan the tote.

2) Object Detection: The object detection module takes
RGB images as input and returns a list of the object proposals.
Each proposal contains the label and the location, determined by
a bounding box enclosing the object. The proposals are ranked
in descending order based on the confidences, varying from 0
to 1. The proposal with the highest confidence for the expected
item was counted as the detected object.

One of the main difficulties for object detection is that each
instance varies significantly regarding size, shape, appearance,
poses, etc. The object detection module should be able to recog-
nize and locate the objects regardless of how objects from one
category differ visually. A model that has high capacity and can
learn from large-scale data is required. Deep neural networks
are renowned for its high capacity, especially the convolution
neural networks (CNNs) have recently shown its ability to learn
large-scale data efficiently, improving the benchmark perfor-
mance of large-scale visual recognition problems significantly
since 2012 [19], [20].

Girshick et al. [21] adopted the convolutional networks for
classification, and selective search [22] for region proposal,
in their region-based convolutional networks (R-CNN) frame-
work, achieving a performance improvement by a large margin.
One of the limitations of their work is that it took about 47 s3

3All process timings run on one Nvidia K40 GPU (graphics processing unit)
overclocked to 875 MHz as provided in [23] and [24].

to create the region proposals and predict the object categories,
for each image. Following studies [23], [24] accelerated the
processing cycle time to 198 ms by applying the CNN more
efficiently, including extracting convolutional features for the
whole image and sharing the CNN for region proposal and clas-
sification. The resulting method is referred to as faster R-CNN
[20], [24].

The significant processing speed acceleration of the faster R-
CNN consolidates the basis of nearly real-time object detection
in robotic applications. This is the reason a faster R-CNN was
adopted in Team Delft’s solution to detect objects in both the
shelf and the tote of the ARC.

Training a faster R-CNN model requires a ground-truth
dataset, in this case, RGB images annotated with the bounding
boxes and labels of detected objects. In the ARC setup, objects
were placed in two different scenes, either in a dark shelf bin
or a red tote. Therefore, two different models were trained to
detect objects in the two different scenes. A total of three sets
of RGB labeled images, were used for training, which are as
follows.

1) Base: Images of all the products were recorded auto-
matically. Objects were put on a rotating plate against a
monochrome background, and a camera was attached to
a robot arm, taking images from different angles. Anno-
tations were generated after automated object segmen-
tation by thresholding. Images were augmented by re-
placing the monochrome background with random pic-
tures after creating labels. This set contains in total 20 K
images.
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TABLE I
EVALUATION OF THE CNNS

Network Bin Test mAP Tote Test mAP

Base model 16.1% 7.9%
Bin model (bin data only) 82.9% –
Bin model 85.7% –
Tote model (tote data only) – 90.0%
Tote model – 92.5%

2) Bin: Images were taken for objects randomly placed in the
bin. Annotations were created manually. This set includes
672 images.

3) Tote: Images were taken for objects randomly placed in
the tote. Annotations were created manually. This set
contains 459 images.

The pretrained weights of the VGG net [25] were used as
initialization for the convolutional filters, while the other fil-
ters were initialized with small random values drawn from a
Gaussian distribution [26].

Given the three different sets of labeled images, five models
were trained in a two-step strategy.

Step 1: Trained the initialized model with all the images
from the base set, obtaining a Base model.

Step 2: Fine tuning the Base model with scene-specific im-
ages, the bin set and the tote set, obtaining scene-
specific models, a Bin model and a Tote model.

The first model is the Base model. For both the Bin and Tote
models, two different models were trained. One model uses only
the data from the respective environment (omitting step 1 of the
two-step strategy), whereas the second model is obtained by
refining the Base model with the environment specific training
set; applying both steps.

The trained models were tested using 10% of the bin set, and
tote set, respectively, as two test sets. The test sets were excluded
from the training procedure. An object proposal was counted as
correct if it had more than 50% of the area overlapped with the
corresponding annotation. Average precision (AP) were used
to evaluate the ranked list of object proposals for each item
category, and the mean over the 39 categories, known as mean
average precision (mAP), were used as the performance measure
of the models. The mAP varies from 0 to 1, and higher mAP
indicates that the predictions match better with the annotations.

