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Abstract—This paper discusses malicious false data injection
attacks on the wide area measurement and monitoring system in
smart grids. First, methods of constructing sparse stealth attacks
are developed for two typical scenarios: 1) random attacks in
which arbitrary measurements can be compromised; and 2) tar-
geted attacks in which specified state variables are modified. It is
already demonstrated that stealth attacks can always exist if the
number of compromised measurements exceeds a certain value.
In this paper, it is found that random undetectable attacks can
be accomplished by modifying only a much smaller number of
measurements than this value. It is well known that protecting the
system from malicious attacks can be achieved by making a certain
subset of measurements immune to attacks. An efficient greedy
search algorithm is then proposed to quickly find this subset of
measurements to be protected to defend against stealth attacks. It
is shown that this greedy algorithm has almost the same perfor-
mance as the brute-force method, but without the combinatorial
complexity. Third, a robust attack detection method is discussed.
The detection method is designed based on the robust principal
component analysis problem by introducing element-wise con-
straints. This method is shown to be able to identify the real
measurements, as well as attacks even when only partial observa-
tions are collected. The simulations are conducted based on IEEE
test systems.

Index Terms—Bad data detection (BDD), malicious data attack,
robust principle component analysis (PCA), smart grid security.

I. INTRODUCTION

C OMPARED with the traditional power grids, a smart grid
tends to be much more reliable, efficient, and intelligent

due to the remarkable advancements in sensing, monitoring,
control technologies, and also the tight integration with cyber
infrastructure and advanced computing and communication
technologies [1]. However, this integration can lead to new
vulnerabilities to cyber attacks on the power systems. Cyber
attacks are reported as one of the main potential threats to the
reliable operation of the power system [2], [3]. In this paper, we
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consider false data injection attacks (FDIAs) against the super-
visory control and data acquisition (SCADA) system in smart
grids.

A power grid transmission system is a sophisticated network
which connects a number of electric power generators to var-
ious consumers through extensive power lines. It is extremely
important to monitor the state of this complex system such that
various control and planning tasks can be performed and the
reliable operation of the power system is guaranteed. In power
systems, state estimation [4], [5] is used to estimate system state
variables through a number of power measurements and is a
useful and necessary function in energy management systems
(EMS).

The SCADA system obtains power status information such
as transmission line power flows, bus voltages, and also circuit-
braker signals through remote terminal units (RTUs). These
measurements are then used for the state estimation process
in EMS, which builds real-time electricity network models. In
smart grids, the complex network connections as well as the
Internet make SCADA systems susceptible to potential FDIAs,
in which adversaries aim to contaminate the measurements
collected from RTUs and bias the state estimation at the trans-
mission level to mislead the operation of the power system.
Fig. 1 presents a block diagram of the power grid, commu-
nication network, SCADA, and control center. It is critically
important to understand the behavior of adversaries so that
appropriate countermeasures can be designed to either protect
the system from attacks beforehand or identify the malicious
false data injections in the measurements.

Recently, the problem of FDIAs as well as countermeasures
has attracted a lot of attention among researchers. False data
in state estimation were first discussed by Schweppe et al. in
their pioneering work about state estimation [6]. It was not well
researched until Liu et al. [7] proposed that if adversaries pos-
sess the knowledge of power grid topology, they may inject
coordinated data attacks, which could evade detection by the
bad data detection (BDD) system in state estimator. Based on
this strategy, plenty of efforts have been made to design effec-
tive attack algorithms and the corresponding countermeasures,
such as [8]–[11].

Adversaries may launch attacks through hacking RTUs such
as sensors in substations. In consideration of the accessibility
of RTUs and also hacking cost, attackers always tend to con-
trol only a few RTUs to implement a successful attack [7].
Kim and Poor [8] developed a general optimization framework-
based formulation for constructing sparse attack vectors when
a subset of measurements is protected, while Ozay et al. [12]
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Fig. 1. Illustration of the power grid, communication network, SCADA, and
control center. The warning signs indicate the vulnerabilities to FDIAs.

extended the sparse attack construction model to a distributed
framework. Sandberg et al. [13] considered sparse attacks with
injections into critical measurements, which are essential for
the observability of the power grids and sensitive to attacks.
In [14], methods of finding both strong stealth attacks and
also optimal weak malicious data attacks (when power grid
topology is unknown) with the aim of reducing the number
of compromised measurements were discussed. It has been
proposed that even when the power grid information is unavail-
able, stealth attacks can still be accomplished [15], [16]. Zhang
et al. [17] investigated the attack strategy with consideration of
communication rate constraint in cyber–physical systems.

There are two approaches to defend against the malicious
data attacks. The first is to protect the system beforehand
from being attacked by adversaries. This can be achieved by
either protecting a number of measurements to prevent stealth
attacks [18], [19], or monitoring state information directly by
the deployment of phasor measurements units (PMU) [8], [20].
In practice, it is not feasible to secure all measurements to pre-
vent attacks due to the high cost. Instead, stealth malicious
attacks can be prevented by protecting a carefully selected sub-
set of measurements. A challenge of this approach is to search
the effective small measurement subset to make them immune
to attacks. Bobba et al. [18] chose the subsets for small power
test systems using brute-force search.

