
4702 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 10, OCTOBER 2018

Service Popularity-Based Smart Resources
Partitioning for Fog Computing-Enabled

Industrial Internet of Things
Gaolei Li , Student Member, IEEE, Jun Wu , Member, IEEE, Jianhua Li, Kuan Wang ,

and Tianpeng Ye

Abstract—Recently, fog computing has gained increas-
ing attention in processing the computing tasks of the
industrial Internet of things (IIoT) with different service
popularity. In task-diversified fog computing-enabled
IIoT (F-IIoT), the mismatch between expected computing
efficiency and partitioned resources on fog nodes (FNs)
may pose serious traffic congestion even large-scale
industrial service interruptions. The existing works mainly
studied offloading which type of computing tasks into
FNs, but few studies enabled smart resource partitioning
of FNs. In this paper, a service popularity-based smart
resources partitioning (SPSRP) scheme is proposed for
fog computing-enabled IIoT. We first exploit Zipf’s law
to model the relationship between popularity ranks and
computing costs of IIoT services. Moreover, we propose
an implementation architecture of the SPSRP scheme for
F-IIoT, which decouples the computing control layer from
data processing layer of IIoT through a specified SPSRP
controller. Besides, a mobility and heterogeneity-aware
partitioning algorithm is presented for extending SPSRP
scheme to seamlessly support cross-domain resources
partitioning. The simulations demonstrate that the SPSRP
scheme can bring notable performance improvements on
delay time, successful response rate and fault tolerance for
fog computing to deal with the large-scale IIoT services.

Index Terms—Fog computing, Industrial Internet of Thing
(IIoT), resources partitioning, service popularity, Zipf’s law.

I. INTRODUCTION

ARCHITECTURE of Industrial Internet of things (IIoT)
is evolving from centralized cloud to distributed fog [1].

Features of fog computing on low-latency and context awareness

Manuscript received May 20, 2018; accepted June 4, 2018. Date of
publication June 11, 2018; date of current version October 3, 2018.
This work was supported by the National Natural Science Foundation
of China Under Grant 61431008 and Grant 61571300. Paper no. TII-18-
1260. (Corresponding author: Jun Wu.)

G. Li and K. Wang are with the School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong University, Shang-
hai 200240, China (e-mail: gaolei_li@sjtu.edu.cn; wangkuanfyfy@sjtu.
edu.cn).

J. Wu, J. Li, and T. Ye are with the School of Cyber Security, Shanghai
Jiao Tong University, Shanghai 200240, China, and also with Shanghai
Key Laboratory of Integrated Administration Technologies for Informa-
tion Security, Shanghai 200240, China (e-mail: junwuhn@sjtu.edu.cn;
lijh888@sjtu.edu.cn; ytp_SJTU_2015@sjtu.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TII.2018.2845844

will be beneficial to energy efficiency, heterogeneous access,
and privacy-preservation in the future IIoT systems [2]. Under
the guidance of fog computing, it has became a novel trend to
aggregate computation resources at network edges to deal with
the large-scale computation tasks [3], [4].

The IIoT has been perceived as a vast and dynamic industry
territory. Since the connected industrial things increase, IIoT
services urge for more and more computation and communica-
tion resources, leading to the bottleneck in terms of data latency
and traffic overhead. Different from the existing cloud-based
IIoT, fog computing advocates to select popular IIoT services
to support large-scale IIoT applications. While fog computing
provides account of advantages for IIoT, this geo-distributed
computing architecture also brings several challenges [5]. First,
due to the decentralization nature of fog computing, there is no
state observer to globally monitor and control the computing
states of each fog-enabled IIoT service. Thus, fog computing
urgently needs to be equipped with a novel function that can
automatically partition computation resources for popular IIoT
services. Second, the mismatch between the expected comput-
ing efficiency and the partitioned resources on fog nodes (FNs)
may pose serious traffic congestion even large-scale IIoT service
interruptions. Third, the heterogeneity of computation resources
in industrial FNs makes it more difficult for FNs to efficiently
partition their resources.

In response to these challenges, we proposed a service
popularity-based smart resources partitioning (SPSRP) scheme
for future fog computing-enabled IIoT. The SPSRP scheme
made it possible for each FN to actively partition its resources
in real-time based on the popularity of IIoT services. As an
example, it is common to see that there are many machines in
newspaper office for printing books and the bestsellers should
be printed as soon/many as possible to meet purchasers require-
ments and reduce the handover cost of machines. However, the
machines cannot acknowledge which book is popular without
observing the markets. Proposed approach seems like to add a
function into the newspaper office to recognize which book is
bestseller and then decide how many machines should be used
to print bestseller. Correspondingly, in a decentralized IIoT en-
vironment, we must decide whether to forward the computing
tasks for popular IIoT services to other FNs or locally handled.
The contributions of this paper are summarized as follows.

1551-3203 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-3913-5001
https://orcid.org/0000-0003-2483-6980
https://orcid.org/0000-0002-4420-6620
https://orcid.org/0000-0002-3777-3301
http://www.ieee.org/publications_standards/publications/rights/index.html

LI et al.: SERVICE POPULARITY-BASED SMART RESOURCES PARTITIONING FOR FOG COMPUTING-ENABLED INDUSTRIAL INTERNET OF THINGS 4703

1) We formulated a mathematical model to model the rela-
tionship between service popularity and computing cost,
and investigated the approach of resources partitioning
in fog computing-enabled IIoT system. We provided the
system model of the SPSRP scheme and provided util-
ity function formulations for F-IIoT to solve the joint
optimization problem of resources partitioning.

2) We proposed an SPSRP scheme for fog computing-
enabled IIoT. We exploited the Zipf’s law to calculate
the popularity rank of the IIoT service and predicted the
computing cost of arriving IIoT services on FNs. We pro-
vided a solving method of threshold value for forwarding
IIoT services, and applied it to decide whether the arriv-
ing IIoT service should be locally handled.

3) We proposed the implementation architecture of the SP-
SRP scheme, which first decoupled the computing con-
trol layer from the computing layer, and provided a pro-
grammable interface for IIoT operators. With service
popularity and SPSRP controller, we seamlessly asso-
ciated the communication performances with computing
performance, and provided a generalized platform for
FNs to uniformly partition the heterogeneous and mo-
bile computation resources. Additionally, we developed
several comparison experiments to validate the efficiency
and scalability of the proposed scheme.

