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Abstract—Identifying different floors in multistory build-
ings is a very important task for precise indoor localization
in industrial and commercial applications. The accuracy
from existing studies is rather low, especially in multistory
buildings with irregular structures such as hollow areas,
which is common in various industrial and commercial
sites. As a better solution, this paper proposes a hybrid
floor identification (HYFI) algorithm, which exploits wire-
less access point (AP) distribution and barometric pressure
information. It first extracts the distribution probability of
APs scanned in different floors from offline training fin-
gerprints and adopts Bayesian classification to accurately
identify floor in well-partitioned zones without hollow areas.
The floor information obtained from wireless AP distri-
bution is then used to initialize and calibrate barometric
pressure-based floor identification to compensate variable
environmental effects. Extensive experiments confirm that
the HYFI approach significantly outperforms purely wire-
less fingerprinting-based or purely barometric pressure-
based floor identification approaches. In our field tests
in multistory facilities with irregular hollow areas, it can
identify the floor level with more than 96.1% accuracy.

Index Terms—Barometric pressure, floor identification,
hybrid, indoor positioning, wireless fingerprinting.

I. INTRODUCTION

A CCURATE and real-time indoor localization has become
an increasing demand for in-building navigation, asset

and personnel tracking, message delivery, emergency support,
etc. in industrial applications such as mining automation [1],
robot system [2], industrial automation [3], autonomous vehicle
[4], and construction safety [5]. Although numerous research
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works on indoor positioning with wireless networks have been
conducted, accurate floor identification remains a big chal-
lenge. For modern industrial and commercial buildings, there
exist many complex and irregular inner structures, such as hol-
low areas through multiple floors. In this case, the received
signal strength (RSS)-based localization algorithm (e.g., fin-
gerprinting positioning) cannot accurately identify which floor
the targets are situated on when they are moving around the
hollow interior zone due to small wireless signal propagation
attenuation between adjacent floors.

In multistory buildings, floor identification can be used to
reduce space search domain and improve localization accuracy.
In emergency situations, the accurate floor information is criti-
cal for rescuers or rescue robots to promptly obtain the victims’
floor information to provide effective and efficient emergency
services [6]. The floor information on which the moving objects
are situated can be used to improve the effectiveness of message
delivery.

With proliferation of barometric sensors embedded in
smartphones (e.g., xiaomi2/3/4/5, Samsung S4/Note2/3/4, and
iphone6), employing altitude deducing from barometric pres-
sure to identify floor level becomes an alternative method.
However, due to the device heterogeneity and weather change,
barometric pressure measurements cannot be used to identify
floor level directly without calibration. In order to mitigate the
inconsistence and instability of pressure measurements, most
existing methods employ a standard barometer deployed in the
target building to calibrate the barometric sensors embedded in
smartphones. These methods require deploying additional baro-
metric infrastructure and communicating with the calibration
center frequently with heavy power consumption.

Different from the above-mentioned floor identification
methods, we propose a novel hybrid floor identification (HYFI)
algorithm, which exploits wireless access point (AP) distri-
bution and barometric pressure information together. It first
extracts the distribution probability of all APs sensible on each
floor in a multistory building with the offline training finger-
prints, and then adopts Bayesian classification to accurately
identify floor level in the well-partitioned zones without hol-
low areas. The high-reliable floor information obtained from
AP distribution is then used to calibrate barometric sensor for
accurate floor identification on those easily confused floors
with hollow areas. The proposed algorithm leverages the exist-
ing Wi-Fi networks without the need of deploying a standard
barometer in the building. It is lightweight and can be run on
the commodity smartphones.
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This paper is organized as follows. In Section II, the related
work is presented. The Bayesian classification-based floor iden-
tification algorithm is described in Section III. The pressure-
based floor identification algorithm is introduced in Section IV.
The hybrid floor-level identification algorithm based on AP
distribution feature and barometric pressure is proposed in
Section V. Finally, the conclusion of this paper is made in
Section VI.

II. RELATED WORK

In recent years, there are many indoor localization techniques
for personnel, asset tracking, and robot navigation, such as
Wi-Fi [7], ZigBee [8], ultrasonic sensors [9], vision [10], laser
[11], and inertial sensor [12]. These techniques can deliver good
localization accuracy, but need to deploy special infrastructure
except for Wi-Fi and inertial sensor. The Wi-Fi fingerprinting
positioning directly explores the prevalent wireless network and
becomes the most widespread approach for indoor localization.

However, the rather low accuracy of Wi-Fi localization (e.g.,
3–10 m) is not adequate for accurate floor localization in the
multistory buildings with complex and irregular structure, such
as hollow interior, which is very popular in modern super malls
and industrial facilities. In the well-partitioned tall buildings,
because adjacent floors are partitioned with heavy concrete
floor slabs, the RSS difference between different floors is large
due to heavy concrete floor slabs between adjacent floors.
Therefore, the floors can be accurately discriminated. However,
in the complex industrial environments, there are many irreg-
ular structures, such as hollow interior and, thin floor slab, the
rather low vertical accuracy of Wi-Fi localization cannot accu-
rately discriminate adjacent floors due to signal variation and
small signal propagation attenuation between adjacent floors.
Therefore, in complex and irregular multistory industrial envi-
ronments, the floor determination is a big challenge and needs
to be handled to extend the capability of indoor positioning
system.