The second approach to deal with malicious attacks is to
identify the injected false data in measurements and then either
abandon the contaminated data or correct them. Traditional
false data detection methods are based on residue test [6], [21].
They cannot protect state estimation from carefully designed
stealth attacks. Recently, with the advancement of smart grid,
new detection methods have been proposed. A survey of the
existing detection methods was provided in [22]. In [14], gener-
alized likelihood ratio test is introduced to detect weak FDIAs.
The cumulative sum (CUSUM) test-based detection mecha-
nism introduced in [16] is also designed for nonstealth attacks.
Esmalifalak et al. [23] discussed stealth false data detection
methods using machine learning. Graphical methods are used
to design defending mechanisms in [24]. In [11], an effective

method capable of detecting false data as well as recovering
the real state information was proposed. In [25], both the attack
and detection algorithms were discussed, but the subset protec-
tion method was not considered. Additionally, only preliminary
results regarding the attack strategies were presented in [25].
This paper substantially discusses the methods of sparse attack
construction, the strategy of system protection from attacks, and
the algorithm of stealth attack detection.

This paper has made three contributions: First, methods of
constructing stealth attacks are proposed for two typical sce-
narios. We consider a general scenario in which adversaries can
access arbitrary measurements to change arbitrary state vari-
ables in state estimation. To the best of our knowledge, there is
no feasible algorithm that can efficiently construct highly sparse
undetectable attack vectors in this case. In [7], it is observed
that the optimal undetectable attack vector to compromise the
minimum number of measurements can be found using brute-
force search. However, this is not practical due to the high
complexity. We propose an efficient and effective attack vec-
tor construction algorithm which can quickly generate highly
sparse attack vectors in this scenario.

Liu et al. [7] also have demonstrated that stealth attack vec-
tors always exist when the number of measurements that can be
contaminated exceeds a certain value. However, it is shown in
this paper that our proposed method can launch stealth attacks
by manipulating only a much smaller number of measurements
with high probability. Additionally, stealth attacks in a specific
scenario are also considered in this paper. An optimization-
based algorithm is introduced to generate sparse targeted attack
vectors to bias specified state variables with the consideration
that a subset of measurements is protected.

A fast greedy search method is then proposed to quickly find
a subset of measurements to be protected to defend against
stealth attacks. This fast method can find a subset with the
same size as brute-force search in nearly all cases. Finally,
inspired by Liu et al. [11], we introduce a detection algo-
rithm considering the noise case with partial observations. The
proposed algorithm extends the method in [11] to address
the problem of detecting stealth attacks as well as recovering
true state information with only partially collected contami-
nated measurements. The performance of the proposed algo-
rithms is investigated using IEEE test systems with software
MATPOWER [26].

This paper is organized as follows. Section II introduces
power system model and the stealth attack problem in state esti-
mation. In Section III, proposed attack strategies for different
scenarios are introduced. Section IV provides the measure-
ment protection algorithm and Section V presents the false
data detection method. Simulation results are presented in
Section VI. Section VII concludes the paper.

II. POWER GRID AND ATTACK MODEL

In this paper, we consider a power transmission grid which
consists of n+ 1 buses and l transmission lines. The net-
work connectivity of this power grid can be described by the
(n+ 1)× l oriented incidence matrix M, of which each col-
umn corresponds to the power line (i, j) and consists of all
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0s except the ith and jth elements having value of 1 and −1,
respectively [27]. The nonsingular diagonal matrix D ∈ R

l×l

describes the physical properties of the transmission grid with
diagonal entries equal to admittance of the transmission lines.
SCADA collects measurements from RTUs such as bus volt-
ages, bus power injections, and branch power flows from the
power grid and sends them to the state estimator to estimate the
state of the power system in the control center.

A. State Estimation

The state estimation problem is to use power measurements
to timely estimate the state of the power system. Specifically,
power system state refers to bus voltage angles θ and bus volt-
age magnitudes V . In the linearized dc power flow model [4
Ch. 2], bus magnitudes are assumed already known and are
all close to unity. Additionally, phase angle at reference bus
is set to zero radians; thus, estimation of only n bus voltage
angles [θ1, θ2, . . . , θn]

T is required. The measurements have the
following relationship with the state variables:

z = Hθ + e (1)

where z = [z1, z2, . . . , zm]
T denotes measurement vector and

H ∈ R
m×n is the measurement Jacobian matrix constructed

by H =

[
DMT

MDMT

]
. e = [e1, e2, . . . , em]

T represents the

Gaussian measurement noise and it is assumed to be zero-
mean for convenience [14]. Measurements include power flows
on l transmission lines and power injection at n buses. In
the dc power flow model, power from bus i to j can be
approximated as

Pij = (θi − θj) dij (2)

where dij is the admittance of the transmission line from bus
i to j. Thus, power flows on transmission lines are computed
by MDMT θ and power injections at buses are obtained from
DMT θ.

The state vector can be estimated from measurements using
the weighted least-square (WLS) method [4]. In particular,
system states are estimated as

θ̂ =
(
HTWH

)−1
HTWz = Kz (3)

where diagonal weighting matrix W has diagonal entries
equaling to the inverse of noise variances and K =(
HTWH

)−1
HTW.

B. False Data Injection Attacks

Malicious false data can be injected by manipulating the RTU
measurements to bias the estimated states. System measure-
ments with malicious data becomes

za = Hθ + a+ e (4)

where a = [a1, a2, . . . , am]
T denotes the attack vector.

Bad data in measurements can lead to incorrect state estima-
tion and cause severe outcomes. Traditional methods to detect
bad data are mostly based on the residue test. The residue vector
r refers to the difference between the obtained measurements
and the computed value from the estimated state

r = z −Hθ̂. (5)

For example, the largest normalized residue (LNR) test identi-
fies bad data if the absolute value of the largest element in r is
larger than a certain threshold τ , i.e., maxi |ri| > τ .