The remainder of this paper is structured as follows. Section
II gives an overview of the related work and the strengths of the
SPSRP scheme. Section III describes the system model of the
SPSRP scheme. Section IV introduces the basic implementa-
tion architecture of the SPSRP scheme and discusses its design
principles in detail. Simulations are given in Sections V to eval-
uate the performance of the SPSRP scheme. Finally, Section VI
draws the conclusion and gives the future work.

II. RELATED WORK

The study on introducing fog computing into IIoT is still in
the initial stage. In order to satisfy the secure automation con-
trol requirements of IIoT, exploiting fog computing to achieve
adaptive operations platform has been perceived as a promising
approach, which enabled high manageability of IIoT [6]. Differ-
ent from the cloud-based IIoT that aggregates all IIoT data into a
remote data center, fog computing provides a more efficient and
scalable platform that enables context-awareness, low latency,
energy efficiency, and big data analytics [7], [8].

Resource partitioning is a hot topic in wireless commu-
nication filed [9]–[11]. These studies always focused on the
management of radio and frequency resources in femtocell
and small cells. Due to the heterogeneity nature of wireless
communication, the most popular approach for radio resource
partitioning was frequency reuse. Singh and Andrews [12]
provided an joint analytical framework for users offloading and
resource partitioning in co-channel heterogeneous networks,
this paper first studied the association between the number of
users offloaded into edge elements (e.g., small cells) and per-
formance of resource partitioning. Recently, another study [13]
exploited the Stackelberg game model to cooperatively optimize
the resource partitioning and data offloading in co-channel

two-tier heterogeneous networks. However, different from re-
source partitioning in wireless communication, FNs in IIoT pay
more attention on recognizing which is the most popular delay-
sensitive services regardless of the data scale or user number in
a domain so that the existing studies on resource partitioning in
wireless communication cannot be applied in fog-enabled IIoT.

Moreover, the existing resources partitioning approaches de-
signed for cloud-enabled IIoT also cannot be applied to fog-
enabled IIoT directly. For example, Mach and Becvar [14] for-
mulated a load balancing problem between multiple fog servers
as the cooperative resource sharing. However, the existing load
balancing scheme required all data traffic to pass through an
additional load balancer. To improve the efficiency of big data
analysis, the literature [15] proposed a computation partitioning
model for mobile cloud computing. However, this method only
can improve the data processing efficiency in data center, but
not adapt to fog computing paradigm due to the decentralization
nature of fog computing [16].

Expect for the studies on flows shunting in IIoT, some early
proposals in [17] and [18] also tried to develop the autonomous
resources allocation platforms for IoT to reduce the service re-
sponse time under the fog environment. Recently, advocating the
underlying IIoT infrastructures to share their resources was also
very insightful [19], [20]. However, it was not easy to observe
the computing states of all heterogeneous edge devices in real-
time [21]. Moreover, this kind of proposals did not give a deeper
discussion about how to partition the aggregated computation
resources on FNs.

By modeling the relationship between service popularity and
computing cost, this paper proposed an SPSRP scheme for
F-IIoT. Strengths of the SPSRP scheme mainly contained the
following three aspects. First, the SPSRP scheme seamlessly
associated the communication performances with computing
quality to improve the resources utilization as well as the service
response time in F-IIoT. Second, heterogeneous computing re-
sources were uniformly scheduled for processing IIoT services.
By using SPSRP scheme, the aggregated computation resources
can be smartly partitioned according to popularity ranks of IIoT
services. Third, the computing control layer was decoupled from
the computing layer and a programmable resources partitioning
interface was provided, this novel architecture facilitated F-IIoT
to be more scalable to embrace industrial situation awareness.

III. SYSTEM MODEL

We consider the system model of the SPSRP scheme for F-
IIoT with one cloud and several geo-distributed fog servers as
illustrated in Fig. 1. The cloud and geo-distributed fog servers
in the system model of the SPSRP scheme are deployed as a
hierarchical framework. Each of upstream FN has responsibility
to supervise the status of local FNs.

The SPSRP has three key components.
1) Global fog identifier (GFID): The SPSRP exploits the

GFID to name each of FN. The separation between the
GFID and the global service identifier (GSID) provides
support for global observability.

2) SPSRP controller: The SPARP controller is utilized to
monitor and control the computing states of all FNs in

4704 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 10, OCTOBER 2018

Fig. 1. System model of the proposed SPSRP scheme.

F-IIoT. The SPSRP controller maintains the mapping
from GFID to GSID. If a fog node moves from GSID
to another location renamed by GSID or the computing
resource of FN is exhausted, service providers can
redirect the service requests to a new address to find
computing resources without any service interrupts.

3) Computing task stream list (CTSL): To realize automatic
resources partitioning, the CTSL is presented, which in-
cludes three basic tuples: MatchField, ActionF ield,
and Counter. The parameters in each tuple can be pre-
customized by system designers of F-IIoT.

Since the cloud usually aggregates large-scale computing,
storage, and network resources, an SPSRP controller can be
implemented in cloud to monitor the global states of geo-
distributed entities, end-to-end QoS services, and computing
services in fog servers. Also, IIoT users can optimize the re-
sources utilization, QoS control, and computing efficiency by
adding their own resources scheduling algorithms into SPSRP
controller. The states of each underlying infrastructure (e.g.,
GPS, camera, liquidometer, and thermometer) are identified by
geo-distributed FNs. We emphasize that all the edge devices
are equipped with SDN protocols [22], which can provide pro-
grammable QoS control, e.g., the OpenFlow-enabled virtual
switch is deployed on each fog server. Especially, all of the
computing tasks on different edge devices are labeled as record
items and added into the defined CTSL. Besides, the simple
network management protocol (SNMP) acting as IEEE P21451
standard [23] will be an important network management pro-
tocol for IIoT applications. The SNMP also can be exploited
to achieve low-cost end-to-end QoS monitoring without SDN
by aggregating energy status, disk size, memory, running pro-
cess of each IIoT devices in real-time. In each IIoT device, it
might have a management information base to cache the above
information and a client to upload these information to state
observer. For each client, it was configured on only one network
location. When the state observer required to schedule the QoS,
the state observer acting as an server obtained the above infor-
mation from distributed IIoT devices and FNs by publish “get”
messages.