Some work has been done for floor identification. Skyloc
[13] employs Global System for Mobile Communications
(GSM) signal strength fingerprint to identify floor with K-
Nearest Neighbors (KNN) algorithm (K-nearest neighbors with
shortest Euclidean distance) and obtains 73% accuracy. The
Group Variance algorithm [14] groups Wi-Fi Received Signal
Strength Index (RSSI) associating with each floor and identi-
fies the floor level based on the best match of group variance.
Deng et al. used k-means clustering algorithm to identify floor
[15]. The accuracy is limited and cannot discriminate the floors
with complex and irregular structure.

As an alternative method, barometric altimetry is used for
floor determination. From the observation that absolute pres-
sure readings have significant time-of-day variations, and the
pressure difference across different floor pairs keeps consistent,
Muralidharan et al. used pressure difference as a fingerprint to
detect exact number of floors changed and vertical activities
(e.g., taking escalators, stairs, or elevators) with almost 100%
accuracy [16]. However, it is difficult to directly use the barom-
eter to determine the actual floor. To tackle barometric variation
with temperature and environmental changes in a fixed place,
Liu et al. introduced a floor determination approach based on

differential barometric altimetry [17]. By deploying barome-
ter in the base station as reference, it gets accurate altitude
from filtering and calculating the atmospheric pressure mea-
sured by base station and mobile station simultaneously with
about 1.0-m relative accuracy.

To avoid deploying barometer infrastructure, Ye et al. pre-
sented a floor localization method based on mobile phone sens-
ing [18]. By capturing user encounters and analyzing user trails,
the algorithm first constructs a mapping from the traveling time
(in elevator) or the step counts (walking on the stairs) between
any two floors to the number of floor levels, and then use the
mapping to pinpoint floor levels. Because the accelerometer
sensor is susceptible to various perturbations, the accuracy of
floor localization only with accelerometer in multistory build-
ing is limited. Furthermore, the algorithm requires the user to
input ground-truth floor when encountering others on a floor
level or in the elevator), which is inconvenient and limits its
practical application. Another floor localization system [19]
recently designed by Ye et al. uses the barometer on smart-
phone only and builds the barometer fingerprint map which
contains the barometric pressure value for each floor level with
crowdsourcing to locate users’ floor. It does not rely on Wi-Fi
infrastructure and requires neither war-driving nor prior knowl-
edge of the buildings. However, it takes rather long time to
calibrate the barometric sensor using opportunistic encounter
in the same elevator and the system converges slowly before
providing accurate floor identification service.

III. BAYESIAN CLASSIFICATION-BASED FLOOR

IDENTIFICATION ALGORITHM

In this section, a Bayesian Classification-Based Floor
Identification Algorithm (hereinafter referred to as BCFI) is
proposed, which treats the floor identification as a probability
estimation problem. It first obtains the prior probability of all
APs with Wi-Fi-enabled devices on each floor in a multistory
building in the training phase, and then calculates the posterior
probability that the target is situated on each floor with the lat-
est signal observation. Compared with the methods based on
the traditional shortest distance criteria, this probability-based
method can achieve more floor identification accuracy.

A. Fundamental of Floor Identification Using Wi-Fi Signal

In multistory buildings, Wi-Fi signal is attenuated by about
0.342 to 0.36 dB/cm through an interior wall or a partition,
and about 0.577 to 0.699 dB/cm through a concrete wall [20].
When a Wi-Fi signal propagates through a floor made of
mat reinforcement concrete, the signal will result in a sudden
and remarkable attenuation (e.g., 50-cm-thick concrete causes
about 29-dB attenuation). On the other hand, when the sig-
nal propagates on the same floor, the path attenuation is stable
(i.e., proportional to the propagation distance and the number
of crossing room partition walls made of brick concrete). The
propagation attenuation patterns within a multistory building
result in differentiable AP set and associated sensible proba-
bilities that devices receive on different floors, which can be
used as the specific floor fingerprints (AP set and corresponding
sensible probabilities) for floor identification.
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B. BCFI Algorithm

The BCFI algorithm adopts Bayesian estimation to calculate
the probability on which floor a user is located using the above-
described floor fingerprint. The floor with the largest posterior
probability is taken as the final floor estimation.

The BCFI algorithm consists of two stages. In the first stage
(offline training stage), we first uses Wi-Fi-enabled devices
(e.g., smartphones) to scan access points (APs) in a building to
collect training fingerprints, and then perform statistical anal-
ysis to obtain the sensible probability of each AP on different
floors on a server. In the second stage (online floor identification
stage), when a new Wi-Fi fingerprinting is obtained, the prob-
ability is calculated using Bayesian estimation [21]. Because
the calculation cost is lightweight, the online floor identifica-
tion can be run on each smartphone in a distributed and scalable
way.

For the convenience of description, let L = {l1, l2, . . . , ln}
represent the n consecutive floors of a multistory building.
Assuming that there are p APs that can be scanned (sensible) in
the building and let Z = {Z1, Z2, . . . , Zp}, where Zi denotes
the ith sensible AP. O = {o1, o2, . . . , ok} is the set that con-
sists of k observations, where oj = (z1, z2, . . . , zm) (zk ∈ Z)
indicates an observation consisting of m APs. Considering the
fact that the number of scanned APs in different locations on
a floor is different, the dimension of observation vector oj =
(z1, z2, . . . , zm) is dynamic. A two-tuple (oj , lp) (oj ∈ O, lp ∈
L) is introduced to represent the training and testing samples.