The result of this evaluation can be seen in Table I. From this,
it is observed that the best results are obtained by refining the
generic Base model with environment specific data. The Bin
model was used in the ARC 2016 for the picking task and the
Tote model was used for the stowing task.

3) Object Pose Estimation: While object detection localizes
objects in 2-D, handling the target objects requires knowing the
3-D pose of the object with respect to the robot. The chosen
approach separates pose estimation in two stages: global pose
estimation and a local refinement step.

Global pose estimation was done using Super 4PCS [27].
Since this method compares a small subset of both a model
Pointcloud and the measured Pointcloud for congruency, it can
obtain a good global estimation of the object pose. This global

estimation is then used as an initial guess in applying iterative
closest point [28] for a close approximation.

For these methods, Pointclouds without color information
were used. While it has been suggested [27] that using color
information is possible in Super 4PCS, no analysis of its effect
on the pose estimation performance was reported in that study.
Furthermore, it would have required obtaining accurate colored
Pointcloud models of the objects, while for most objects a simple
primitive shape can be used to generate a Pointcloud model if
color information is ignored. For some more elaborately shaped
objects (a pair of dog bones and a utility brush for instance), a
3-D scan without color information has been used as a model.

It should be noted that the Super 4PCS method inherently
uses the 3-D structure to obtain a pose estimation. Lack of
such structure in the observed Pointcloud leads to suboptimal
results. For example, observing only one face of a cuboid object
could lead to the wrong face of the model being matched to the
observation.

D. Grasping

Team Delft’s approach to grasping and manipulation was to
simplify the problem to a minimum set of action primitives,
relying on the following additional requirements:

Req. 4: A suitable grasp surface is always directly accessible
from the bin opening that allows to grasp and retreat holding the
product, and no complex manipulation inside the bin or the tote
is needed. This way the “level 2” assumption of environment
invariance holds.

Req. 5: The system should be able to find a collision-free path
to grasp the product, and a retreat path holding the product.

Req. 6: The gripper is able to pick and robustly hold any of
the 39 product types, compensating for small deviations, minor
collisions of the held product, inertia and gravity effects on grasp
stability.

1) Gripper: A custom hybrid gripper was tailored to handle
all items in the competition (Req. 6). It includes a suction cup
based on low vacuum and high volume for robustness, and a
pinch mechanism for the two products difficult to grasp with
suction: a 3-lb dumbbell and a pencil holder made out of a wire
mesh. The gripper’s 40-cm length allows to reach all the way
inside the bins without the bulky robot wrist entering, and its
lean design facilitates maneuverability inside the reduced space.
Bulkines and resulting limited maneuverability inside the bins
was also the reason why robot hands were discarded. The suction
cup features a 90◦ rotation to provide an extra degree of freedom.
This allows using the front surface of the object facing the robot
for grasping, facilitating Req. 4.

2) Grasp Strategies: The grasping strategy is chosen at run-
time based on the type of product, its pose and the surrounding
cluttering, from these primitives: front suction, side or top suc-
tion, and pinch (Fig. 4). The chosen primitive is parameterized
to the target product by computing the grasp candidate pose and
an associated manipulation plan, using a priori knowledge and
runtime information.

3) Grasp Synthesizing: The grasp candidate is a pose that if
reached by its end effector allows the robot to grasp the product
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Fig. 4. Different grasp strategies possible with Team Delft’s custom
gripper. (a) Top suction. (b) Front suction. (c) Side suction. (d) Pinch.

activating the gripper according to the chosen primitive (by
generating suction or the pinch mechanism). For nondeformable
products, the grasp candidate is generated using heuristics that
store grasp possibilities for the different product types, based
on geometric primitives and the structure of the workspace, as
detailed in [29]. Since a 3-D pose estimation is not possible for
deformable products, grasp candidates are obtained using the
surface normals of the detected object’s Pointcloud, and ranked
according to their distance to its centroid.