However, carefully designed malicious data attacks can
bypass residue-based BDD. If attackers have knowledge about
the power grid topology information, or H, they can inject
stealth attacks by constructing the attack vector such that [7]

a = Hc. (6)

The measurements can then be written as

za = H (θ + c) + e (7)

where c ∈ R
n is any arbitrary vector and denotes the errors

added to the state variables introduced by a. The attack is unde-
tectable as the residue r would not change compared to that
without attack a [7]. The system will regard the manipulated
state (θ + c) as the real value in the state estimator.

III. STEALTH ATTACK STRATEGIES

In order to evade detection in the control center, attack vec-
tors are designed to satisfy (6). Additionally, attackers would
tend to compromise as few measurements as possible in effort
to launch attacks with least effort. Therefore attack strategies
are expected to be able to construct highly sparse attack vec-
tors. The stealth sparse attacks were first discussed in [7], in
which the authors proposed that attackers can modify state vari-
ables in state estimation without being detected by modifying
a small number of carefully chosen RTU measurements. In this
paper, two methods are introduced to construct sparse attack
vectors for two typical scenarios: random attacks in which arbi-
trary measurements can be compromised and targeted attacks
in which specific state variables need to be biased.

A. Random Attacks

In this scenario, it is assumed that no measurements are pro-
tected, and the changes of state variables are not specified.
Attackers can hack arbitrary measurements to bias arbitrary
state variables. Thus, the aim is solely to find highly sparse vec-
tor a that satisfies (6). To the best of our knowledge, there is no
feasible algorithm that can efficiently construct sparse attack
vectors in this case. Since a is a linear combination of the
columns of H, it is possible to generate sparse vector by column
transformation of H. However, this method cannot guarantee
sparsity. It is demonstrated by Liu et al. [7] that a k-sparse
stealth attack vector always exist if k > m− n. We propose
a novel method that can construct a sparse attack vector with
much smaller k.



HAO et al.: SPARSE MALICIOUS FDIAS AND DEFENSE MECHANISMS IN SMART GRIDS 1201

Liu et al. [7] also proposed that a projection matrix
P = H

(
HTH

)−1
HT can lead to an equivalent criterion to

generate attack vector a satisfying (6)

Pa = H
(
HTH

)−1
HTHc = Hc

(P− I)a = 0.

Let B = P− I, then undetectable attack vector a satisfies

Ba = 0. (8)

This criterion can be used to generate attack vectors in certain
scenarios such as when a subset of measurements is protected
[7]. For random attacks, this criterion can also be utilized.
A straightforward way to find sparse attack vectors can be
formulated using the following optimization problem:

min ‖a‖0
s.t.Ba = 0, a �= 0 (9)

where l0-norm is the number of the nonzero elements in a. This
is a nonconvex problem and finding the solution to this problem
is highly complex. However, it is obvious that a feasible vector
a must be in the null space of matrix B, which is defined as

Null(B) = {v ∈ R
m |Bv = 0} . (10)

Rather than solving the complex problem in (9), we propose an
algorithm taking advantage of null space of B, which can be
easily computed.

Proposed algorithm. Measurements are always subject to
noise due to the errors in the measuring process and the noise
in the communication channels. The noise can be modeled as
Gaussian distributed with variance Σe. The system is usually
designed to be tolerant to measurement deviations within the
noise level. Additionally, vectors in the null space of B usually
comprise a small number of relatively large elements and the
majority are small value elements. It provides the possibility
for attackers to inject attack vectors designed based on vectors
in Null(B). Those small valued elements can be dealt with as
noise if their average energy, denoted as ΣB , is within the range
of the variance of the noise Σe, namely ΣB ≤ Σe. Therefore,
attackers only need to inject elements of large values in the
column vectors of Null(B) into the system and the number of
measurements to be compromised will be greatly reduced. We
define a shrinkage operation St as follows:

St (x) :=

⎧⎨
⎩

x

|x| − t
max (|x| − t, 0) , |x| �= t

x, |x| = t.
(11)

The attack vector construction procedure can then be
designed as follows. Given matrix measurement matrix H,
compute matrix B as well as the standard basis matrix U of
its null space Null(B) and choose vector u with the largest
variance from all column vector in U

u = argmax
i

(var (ui)) (12)

where ui denotes the ith column in U. Then, scale vector u up,
or down, till the maximal element reaches a designed attack

value C. The last step is to force the small elements below
threshold t to 0

a = St (εu) (13)

where ε = C
max(u) .

Algorithm 1 concludes the whole process of attack vector
construction. It is notable that threshold t should be carefully
chosen in the consideration of both sparsity and evading BDD.
A higher t can generate a sparser attack vector but also increase
the possibility of being detected. It is also notable that if the
noise is not zero-mean, the threshold t is chosen according
to the tolerable noise range. Since the measurement noise fol-
lows N (0, σ2), it is assumed that all noise variables are within
the range of [−3σ, 3σ] (otherwise it will be identified as bad
data). Thus, threshold t should not exceed 3σ. The following
proposition can assist in choosing threshold t.

Algorithm 1. Sparse stealth attacks construction

Input: H ∈ R
m×n, C > 0, t > 0.

Procedure:
1) Compute B = H

(
HTH

)−1
HT − I.

2) Get the standard basis matrix U of Null(B) so that i-th
column ui: Bui = 0.