Refer to (1), the posteriori probability distribution P (lp|oj)
of the target floor is proportional to the product of prior
probability P (lp) and the likelihood function P (oj |lp). The
likelihood function P (oj |lp) is the probability corresponding to
the observation oj = (z1, z2, . . . , zm) on the condition that the
target is located on the pth floor. The prior probability P (lp)
shows floor uncertainty before online observation is consid-
ered. It is related to users’ behavior and can be obtained by the
statistical analysis of massive observations

P(lp|oj) =
P (oj |lp)P (lp)∑n
p=1 P (oj |lp)P (lp)

∝ P (oj |lp)P (lp). (1)

It is nontrial to obtain the prior probability from massive
users’ daily behaviors. As a simplified alternative, we obtain
the prior probability distribution P (lp) from the offline training
samples, i.e., P (lp) is the sample number collected on the pth
floor over the total sample number collected on all floors in a
building. By this way, the prior probability on different floors
will be similar if the path lengths for training data collection
on different floors are approximate. This training sample-based
prior probability is artificial. If we want to get an accurate prior
probability, the floor distribution of training samples should
keep in line with the pattern of users’ daily lives.

Assuming that all APs are independent, the likelihood func-
tion P (oj |lp) is the product of the probabilities of all sensible
APs in the observed data oj = (z1, z2, . . . , zm) (zk ∈ Z), as
the formula (2) states. P (zk|lp) is the probability that the AP zk
can be scanned on the floor lp, i.e., the probability P (zk|lp) is
the number of training samples including the AP zk divided by
the total number of training samples collected on the lp floor

P (oj |lp) =
∏m

k=1
P (zk|lp). (2)

Once an observation is obtained, the posterior probability
P (lp|oj) on each floor is calculated with the above-mentioned
prior probability P (lp) and likelihood function P (oj |lp) equa-
tion. We choose the floor with the largest posterior probability
as the final floor estimate.

C. Algorithm Complexity Analysis

The main operation of BCFI is to perform statistical analysis
of training samples in offline phase on a server. Corresponding
computation complexity is O(m ∗ k), where k is the total sam-
ple number and m is the whole scanned AP number in a sample.
In the online floor identification phase, the main task is to calcu-
late the likelihood value P (oj |lp). The calculation complexity
of P (oj |lp) is O(n ∗m), where n is the floor number and m
is the AP number in a sample. In real application, the parame-
ters n (floor number) and m (AP number) are small. Therefore,
the computation cost is low. From our test, the running time
of BCFI algorithm is less than 1 ms. Nevertheless, acquiring
fingerprints on all floors is labor-intensive. Floor fingerprint
collection with crowdsourcing is a low-cost alternative method.

D. Experimental Setup

To evaluate the performance of the BCFI algorithm, we con-
ducted several experiments in three buildings: 1) the Institute
of Computing Technology (ICT), Chinese Academy of Science,
with large hollow areas from the first floor to the fourth one;
2) “xinzhongguan” (the Xin Zhongguan Mall) with small hol-
low interior through the bottom four floors; and 3) “bit” (the
central teaching building of Beijing Institute of Technology)
with corridors connecting two separate parts on the bottom
three floors.

We used five Wi-Fi-enabled smartphones (Samsung Galaxy
Note2/Note3/S4/S5/Ace S5830) to collect floor fingerprints.
We developed an application that queried the Android
Application Programming Interface (API) for the Wi-Fi finger-
prints (0.5-Hz sampling rate for all smartphones). The training
samples were collected at a uniform distance interval along all
available paths on each floor. Each sample vector consists of
the MAC addresses of all scanned APs and corresponding floor
level. The signal sampling points were evenly distributed across
the whole experimental area. Two neighboring sampling points
were 3–5 m apart according to the specific layout condition.

The accuracy of floor identification is defined as the number
of correctly identified floor over the total number of trails.

E. Results and Analysis

The performance of the BCFI algorithm is evaluated with the
training samples and test samples, respectively. The test sam-
ples were collected with the same five smartphones four days
after the training samples collecting time along the same paths.
The leave-one-out cross-validation test was applied, and the
floor identification accuracy is the average of all experiments.
For comparison, we implemented Skyloc and clustering-based
floor identification algorithm [15].

Three experiments were performed with the training sam-
ples: 1) single device test: using five devices collected samples
to perform test, respectively; 2) mixing device test: mix five
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Fig. 1. Floor identification accuracy with training samples. (a) Using
BCFI. (b) Using Skyloc.

TABLE I
DIFFERENT FLOOR IDENTIFICATION ACCURACY WITH TRAINING

SAMPLES USING BCFI METHOD IN ICT

devices collected samples together to evaluate; and 3) hetero-
geneous device test: using one device collected samples to
calculate the AP distribution probability and using the other
four devices collected samples to perform validation test.