E. Robot Motion

The motion module is responsible for moving the end effec-
tor to all the poses needed along the sense-plan-act behavior,
fulfilling Req. 2 for reachability, Req. 5 for grasping and the
requirement for speed.

1) Robot: To choose a robot manipulator that could execute
all required motions, a workspace reachability analysis using
the MoveIt! [30] was conducted. The robotic system designed
consists of a 7-degrees-of-freedom SIA20F Motoman industrial
manipulator mounted on a rail perpendicular to the shelf’s front.
The resulting 8 degrees of freedom allows to reach all the bins
with enough maneuverability.

The motion problem was simplified using two assumptions
about the workspace uncertainty, which are as follows.

1) Outside the shelf the environment is static and known,
and the task involves a finite set of poses to scan the
bins and the tote, and to access them, so motions can be
preplanned offline (“level 0” solution).

2) Inside the shelf and the tote, the environment is also static
but unknown. However, it has some structure due to: the
walls, the given condition of products not laying on the
top of each other, gravity, and in the case of the shelf,
the assumption of one surface accessible from the bin
opening.

2) Motions Outside the Shelf and Tote: Using assumption 1),
a “level 0” solution was implemented to implement the motions
needed outside the shelf and tote. Around 30 end-effector poses
were predefined, and collision-free trajectories between all of
them were planned offline.

3) Manipulation Planning: Using the second assumption, the
manipulation strategy was designed from a motion perspec-
tive as a combination of linear segments to approach, contact,
lift, and retreat. These segments are computed online from the
grasp candidate poses using cartesian planning. Collisions are
accounted for using the shelf’s or tote’s 3-D model and online
information of the surroundings by generating an occupancy
octomap from the scanned Pointcloud.

4) Path Generation and Execution: Finally, the offline tra-
jectories and the manipulation segments are stitched into a com-
plete time parameterized motion plan. This process optimizes
the timely execution of the motions. It allows for custom ve-
locity scaling to adapt the motions to safely handle the heavier
products. This process also synchronizes along the trajectory the
timely configuration (to the desired strategy), and later activa-
tion of the gripper to pick the target product, and the verification
of the pressure sensor in the gripper after retreat. Finally, the
resulting trajectory is executed by the robot manipulator, also
controlling the gripper.

F. Failure Management

Special focus was given to the overall reliability of the robotic
system. The system can detect a set of failures during the sense,
plan, and act phases and trigger fallbacks to prevent a stall. For
example, if the target product cannot be located, or estimate its
pose, different camera poses are tried. If the problem persists,
it will postpone that target and move to the next one. A failed
suction grasp is detected by checking the vacuum sealing after
execution of the complete grasp and retreat action. In that case,
it is assumed that the item dropped inside the bin and retries the
pick later. If the vacuum seal is broken during the placement in
the tote, the item is reported to be in the tote, since it can actually
be the case, and there is no gain for reporting dropped items.
For a pinch grasp, the system could only validate the complete
pick and place operation by checking the presence of the picked
item in the image from the tote.

V. DISCUSSION

The ARC is a valuable benchmark for robot manipulation
solutions. It provides interesting indicators to measure the ad-
vantages and limitations of the different robotic solutions. Fol-
lowing, we discuss the performance of Team Delft’s robot using
the automation levels framework presented in Section III and
analyzing the different tradeoffs of using run-time feedback or
design assumptions to address the uncertain conditions.