3) Find column vector u in U: u = argmaxi(var(ui)).
4) Scale up/down vector u by ε: u′ = εu and ε = C

max(u) .
5) Shrink the vector using the threshold t to obtain the sparse

attack vector a: a = St (u
′).

Output: a.

Proposition 1: If an attack vector a is constructed using
Algorithm 1 with the shrinkage threshold t, the probability
of successfully evading detection by residue-based detection
algorithms in the system is at least

Pl(t) =
1

2

[
1 + erf

(
3σ − t

σ
√
2

)]
(14)

where erf(·) refers to the Gauss error function and σ is the
standard deviation of the Gaussian measurement noise.

Proof: Since the vector u is selected form Null(B), it
satisfies u = Hc, where c ∈ R

n. Let a = St (εu) = εu− ut.
The residual vector r′ when attack a is injected into system is
calculated as

r′ = za −Hθ̂a = z + a+ e−HK(z + a+ e)

= Hx+ εHc− ut + e−H(KHx+KεHc−Kut+Ke)

= Hx+ εHc− ut + e−Hx− εHc+HKut −HKe

= (I−HK)(e− ut). (15)

Equation (15) indicates that when an attack generated by
Algorithm 1 exists, it can be regarded that the random noise is
perturbed by small amounts. A very small element comparing
to σ in ut should not impact the noise level or the residue since
the shifted noise variable is still within the tolerable range. To
evaluate the probability of having no impact on noise level, we
consider the worst case when all elements in vector ut equal
the threshold t. In this case, it can be viewed as that the noise
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level is shifted down by an amount of t. The shifted noise e′

follows N (−t, σ2). Therefore, the probability when the shifted
noise variables are within the normal range of [−3σ, 3σ] can be
computed by

Pl(t) =

3σ∫
−3σ

1

σ2π
exp

(
− (k + t)

2

2σ2

)
dk. (16)

This probability can be evaluated using (14). In fact, as a large
number of elements in ut tend to be much smaller than t,
nondetection probability P (t) > Pl(t). Thus, proposition 1 is
proved. �

B. Targeted Attacks

In practice, adversaries may intend to modify specific state
variables. In this case, the amounts in the targeted subset in the
vector c are fixed. Sparse attack vector construction methods
for targeted attacks have been extensively explored in the litera-
ture, e.g., [7], [8], and [12]. Additionally, certain measurements
may be protected, and adversaries would not be able to compro-
mise these secured measurements. It is notable that protecting
all measurements may not be feasible due to the high cost.
Therefore, sparse attack vectors need to be carefully designed
to contaminate specific state variables without compromising
those protected measurements.

Let I denote the indices of state variables that are specifi-
cally attacked. Ī is the complementary set of I and denotes the
indices of state variables that can be arbitrarily chosen to launch
targeted attacks. Measurements Jacobian H is [h1,h2, . . . ,hn]
where hi denotes the ith column vector of H. A stealth attack
vector a can then be written as

a = Hc =
∑
i∈I

hici +
∑
j∈Ī

hjcj . (17)

In a targeted attack, the value of ci, i ∈ I is fixed and pre-
designed to be injected into the state variables. Let b =∑

i∈I hici, which is predesigned by attackers. The attack
vector a is then designed based on the fixed vector b. As
proposed in [7], (17) can be transformed using a projection
matrix P = H

(
HTH

)−1
HT . Since a− b = HĪcĪ , where

HĪ denotes the submatrix of H containing columns with index

in Ī, i.e., HĪ =
[
hj1 ,hj2 , . . . ,hj|Ī|

]
, where ji ∈ Ī for 1 ≤

i ≤
∣∣Ī∣∣. By left-multiplying both sides with PĪ , we have

PĪ (a− b) = PĪHĪcĪ

= HĪ
(
HT

ĪHĪ
)−1

HT
ĪHĪcĪ

= HĪcĪ = a− b (18)

where PĪ = HĪ
(
HT

ĪHĪ
)−1

HT
Ī .

We can then easily obtain that (PĪ − I)a = (PĪ − I)b, let
B = P− I, we have the following equivalent criteria for an
attack vector a to be stealth

BĪa = BĪb (19)

where BĪ = PĪ − I.

Since a subset of measurements is protected, those elements
in attack vector a should be restricted to 0. Let y = BĪb,
and assume that the pth measurement is secured, e.g., ap = 0.
Applying the l1-relaxation, the sparse attack vector can be
obtained by solving the following optimization problem:

min
c

‖Hc‖1
s.t.BĪHc = y

Hpc = 0 (20)

where Hp denotes the pth row of matrix H and minimizing l1-
norm of a vector ‖v‖1 =

√∑
i |vi| can promote v to be sparse.

This problem is well discussed in the field of compressive
sensing [28] and can be quickly solved.

IV. STRATEGIC PROTECTION

Increasing the number of protected measurements can make
the stealth attacks more difficult to be accomplished. It is obvi-
ous that stealth attacks can be completely prevented by securing
all measurements. However, it is not economical or necessary
to secure all measurement devices to defend against stealth
attacks. Bobba et al. [18] explored the minimal measurement
subset that is required to be protected to defend against attacks
using brute-force search. This method is time-consuming and
only feasible for small-sized power grids. In this section, an
efficient algorithm is proposed to quickly find measurement
protection subsets, which have the same sizes as that from
brute-force method in nearly all cases.