As Fig. 1(a) shows, using the training samples collected from
the same device (i.e., single device test), the BCFI algorithm
can achieve the best accuracy (about 90%) due to more sim-
ilarity between training and test samples. The heterogeneous
device test shows that the accuracy degrades slightly, which
confirms that the BCFI algorithm is robust. Fig. 1(b) com-
pares the average accuracy using the three algorithms. The
test results show that the probability-based floor identification
(BCFI) method outperforms the shortest distance-based floor
identification method (Skyloc and [15]), which reflects that the
probability distribution scheme is more accurate to characterize
the AP distribution on various floors within a building.

Table I lists the detailed accuracy on different floors in ICT.
When the neighboring floors are partitioned with mat rein-
forcement concrete (e.g., the fifth floor to eighth floor), the
BCFI algorithm can achieve more than 95% accuracy with the
training data. This is because the wireless signal has a remark-
able attenuation after propagating through a heavily partitioned
concrete floor. The heavy attenuation produces different AP

Fig. 2. Floor identification accuracy on different floors using BCFI,
Skyloc, and clustering method with newly collected test samples in ICT.

sensible probabilities in each floor. But if there exists a large
hollow interior through multiple floors (such as the third and
fourth floors), RSSI difference between neighboring floors is
rather small, which degrades the accuracy.

To evaluate the robustness of BCFI, new test samples are
collected four days later in ICT. As Fig. 2 shows, the accu-
racy degrades remarkably on those floors with large hollow
areas (from the first to fourth floor). However, on the floors
partitioned with mat reinforcement concrete (such as the fifth
to eighth floor), the BCFI achieves reasonable accuracy. The
BCFI outperforms both the Skyloc- and clustering-based floor
identification algorithms with more than 15% average accuracy.

IV. BAROMETRIC PRESSURE-BASED FLOOR

IDENTIFICATION

The barometric pressure-based floor identification (here-
inafter referred to as BPFI) algorithm is motivated by the
fundamental that the barometric pressure drops nearly exponen-
tially with increased altitude. Different from the Wi-Fi-based
floor identification method, the BPFI algorithm can determine
floor level without relying on additional infrastructure and
intensive labor. Because the hollow interior within a building
has no impact on barometric pressure, the BPFI algorithm can
work well on all floors in various buildings with complex and
irregular inner structure.

Without the need of continuously calibrating the pressure
using a standard barometer deployed in the building, the BPFI
algorithm introduces barometric pressure difference and quick
pressure change determination, which avoids identifying floor
with absolute altitude. After initializing the floor level with
manual input or high-confident floor estimation with the BCFI
algorithm, the BPFI algorithm employs the barometric pressure
difference to determine elevation change corresponding to floor
transition. To calibrate the slow accumulation of barometric
pressure drift with time, we propose a novel approach to detect
quick pressure change caused by a real floor transition. After
discriminating the slow and quick pressure change, the BPFI
algorithm only employs the obtained quick altitude change to
identify the floor level.

A. Properties of Barometric Pressure

The nearly uniform exponential pressure–altitude relation-
ship [22] is adopted by the BPFI algorithm to calculate the
altitude in meters as shown in the following equation:

h = 44330 ∗ (1− (p/1013.25)0.19) (3)
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Fig. 3. Dynamic and heterogeneous properties of barometric pressure
measured with barometric sensor-enabled smartphones. (a) Barometric
pressure (altitude) variation with/without filtering. (b) Barometric pres-
sure (altitude) drifts during a whole day on the same floor. (c) Barometric
pressure (altitude) variations between different smartphones.

where p is the measured pressure (in hPa).
Now, the barometric sensors are widely embedded in the

commodity smartphones (e.g., BMP085/180/182 [23]). The
±(0.12−0.2) hPa relative accuracy may cause ±(1−1.7) m
elevation fluctuation. This sensitivity is good enough to detect
the pressure change when users go upstairs or downstairs for
one floor, which will produce about 0.45-hPa pressure change.
By averaging several samples (most barometric sensors support
7-Hz sampling rates), the relative accuracy can be improved.

Due to the influence of wind, humidity, and small dust, the
pressure measurement is dynamic. To test the sensor accuracy,
we used three smartphones (i.e., one xiaomi2 and two Samsung
Note 4s) to sample the barometer readings at a fixed location
within a building with 5-Hz sampling rate. The red curve in
Fig. 3(a) shows that the raw pressure measurements (since there
exists a monotonous relationship between the altitude and the
measured pressure, for being straightforward, hereafter, we use
the altitude change to indicate pressure change) within 8 s are
strongly influenced by noise, which causes about 1-m varia-
tion. The other two curves show the absolute pressures that
are filtered by a five-point sliding average filter and a ten-point
sliding average filter, respectively. They are much smoother
compared to the red one after the noise of the sensor is fil-
tered out. Therefore, the sliding average filter has a positive
effect on the absolute pressure values. However, larger size of
sliding window will cause more floor detection delay when a

floor transition happens (refer to the experimental section). In
the following tests, we employ the five-point sliding average
filter to get the altitude estimation.

Compared with the small altitude variation on the same floor
in tens of seconds, the long-term pressure drifts (e.g., for a
whole day) can reach as large as 30 m as Fig. 3(b) shows. Even
using the same type of smartphones, the altitude variation can
still reach as large as 15 m. The reason for large drift is that
all the barometric sensors integrated in the same type of smart-
phones use the same version of driver and Android software and
are not calibrated, respectively. If directly using the obtained
elevation to localize floor without compensation, the estimated
floor level may deviate from the real floor level for nearly ten
floors away. To get accurate floor estimation, this kind of slow
pressure drift should be identified and mitigated.