The definition of “smart” in this article is that each fog sever
can actively partition its resources in real-time based on the
popularity rankings of IIoT services. This “smart” provides
a guarantee for the stability of F-IIoT, by reducing the mis-

match between expected computing efficiency and partitioned
resources. Also, this “smart” improves the utilization of edge
resources, while it reduces the service delay and disconnection
rate in F-IIoT. Besides, this “smart” makes it possible for indus-
trial operators to enforce efficient big data analysis and machine
learning. Therefore, a smart resources partitioning mechanism
can intelligently partition the resources of fog servers according
to the popularity rankings of IIoT services. The SPSRP makes
fog servers pick up and process the sensed data of local IIoT ser-
vices automatically rather than shunt all the data to idle virtual
machines in cloud. To achieve this smart SPSRP, we exploit the
Zipf’s law to calculate the popularity rank of each IIoT service
on each FN, propose Algorithm 1 to partition computation re-
sources of each FN, and Algorithm 2 to deal with mobility and
heterogeneity of computation resources. By combining Zipf’s
law, Algorithms 1 and 2, fog-enabled IIoT can smartly partition
mobile and heterogeneous computation resources.

A. IIoT Services Popularity Model

Consider there are many different types of IIoT services
to be processed in IIoT. An IIoT service is denoted as E =
{αtype, βtask, γSLA}, where αtype, βtask, γCQC denote application
type, computing task, and computing quality contract (CQC),
respectively. It is common to see that an FN simultaneously
serves for multiple IIoT service sessions. Similar to the content
caching problem in information-centric networking (ICN), the
IIoT service E on the ith FN is modeled through a generalized
Zipf function

ZE
i (kt) =

Ω
kγ

t

, kt = 1, 2, . . . ,K (1)

kt+Δt = ZE
i

−1
(ZE

i (kt) + λΔt) (2)

where Ω = (
∑K

k=1
1

kγ)−1 and 0 ≤ γ ≤ 1 is the exponent and
kt denotes the popularity ranking of IIoT service E on the ith
FN at time t. λ is the number of arrival E type of IIoT services
on FN ith during Δt spot. Also, the ZE

i
−1(∗) is the inverse

function of ZE
i (∗).

Originally, Zipf’s law was found by observing and analyz-
ing the word frequency distribution. About twenty years ago,
the distribution of many Internet services was proven to fol-
low Zipf’s law and many existing web caching strategies used
Zipf’s law to model Internet users’ service requests [24], [25].
Recently, popularity-based smart caching for ICN has utilized
Zipf’ law to model the content distribution [26]. Now, Zipf’s law
is being applied in many fields such as linguistics, geography,
economics, and broadcast TV [27]. Similar to Internet services,
the distribution of IIoT services also follows Zipf’s law [28].
This paper exploits Zipf’s law to predict the computing cost of
IIoT services by calculating their popularity rankings. FN gets
popularity rankings of IIoT services by analyzing the statistics
of past and current logs in real-time.

B. Computing Cost Model

To improve the resources utilization and computing quality,
FNs are more willing to locally process popular IIoT services

LI et al.: SERVICE POPULARITY-BASED SMART RESOURCES PARTITIONING FOR FOG COMPUTING-ENABLED INDUSTRIAL INTERNET OF THINGS 4705

Fig. 2. On-path partitioning for end-to-end IIoT services.

and work with fewer remote control operations (e.g., wake up,
sleep, and migration).

Definition 1: For multiple types of IIoT services at time t, the
computing cost for one example IIoT service on FN is defined
as a the following function:

C
Ej

i =
CE0

i

Z
Ej

i (kt)
(3)

where CE0
i is the fixed original computing cost on FN jth when

Z
Ej

i (kt) = 1. By combining (1)–(3), the relationship between
computing cost and service popularity is a convex function when
γ < 1, while the relationship between computing cost and ser-
vice popularity is a concave function when γ > 1. Moreover,
for a fixed ΔR, ΔC2 is larger than ΔC1 and ΔC

′
2 is smaller

than ΔC
′
1. In the other word, for γ < 1, the change of service

popularity when kt < 7 has a greater impact on the computing
cost than the change of service popularity when kt > 16. For
γ > 1, the change of service popularity has a greater impact on
the computing cost when kt > 30 than when kt < 20. In this
paper, the SPSRP shifts the less popular services on ith FNs into
the other FNs to minimize their computing costs under γ > 1.

C. Utility Function Formulation

In a complex IIoT system, there are many pairs of service
provider and service subscriber. Also, there are many multi-
ple routing paths for forwarding data flows of IIoT services
from service provider to service subscriber. Therefore, to clarify
the utilization of the SPSRP scheme, we formulate two differ-
ent utility functions. One is on-path partitioning for end-to-end
IIoT services; another one is generalization to large-scale IIoT
services.

1) On-Path Partitioning for End-to-End IIoT Services: As il-
lustrated in Fig. 2, we consider an end-to-end IIoT service with
one type of providers (P) and one type of subscribers (S). The
number of P and S is generated randomly. On the service rout-
ing path from P to S, there are H FNs. To clarify the strengths
of the SPSRP scheme, we introduce the working flow of on-path
partitioning for end-to-end IIoT services step by step.

1) At time t, S broadcast a group of service requests
{E1

q , E
2
q , . . . , E

X
q } to fH in the network.

2) When the fH receives these service requests, it will cal-

culate the popularity rankings {kE 1
q

t , k
E 2

q

t , . . . , k
E X

q

t } of
each kind of service request.

3) fH begins to traverse all of the popularity rankings from

x = 1 to x = X . If k
E x

q

t ≤ Th, the corresponding IIoT

services should be processed by this FN fH . If k
E x

q

t >
Th, the corresponding IIoT services will be forwarded to
SPSRP controller for real-time routing optimization.

4) When the SPSRP controller receives an IIoT service, it
will calculate an optimized routing path for this IIoT
service based on the γCQC and send the next hop back to
the FN fH−1 (it can be fh in Fig. 2).