A. Evaluation

Table II summarizes the results of Team Delft’s robot in the
competition to win both challenge tasks [29]. The best scoring
teams in the table shared some features, e.g., use of industrial
robot manipulators, 3-D camera in-hand or hybrid grippers, with
preference for suction grasps. While NimbRo developed a robot
with similar grasping capabilities, their solution was less robust,
and partly relied on placing the tote below the shelf to drag the
products out of the bins. This trick also allowed teams like
NimbRo to retry objects dropping back to the tote during the
stow task. However, this implied score penalties as shown in
Table II. Actually only Team Delft in Table II did not rely on this
“workaround,” but instead achieved robust and fast pick&place
by attempting only clear picks, moving any occluding objects.
In addition, Team Delft’s operation maximized the bonus points
that were given based on the item handled and the filling of the
bins, e.g. with the selection of the stowing bins (see column
“Points item+bin” in Table II).
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TABLE II
RESULT SUMMARY OF THE ARC 2016 FINALS

Picking Task

Team Total
score

Points
item+bin

Success
Targets

Misplaced
Items

Other
Penalties

Team Delft 105 135 9 3 (−30) 0
PFN 105 130 9 1 (−10) −15
NimbRo Picking 97 152 10 4 (−40) −15
MIT 67 97 6 2 (−20) −10

Stowing Task

Team Delft 214 224 11 1 (−10) 0
NimbRo Picking 186 206 11 2 (−20) 0
MIT 164 164 9 0 0
PFN 161 191 10 3 (−30) 0

TABLE III
SYSTEM PERFORMANCE SUMMARY

44 Pick&place operations attempted in the Picking and Stowing finals.
38 Operations on target items, and 6 to move occluding items.

Successful 25 11.35 s (avg) sense&plan
22.41 s (avg) act (robot motions)

33.76 s (avg) total pick&place
execution time

Failed Recovered 3 Target not detected or pose not
estimated

10 No motion plan found
6 Target not held after grasp

Penalties 1 Target dropped outside the bin
1 Nontarget shoved outside the bin

System fatal errors Stall condition due to no more feasible
targets.

Emergency stop due to gripper crushing
object.

The detailed analysis of performance in Table III shows that
the design achieved the system requirements targeted in speed
and reliability while addressing the uncertainty conditions pre-
sented in Section II-B. However, the system presented some
limitations that affected its performance especially in the pick-
ing task.

1) Detect and Locate All The Products: The solution for
object detection based on deep learning proved highly reliable
and fast (avg. 150 ms). It is a “level 1” solution that takes
additional images from fixed viewpoints on the fly if needed.
The solution is robust to varying light conditions, including
the dark locations at the back of the bins and the reflections
at the front due to products packaging and the metal floor, at
the cost of requiring large amounts of training data. On the
other hand, it is highly reconfigurable: training the model for
a new product requires only a few dozens of images and a
few hours. This makes this approach very attractive for tasks
where the arrangement of the products is unknown, but sample
information can be easily generated.

The pose estimation of the target based on Super 4PCS is less
reliable, and its speed had higher variance, due to which a time
limit to 4 s was added to trigger fallback mechanisms. Speed

could be improved with a GPU implementation of the Super
4PCS algorithm. The main problem for the open-loop solution
implemented was the scarce Pointcloud information obtained
for certain situations, strongly affected by lighting conditions
and packaging reflections. The “level 1” fallback mechanism
to take additional images from fixed locations was not an im-
provement. A possible improved “level 2” design would use
the information from an initial pose estimation to plan a new
camera pose. However, in many cases the pose estimation error
considered the target in impossible or unreasonable orientations.
A more promising enhancement is then to use more application
heuristics during design, for example, assuming that gravity
limits the possible orientations of an object.

2) Stable Grasp for All Products and Orientations: Team
Delft’s grasping solution was able to pick all 39 items in the
2016 competition, in most orientations and bin locations. The
“level 1” solution to grasping and product handling, based on
a custom gripper, achieved a robust and fast performance for
most of the products. The high flow, low vacuum combined
with a compliant suction cup proved robust to different product
surfaces and misalignments (>90% success rate). Additionally,
it embedded grasp success sensing, providing an interesting
standalone “level 1” solution. The main problems of the suc-
tion mechanism were: inadvertently grasping two objects, and
the stability of the grasp for large, heavy products. The first
problem could be improved by verifying the grasped products
with the tote camera. The second problem is partially addressed
by manipulation planning with custom heuristics to orient the
product after grasping.