Based on the observation that the pressure changes on the
same floor or at a fixed place within a short period (e.g., 1–
15 s) are rather smaller than that caused by real floor transitions,
a quick pressure change identification scheme is introduced in
this paper. By only using the altitude change corresponding to
the quick pressure change to localize floor, the BPFI algorithm
can get accurate and robust floor estimates.

As Fig. 3(c) shows, though the barometer variations between
different smartphones are considerably large (5–20 m), the rel-
ative pressure drifts with time and floor transition between
smartphones keep stable. It suggests that the large absolute
difference between heterogeneous devices can be effectively
solved by only using the relative pressure change to localize
floor instead of using absolute pressure reading.

B. Distributed Self-Calibration of Barometric Pressure

To identify floor, an accurate mapping between the pressure-
deriving elevation and each floor of a building needs to be con-
structed. To solve the pressure drift and device heterogeneity,
the crowdsourcing is adopted to calibrate the barometric sensor
based on the user encounter in the same elevator or bus [23],
by which all smartphones need to communicate with a pressure
calibration cloud center. Different from this central calibration
approach, we propose a distributed self-compensation method:
each smartphone builds its own elevation-floor map and com-
pensates the slow pressure drift individually to counteract the
environmental gradual change.

The pseudocode of BPFI algorithm is as shown in Fig. 4.
1) Distributed Elevation-Floor Map Construction: By

associating the initial pressure with the initial manual input
of floor level or by reading two-dimensional (2-D) code, each
smartphone can construct its own elevation-floor map without
the need of using a central pressure calibration system. After
having obtained the initial reference pressure-floor map, the
pressure difference is then used to estimate the elevation change
instead of using the absolute altitude to localize floor.

To differentiate the pressure change with environment and
floor transition, we divide the elevation h(t) deriving from the
pressure–altitude model [as (3) shows] into two parts

h(t) = henvi(t) + hfloor(t) (4)
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Fig. 4. Pseudocode of BPFI algorithm.

Fig. 5. Individual altitude–floor map for individual smartphone.

where henvi(t) is the slow change altitude part caused by envi-
ronmental factors, hfloor(t) is the quick change part caused by
floor transitions. Only the quick change part hfloor(t) is used for
floor estimation, while the slow change part henvi(t) is used for
compensating the gradual altitude change due to weather vari-
ation. The pressure change pattern can be accurately identified
with our proposed threshold-based scheme (for more details,
see the next section)

At the initial time (t = 0), we assume that

henvi(0) = 0, hfloor(0) = Hinit (5)

where Hinit is the initial floor altitude calculated from the initial
measured pressure Pinit(0).

After associating the manual input floor level Linit with the
initial floor altitude Hinit, combined with the prior floor height
of a building {d1, d2, . . . , dn} (di is the ith floor height, 1 ≤ i ≤
n, n is the total floor number of the building), each smartphone
constructs its individual altitude-floor map as follows:

If ((Hk+Hk−1)/2 ≤ hfloor < (Hk+Hk+1)/2), then
hfloor ⇔ Hk (target is judged to be on the kth floor), where{

H1 = Hinit − (
∑Linit−1

i=1 di)

Hk = H1 +
∑k−1

i=1 di, 2 ≤ k ≤ n
, Hk is the altitude of the

kth floor, as shown in Fig. 5(a).
Due to the device heterogeneity, the initial pressure mea-

sured by each smartphone is different on the same floor, so the
attitude-floor map built by individual smartphone is different.
However, the pressure differences corresponding to the same
floor transition measured by different devices are consistent.
Once each smartphone has constructed its own altitude-floor
map, it can determine floor locally only with the identified
quick altitude change (i.e., quick pressure change).

Fig. 6. Performance of slow pressure drift self-calibration in 24 h in a
fixed place.

2) Slow Pressure Drift Self-Calibration: In a fixed place
or on a same floor, though the real altitude keeps unchanged, the
altitude change deriving from pressure drift may accumulate to
several floors away in a couple of hours due to environmental
effects. To compensate this gradual pressure change, we pro-
posed a threshold-based scheme to detect the pressure change
pattern based on the observation that the environmental pres-
sure change within a determination period is much smaller than
that caused by a floor transition.

The self-calibration processing is as follows. After initializa-
tion, the device starts to measure the environmental pressure
periodically and calculates the altitude change Δh(t) within
each floor-identification period Δt using the observed pres-
sure change. Corresponding to the (4), the total altitude change
Δh(t) comprises of two parts

Δh(t) = Δhenvi(t) + Δhfloor(t). (6)

The first part is the gradual altitude drift Δhenvi(t) due to
environmental pressure change, and the second is the quick
altitude change Δhfloor(t) produced by a real floor transition.

If the pressure change Δh(t) within the current floor identi-
fication period [t-Δt, t] is judged to be slow pressure drift type,
it is added to the henvi(t) and excluded from the floor transition
processing as follows:

If Δh (t) < Δhth, then

{
henvi(t) = henvi(t−Δt) + Δh(t)

hfloor(t) = hfloor(t−Δt).