5) fH−1 will execute the same operations with fH . The fol-
lowing FNs on routing path do not need to execute these
operations until all IIoT services are accepted by FNs. To
guarantee all IIoT services can be accepted by FNs, the
mapping from {f1, f2, . . . , fH } to {E1

q , E
2
q , E

X
q } should

be a surjection.
Definition 2: For the case of end-to-end IIoT services, we

treat {f1, f2, . . . , fH } and {E1
q , E

2
q , . . . , E

X
q } as two different

sets. To guarantee all the computing tasks of each IIoT service
are processed by the FNs on the service routing path, the map-
ping from {f1, f2, . . . , fH } to {E1

q , E
2
q , . . . , E

X
q } should be a

surjection as follows:

{f1, f2, . . . , fH } � {E1
q , E

2
q , . . . , E

X
q } (4)

where � denotes the surjection operation. The definition of
surjection operation can be found in any book about logic the-
ory. Here, we give its mathematical description: If each possible
image is mapped to by at least one argument, a function is sur-
jective. Notationally: ∀y ∈ Y,∃x ∈ X such that y = f(x). In
mathematics, the surjection is one of the most important func-
tions distinguished by the manner in which arguments (input
expressions from the domain) and images (output expressions
from the co-domain) are related or mapped to each other. Espe-
cially, the surjection in IIoT requires Th to be defined as a big
value, while the consumers require a small Th to provide better
user experience. This tradeoff problem can be formulated as a
problem of multiple objective optimization as follows:

Objective 1:

min

⎡

⎣Cfh
=

T h∑

j=1

CE0
fh

Z
Ej

fh
(SortXx=1{θfh

× ΓEx

fh
})

(5)

+
X∑

j=T h+1

C
Ej

−fh

⎤

⎦ (6)

S.t.
T h∑

j=1

C
Ej

fh
≤ TRfh

(7)

θfh
= 1 − ðfh

× Cfh
+ ð−fh

× C−fh
(8)

where Sort{•} is an ascending ranking function, θfh
is the total

demands for computing on fh , and ΓEj

fh
is the fraction of fh ’s

demands for IIoT service Ej that will be served by fh ’s compu-

4706 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 10, OCTOBER 2018

tation resources. Therein, ðfh
is the reflective coefficients of the

computing costs’ influence on user demands and are positive.
Also, we exploit C−fh

to denote the computing costs of all FNs
excluding fh .

Specifically, there is a simple approach to calculate a suitable
Th for forwarding service requests. Here, we give a case of
exploiting simulate anneal arithmetic (SSA) to calculate the
Th. The working flow of SSA-based Th solving algorithm is
introduced step by step as follows.

1) IIoT operators specify a big Th as the initial state, ini-
tialize the objective value C0

fh
, and the iteration number

L for each threshold value.
2) Launch a circulation process to execute the step 3)–5)

based on k = 1, 2, 3, . . . , L.
3) Calculate (4)–(6) to get a new objective value C

′
fh

.

4) Calculate the increment ΔC = C
′
fh

− C0
fh

. If , ΔC < 0
update as the minimize computing cost of FN fh . Other-
wise, update C

′
fh

as C
′
fh

the minimize computing cost of

FN fh according to the updating possibility ρ = δC
C 0

f h

.

5) If the stop condition is triggered (there exists multiple cal-
culated computing cost C

′
fh

that are not updated), break
this circulation process.

6) Let Th = Th − 0.01, Th > 0, and go to step 2).
In a real F-IIoT system, the Th can be updated by IIoT

operators periodically. Since the computation resources of FNs
are limited and fitful, it is common for FNs to borrow some
computation resources from its neighboring FNs. Frequent
computation resource mitigations will result in bad computing
quality γCQC. γCQC of fh is impacted by ultimate utilization tUfh

,
performance degradation, total active time tact

fh
, and mismatch

fraction for user demands. The SPSRP scheme reduces the real
CQC violations in F-IIoT. The CQC violation between service
provider and subscriber is formulated as follows.

Objective 2:

min

[

V
γCQC

Rs d
=

1
H

H∑

h=1

TRfh
− ∑T h∗

j=1 C
Ej

fh

TRfh

(9)

× 1
h

H∑

h=1

tUfh

tact
fh

× 1
h

H∑

h=1

ξmis
fh

ξdem
fh

]

(10)

where ξ is the mismatch number of IIoT service on fh , and the
ξ is the total computing demands of IIoT services on fh .

2) Generalization to Large-Scale IIoT Services: The case of
on-path partitioning for end-to-end IIoT services can be ex-
tended to a generalized scenario where the subscribers and
providers are connected through sophisticated service rela-
tionships. In order to select the most appropriate services
in fog computing-enabled IIoT, the entities that play a vital
role are as follows: Subscribers {S1, S2, . . . , SN }, providers
{P1, P2, . . . , PN }, service routing path matrix RN ×N , and a
group of FNs F = {fh∗}, 1 < h∗ < H∗, H∗ is the total num-
ber of FNs in the whole network. Therein, Rij ∈ {0, 1}, and
Rij = 1 means that Sj is allowed to subscribe IIoT services
published by Pi , while Rij = 0 means that Sj is not allowed to

subscribe IIoT services published by Pi . In addition, we define
an location matrix LR

f to identify the location of FN f (e.g., if the

FN fh∗ is located on the service routing path Rij , then L
Ri j

fh ∗ = 1;

otherwise, LRi j

fh ∗ = 0). Every service routing path with L
Ri j

fh ∗ = 1
incurs a CQC violation. Therefore, we utilize the average CQC
violation for all service routing paths in the whole network as
the global objective. The average CQC violation is given as
follows.

Global Objective:

min

[

V avg
fh ∗ =

∑N
i=1

∑N
j=1 V

γCQC

Ri j
L

Ri j

fh ∗

N 2

]

(11)

S.t.
T h∗
∑

j=1

C
Ej

fh ∗ ≥ TRfh ∗ (12)

Th∗ ≥ Th (13)

where Th∗ is the real threshold value of service ranking that
users preconfigure on each FN.

The motivation of presenting (11)–(13) is to validate the sci-
entificity and feasibility of this paper. By using these equations,
the computing cost of each IIoT service on different FNs can
be estimated based on their popularity rankings, and then, the
CQC validation can be deduced. Proposed algorithms presents
the working flow of the SPSRP scheme. Proposed algorithms are
configured on different FNs to enforce the SPSRP scheme, but
not to solve the global objective function. The implementation of
the SPSRP scheme will exploit these equations and algorithms
to optimize the resource partitioning strategy. In summary, the
formulated equations are the guidance of proposed algorithms.
Proposed algorithms cannot be used to solve the formulated
equations, but can partition the resources of each FN. By using
Algorithms 1 and 2, we can obtain the minimized computing
cost and the minimized CQC validation.