Let the set P ⊂ {1, 2, . . . ,m} be the measurement set that
are secured and the complementary set P̄ denotes the index of
those measurements that can be contaminated. Similar to (20),
adversaries can construct the sparse attack vector a by solving

min
c

∥∥∥HP̄c
∥∥∥
1

s.t.BĪHc = y

HPc = 0.

(21)

If the protection set P is properly chosen, specific targeted
attack vectors would not exist. Namely, (21) would have no
solutions. Giving specified vector cI , which is the targeted
subset vector of c, the straightforward method is to protect
all measurements in the set corresponding to all nonzero ele-
ments in a that a = HIcI . In this way, it probably requires
a large number of measurements to be protected since a may
not be desirably sparse. Finding or computing the smallest pro-
tection set that can prevent targeted attacks is difficult. The
brute-force search method, which is discussed in [18], can guar-
antee finding the smallest possible sets. However, this method
is extremely complex and not feasible in practice.

When a certain measurement is secured, attackers need to
compromise more measurements or inject extra errors into the
rest of the measurements to launch targeted attacks. From (17),
we have

a = Hc = b+HIcĪ (22)

where b represents predesired injections. It is obvious that pro-
tecting certain measurements can always be more effective than
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others. For example, it is more important to secure the measure-
ments corresponding to the nonzero elements in b than others.
If a subset P of the total measurements is protected, we have

aP = bP +HP̄
I cĪ = 0 (23)

−bP = HP̄
I cĪ . (24)

If the rank of HP̄
I is smaller than protection size |P|, and the

augmented matrix with vector bP can increase the rank, namely
rank

([
HP̄

I |bP
])

= rank
(
HP̄

I
)
+ 1, then cĪ satisfying (24)

does not exist, indicating that the system is successfully pro-
tected from targeted attacks with b. Otherwise, when vector bP
cannot increase the rank of matrix HP̄

I , i.e., rank
([
HP̄

I |bP
])

=

rank
(
HP̄

I
)
, there exist solutions of cĪ , which means that

adversaries can still find attack vectors to launch targeted
attacks. The problem is then to find the best solution to obtain
highly sparse a. It is known from (22) that making a certain sub-
set P of the measurements immune to attacks can result in an
attack vector a which contaminates more state variables. This
makes the attacks more difficult to be accomplished. Therefore,
it can be deduced that protecting certain measurement would
result in a larger ‖a‖1 value than that of protecting another
measurement. Protecting these measurements would be more
effective than others and these measurements can be regarded
as critical measurements to targeted attacks. Based on this idea,
giving specified targeted state bias vector cI , we can design a
greedy method to search a small subset of these measurements
to be protected to defend from targeted attacks.

Algorithm 2 presents the greedy search method to find a
small protection subset of measurements with the knowledge of
existing protection set and targeted vector cI . At each iteration,
the algorithm assume that one more measurement is protected
and check the feasibility of constructing attack vector a. If the
stealth attack vector exists when every measurement is pro-
tected one by one, the algorithm increases the protection set by
selecting the most important measurement, which leads to the
largest value of ‖a‖1 when it is protected. The selection process
continues until stealth targeted attack vector does not exist.

Algorithm 2. Greedy subset searching Algorithm

Input: H, I, cI , P .
Initialize: BĪ = HĪ

(
HT

ĪHĪ
)−1

HT
Ī − I, y = BĪHIcI ,

P ′ = P , k = 1, Pk = P ′.
Iteration: At the k-th iteration:
Compute the complementary set P̄ of P ′.
For i = 1 :

∣∣P̄∣∣
Put the i-th entry in P̄ into Pk: Pk = P ′ ∪ P̄i.
Checking the feasibility of finding c from equation (21).
If feasible

Compute χi = ‖Hc‖1.
else

P ′ = Pk; Quit the iteration.
end

end
Find index i such that χi has the largest value.
Update set P ′ = P ′ ∪ P̄i.
Output: P ′.

For a large power grid system, it is not feasible to find the
smallest protection subset to prevent any of undetectable attacks
that satisfy a = Hc by brute-force search. Instead, we can pro-
tect the union set of those subsets selected for protecting every
single state variable. Our proposed method can quickly find
a small subset that protect the whole system from any stealth
attacks satisfying (6). The search procedure can be concluded
in Algorithm 3.

Algorithm 3. Minimal subset selection algorithm

Input: H.
Initialize: P = 0.
For i = 1 : n

Let I = {i}.
Find Pi using Algorithm 2.

end
P = P1 ∪ P2 ∪ . . . ∪ Pn.
Output: P .

This method cannot guarantee the smallest subset that can be
found, but it provides at least a quasi-optimal subset that con-
tains a slightly larger number of elements. Most importantly,
this method is fast and feasible in practice. In the worst case,
to find a protection set with k elements, the algorithm needs to
test the feasibility Ka times

Ka = mk − k (k − 1)

2
. (25)

This figure is much smaller than that using brute-force method,
where it needs to test

∑k−1
i=1

(
m
i

)
+ 1 combinations in the best

case to find the protection set with k elements. Although our
proposed algorithm may not find the global optimum solution,
it provides some flexibility. When it is not possible to protect
certain selected measurement device in practice, the algorithm
can find a suboptimal subset instead.

V. ROBUST DETECTION

Traditional residue testing-based false data detection meth-
ods cannot provide protection of state estimation from carefully
designed stealth attacks. Therefore, new detection methods
need to be designed to detect random errors as well as stealth
attacks. It is shown that a series of measurement data exhibit
low rank and sparse structure, which can be employed in
anomaly detection method [11]. In practice, measurements tend
to be contaminated with noise. Additionally, it may also happen
that some of the measurements are lost due to the measure-
ment device failures or disrupted communication links. In this
section, these situations are addressed.