Using this slow pressure drift self-calibration method, the
BPFI can effectively eliminate pressure drift accumulation. As
Fig. 6 demonstrates, when a user stays on a floor for a whole
day (e.g., 24 h), while the slow pressure drifts reach as large
as 80 m, the identified quick pressure change and floor-level
identification remain unchanged.

3) Floor Update With Quick Pressure Change: If the
pressure change Δh(t) within the current floor identification
period [t-Δt, t] is judged to be a quick altitude change type, it
is added to the hfloor(t), i.e.,

If Δh(t) ≥ Δhth, then

{
hfloor(t) = hfloor(t−Δt) + Δh(t)

henvi(t) = henvi(t−Δt).
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Fig. 7. Small floor transition errors accumulate with the number of floor
transition with and without calibration.

After having obtained a new hfloor(t), the floor level is
updated using the previously built attitude-floor map.

4) Altitude Compensation for Floor Transition: When a
real floor transition happens, the pressure may not be sampled
exactly on the floor level, as Fig. 5(b) shows. The previous mea-
surement is taken when the user is located below the kth floor
by less than 1.5 m, and at the next pressure sampling instant,
the user has been on the kth floor for several seconds. Because
the altitude change is less than the identification threshold, the
latest pressure change is mistakenly judged as the slow pres-
sure change pattern and is added to the environmental altitude
change Δhenvi(t).

To compensate this small altitude offset of floor transition,
we use the latest identified floor altitude in the altitude-floor
map to directly replace the floor altitude calculated from the
quick pressure change after having detected several succes-
sive slow pressure changes (i.e., the pressure measurement
becomes stable). As Fig. 7 shows, this small altitude offset can
be effectively calibrated by using this compensation scheme.

C. Optimal Floor Identification Period Selection

To accurately differentiate the slow altitude change and quick
altitude change, an optimal floor identification period should be
selected. If the identification period is set too short, the pressure
difference between two successive measurements for a floor
transition is also small that is indistinguishable from the slow
pressure change or fluctuation. If the identification period is set
too long, the determination delay is large.

The optimal selection of floor identification period considers
the following rules.

1) The absolute pressure change caused by a real floor tran-
sition within one identification period should be greater
than the absolute pressure drift due to environmental
influence within one floor identification period.

2) The floor determination delay should be short.
When users take elevators, the altitude will change dozens

of meters within tens of seconds. When users climb upstairs
slowly, the pressure changes rather gradually. Because there is
no theoretical solution for the optimal collection period selec-
tion, we obtain the optimal floor identification period with
empirical method.

Fig. 8 demonstrates the altitude change distribution with
different floor identification periods.

Fig. 9 shows the altitude changes with the increase in identi-
fication periods. To accurately discriminate the minimum quick

Fig. 8. Altitude change distribution with different sampling periods.

Fig. 9. Selection of optimal floor identification period.

altitude change caused by slow floor transition and the gradual
altitude change due to environmental factors and sensor noise
with 95.44% confidence (2σ), the identification period should
be larger than 15 s. If we want to further improve the confidence
to detect larger gradual altitude change caused by environmen-
tal factors, the identification period should be further increased,
which will result in larger delay and decrease in relative accu-
racy (i.e., the small quick altitude change cannot be determined
using large threshold and cannot be differentiated from the
gradual altitude change). To balance the floor identification
delay and accuracy, the optimal identification period is selected
to 15 s in the following experiments.

D. Experimental Results and Analysis

1) Experimental Setup: For the convenience of floor
computing, all pressure measurements (5-Hz sampling rate) are
first converted into altitude, and then filtered with a five-point
moving averaging filter to eliminate noise. All the filtered alti-
tude data are added to a First In First Out (FIFO) queue. Once a
new altitude is obtained, subtract it with the head of the altitude
queue to get the latest altitude change. To balance the pressure
measurement accuracy and floor determination delay, we set
the queue length to 15, i.e., altitude change within 15 s as a
comparison unit.

Among various floor transitions, climbing upstairs is the
slowest quick altitude change, which determines the lower
bound of quick pressure change. The pressure change pattern
identification should be able to differentiate the slow pressure
change caused by environment with this pressure change due to
going upstairs. By real test in our ICT building, we get the aver-
age speed of altitude changing with about 0.13 m/s when going
upstairs. Accounting for the 15-s optimal floor identification
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Fig. 10. Floor estimation results using BPFI in short-term periods.

Fig. 11. Detailed altitude changes under real floor transitions.
(a) Altitude changes under real floor transition. (b) Altitude difference
under real floor transition corresponding to (a).

period, the pressure change threshold is set to 1.7 m in the
following experiments.

2) Floor Identification Performance: After initializing
the floor with manual input floor number 7, we started to eval-
uate the BPFI algorithm by first going upstairs to the eighth
floor in the east part of our ICT building with two smartphones
(Xiaomi 2s and Samsung S4) being held together, then went
downstairs from the eighth floor to the first floor, next crossed
the ground hall to the west part of ICT, then took the west ele-
vator directly from the first floor to the seventh, walked through
the corridor to the east elevator and took the elevator down to
the first floor, at last went upstairs from the first floor to the
seventh floor again. As Fig. 10 shows, though the initial and
online altitude measurements by two devices are different, the
floor estimations are all correct, which confirms the robustness
of the proposed BPFI to device heterogeneity.

