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Multicontact Interaction Force Sensing From
Whole-Body Motion Capture
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Abstract—We present a novel technique that unobtru-
sively estimates forces exerted by human participants
in multicontact interaction with rigid environments. Our
method uses motion capture only, thus circumventing the
need to set up cumbersome force transducers at all poten-
tial contacts between the human body and the environment.
This problem is particularly challenging, as the knowledge
of a given motion only characterizes the resultant force,
which can generally be caused by an infinity of force dis-
tributions over individual contacts. We collect and release
a large-scale dataset on how humans instinctively regulate
interaction forces on diverse multicontact tasks and mo-
tions. The force estimation framework we propose leverages
physics-based optimization and neural networks to recon-
struct force distributions that are physically realistic and
compatible with real interaction force patterns. We show
the effectiveness of our approach on various locomotion
and multicontact scenarios.

Index Terms—Force sensing from motion capture, mul-
ticontact, neural networks, physics-based optimization,
whole body.

I. INTRODUCTION

HUMAN motions result from skilled control of the phys-
ical interactions with the environment through contacts.

Thus, haptic perception is a fundamental theme toward action
understanding and control. The monitoring of contact forces is
already widely used in various fields such as robot learning from
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demonstration and control [1], [2], physics-based animation [3],
[4], and visual tracking [5], [6]. Measurement of contact forces
is usually achieved by mounting force transducers at prefixed
contact locations, making it a costly, cumbersome, and intrusive
process that is difficult to use in daily settings. Mounting force
transducers on the persons obstructs their natural motion and
is not sustainable for daily use. In contrast, the accurate mon-
itoring of interaction forces from motion capture alone, which
can readily be achieved using consumer-grade cameras [7], [8],
would enable a wide range of applications in personal robotics,
human–computer interaction, and rehabilitation [9] as a new un-
obtrusive biosensor for the healthcare Internet of Things [10].

However, this problem is very difficult due to the indetermi-
nacy of force distributions in multicontact. Indeed, while the
knowledge of external and internal forces uniquely determines
the resulting kinematics for a given articulated system, even
a perfectly known motion does not suffice to fully character-
ize the underlying forces in multicontact. Instead, the resultant
force can be distributed in infinitely many different ways on a
given set of contacts. Illustrating this indeterminacy, consider a
human participant standing still with both feet on the ground.
Even in the elementary case of a static biped stance, the partici-
pant can exert tangential forces that compensate each other out,
e.g., by pushing their feet apart. While substantial work was
dedicated to the problem of force indeterminacy during gait,
general contact configurations (e.g., involving hands) have been
comparatively less studied in the literature (see Section II).

We address the force distribution problem in multicontact
by combining the benefits of machine learning techniques and
physics-based optimization to capture the variability in the way
humans naturally regulate interaction forces while ensuring their
physical compatibility with the observed motion.

1) We formulate an optimization problem allowing the
estimation of physically valid forces either from mo-
tion observations alone or from a reference signal (see
Section III).

2) We construct a novel dataset on human whole-body kino-
dynamics containing 2.4 h of synchronized force and mo-
tion measurements under diverse configurations of tasks,
participants, and contacts (see Section IV).

3) We propose two neural network architectures allowing
the prediction of contact force distributions from motion
observations as well as their interactive correction by
physics-based optimization (see Section V).

4) We validate our approach with ground-truth force mea-
surements on various multicontact scenarios and assess
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the respective contributions of physics-based optimiza-
tion and neural networks (see Section VI).

Finally, we discuss the limitations, applications, and future
extensions of our work (see Section VII). Besides a signifi-
cantly extended dataset, our current work enhances the earlier
approach of [11] with: an improved formulation of the optimiza-
tion problem accounting for motion measurement uncertainties,
the consideration of individual contact normals in the learning
features enabling more fine-grained predictions by neural net-
work models, as well as algorithmic descriptions and extensive
validation experiments that have not been presented before. To
foster the research on this new topic and encourage alterna-
tive implementations, we make the whole-body kinodynamics
dataset and algorithms publicly available.1

II. RELATED WORK

Research on human–computer interaction has resulted in mul-
tiple techniques for whole-body motion capture from markerless
visual observations [7], [8], magnetic trackers [12], or wearable
inertial sensors [13], [14]. Force sensors were notably used in
conjunction with inertial sensors and vision to improve the mo-
tion reconstruction in [3] and [4]. Instead of physical force
sensors, numerical models were used to compute physically
plausible distributions supporting visual observations in hand-
object tracking [5], [6]. The problem of estimating the real
forces applied on the environment was tackled in the case of de-
formable objects [15] and conversely by considering the human
body elastic [16]. In the inspiring work of [17], ground reac-
tion forces were computed with a spring-based contact model to
estimate internal joint torques during locomotion. General con-
tact configurations are commonly addressed in simulation and
robotics using constrained optimization [18], which alone may
not result in the forces humans instinctively apply, as illustrated
in Section III-C.