IV. IMPLEMENTATION OF SPSRP

In F-IIoT, each edge network device (e.g., base station,
IoT gateway, and sensors) can process the sensed data and
provide context-aware services for local IIoT users. Therefore,
the SPSRP scheme treats all edge network devices as the
underlying computing infrastructures. As illustrated in Fig. 3,
the basic architecture of the SPSRP scheme decouples the
computing control layer from the underlying computing
infrastructures, and provides a programmable interface for
operators to deploy the novel computing control strategies
on distributed fog servers. The computing layer is composed
of large-scale geographical FNs that invoke the computing
resources according to the decisions of computing control
layer. The work time of each FN can be regulated by SPSRP
controller dynamically. The SPSRP controller is the key entity
in computing control layer, which works on the basis of global
computing states. All action sets in CTSL are generated by
the SPSRP controller. These actions usually contain several

LI et al.: SERVICE POPULARITY-BASED SMART RESOURCES PARTITIONING FOR FOG COMPUTING-ENABLED INDUSTRIAL INTERNET OF THINGS 4707

Fig. 3. Basic architecture of the SPSRP scheme.

instructions (such as VM creation, shutdown, and sleep) or
parameters (memory size, CPU clock speed, and word size).

Different from the load balancing mechanism in cloud that
focuses on traffic redirection, the SPSRP scheme makes it pos-
sible for fog servers to actively pick up the data flows that they
want to process. If the arriving data flows cannot be picked up
by fog server, it will be handled by the SPSRP controller. The
SPSRP controller can calculate an optimized policy (e.g., com-
putation migration and traffic forwarding) based on the whole
view of all fog servers.

A. Functions of Customized FN in SPSRP Scheme

Each FN is a nano data center (nDC). The VM can be de-
ployed on any local network element. To meet the IIoT’s special
demands on ultralow latency and automated control, it is imper-
ative to reconstruct the functions of FNs in the SPSRP scheme.
The functions of reconstructed FN in the SPSRP scheme are
introduced as follows.

1) IIoT service awareness: IIoT users can deploy the ad-
vanced service awareness technologies on FNs to identify
the delay-sensitive IIoT services.

2) Matching system: Matching system contains a set of
CTSLs. One CTSL consists of GFIDs, CQC, and ac-
tion sets. Each labeled IIoT service will be sent into this
matching system and select a appropriate CTSL.

3) Data caching: To satisfy the ultralow latency require-
ments and save bandwidth resources, caching data at nDC
is very popular and efficient.

4) Resource manager: In FN, the offloaded resources are
maintained by resources manager. The IIoT service with
higher popularity will be shifted into the higher perfor-
mance VMs by resource manager.

TABLE I
KEY SYMBOLS AND EXPLAINS

The decision generation process of FN is formulated as a
popularity-aware computation partitioning algorithm, as shown
in Table II. By using this algorithm, a service routing path with
lowest computing cost defined by (5)–(8) can be resolved. The
minimization value min[V γCQC

R∗
i j

] defined by (9) and (10) can also
be calculated. For large-scale IIoT services, the Algorithm 1 will
calculate the minimization value min[V γCQC

R∗
i j

] following (11)–
(13).

The working flow of Algorithm 1 is described as illustrated
in Table II step by step. The input parameters of Algorithm 1
contain λδt

, fh , ki , Th, Rij , LR
f , γCQC. Therein, λδt

, fh , Rij ,
LR

f can be calculated by fog server based on the IIoT service
requests in a real system. Th and γCQC are two constants, which
are configured by the IIoT engineer according to the engineering
experience in the applied IIoT scenario. ki is a statistical variable
that can be calculated using (2). When the data flows of IIoT
services arrive at the FN, the service types of these data flows
will be identified and then the IIoT service popularity rankings
on this FN will be updated. If the ranking of an arriving IIoT
service is less than Th, it will be pushed into the pending list.
Otherwise, it will be pushed into the forwarding list (FWList).
For the IIoT service on the pending list, FN will calculate the
computing cost of providing this IIoT service and observe if the
computing quality is in the scope of γCQC. The FN will select
a policy (it may be an identity of a virtual machine) that can
minimize (9). For the IIoT service on the FWList, the FN will
send it to the SPSRP controller for deeper analysis.

4708 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 10, OCTOBER 2018

TABLE II

B. Mobile and Heterogeneous Resources Partitioning
With SPSRP Controller

Due to the mobility and heterogeneity of computation re-
sources in FNs, IIoT users require to dynamically allocate the
computation resources for the incoming computing tasks ac-
cording to the context requirements or their individual demands.
By introducing a SPSRP controller to the IIoT, we can achieve
the cross-domain resources partitioning. It is common to see
that there are multiple FNs in a city community that are dealing
with different kinds of IIoT services. Usually, we cannot use
the computing resources of one FN that is preprocessing the
sensed temperatures when this FN is dealing with the captured
face images. However, the SPSRP controller is independent of
the IIoT service’s type. All action sets in CTSL are generated
by the SPSRP controller. These actions usually contain several
instructions and parameters (such as VM creation, shutdown,
and CPU clock speed).

The mobility and heterogeneity of computation resources
have a great impact on Mmig

Rs d
, Mmis

u , and TU
Rs d

, thus when it
requires the SPSRP controller to generate CTSL for mobile and
heterogeneous FNs, the above parameters should be updated
according to (9)–(15). The working flow of Algorithm 2 is il-
lustrated in Table III step by step. Algorithm 2 is executed on
SPSRP controller. The input parameters of Algorithm 2 contain
pending flow, GFID, GFID′, and resource type. The output of
Algorithm 2 is CTSL. When SPSRP controller receives data
flows, it will identify the data flows’ GFID, source FN, and

TABLE III

destination FN as well as the available service routing path.
Then, the SPSRP controller traverses the computing states of all
FNs that can act as the next hop on the available service routing
path. Meanwhile, the GFIDs of all FNs that can act as the next
hop are added into AlternativeList. Only when the arriving
IIoT services’ type matches with the type of most popular IIoT
service and the total computing cost is less enough, the next FN
can be specified by the SPSRP controller with CTSL.