The pinch mechanism is less reliable (<50% success rate
for the dumbbell). Its lack of compliance demanded a higher
accuracy than that provided by the pose estimation module.
Additionally, it is an “level 0” standalone solution with no
feedback on the success of the operation.

3) Reach and Manoeuvre All Locations: Robot motion is
critical in manipulation applications in relation to speed and
collisions. Regarding speed, the overall “level 2” solution de-
signed allowed to optimize the robot motions during design,
achieving a high performance only limited by the grasp stability
and safety.4 As an indicator, Team Delft’s robot achieved an
average cycle time of 35 s, compared to more than a minute for
the feedback-based winning solution in 2015 [11].

In relation to reliability, Team Delft solution combined of-
fline information in the 3-D models of the workspace and the
runtime Pointcloud information from the 3-D cameras to avoid
collisions. Avoiding collisions guarantees not modifying the
structure of the environment, thus facilitating the application of
an open-loop “level 2” solution. However, it is more limited
for handling cluttered situations, where it can be unavoidable to
touch objects next to the target. Additionally, it is more sensitive
to perception errors and scarcity of data, as is the case of the
shelf, where a limited range of viewpoints is possible.

4) Overall Solution: The overall “level 2” sense-plan-act so-
lution achieves a high performance when the core assumption of

4Due to the competition setup, the robot speed limits were set to a safe 0.5
factor of its nominal maximum joint speed.



4924 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 11, NOVEMBER 2018

an accessible grasp surface holds. This is the case in the stowing
task, a standard bin picking application, thanks to gravity and
task conditions (workspace geometry and product characteris-
tics).

Bin cluttering presented the main difficulty to the “level 2”
approach, making the collision-free requirement hard to address.
Avoiding it by moving items around posed the disadvantage that
an unknown number of pick and place actions could be needed
to remove all the objects occluding the grasp of the target item.
On the other hand, the simplification to a “level 2” system using
only two primitive actions allowed us to optimize the required
robot motions for speed, by exploiting the structure of task and
environment as described in Section IV-E.

Another disadvantage of our “level 2” approach was the lim-
ited compliance with runtime uncertainty and its need for ac-
curacy. The localization of the target products has to be precise
to 5 mm, as well as the collision information. The hardware
selection regarding the cameras and the gripper design proved
that it is critical to simplify the control solution.

In relation to workspace uncertainty, the solution proved ro-
bust to deviations in the shelf’s geometry, they being due to
construction or to the 3-cm displacements allowed by the com-
petition rules. These uncertainties were compensated for by the
shelf pose estimation procedure performed during the sense
cycle.

5) Failure Management: The possible failures of the system
are as follows:

1) the product cannot be picked;
2) product is dropped;
3) critical collision leading to equipment or product damage.

These failures could arise from any of the core modules of
the Team Delft-APC system namely vision, grasping, or motion.
While exhaustive testing of all failure modes on the final system
was difficult to perform due to practical reasons, some of the
failures observed while testing and the actual run in the final
competition are listed in Table III.

The nature of the failures caused by the core module vision
were fairly consistent in the products and the situation that
caused them. However, the failures caused by the core modules
grasping and motion were difficult to reproduce as they were
caused by inverse kinematic solutions that would put the last few
joints of the robot in a singular configuration while performing
specific grasps (such as Bubble mailer leaning on the side walls
of the top left or right corner bins). This was mainly caused
by the numerical optimization-based TRAC-IK solver used for
the grasp motion planning. This nondeterminism could have
perhaps been reduced by using a fixed seed for the TRAC-IK
solver, but, we did not have the time to implement and test this
solution before the challenge.

The error handling mechanisms described in Section IV-F
provided for reliability when the product cannot be picked, by
either retrying it under different conditions (new camera im-
ages), or postponing that target. When the product is dropped,
appropriate action or reporting was coded using favorable as-
sumptions about the result of the action.