Inverse optimization approaches in kinesiology research ad-
dress the force distribution indeterminacy by modeling the ob-
jective function(s) supposedly optimized by the central nervous
system [19]. However, such approaches are difficult due to the
redundancy of the human body and the difficulty to observe
physiological parameters without invasive surgery [20]. The
variability of inverse dynamics solutions with different body
segment inertial parameter (BSIP) models was notably dis-
cussed in [21] and [22]. Toward this issue, Jovic et al. [23]
introduced an optimization framework for the online estimation
of robot and human BSIPs from motion and force–torque mea-
surements. An alternative approach for BSIP reconstruction was
proposed in [24], along with a data-driven approach to estimate
contact forces from motion tracking between the feet and the
ground.

Recent successes for the control of robot arms [25], [26] or
general articulated characters [27] using neural networks illus-
trated their ability to account for complex model uncertainties.
Neural networks were also used to resolve force indetermi-
nacy cases during gait [28] and manipulation [29]. To account

1https://github.com/jrl-umi3218/WholeBodyKinodynamics.

for temporal continuity, recurrent neural networks (RNNs) [30]
with long short-term memory (LSTM) [31] neurons were used
in [32] and [33], still for manipulation. Whole-body interac-
tions were first addressed using an RNN in combination with
a second-order cone program (SOCP) [34] for physics-based
optimization in [11]. Our current study generalizes this idea to
more complex multicontact scenarios, supported by an extended
dataset that is significantly more diverse in terms of contact con-
figurations, tasks, and participants.

III. WHOLE-BODY CONTACT FORCE OPTIMIZATION

A. Equations of Motion and Friction Constraints

We consider an articulated system of rigid bodies subject to
Nτ internal joint torques τ = (τ (i)

1 , . . . , τ
(i)
Nτ

)T and NF ex-
ternal wrenches Fk = (τ k , fk )T , with τ k and fk being the re-
spective external torque and force at contact k, expressed in the
global frame. With the position and orientation of a chosen base
link, the number of degrees of freedom is NDoF = Nτ + 6. We
denote by q, q̇, and q̈ the respective generalized coordinates,
velocity, and acceleration of the articulated system, respectively.
The whole-body equations of motion can be expressed as

H(q)q̈ + C(q, q̇) =
[
06

τ

]
+

NF∑
k=1

JT
k Fk (1)

where
1) H(q) the NDoF × NDoF mass matrix;
2) C(q, q̇) the NDoF × 1 bias vector of the Coriolis, cen-

trifugal forces and gravity terms;
3) Jk the NDoF × 6 the kth contact Jacobian matrix;
4) 06 the 6 × 1 internal wrench directly applied at the root of

the kinematic tree in case of linkage with the environment
(zero for the case of the floating base).

We assume the parameters of the dynamic model to be
known [23], [24]. For each contact k, we denote by zk the
(uniquely defined) normal vector oriented from the environment
to the body, and by xk and yk two orthogonal vectors in the tan-
gential plane. We thus obtain a local decomposition for each
external wrench Fk in the contact frame Ck = (xk ,yk , zk ):

Ck Fk = (τ x
k , τ y

k , τ z
k , fx

k , fy
k , fz

k )T
,

with

{
τ k = τ x

k xk + τ y
k yk + τ z

kzk

fk = fx
k xk + fy

k yk + fz
k zk .

(2)

Having chosen zk oriented toward the body, each normal force
component is such that

fz
k ≥ 0. (3)

With μk the friction coefficient at contact k, the tangential force
is constrained by the normal component as follows:

‖fx
k xk + fy

k yk‖2 ≤ μkfz
k . (4)

Contact torque constraints are usually obtained by discretizing
the contact surface into individual contact points subject to 3-D
forces only. Closed-form formulas were derived for rectangular
support areas in [35]. We observed in our experiments that such
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constraints could be violated due to motion tracking uncertain-
ties and omitted them in this study.

B. Physics-Based Optimization

In this section, we discuss the extraction of physically plausi-
ble force distributions compatible with a given motion, charac-
terized by generalized coordinates q, velocities q̇, and acceler-
ations q̈. Such force distributions can be obtained as solutions
of an SOCP of the form

min C(x) =
1
2
xT Px + rT x

s.t.