V. SIMULATION AND DISCUSSION

In this section, we would like to evaluate the efficiency of the
proposed SPSRP scheme by a series of comparisons on dead
time, fault tolerance capability, successful response rate, and
delay time of IIoT service retrieval. The iFogSim [29] is a pub-
lic simulation platform that is generated based on CloudSim,
as used in [30] and [31]. This simulation platform contains a
fog-based IoT model and several kinds of measurement meth-
ods to evaluate the impact of resource management techniques
in service latency, energy consumption, and computing cost.
In the original document of iFogSim, the FN passively accepts
IoT services. Therefore, the efficiency of the first in first pro-
cess (FIFP) based resources partitioning was considered as the
experimental scheme for performance comparison. Moreover,
since our experiments are developed based on the iFogSim, we
use many existing function libraries on iFogSim. Thus, the soft-
ware/hardware configurations also can be obtained by looking
up [29]. In our simulation experiments, there were total seven
different scenarios had been considered as follows.

A. Performance Comparison on Delay Time of IIoT
Services

Due to the heterogeneity and mobility of computation re-
sources in FNs, observing the CPU occupancy of one or more

LI et al.: SERVICE POPULARITY-BASED SMART RESOURCES PARTITIONING FOR FOG COMPUTING-ENABLED INDUSTRIAL INTERNET OF THINGS 4709

Fig. 4. Performance comparison on delay time of IIoT Services.

VM cannot provide solid and comprehensive performance eval-
uations. Therein, we focused on the successful response rate,
service latency, dead time, and additional computing cost of
the proposed scheme. The computing resources of FNs can
be aggregated from the network edges of IIoT but not from
the data center. Even, the VM can be migrated from the IIoT
user’s computer. In this scenario, we considered the com-
putation resources of a FN were randomly offloaded from
{′MCU ′,′ Processor′,′ CPU ′,′ V M ′} with 10, 100, 1000, and
500 unit of computation resources, respectively. The arriving
number of IIoT services during per minute was randomly gen-
erated within [60 � 150]. Fig. 4 shows the delay time of IIoT
service response at different values of γ. Note that if the value
of γ is approximate to +∞, it means that the IIoT system has
not been equipped with any optimization, while all of the curves
denote the delay time of service response in fog-enabled IIoT
with SPSRP scheme. It can be observed that the SPSRP can
reduce the delay time of service response generally by adjusting
γ approximate to 1.

B. Successful Response Rate of Service Requests

In F-IIoT, the computing resources on FNs are dynamical.
To bring out the strengths of the proposed SPSRP scheme, each
type of IIoT services is assigned to at least one FN that has
capability to process the corresponding computing tasks. In this
case, we consider a peer-to-peer network with 100 IIoT users
and 10 FNs. Initially, each FN maintains a PendingList. This
PendingList records all types of IIoT services that should be
sent to the SPSRP controller. The SPSRP controller traverses
the computing states of all other FNs to find the most reasonable
FN to accept the arriving IIoT services. The successful response
rate of service requests is one of the most important indicators
to evaluate the performance of the SPSRP scheme. In this case,
we measure the successful response rate of service requests
with tree different schemes as illustrated in Fig. 5(a). It can
be observed that the average successful response rate is about
[0.65, 0.7] in load lancing for cloud-based IIoT, [0.75–0.8] in
the FIFP scheme for fog-enabled IIoT, and [0.85 0.9] SPSRP
scheme for fog-enabled IIoT. This result ([0.850.9] > [0.75 −
0.8] > [0.650.7]) validates the performance improvements of
the proposed scheme.

C. Fault Tolerance and Dead Time Compensation

The SPSRP scheme exploited Zipf’s law to model the
popularity rankings of IIoT services and predict the possible
computing cost of processing these IIoT services on FNs. The
FN partitions its own resources for processing the most popular
IIoT services by arbitrating whether it should pick up and pro-
cess the arriving IIoT services. To simulate the abnormal case
of possible faults caused by abnormal popularity rankings of
IIoT services, we set an additional service requesters in F-IIoT
to inject a series of irrelevant service requests continuously
to tamper the service rankings. As illustrated in Fig. 5(b), for
industry-scale IoT services, the proportion of nonimpacted
FNs in the proposed scheme is higher than the FIFP scheme.
Therefore, the fault tolerance of the proposed scheme is
improved.

The dead time is the completing time slot of resources parti-
tioning subtracts the arriving time slot of service request. There
are two different kinds of methods that can be exploited for the
SPSRP controller to do the dead time compensation. First, the
SPSRP controller can dynamically change the queueing time
of service requests on each FN based on the real-time distri-
bution of service requests. A short queueing time of service
requests can significantly reduce the dead time, but it has a
great impact on the performance of Zipf’s law. Second, the SP-
SRP controller can dynamically change the Th on each FN
based on the real-time distribution of service requests. A small
Th also can significantly reduce the dead time. In FIFP-based
resources partitioning scheme, it is common to do the dead time
compensation by changing the queueing time, while in our sim-
ulation, we do dead time compensation by changing the Th. In
Section III (C), we have introduced an SSA-based Th solving
algorithm. With this algorithm, a minimized Th can be obtained
by the SPSRP controller. We compare the dead time of the SP-
SRP scheme and FIFP-based resources partitioning scheme, as
shown in Fig. 5(c). It can be observed that the proposed scheme
in fog-based IIoT has lowest dead time compared to the FIFP
scheme in cloud-based IIoT and fog-based IIoT.

D. Complexity Analysis and Additional Cost

In algorithms, each FN can adaptively pick up and process the
most popular IIoT services and smartly partition its resources-
based according to the popularity rankings of picked IIoT ser-
vices. Unpopular IIoT services on a FN will be forwarded to the
other FN for efficient processing. In other words, it is no need for
each FN to ask for the states of other FNs. Thus, the complex-
ity of proposed algorithms is Θ(n). The function of proposed
algorithms was not to copy the load balancing and VM migra-
tion in cloud data to distributed FNs. By using Algorithms 1
and 2 to partition the resources of FNs in IIoT, we can obtain
minimized computing cost and minimized CQC validation. All
the performance improvements of the proposed scheme were
directly beneficial to IIoT users because the service popularity
reflected the real demands of IIoT users. In terms of whether it
will cause additional computing cost, the answer is inevitable.
However, compare to the improvements of proposed algorithms,
the additional computing cost caused by complexity of proposed

4710 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 10, OCTOBER 2018

Fig. 5. Simulation results obtained for time-slot.

algorithms is minor. Moreover, the additional computing cost
can be handled by resources offloaded from cloud. Besides, the
FN selectively deals with the local delay-sensitive IIoT services
rather than all of the arriving IIoT services.