Considering a time interval T , the power system obtains a
series of measurements [za1, za2, . . . , zaT ] at the time instants
t1, t2, . . . , tT . These measurements can form a matrix Za ∈
R

m×T , which can be decomposed as

Za = Z+A+E (26)

where Z ∈ R
m×T is the block of true measurements with each

column zi representing true measurements at time ti, A ∈
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R
m×T denotes the attack matrix formed by all instant sparse

attacks, and E represents the noise.
It is known that fast system dynamics are usually well

damped in the power system. This implies that the system states
would change gradually in a small period T , making the matrix
Z typically low rank. Additionally, malicious injection data
matrix A tends to be sparse. This is due to the fact that some of
the measurements may be protected and also because attackers
would launch attacks with least effort. Given corrupted mea-
surements matrix Za, it is possible to recover low-rank matrix Z
and sparse-attack matrix A by performing low rank and sparse
decomposition, which is well discussed in the robust principle
component analysis (PCA) problem [29], which solves

min ‖Z‖∗ + λ ‖A‖1
s.t. ‖Za − Z−A‖F ≤ δ (27)

where ‖·‖∗ denotes the nuclear norm, ‖·‖F denotes the
Frobenius norm, δ represents a small positive noise bound, and
λ is the regulation parameter. This problem is also addressed
in compressive sensing and matrix completion [30] literature.
Thus, true measurements can be recovered and the sparse per-
turbations including malicious attacks and other false data can
also be identified.

Unlike coordinated malicious attacks, the missing data in
the measurements can result in residue changes in (5). These
incomplete measurement data, as well as the measurements
with errors, would be identified as bad data by traditional
BDD algorithms. The proposed algorithm can not only detect
the missing and inaccurate measurement data but also detect
the carefully designed stealth attacks, which is undetectable
to traditional methods. More importantly, the proposed algo-
rithm can recover the true measurements from the incomplete
measurements.

In order to address the problem that only noise-contaminated
partial measurements are collected, the PCA problem can
be extended to the following form with element-wise error
constraints:

min ‖Z‖∗ + λ ‖A‖1
s.t. |PΩ (Za)− PΩ (Z+A)| 	 ε (28)

where 	 represents element-wise inequality and PΩ (·) denotes
a projection operation, in which all elements outside the set Ω
are forced to 0. ε is the matrix of entry-wise error bounds. It
is demonstrated in [31] that this problem is equivalent to the
following problem:

min ‖Z‖∗ + λ ‖T (A, ε̃)‖1
s.t.Za = Z+A (29)

where ε̃ has the same value as ε in the projection set Ω and infi-
nite outside set Ω, and the soft thresholding operation Tε (aij)
is defined as

T (aij , ε) = sign (aij) ·max {|aij | − ε, 0} . (30)

A variant of the augmented Lagrangian method (ALM),
which is also known as the alternating direction method of

multipliers (ADMM) algorithm [32], is used to solve the prob-
lem defined by (29). The Lagrangian corresponding to this
problem is

L (Z,A,Y,μ) = ‖Z‖∗ + λ ‖T (A, ε̃)‖1 + 〈Y,H〉+ μ

2
‖H‖22

(31)

where 〈·〉 denotes the Frobenius product, H = Za − Z−A
and μ > 0. λ can be set to

√
m/ |Ω|. We further define the

singular-value thresholding operation as

D (X, τ) = UT (Σ, τ)VT

where τ is the threshold and X = UΣVT . It is notable that
ADMM updates Z,A,Y separately only once in each iteration,
so it is efficient. The convergence of the whole algorithm is ana-
lyzed in [32], which states that the condition for convergence
requires

∑∞
1 μ−1

k = +∞ where μk denotes the value of μ in
the kth iteration. The whole process of solving (29) is shown in
Algorithm 4.

Algorithm 4. RPCA with entry wise constraints

Input: Zp
a =PΩ (Za) ∈ R

m×T , ε̃ ∈ R
m×T , λ.

Initialize Z = 0, A = 0, Y = 0, μ > 0, ρ > 1, k = 0.
while not converged

1) Update the value of low rank matrix Zk+1:

Zk+1 = D
(
Zp

a −Ak + Yk

μk
, μ−1

k

)
.

2) Compute the value of sparse matrix Ak+1 by minimizing:

F (A) = λ
μ ‖T (A, ε̃)‖1 − tr

(
Yk

μk
(A− (Zp

a − Zk ))
)
+

1
2 ‖A− (Zp

a − Zk )‖F .
3) Update the Lagrange multiplier Y:

Yk+1 = Yk + μk

(
Zp

a − Zk+1−Ak+1

)
.

4) Update μk+1 = ρ · μk.
5) Update k = k + 1.

end while
Return Z, A =T (A, ε̃).
Output Z, A.

It is notable that when incomplete measurements are col-
lected, Algorithm 4 will take the missing data to be sparse
anomalies and it can also recover the low-rank true measure-
ment matrix and sparse anomaly matrix. However, the recovery
accuracy would be impacted as the sparsity is changed. The
recovered sparse attack matrix can ignore those injected data
outside the observation set. Thus, it is more difficult to identify
all malicious attacks with partial observations.