⎧⎪⎪⎨
⎪⎪⎩

‖Ajx + bj‖2 ≤ cT
j x + dj , j = 1, . . . ,m

Ex ≤ f

Gx = h

(5)

with x a vector of Nx = 6 + Nτ + 6NF force variables

x =
(
FMEW, τ ,

(Ck Fk

)
k=1,NF

)T

. (6)

Here, FMEW represents a measurement error wrench (MEW)
applied to the floating base of the kinematic tree. This wrench is
06 in the ideal case of perfect measurements and dynamic model.
However, trying to enforce the strict constraint FMEW = 06 on
noisy measurements and with an approximative dynamic model
results in unfeasible SOCP problems. To allow for uncertainties,
we relax this constraint and rather make the solver enforce it at
best (i.e., minimizing

∥∥FMEW
∥∥), as detailed thereafter.

1) Inequality Constraints: In (5), linear inequality matrices
E, f and cone inequality matrices A,bj , cj ,dj can directly be
computed from (3) and (4), respectively.

2) Equality Constraints: We consider the whole-body equa-
tions of motion. Given an instance of (q, q̇, q̈), the term h in (5)
corresponds directly to the left-hand side of (1):

h = H(q)q̈ + C(q, q̇). (7)

h is a vector of NDoF elements. The matrix G in (5) is here
of size NDoF × Nx and can be decomposed using selection
matrices Gτ and (GFk

)k=1,NF
such that

Gτx =
[
FMEW

τ

]
and GFk

x = Fk . (8)

Note that each GFk
must incorporate the rotation matrix be-

tween the contact frame Ck and the world frame. We obtain

G = Gτ +
NF∑
k=1

JT
k GFk

. (9)

3) Cost Function: Having incorporated the previous con-
straints in the SOCP, physically plausible force distributions
can be computed by minimizing a chosen cost function depend-
ing only on the optimization variables, e.g., a weighted sum of
the squared L2 norms of the optimization variables:

Cα,β ,γ (x) = α
∥∥FMEW

∥∥2
+ β ‖τ‖2 + γ

NF∑
k = 1

‖Fk‖2. (10)

Fig. 1. Force sensor noise and uncertainties in the resultant force (top
plot) can be corrected using physics-based optimization. In multicontact,
directly minimizing the norm of the individual forces (green) results in
forces that are physically plausible but significantly differ from real mea-
surements (red). By minimizing the discrepancy to the latter (blue), we
reconstruct forces that are both physically plausible and in agreement
with natural force distributions.

In practice, it is preferable to set α greater than β and γ so that
FMEW is only used when the observed motion is otherwise un-
feasible. The two other parameters β and γ can be tuned to min-
imize either internal joint torques or applied contact wrenches.
Alternatively, when target values F̃k for the contact wrenches
are available (e.g., from force–torque sensors), it is possible to
extract force distributions in their vicinity that are also guaran-
teed to be physically plausible, by minimizing the discrepancy
to the optimized wrenches in the SOCP cost function [36]:

CF̃k

α,β ,γ (x)=α
∥∥FMEW

∥∥2
+β ‖τ‖2+γ

NF∑
k = 1

∥∥∥Fk − F̃k

∥∥∥2
.

(11)

Contact forces and internal joint torques occurring during gait
are typically in the order of 100 N and 1 N·m, respectively [21].
In our experiments, we chose α = 102, β = 10−2, and γ = 1 so
that FMEW only compensates unfeasible raw motion measure-
ments, and internal joint torques can vary as needed to prioritize
matching optimized and target contact wrenches.

C. Motivating Example: Triple Contact Indeterminacy

We illustrate the crucial role played by the SOCP cost func-
tion. We consider a participant standing still next to a table and
taking support on it using the right hand, then the left. We rep-
resent the vertical component of the measured forces in Fig. 1.
In addition, we compute force distributions of minimal L2 norm
using (10) and minimizing the discrepancy to the sensor mea-
surements using (11).

With the participant standing still, the equations of motion
dictate that the net contact forces (top plot) should mostly op-
pose the participant’s weight. However, individual force sen-
sor uncertainties result in rather noisy force estimates. In con-
trast, all SOCP variants accurately reconstruct the net force
directly from the measured kinematics. Using the cost function
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Fig. 2. Acquisition system for whole-body kinematics and contact
forces. (a) Inertial motion capture system. (b) Captured motion and
forces. (c) Shoes and gloves instrumented with force–torque sensors.

of (10) results in forces that are physically plausible but may
greatly differ from actual measurements. Using the cost func-
tion of (11) enables the reconstruction of force distributions
that are both physically plausible and in the vicinity of target
forces when available. The aim of our work is to circumvent the
need for force sensors. Thus, in the following, we train RNNs
to predict such target force distributions directly from motion
observations.