VI. CONCLUSION AND FUTURE WORK

In this paper, an SPSRP scheme was presented for fog
computing-enabled IIoT. The SPSRP scheme modeled the re-
lationship between service popularity and computing cost with
Zipf’s law. Moreover, the SPSRP scheme decoupled the com-
puting control from data processing and support mobile and
heterogeneous computing resource scheduling. Also, we pro-
vided an implementation architecture of the SPSRP scheme for
real scenario. The simulations on delay time, fault tolerance,
and dead time validated the strengths of the SPSRP scheme.

REFERENCES

[1] C. C. Byers, “Architectural imperatives for fog computing: Use cases,
requirements, and architectural techniques for fog-enabled IoT networks,”
IEEE Commun. Mag., vol. 55, no. 8, pp. 14–20, Mar. 2017.

[2] M. Chiang and T. Zhang, “Fog and IoT: An overview of research op-
portunities,” IEEE Internet Things J., vol. 3, no. 6, pp. 854–864, Dec.
2016.

[3] S. Mubeen et al., “Delay mitigation in offloaded cloud controllers in
industrial IoT,” IEEE Access, vol. 5, pp. 4418–4430, 2017.

[4] V. Gazis et al., “Components of fog computing in an industrial internet of
things context,” in Proc. IEEE Int. Conf. Sens. Commun. Netw. Workshops,
2015, pp. 1–6.

[5] H. Zhang, Y. Xiao, S. Bu, D. Niyato, FR. Yu, and Z. Han, “Computing
resource allocation in three-tier IoT fog networks: A joint optimization ap-
proach combining stackelberg game and matching,” IEEE Internet Things
J., vol. 4, no. 5, pp. 1204–1215, Oct. 2017.

[6] W. Steiner and S. Poledna, “Fog computing as enabler for the Industrial
Internet of Things,” e i Elektrotechnik und Informationstechnik, vol. 133,
no. 7, pp. 310–314, 2016.

[7] B. Tang et al.,“Incorporating intelligence in fog computing for big data
analysis in smart cities,” IEEE Trans. Ind. Informat., vol. 13, no. 5,
pp. 2140–2150, Oct. 2017.

[8] E. Zeydan et al.,“Big data caching for networking: Moving from cloud
to edge,” IEEE Commun. Mag., vol. 54, no. 9, pp. 36–42, Sep. 2016.

[9] W. S. Jeon, J. Kim, and D. G. Jeong, “Downlink radio resource partitioning
with fractional frequency reuse in femtocell networks,” IEEE Trans. Veh.
Technol., vol. 63, no. 1, pp. 308–321, Jan. 2014.

[10] Y. Dhungana and C. Tellambura, “Multichannel analysis of cell range
expansion and resource partitioning in two-tier heterogeneous cellular
networks,” IEEE Trans. Wireless Commun., vol. 15, no. 3, pp. 2394–2406,
Mar. 2016.

[11] U. Tefek and T. J. Lim, “Relaying and radio resource partitioning for
machine-type communications in cellular networks,” IEEE Trans. Wireless
Commun., vol. 16, no. 2, pp. 1344–1356, Feb. 2017.

[12] S. Singh and J. G. Andrews, “Joint resource partitioning and offloading in
heterogeneous cellular networks,” IEEE Trans. Wireless Commun., vol. 13,
no. 2, pp. 888–901, Feb. 2014.

[13] M. H. Tai, N. H. Tran, L. B. Le, W. Saad, S. M. A. Kazmi, and C. S.
Hong, “Coordinated resource partitioning and data offloading in wireless
heterogeneous networks,” IEEE Commun. Lett., vol. 20, no. 5, pp. 974–
977, May 2016.

[14] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architecture
and computation offloading,” IEEE Commun. Surv. Tuts. vol. 19, no. 3,
pp. 1628–1656, Jul.–Sep. 2017.

[15] L. Pu, X. Chen, J. Xu, and X. Fu, “D2D fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted D2D
collaboration,” IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3887–
3901, Dec. 2016.

[16] S. Mubeen, P. Nikolaidis, A. Didic, H. Pei-Breivold , K. Sandstrom, and
M. Behnam, “Delay mitigation in offloaded cloud controllers in industrial
IoT,” IEEE Access, vol. 5, pp. 4418–4430, 2017.

[17] J. Li, L. Huang, Y. Zhou, S. He, and Z. Ming, “Computation partitioning
for mobile cloud computing in a big data environment,”IEEE Trans. Ind.
Informat., vol. 13, no. 4, pp. 2009–2018, Aug. 2017.

[18] D. R. D., Vasconcelos, R. M. D. C. Andrade, and J. N. D. Souza,
“Smart shadow–an autonomous availability computation resource al-
location platform for internet of things in the fog computing en-
vironment,” in Proc. Int. Conf. Distrib. Comput. Sens. Syst., 2015,
pp. 216–217.

[19] H. Zhang, Y. Xiao, S. Bu, D. Niyato, FR Yu, and Z. Han, “Computing
resource allocation in three-tier IoT fog networks: A joint optimization
approach combining stackelberg game and matching,”IEEE Int. Things J.,
vol. 4, no. 5, pp. 1204–1215, Oct. 2017.

[20] B. Yin, W. Shen, Y. Cheng, LX. Cai, and Q. Li, “Distributed resource shar-
ing in fog-assisted big data streaming,” in Proc. IEEE Int. Conf. Commun.,
2017, pp. 1–6.

[21] T. Nishio, R. Shinkuma, T. Takahashi, and N. B. Mandayam, “Service-
oriented heterogeneous resource sharing for optimizing service latency
in mobile cloud,” in Proc. IEEE Int. Conf. Cloud Comput. Technol. Sci.,
2013, pp. 19–26.

[22] N. McKeown et al., “OpenFlow: Enabling innovation in campus net-
works,” Acm Sigcomm Comput. Commun. Rev., vol. 38, no. 2, pp. 69–74,
2008.