VI. NUMERICAL RESULTS

In this section, the algorithms introduced above are evalu-
ated by simulations performed based on the IEEE test systems
[33]. The MATLAB package MATPOWER [26] is used to sim-
ulate the power system. The convex optimization problems are
solved using the convex optimization toolbox CVX [34].
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Fig. 2. Probabilities of successful attack injections (a) under different SNRs for IEEE-57 bus system, SR is 0.4; (b) for different bus systems, SR is 0.4 and
SNR = 10 dB; (c) for different SRs in IEEE-57 bus system, SNR = 10 dB. (c) This figure utilizes random columns in Null(B) rather than that with largest
variance.

A. Performance of Stealth Attack Construction

The performance of Algorithm 1 which generates highly
sparse undetectable attack vectors is tested in different sce-
narios. Figs. 2 and 6 show the probabilities of successfully
generating undetectable attack vectors with different levels of
sparsity and different attack level ratios (ALRs), respectively.
An attack is regarded as successful when the maximum value
in residue vector does not exceed that without attacks. Sparsity
ratio (SR) is defined as k/m, where k is the number of nonzero
elements in a and m is the size of a. The ALR is defined as
the maximum attack value C to the mean value of the state
variables: C

mean(θ) . Generally, these figures reveal that there
are high probabilities for Algorithm 1 to successfully generate
highly sparse undetectable attacks.

The noise in the simulation is modeled as Gaussian dis-
tributed with zero-mean. The signal-to-noise ratio (SNR)
indicates the noise level compared with true measurements in
the simulation. The noise may be due to measuring devices and
process, or due to the communication channel noise. It is clear
in Figs. 2(a) and 6(a) that in a relatively noisy case, the prob-
ability of a successful attack is extremely high (close to 1). In
the low noise case, there is also high probability of injecting
a successful highly sparse undetectable malicious attack. The
algorithm is also assessed using different power grid system
models, which is shown in Figs. 2(b) and 6(b). It is notable
that in a larger bus system, Algorithm 1 can provide a better
performance even for extremely sparse attacks and high ALRs.
For example, the success ratio is around 90% for IEEE 118-bus
system to generate stealth attacks with SR lower than 0.1, com-
pared with 75% for IEEE 14-bus system shown in Fig. 2(b).
This probability is 100% for IEEE 118-bus system to gener-
ate attacks with ALR = 1 compared to 80% for IEEE 57-bus
system shown in Fig. 6(b). Therefore, it can be anticipated that
the algorithm would have a better performance in a real power
system, which is much larger than the tested systems.

Additionally, it can be seen from Fig. 2 that it is always
harder to inject sparser attacks while Fig. 6 reveals that attacks
with higher values would be more likely to be detected.
Figs. 2(c) and 6(c) display the performance when injecting
attacks with different SRs and ALRs. It is notable that in
Fig. 6(c), the algorithm utilizes randomly selected columns in

Fig. 3. Sparsity of a under different attack conditions.

TABLE I
NUMBER OF MEASUREMENTS IN PROTECTION SETS

FROM TWO METHODS

a basis matrix of Null(B) rather than that with the largest vari-
ance. The results imply that using randomly chosen columns
can also successfully inject undetectable attacks with high
probabilities.

It is known that stealth attacks having m− n nonzero entries
can always be found. In IEEE 57-bus system, this figure is 80,
for which the SR is about 59%. However, by using Algorithm
1, there is still a high probability that attackers can inject unde-
tectable attacks with SRs lower than 59%. Even for an attack
with SR lower than 0.05, the success rate is still around 80%
when the SNR is 10 dB and ALR is 0.5.

Targeted attack construction method in (20) is assessed under
different attack conditions in which different percentage of
total state variables are assumed to be modified. The targeted
set is randomly selected and the protected measurement is
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Fig. 4. Number of protected measurements to protect every single state variable from being targeted. (a) IEEE-9 bus system. (b) IEEE-14 bus system.

TABLE II
NUMBER OF TESTING TIMES FOR TWO ALGORITHMS TO FIND PROTECTION SUBSETS

Fig. 5. Probability of successful false data detection.

TABLE III
DETECTION PROBABILITY AND MEASUREMENTS DEVIATION WITH

PARTIAL OBSERVATIONS

also randomly chosen. It can be observed from Fig. 3 that, in
order to precisely alter specified state variables, the coordinated
attack vectors cannot be highly sparse. Thus, attackers need
to compromise a number of measurements to launch targeted
attacks. Highly sparse attacks can only be achieved when the
percentage of targeted state variables is extremely low for cer-
tain test systems. For example, SR can be less than 0.1 for IEEE

39-bus system when a small number of state variables are tar-
geted. The figure also shows that in some cases, SR of attacks
are 0. They correspond to the cases that: for certain targeted
set of state variables, no feasible attack vectors exist when the
pth measurement is protected. Therefore, it implies that when
certain carefully selected measurements are protected, attackers
may not be able to inject targeted attacks.

B. Performance of Strategic Protection

This section evaluates our proposed protection algorithm. To
compare the protection subset generated by the proposed algo-
rithm with that from brute-force method, we apply IEEE-9 bus
system, which contain 17 total measurements, and IEEE-14 bus
system with 33 total measurements. Table I shows the number
of measurements in protection subset found by two methods.
The results from the proposed algorithm for other larger test
systems are also provided. In the first two test systems, the
smallest protection sets generated from the proposed algorithm
contain only slightly more measurements than that from brute-
force method. In IEEE-14 bus system, the difference of this
number is quite small compared to the total number of 33
measurements. Thus, Algorithm 2 can find protection subsets
with similar number of elements but spend much less time than
brute-force method.