IV. WHOLE-BODY KINODYNAMICS DATASET

A. Experimental Setup

We depict our complete acquisition system in Fig. 2.
1) Whole-Body Motion: We track the whole-body motion

using the Xsens MVN Awinda inertial motion capture sys-
tem [13], comprised of 17 inertial measurement units (IMU)
worn and strapped at specified body landmarks on the partic-
ipant’s body. The motion capture system is battery powered
and wireless, transmitting accelerometer, gyroscope, and mag-
netometer measurements to the computer at 100 Hz. The motion
of the human body, modeled as a 23-segment skeleton, is then
readily provided in the form of the 6-DoF pose, velocity, and ac-
celeration of each segment. We enable the dynamics analysis of
Section III by converting these quantities into generalized coor-
dinates, velocities, and accelerations (q, q̇, q̈), with a kinematic
tree composed of 23 segments linked by 22 spherical joints and
rooted at the participant’s pelvis. Measuring the participant’s
body measurements and weight, we compute the BSIPs using
the anthropomorphic tables of [37]. Inertial motion capture sys-
tems by themselves do not provide absolute positioning and are
prone to drift compared to marker-based tracking methods (e.g.,
Vicon). We are working toward attenuating this problem. Still,

the choice of this motion capture system was motivated by strong
occlusions that are inherent to whole-body interactions with the
environment and hinder vision-based motion capture systems
(e.g., Vicon). In contrast, the inertial motion capture system al-
lows us to explore various interaction scenarios in uncontrolled
and cluttered environments, e.g., when crouching under a table.
In the future, the system could even be employed outdoors or
used in combination with a limited number of visual sensors to
solve the issue of drift and absolute positioning.

2) Contact Forces: We measure the contact forces exerted
by the participant onto the environment both at the feet and at
the hands. Contact forces at the feet are monitored using in-
strumented shoes (Xsens ForceShoe). Each shoe is equipped
with two force–torque sensors and two IMUs, providing contact
forces measured individually at the heel and toes, and transmit-
ted to the computer via Bluetooth at 50 Hz. We monitor contact
forces exerted at the hands using two additional force–torque
sensors (ATI Mini-45) attached to gloves worn by the partici-
pant during interaction experiments. The force–torque sensors
are wired to dedicated acquisition cards on the computer, and
measurements are also recorded at 50 Hz. Both ForceShoe and
ATI sensor signals are linearly interpolated to 100 Hz, matching
the motion capture sampling rate. In comparison to static force
plates commonly used in gait analysis, wearable force sensors
can be less accurate. Still, a major advantage of our lightweight
setup is that it enables the efficient and continuous acquisition
of contact forces on arbitrary contact configurations, highly dy-
namic motions, and relatively unrestricted movement areas. In
contrast, using static force plates considerably reduce the range
of possible tasks, contacts, and motions.

B. Newton–Euler Equations and Signal Synchronization

Each type of sensor used in this work (i.e., motion capture suit,
force-sensing shoes, and ATI Mini-45 sensors) is individually
monitored using a dedicated acquisition program. Therefore,
raw measurements need to be temporally synchronized with
each other before further analysis. This step is performed using
the Newton–Euler equations taken at the center of mass G of the
whole-body articulated system. For each body segment s of the
23-element set S, we denote by ms its mass and Gs its center
of mass. In the global frame, we denote by vs the linear velocity
of Gs and Rs its orientation matrix. In the segment frame, we
denote by ωs and Is its local angular velocity and inertia tensor,
respectively. With m the total mass of the articulated system and
G its centroid, the linear momentumPPP and angular momentum
LLLG at G are defined by

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

PPP =
∑
s∈S

msvs

LLLG =
∑
s∈S

ms
−−−→
GGs × vs + RsIsωs .