[23] X. Feng, J. Wu, K. Wang, J. Li, and M. Wang, “Security analysis of simple
network management protocol based IEEE P21451 internet of things,” in
Proc. IEEE 15th Int. Conf. Dependable Autonomic Secure Comput., 15th
Int. Conf. Pervasive Intell. Comput., 3rd Int. Conf. Big Data Intell. Com-
put. Cyber Sci. Technol. Congr.(DASC/PiCom/DataCom/CyberSciTech),
2017, pp. 326–330.

[24] L. Breslau, P. Cao, F. Li, G. Phillips, and S. Shenker, “Web caching and
Zipf-like distributions: evidence and implications,” in Proc. 18th Annu.
Joint Conf. IEEE Comput. Commun. Soc., 1999, pp. 126–134.

[25] L. A. Adamic and B. A. Huberman, “Zipf’s law and the internet,” Glotto-
metrics, vol. 3, pp. 143–150, 2002.

[26] K. Suksomboon et al., “PopCache: Cache more or less based on content
popularity for information-centric networking,” in Proc. IEEE 38th Annu.
Conf. Local Comput. Netw., 2013, pp. 236–243.

[27] C. Zhu, G. Cheng, and K. Wang, “Big data analytics for program popularity
prediction in broadcast TV industries,” IEEE Access, vol. 5, pp. 24593–
24601, 2017.

[28] G. Li, J. Wu, J. Li, T. Ye, and R. Morello, “Battery status sensing software-
defined multicast for V2G regulation in smart grid,” IEEE Sens. J., vol. 17,
no. 23, pp. 7838–7848, Dec. 2017.

LI et al.: SERVICE POPULARITY-BASED SMART RESOURCES PARTITIONING FOR FOG COMPUTING-ENABLED INDUSTRIAL INTERNET OF THINGS 4711

[29] H. Gupta, A. Vahiddastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim: A
toolkit for modeling and simulation of resource management techniques
in internet of things, edge and fog computing environments,” Softw. Pract.
Exp., vol. 47, no. 1, pp. 1–22, 2016.

[30] A. Brogi and S. Forti, “QoS-aware deployment of IoT applications through
the fog,” IEEE Int. Things J., vol. 4, no. 5, pp. 1185–1192, Oct. 2017.

[31] M. R. Mahmud, F. Koch, and R. Buyya, “Cloud-fog interoperability in
IoT-enabled healthcare solutions,” in Proc. Int. Conf. Distrib. Comput.
Netw., 2018, pp. 1–10.

Gaolei Li (S’15) received the B.S. degree
in electronic information engineering from the
School of Electronic Information, Si Chuan Uni-
versity, Chengdu, China, in 2015. He is currently
working toward the Ph.D. degree in information
and communication at the School of Electronic
Information and Electrical Engineering, Shang-
hai Jiao Tong University, Shanghai, China.

He was a TPC member of international con-
ference on Internet of Things (iThings2017) and
a TC member of the IEEE CSIM. His current

research interests include Industrial Internet of things, fog computing,
software-defined networking, etc.

Jun Wu (S’09–M’12) received the Ph.D. degree
in information and telecommunication studies
(GITS) from Waseda University, Tokyo, Japan,
in 2011.

From 2011 to 2012, he was a Postdoctoral
Researcher with the Research Institute for Se-
cure Systems, National Institute of Advanced In-
dustrial Science and Technology (AIST), Japan.
From 2011 to 2013, he was a Researcher with
GITI, Waseda University. He is currently an As-
sociate Professor with the School of Cyber Se-

curity, Shanghai Jiao Tong University, Shanghai, China. He also serves
for Shanghai Key Laboratory of Integrated Administration Technologies
for Information Security, China, and the Vice Director with the National
Engineering Laboratory for Information Content Analysis Technology,
China. He has hosted and participated in several research projects for
the National Natural Science Foundation of China, National 863 Plan and
973 Plan, Japan Society of the Promotion of Science projects, etc. He
has authored or coauthored more than 100 papers. His research inter-
ests include the advanced computing and communications techniques
in smart grids, Internet of Things, industrial security, etc.

He is currently an Associate Editor of the IEEE ACCESS, a Guest Ed-
itor for the IEEE SENSORS JOURNAL, and a TPC Member of more than
ten international conferences including WICON, ICC, GLOBECOM, etc.

Jianhua Li received the B.S., M.S. and Ph.D.
degrees in information security from the School
of Cyber Security, Shanghai Jiao Tong Univer-
sity, Shanghai, China, in 1986, 1991, and 1998,
respectively.

He is a Professor/Ph.D. Supervisor and the
Dean of the School of Cyber Security, Shang-
hai Jiao Tong University, Shanghai, China, and
the Chairman of Shanghai Key Laboratory of In-
tegrated Administration Technologies for Infor-
mation Security, China, and the Vice Director in

National Engineering Laboratory for Information Content Analysis Tech-
nology, China. He was the Chief Expert in the information security com-
mittee experts with the National High Technology Research and Devel-
opment Program of China (863 Program) of China and a Committee
Expert of Information Technique Standardization Committee of Shang-
hai, China. He was the Leader of more than 30 state/province projects
of China, and authored or coauthored of more than 300 papers. His
research interests include cyber security, data science, next generation
networking, etc.

Dr. Li was the recipient of the second prize of National Technology
Progress Award of China in 2005, first prize of National Technology
Progress Award of Shanghai in 2003 and 2004, and first prize of Na-
tional Technology Progress Awards of Shanghai in 2004.

Kuan Wang received the B.S. degree in infor-
mation and communication engineering from the
School of Electronic Information Engineering in
Northeastern University, Qinhuangdao, China,
in 2016. He is currently working toward the Ph.D.
degree in information and communication engi-
neering at the School of Electronic Information
and Electrical Engineering, Shanghai Jiao Tong
University, Shanghai, China.

His research interests include network cal-
culation, Internet of things, information-centric

networking, etc.

Tianpeng Ye was born in Jiangsu province of
China, in 1993. He received the B.S. degree
in communication engineering from Southwest
Jiaotong University, Chengdu, China, in 2015
and the M.S. degree in cyber security from the
School of Cyber Security, Shanghai Jiao Tong
University, Shanghai, China, in 2018.

He has participated in many national projects
(e.g., National Natural Science Foundation of
China) and accumulates many engineering ex-
perience. His research interests include vehicle

cloud computing, network function virtualization, fog-enabled radio ac-
cess network, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