Fig. 11 demonstrates the altitude change in more details.
When a user stays on a floor, the quick change part hfloor(t)
remains constant. While the whole altitude h(t) drifts with
time, all the altitude changes Δh(t) (pressure change) within
a floor identification period are less than the pressure change
threshold Δhth, so the floor level keeps unchanged. When the
user starts to go upstairs or downstairs, both the whole altitude
h(t) and the quick change part hfloor(t) change monotonously,
and the altitude change within a floor identification period

Fig. 12. Floor estimation using BPFI algorithm in long-term periods.

Fig. 13. Floor identification failure under very slow floor transition with
BPFI. (a) Floor identification failure under very slow floor transition.
(b) Small altitude difference under very slow floor transition.

exceeds the altitude change threshold, so the floor level updates
accordingly. From the plot, we can see that there is about ten
seconds of floor identification delay because of the influence
of filtering processing and quick altitude change determination
threshold. There are three times of small altitude compensation
operation shown in Fig. 11 after the user reaches the destination
floor level and the pressure measurements become stable.

Fig. 12 shows that the BPFI algorithm can still achieve accu-
rate floor determination results with 1 h and 40 min interval
between two successive floor transitions. It confirms that the
BPFI is robust to the slow pressure change caused by environ-
ment. However, when a very slow floor transition happens, as
Fig. 13 denotes, the quick altitude change within a floor identi-
fication period is less than the predefined threshold, so the BPFI
cannot detect the floor transition.

V. HYBRID FLOOR IDENTIFICATION ALGORITHM

As the above section describes, either of the BCFI and BPFI
algorithm has pros and cons. The floor identification with BCFI
algorithm is consistent with the ground-truth floor only on the
heavily partitioned floors with mat reinforcement concrete from
neighboring floors. On the floors with hollow interior, espe-
cially in the areas near the hollow edge, the estimated floor
using the BCFI often deviates by 2–3 floors away from the truth.
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Fig. 14. Pseudocode of HYFI algorithm.

For the BPFI algorithm, it can accurately determine floor level
in complex and irregular indoor environments if an accurate ini-
tial floor level is given with manual effort. However, if small
quick altitude changes have not been detected and the altitude
compensation for floor transition does not take effect (e.g., a
user climbs upstairs for several steps and rest for tens of sec-
onds, and then goes up), which will produce erroneous floor
identification result.

A. Hybrid Scheme of HYFI Algorithm

To eliminate manual input and influence of mistaken floor
determination by slow floor transition, we adopted a novel
hybrid floor identification scheme (hereinafter referred to as
HYFI). The BPFI algorithm is initialized and calibrated oppor-
tunistically once getting a high-confidence floor estimation on
the floors that are heavily partitioned with mat reinforcement
concrete from neighboring floors with the BCFI algorithm.
After initialization or calibration, the HYFI uses the BPFI algo-
rithm to localize the floor until receiving another high confident
floor estimation obtained with the BCFI algorithm.

The pseudocode of HYFI algorithm is as shown in Fig. 14.
In detail, a floor-level estimation is assumed to be a high-

confident floor estimation if the following two items are met:

if

{
Pmax (l|o) (t) ≥ α

|Δh(t)| ≤ Δhth

where Pmax(l|o)(t) is the largest posterior probability, param-
eter α is used to evaluate the confidence of floor identification,
and its optimal value is selected by trials. To eliminate the
uncertainty when going upstairs or downstairs, the BCFI algo-
rithm is not used for calibration, i.e., only when the user reaches
the target floor and the pressure observations get stable, the
floor identification result with the BCFI can be used to cali-
brate the BPFI. On the floors that are heavily partitioned with
mat reinforcement concrete from neighboring floors, the largest
posterior probability is remarkably larger than that on the floors
with hollow interiors through adjacent floors.

By introducing calibration with high confident floor estima-
tion obtained with the BCFI algorithm, the HYFI can identify
floors accurately in various buildings, especially in the floors
with complex and irregular hollow interior structure.

Fig. 15. Influence of posterior probability threshold.

B. Experimental Results and Analysis

In the following experiments, the “accuracy” is defined as
the accurate percentage with the selected posterior probability
greater than the predefined threshold to determine floor level.
The “rate” represents the ratio of number of accurate floor iden-
tification with posterior probability greater than threshold to
the total number of floor identification test times, i.e., floor
identifiable rate. Because there is no barometric sensor inte-
grated in S5830 and Samsung Galaxy S5, in the following tests,
we use Galaxy Note 2/3, Samsung Galaxy S4 to evaluate the
performance in ICT building.

1) Influence of Threshold Parameter α: Fig. 15 illus-
trates the floor identification accuracy improvement with the
increase in posterior probability threshold parameter α.

When we use the maximum posterior probability criteria
to determine floor level for each Wi-Fi observation, the aver-
age floor identification accuracy is about 92%. When adopting
the proposed high-confident floor identification criteria, i.e.,
only choosing those maximum posterior probabilities which are
larger than the predefined threshold to perform floor determina-
tion, the floor identification accuracy increases rapidly to nearly
100%, while the floor identifiable rate decreases quickly. To
achieve the desired tradeoff between accuracy and identifiable
rate, in the following experiments, the probability threshold is
set to 0.7.