(12)

With L̇LLG and ṖPP the time derivatives of the angular and linear
momenta, respectively, g the gravity vector, and GFk the con-
tact wrench at contact k transformed to G, the Newton–Euler
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equations for centroidal dynamics state that

[ L̇LLG

ṖPP
]

=
[

0
mg

]
+

NF∑
k=1

GFk . (13)

We gather gravity, linear, and angular momenta as a centroidal
wrench wG due to contact forces, taken at G [38]:

wG =
[ L̇LLG

ṖPP − mg

]
. (14)

With Pk the location of contact k, (13) becomes

wG =
NF∑
k=1

[
τ k +

−−−→
GPk × fk

fk

]
. (15)

wG is a purely kinematic term that can be directly computed
from the whole-body pose and its derivatives using (14), but also
from the contact forces using (15). Thus, synchronizing motion
capture and force measurements amounts to synchronizing wG

estimates from kinematics and forces. For this purpose, we start
each experiment by having the participant walk a few seconds
and, then, take support on a table with the left and right hands,
alternatively. To synchronize kinematic and ForceShoe signals,
we plot the components of their respective estimates for wG

kin
and wG

shoe during the walking phase and select by hand a con-
stant time shift to match the two signals at best. We then compute
the residual wrench wG

res = wG
kin − wG

shoe. When the participants
leans on a table with one hand, wG

res should be equal to the
wrench wG

hand measured by the corresponding force–torque sen-
sor. Again, we find a constant time shift to match wG

hand and
wG

res at best, thus synchronizing hand sensors with kinematic-
ForceShoe signals.

Following the temporal synchronization, we perform the fol-
lowing signal processing. All measurements are subject to noise,
e.g., from the sensors themselves or due to interferences in
the transmission (both wired and wireless). We attenuate it by
smoothing all signals with a Gaussian filter of kernel σ = 0.05 s.
In addition, a slow-varying bias can appear in the force–torque
measurements with repeated stress and battery drain. We esti-
mate this bias through time by averaging the signals that per-
sist when the sensors are not in contact with the environment,
which should only be caused by the inertia of the moving parts
attached to the sensing surface (e.g., force shoe external sole).
Since the inertial motion capture system does not provide abso-
lute positioning, we could not reliably identify the occurrence
of contacts with the environment based solely on the whole-
body motion observations. Therefore, we identified them by
direct thresholding on the force sensor measurements. Still, this
material limitation does not affect the generality of our ap-
proach and can be fully circumvented with additional visual
observations (see also [39] for the retrieval of contact points
without environment knowledge). Finally, we correct the re-
maining force sensor uncertainties by combining their measure-
ments with the motion capture data using the SOCP approach
illustrated in Section III-C. In the following, we call ground
truth the SOCP-corrected sensor measurements (relative to the
dynamic model).

C. Experiments

The importance of collecting ground-truth measurements on
how humans naturally distribute contact forces not only during
locomotion but across a variety of multicontact configurations
was established in [11]. Thus, in this work, we purposefully
explore a wide range of motion dynamics as well as diverse
contact configurations that exhibit strong force distribution in-
determinacy. The following tasks were chosen from daily activ-
ities to cover a spectrum of three features: number of contacts
involved, orientation of hand contacts (when applicable), and
effort required to perform the motion:

1) Walking, i.e., with always at least one foot on the ground
(one contact, low effort). Straight and curved paths were
considered separately;

2) Running, i.e. with at most one foot on the ground (one
contact, medium effort);

3) Hopping on one foot, e.g., forward or in place (one
contact, high effort);

4) Balancing the upper body while keeping both feet static,
e.g., leg stretching or performing arm motions (two con-
tacts, low effort);

5) Jumping using both feet, e.g., forward or to the side (two
contacts, high effort);

6) Taking support on a table with one hand, e.g., to reach for
an object further on the table (three contacts, horizontal
hand contact, low effort);

7) Crouch and stand by taking support with one hand on a
table, e.g., to reach for an object under the table (three
contacts, horizontal hand contact, high effort);

8) Leaning against a wall with one hand (three contacts,
vertical hand contact, low effort);

9) Leaning on a wall with one hand and reach forward,
e.g., to look around a corner or grab an object (three
contacts, vertical hand contact, high effort);

10) Taking support on a table with both hands (four contacts,
horizontal hand contacts, low to high effort);

11) Leaning on a wall with both hands, e.g., to stretch or
push a heavy object (four contacts, vertical hand con-
tacts, low to high effort).

Contact is a complementarity condition involving the dual
geometric and force spaces. The first two features we used to
categorize our tasks (namely number and orientations of con-
tacts) ensure coverage of the geometric part of the condition,
while the last one (perceived effort) aims for coverage of the
force space. Considering the two variants (straight and curved)
of walking experiments separately, we thus construct a reper-
toire of 12 motion types, six of them involving contacts between
the feet and the ground only and the six others involving both
feet and hands. We illustrate this dataset in Table I.