“Level 1” mechanisms for error handling specific to the ap-
plication are unavoidable. However, general methods and tools

that allow to capture them in a scalable and maintainable way
are critical, such as the state-machine tool SMACH used by the
Team Delft.

B. Lessons Learned

Overall Team Delft’s approach to design the level of au-
tomation required for each problem proved to be successful,
outperforming concurring and previous editions’ entries in the
ARC. The main lessons learned relate to the value of open-loop
solutions, how deep learning can contribute to them, and the
need for collisions in manipulation.

In semistructured closed environments, the proper combina-
tion of open-loop solutions and hardware tailoring based on
adequate assumptions provides the best performance. An ex-
emplary case that proves that exploring simplifying hypothesis
with open-loop solutions is worthy are the deformable products
in the Amazon competition. Initially, they seemed to pose prob-
lems to locate, given the lack of a 3-D model for them, and even
more difficulties to manipulation planning. However, detection
worked flawlessly with enough training data, and the compli-
ant and powerful suction gripper made precise localization and
careful manipulation unnecessary.

To address the limited flexibility and corner cases, Team Delft
integrated two different solutions that exploit application knowl-
edge at design time to tackle runtime uncertainty. For grasping,
manipulation, and error handling, heuristics were programmed.
They provide a simple and powerful solution easy to implement
and inspect. However, their practical implementation presents
important problems. First, they require intensive work by ex-
perts. They are hardly reusable. Finally, they do not scale: in
complex applications such as the ARC, where there are many
robot technologies and components connected, modifying or
adding new task-level heuristics in the design becomes unman-
ageable. The challenge remains to find practical ways to sys-
tematically encode knowledge, something the AI and cognitive
robotics communities have been targeting for decades.

Deep learning techniques are a very promising solution to
automate the generation of application-specific solutions em-
bedding task knowledge. Despite being an open-loop solution,
automated training allows to easily accommodate for variations
(bounded uncertainties), as well as to easily adapt it to new
products or environments. In Team Delft’s design, deep learn-
ing proved a very reliable and performing solution for object
detection. Another entry in 2016 competition,5 as well as more
recent results [31], [32] suggest that deep learning techniques
can be successfully applied to grasping. However, the genera-
tion of training data in this case is very resource consuming.
An intermediate, more feasible solution could be applying it to
pose estimation.

Grasping from the bin poses the more difficulties for Team
Delft’s open-loop solution. Main cause is the rejection of grasp
plans due to collisions. Many results suggest that grasping and
manipulation require to allow for contact, using techniques that
incorporate force/torque information [11]. Feedback solutions

5https://www.preferred-networks.jp/en/news/amazon-picking-challenge_
result

https://www.preferred-networks.jp/en/news/amazon-picking-challenge_result
https://www.preferred-networks.jp/en/news/amazon-picking-challenge_result
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seem unavoidable for successful manipulation in cluttered en-
vironments. However, for improved performance, it is desirable
to limit their scope in the robot control by combining them with
the better performing planning solutions. The current robot mo-
tion planning based on the joint configuration space presents
problems with grasp stability and does not allow for more
flexible online planning based on force/torque feedback. Kino-
dynamic motion planning can overcome these limitations, but
more research is needed for it to become a practical and feasible
solution.

VI. CONCLUSION

This paper provides a practical discussion on the challenges
for industrial robot manipulation for product handling, based on
the experience of the authors developing the winning solution in
the ARC 2016. From this experience, the following conclusions
were made:

1) the specific task conditions should guide the selection of
the robotic solutions for an application;

2) understanding the characteristics of the solutions chosen
and their relation to the task’s conditions, embedded in
multiple design decisions and assumptions, is critical for
the performance of the overall system integrated from
them;

3) this characterization can be done according to “robot au-
tomation levels,” based on the use of information to ad-
dress the task uncertainties during the development and
runtime of the robotic system.

The previous considerations guided the development of Team
Delft’s robotic system, which achieved a mean pick&place time
of 33.76 s, correctly handling 43 out of 44 targets in a semistruc-
tured environment.
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