2) Influence of Threshold Limit on BCFI: The BCFI
with different threshold is evaluated in ICT buildings, as
Table II shows. Only using the posterior probabilities larger
than the predefined threshold (0.7) to determine floor, we can
obtain more than 99.0% accuracy. However, the floor identi-
fiable rate decreases with the increase in posterior probability
threshold. Especially on the floors with hollow areas, the floor
identifiable rate is rather low because of Wi-Fi fingerprinting
similarity between adjacent floors.

3) Performance of HYFI: To better evaluate the perfor-
mance of HYFI algorithm, we collect test samples with the
same smartphones at different time in the ICT building. We use
these newly collected test samples to perform floor identifica-
tion instead of using training samples. The real floor transition
trajectory is shown in Fig. 16. From the beginning to the 18th
min, the user went upstairs and downstairs at normal speed.
After that, the user went upstairs and downstairs at a very slow
speed, which is used to evaluate the robustness of the HYFI
under slow pressure change.
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TABLE II
FLOOR IDENTIFICATION ACCURACY WITH TRAINING SAMPLES USING BCFI WITH THRESHOLD LIMIT IN ICT BUILDING

Fig. 16. Floor identification comparison using BCFI/BPFI/HYFI with regular and slow speed going upstairs and downstairs.

TABLE III
CALIBRATION OF BPFI ON DIFFERENT FLOORS USING HIGH CONFIDENT BCFI RESULT IN ICT BUILDING

From Fig. 15, we can see that the BPFI algorithm is accu-
rately initialized and frequently calibrated by the BCFI algo-
rithm on the floors partitioned with heavy concrete floor slabs
(the sixth, seventh, and eighth floor) through the whole exper-
imental period in spite of moving speed. By the accurate
initialization and frequent calibration of BPFI, the HYFI algo-
rithm identifies floor level with 96.1% accuracy, as Table III
denotes. The detailed calibration number of BPFI on different
floors using high-confident BCFI result is also shown in the
table. From the fifth and eighth floors, because adjacent floors
are partitioned with heavy-concrete floor slabs, about half floor
identification results are high confident and used to calibrate
the BPFI algorithm. Nevertheless, from the first to fourth floor,
the BPFI algorithm is calibrated for few times. That is because
there is large hollow interior through these four floors and the

floor identification confidence with the BCFI algorithm on these
floors is rather low.

As a comparison, when there is only accurate initialization
for the BPFI algorithm but without subsequent calibration by
the BCFI algorithm, the BPFI fails giving any right floor identi-
fication after the 18th min once a slow-going upstairs or pausing
happens, which corresponds to a slow pressure change. The
corresponding pressure change within an identification period
is less than the pressure quick change threshold and then one
floor-level difference is produced by the BPFI. From the 18th
min and 30th s, we went downstairs from the eighth floor to the
sixth floor, and we paused two times on the stairs. The BPFI
algorithm fails again detecting the floor transition and pro-
duces wrong floor determination results as large as two floors
away from the actual floor level. However, after we reached the
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sixth floor for 20 s, the BPFI is calibrated by the BCFI algo-
rithm and the HYFI gives the accurate floor identification again,
which demonstrates that the HYFI algorithm can eliminate the
floor identification failure propagation by opportunistic calibra-
tion with the BCFI algorithm and is robust to different moving
speed.

VI. DISCUSSION AND CONCLUSION

A. Discussion on Use Cases

Obviously in commercial buildings, high-accuracy floor
identification is important for such as location-based promo-
tion and advertisement in shopping malls, navigation services in
train stations and airports, tracking and navigation of patients,
and equipment in hospitals. For emergency services like first
aid, rescue, firefighting, and public security, it is also cru-
cial to improve efficiency of actions in complicated multistory
buildings—time is life!

In industrial buildings and facilities, we have also seen many
promising use cases for the proposed technologies for track-
ing and navigating vehicles, robots, and personnel [24]. For
example, in construction industry, real-time location and floor
number of workers, lifts and cranes can be used to improve the
safety of workers and efficiency of task coordination [5]. Real-
time localization and floor identification is one of the enabling
technologies for realizing man-less inspection of facilities by
autonomous robots in dangerous or safety-critical industrial
sites [25]. In modern mining industry, the underground tun-
nels are more and more equipped with wireless communication
infrastructure like Wi-Fi, which makes it possible to realize
cost-effective tracking of miners and equipment based on the
proposed solution [3], [26]. Moreover, in the remote collab-
oration service where field operators or commissioners get
real-time support from remote experts through bidirectional
audio and video interaction, accurate location and floor num-
ber can help the remote experts know where the field operators
exactly are, which can significantly save time and reduce the
probability of miss-instructions.

B. Conclusion

In this paper, we have demonstrated the possibility of floor
identification combined with the Wi-Fi AP distribution and
barometric pressure information in the complex multistory
buildings. Through the selection of the floor estimation with
high confidence opportunistically obtained with Wi-Fi dis-
tribution in well-partitioned zones, to initialize and calibrate
barometric pressure-based floor identification, the proposed
hybrid floor identification approach outperforms both Wi-Fi-
based floor identification and barometric pressure-based floor
identification. Furthermore, this approach can identify floors
accurately in irregular multistory buildings, especially in the
floors with complex hollow interior structure.

Our future work will incorporate this floor identification
approach into the Wi-Fi fingerprinting localization system
to speed up the localization progress as well as extend-
ing the capability of indoor positioning system to multistory
buildings.
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