Six volunteers, three males and three females, took part in
our study. Their weights (between 45.0 kg and 86.0 kg, plus
the 5.0 kg acquisition system), heights (between 1.57 m and
1.92 m), and individual body segment lengths were measured to
initialize the motion capture skeletal tracking model and BSIPs
following the procedure described in Section IV-A. Before each
experiment, all sensors (i.e., inertial motion capture system,
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TABLE I
INTERACTION CONFIGURATIONS FROM THE WHOLE-BODY KINODYNAMICS DATASET

force-sensing shoes, and glove-mounted force sensors) were
calibrated and reset following the manufacturers’ recommended
acquisition procedure to reduce the effects of measurement drift
and hysteresis. We divided the 12 motion types of Table I into
two sequences of six motions. Each sequence consisted in three
tasks involving the hands and three tasks involving only the feet,
executed in alternation for one minute each. Participants were
given time between consecutive tasks to put on, or take off in-
strumented gloves, so locomotion tasks were not constrained by
unnecessary force sensor wires. In total, each task was executed
twice by each participant. For one participant, we observed force
measurement errors of abnormal magnitude on the right-hand
sensor and discarded the corresponding recordings from the
dataset. For another participant, the motion capture system was
disconnected during a hopping task. Overall, our new dataset on
human whole-body kinodynamics in multicontact totals 2.4 h
of synchronized motion and force measurements, classified into
12 task primitives.

V. CAPTURING HUMAN FORCE DISTRIBUTION PATTERNS

A. Learning Features

Let K denote a set of (input) whole-body kinematic features,
and D a set of (output) contact force features. The desired
contact force estimation mapping F is of the form

D = F(K). (16)

We model this mapping F using a neural network trained on
our whole-body kinodynamics dataset. The dynamic features D
simply correspond to the set of contact wrenches Fk we seek
to estimate. A straightforward approach to construct the set of
kinematic features K could be to take all the remaining param-
eters appearing in the whole-body equations of motion of (1),
e.g., the mass H and bias C matrices, joint accelerations q̈, and
Jacobian matrices Jk representing the contact configuration.
However, doing so would result in a particularly large number
of parameters that can make the neural network training process
difficult. We instead propose to construct a selection of high-
level kinematic features based on the Newton–Euler equations
of (13), which extract the gist of locomotory dynamics. In partic-
ular, from the formulation of (15), we take as first input features

the centroidal wrench wG , which can be computed from kine-
matics only with (14), and the contact positions relative to the
center of mass,

−−−→
GPk . Since these quantities are expressed in

the world frame, we account for translational and rotational in-
variances by transforming them to a reference frame G of origin
G and fixed with respect to a chosen body segment (e.g., the
pelvis). Walking straight to the North is thus locally equivalent
to walking straight to the East. To facilitate the modeling of the
mapping of (16) with a neural network, we construct K as a
fixed-size input vector. We continuously monitor Nc potential
contacting body segments over time and encode their activity
with parameters δk,i such that

δk,i =

{
1, if contact k is active at time step i

0, otherwise.
(17)

In our experiments, we considered the forces applied at the heels
and toes separately in both the SOCP and the neural network
model, so that Nc = 6 including the hand palms. Finally, in
addition to the contact locations, we consider their orientation
through the contact normals zk . Denoting by GwG , GPk , and
Gzk the respective coordinates of wG , Pk , and zk in the frame
G, respectively, the complete input features at time step i are

Ki =
(
GwG

i ,
(GPk,i , δk,i , zk,i ,

)
k=1,Nc

)T

. (18)

Similarly, the output features are the target wrenches in G:

Di =
((GFk,i

)
k=1,Nc

)T

. (19)

B. Neural Network Architecture

We model the evolution of motion and force distributions
as time series using RNNs with LSTM neurons in order to
account for temporal continuity between consecutive samples.
In this section, we propose two neural network architectures to
be used in conjunction with physics-based optimization. The
first architecture, WBND (whole-body network, direct), directly
maps the observed motion to the underlying forces

Di = WBND (Ki) . (20)
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Fig. 3. Direct and feedback whole-body network architectures.
(a) Forces are directly computed from the kinematics and contact con-
figuration. (b) Force predictions are corrected between consecutive time
steps.

Once trained, this network is used as follows. At each step, a new
vector of kinematic features Ki is fed to WBND, yielding raw
output features D(raw)

i . Since the RNN model does not enforce
the equations of motion, the corresponding forces F(raw)

k,i may not
be readily compatible with the observed motion. We compute
physically plausible forces Fk,i in their vicinity using the SOCP
of (5) with the cost function of (11).

Alternatively, we enable the interactive correction of RNN
predictions by constructing a network WBNF (whole-body net-
work, feedback) that takes as inputs both the current kinematics
and the distribution at the previous time step

Di = WBNF (Ki ,Di−1) . (21)

When using WBNF for prediction, we initialize D0 to the distri-
bution of minimal L2 norm following (10). At each time step, Ki

and Di−1 are fed together to WBNF, yielding raw predictions
D(raw)

i . By SOCP correction, we reconstruct physically accurate
forces Fk,i and extract the corresponding dynamic features Di ,
used for prediction at the next time step.

We depict the two proposed architectures in Fig. 3. Note
that for WBND, raw predictions D(raw)

i may be corrected inde-
pendently from each other, enabling opportunities for parallel
computing if desired. In contrast, the intertwined RNN-SOCP
approach of WBNF imposes a sequential prediction process.

VI. RESULTS

A. Prediction-Correction Framework

We implement the two proposed neural network architectures
within the Torch7 framework [40] as two LSTM hidden layers
of size 256 followed by a linear output layer of size 6Nc , the
number of output features. We partition the whole-body kinody-
namics dataset into three subsets of respective size 70%, 15%,
and 15% for training, validation, and testing. We train the neural
networks by minimizing a mean square error regression crite-
rion using minibatch stochastic gradient descent and dropout to
avoid overfitting [41]. We estimated from the dataset that par-
ticipants maintained each contact on average for 2.07 s. We thus
set the length of the training batches to 2.0 s. The SOCP cor-
rection is implemented separately using the CVXOPT library

TABLE II
FORCE ESTIMATION ERRORS ON FULL TESTING SET (23 min)

Raw SOCP correction

Force sensors 1.6% ground truth
SOCP min.L2 N/A 7.0%
WBND 8.3% 6.4%
WBNF 6.6% 5.8%

for convex optimization [42]. We run the prediction process for
each task of the testing set and compute the root-mean-square
errors (RMSE) between reconstructed forces and ground truth
distributions. We normalize the RMSEs with the range of the
normal forces measured in the testing set, fz

max = 1378 N. For
the sake of completeness, we also quantify the force sensor
measurement uncertainties, the estimation errors for distribu-
tions computed by straightforward minimization of their L2

norm, and prediction errors for the neural networks alone, with-
out SOCP correction. We report the resulting normalized RMSE
(NRMSE) in Table II.

Expectedly, the lowest estimation errors are attained using
physical force sensors, which directly measure the applied con-
tact wrenches. Still, this level of accuracy was obtained using
costly cumbersome force sensors. Table II yields three ma-
jor outcomes. First, we confirm the previous observation that
physics-based optimization alone does not suffice to address
the issue of force indeterminacy in multicontact, since the L2-
minimizing cost function provides the worst results of the sec-
ond column. Second, even without SOCP correction (first col-
umn), the accuracy of WBNF exceeds that of WBND, and even
that of the L2-minimizing SOCP alone. Thus, RNNs can suc-
cessfully capture interaction force patterns even without enforc-
ing the equations of motion during training. In particular, the
better performance of WBNF compared to WBND shows that
providing the RNN with past forces as inputs helps handle force
indeterminacy, i.e., associating a given motion (unique Ki) to
multiple possible distributions (different Di). Third, combining
RNN and SOCP yields the best results overall, improving the
accuracy of WBND and WBNF by 23% and 11% respectively,
and that of the SOCP alone by 17%.

B. Accuracy in Multicontact Indeterminacy

The effectiveness of the SOCP to correct inaccurate force
predictions is particularly visible for the hopping sequence de-
picted in Fig. 4. Indeed, for this motion, the presence of only
one foot on the ground at each instant makes it straightforward
for the SOCP to enforce that the force exerted at the only contact
is exactly causing the acceleration of the centroid. We further
investigate the respective contributions of RNN and SOCP by
separating experiments with only feet or with both feet and
hands. Since the former involves relatively large impulses (e.g.,
during jumping), we normalize the estimation errors of each cat-
egory by the range of their respective measurements. We report
the resulting NRMSEs in Table III. For both categories, combin-
ing RNN and SOCP yields significant improvements compared
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Fig. 4. SOCP correction on single contact motion (hop on the right
foot).

TABLE III
ESTIMATION ERRORS BY CONTACT CONFIGURATION

Feet only (13 min) Feet + hands (10 min)

f z
max = 1378 N f z

max = 750 N

Raw SOCP Raw SOCP

Force sensors 2.1% ground truth 1.9% ground truth
SOCP min.L2 N/A 8.7% N/A 9.6%
WBND 9.9% 7.6% 12.2% 9.4%
WBNF 7.5% 6.6% 10.3% 9.3%

TABLE IV
ESTIMATION ERRORS BY SEGMENT ON FEET + HAND TASKS (10 MIN)

Feet: f z
max = 750 N Hands: f z

max = 177 N

Raw SOCP Raw SOCP

Force sensors 2.0% ground truth 5.7% ground truth
SOCP min.L2 N/A 10.8% N/A 21.9%
WBND 14.2% 11.0% 14.4% 10.5%
WBNF 12.0% 10.8% 13.2% 12.9%

to either in isolation. Importantly, the NRMSEs of all three esti-
mation methods are larger when also considering hand contacts,
which illustrates the increased multicontact indeterminacy.

Finally, we further decompose the tasks involving feet and
hands and assess the estimation accuracy by body segment in
Table IV. For all configurations, again, the SOCP greatly im-
proves the accuracy of both neural network architectures. How-
ever, while for the feet, the three estimation methods yield com-
parable NRMSEs, the estimation errors of the SOCP alone on
the hands (rightmost column) are now significantly larger than
that of WBN variants. This result shows that RNNs are well
suited to tackle the issue of force indeterminacy in multicontact,
for which physics-based optimization can serve as a valuable
complement.

We depict sample force reconstruction results for two-, three-
, and four-contact motions in Fig. 5. In all cases, we confirm
that the net force is reconstructed accurately by all methods,
as expected. In the two-contact balancing scenario, we see that
the WBND network fails to capture weight shifts between feet
(Z component, rightmost column) and tends to predict uniform

Fig. 5. Force profiles in various contact configurations. Net forces are
measured in the world frame, while contact forces are reported in their
respective (local) contact frames. (a) Two contacts: upper-body balanc-
ing with static feet. (b) Three contacts: taking support on a table with
one hand (alternating). (c) Four contacts: leaning against a wall with two
hands at the same time.

distributions, while the WBNF network tracks them suitably,
thanks to its ability to capture time-dependent variations. With
more contacts, time dependence over pressure distribution be-
comes less significant and both networks perform reasonably.

VII. DISCUSSION AND FUTURE WORK

Our work establishes that the estimation of interaction forces,
a problem that pertains to the human sense of touch, could be
tackled through the lens of motion capture. The dual optimiza-
tion and learning framework we propose extends the state of the
art in capturing human force distribution patterns beyond gait
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analysis to general multicontact configurations used to interact
with the environment. This important result makes it possi-
ble to completely circumvent costly, cumbersome, and intrusive
transducing technologies with any whole-body tracking system.
Indeed, while we collected our (public) dataset using inertial
motion capture, the RNN architectures we propose only rely on
centroidal dynamics, making them agnostic with respect to the
actual motion capture system employed. Meanwhile, an SOCP
can be formulated for any whole-body kinematic model. As
such, our framework is readily compatible with existing mark-
erless visual tracking techniques, thus enabling novel interfaces
for in-home unobtrusive force monitoring for personal robotics
or rehabilitation.

In its current implementation, our work has some limitations.
First, we consider the academic point-contact model, whereas,
in practice, contacts are between surfaces, yielding additional
complementarity conditions [35] that are, as we observed, dif-
ficult to take into account under motion-tracking uncertainties.
Contacts also include a certain amount of deformation that we
did not model. Assessing the contact force by a portable force
sensor also affects the natural motion behavior. Instead, one
could distribute force sensing devices in the experimented envi-
ronment, but at the cost of many more sensing units. Considering
all body limbs for contact would be presently difficult, as wear-
able force sensing suits do not exist in the current state of the
technology. We, therefore, chose to focus on foot and hand con-
tacts at the expense of other kinds of interaction such as shoulder
or waist contacts (e.g., for seated motions).

To deal with these limitations and consider other features,
our work can (and should) be extended to arbitrary contact con-
figurations and motions. While a short-term solution could be
to collect additional force and motion measurements (e.g., with
force sensors at the knees and elbows), we anticipate that the
increased level of instrumentation would strongly interfere with
natural interaction behaviors, or even render some impossible
(e.g., performing a cartwheel). Instead, our future work involves
considering the distribution of contact forces as an inverse opti-
mal control problem, i.e., finding optimization criteria privileg-
ing the forces measured in reality. Note that in the meantime,
we ensured that the forces estimated by our framework would
always be at least physically plausible (if not resembling human
forces) by making the SOCP formulation independent of the
acquired dataset. In the long term, we also plan to apply our
framework to force-based robot learning from demonstration,
online multicontact motion retargeting, and knowledge-based
multicontact planning and control [43].
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