Fig. 4 displays the number of elements in the smallest pro-
tection subsets to protect every single state variable from being
targeted by adversaries. The whole system protection subsets
shown in Table I are the unions of the protection subsets for pro-
tecting single variables. From both figures, it can be seen that
in most cases the proposed algorithm can find a protection sub-
set having the same size as that found by brute-force method.
The size differences are only 1 or 2 when the two methods find
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Fig. 6. Probabilities of successful attack injections (a) under different SNRs for IEEE-57 bus system, ALR is 0.5; (b) for different bus systems, ALR is 0.5 and
SNR = 10 dB; and (c) for different ALRs for IEEE-57 bus system, SNR = 10 dB.

subsets with different number of elements. This number is quite
small compared with the total number of 33 measurements in
IEEE-14 bus.

Table II compares the complexities of the two algorithms in
terms of the number of feasibility testing times. The results
correspond with the simulation shown in Fig. 4 in which mea-
surement protection subsets are searched for protecting every
single state variable. It is obvious that when the size of pro-
tection subset exceeds 3, the difference of the two methods
becomes significant. This difference is more significant when
the size of protection subset is bigger as the brute-force search
needs to exhaust all subset combinations with smaller sizes. It is
also clear that in a larger power system, the difference is much
larger for two algorithms to find a subset with same size as that
in a smaller system. The testing times of the proposed algorithm
will increase only slightly when the size of protection subset
and the system scale grow, which is also described by (25).
In a real power system, while brute-force method is infeasible
because of the combinatorial complexity, the proposed method
instead is fast and practical.

C. Performance of Detection

The performance of the detection algorithm is tested on IEEE
14-bus system and IEEE 57-bus system. The malicious attack
vectors are constructed using our proposed Algorithm 1. In
order to obtain sparsity in the rows of the attack block matrix,
different column vectors in the null space in Algorithm 1 are
utilized. The SR of the attacks is chosen as 15%. In Fig. 6(c),
it is shown that when SR = 0.15, traditional residual testing-
based algorithms will not be able to detect those attacks. Thus,
in the simulation, the algorithm is not compared with traditional
methods. Additionally, recently proposed algorithms such as
[23] do not deal with partial observations. These algorithms
do not address the problem of error contaminated measure-
ments as well. The detection method discussed in this paper
addresses both problems. Most importantly, it can not only
detect anomalies but also recover the true measurements from
partial-contaminated observations.

We use the false alarm rate (FAR) which is the probability
of positive alarm when there are no attacks. The noise per-
formance of the algorithm compared to RPCA with Frobenius
constraints in (27) has been extensively studied in [31]. In this

paper, we focus on identifying anomalies in different scenarios
when undetectable attacks are injected in power systems.

Fig. 5 shows the error tolerance performance in the IEEE
14-bus system. It is shown that when FAR exceeds 10%, the
algorithm can identify attacks with high probabilities which are
approaching 100%. This probability is still quite high in the
presence of highly dense noise (95%). When FAR decreases,
the system will absorb more noise and detection probability
decreases. It can be seen that there is still a high chance of
detecting anomalies: more than 90% when FAR decreases to
an extremely low level (0.025) under SNR = 10dB.

In the case where partial measurements are collected, miss-
ing data are regarded as sparse anomalies in Algorithm 4.
Additionally, nonzero entries in sparse matrix A can only be
confirmed as attacks when they are located in the observa-
tion set. This make identifications of attacks more difficult.
Algorithm 4 can circumvent this problem since it also recovers
the block of true measurements. We evaluate the attack detec-
tion probabilities as well as the deviation rate of the recovered
measurement variables, which is defined as ‖z− z′‖2 / ‖z‖2.
Table III shows the results when incomplete measurements
are collected based on the IEEE 57-bus system. The FAR
equals 0.05 and SNR is set to 8 dB. It can be seen that attack
detection probability declines greatly with increasing missing
observations. However, the recovered measurement variables
experience only small deviations. Therefore, the proposed algo-
rithm can successfully verify the true measurements, even in the
situation that only partial measurements are observed (Fig. 6).

VII. CONCLUSION

In this paper, we looked into the problem of malicious
FDIAs in power grid state estimation. We proposed stealth
attack construction strategies for different scenarios and also
introduced the countermeasures. It is shown that our proposed
random attack construction algorithm can generate extremely
sparse attack vectors. These optimal or quasi-optimal attacks
can be achieved with high probability of success. The tar-
geted undetectable attacks are obtained based on a optimization
framework. The results show that attack vectors in this scenario
cannot be extremely sparse, which is also discussed in litera-
ture. An efficient protection scheme is proposed in this paper
to find an effective measurement protection subset to defend
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from the stealth attacks. The simulation results reveal that this
subset searching algorithm can find a subset with almost the
same size as that from the brute-force method. Additionally, a
detection algorithm is introduced to detect the stealth attacks as
well as other false data. This algorithm considers the case in
which only partial measurements are collected in the presence
of noise. The performance is demonstrated via the simulation
results based on IEEE test power systems.
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Abstract—This paper discusses malicious false data injection
attacks on the wide area measurement and monitoring system in
smart grids. First, methods of constructing sparse stealth attacks
are developed for two typical scenarios: 1) random attacks in
which arbitrary measurements can be compromised; and 2) tar-
geted attacks in which specified state variables are modified. It is
already demonstrated that stealth attacks can always exist if the
number of compromised measurements exceeds a certain value.
In this paper, it is found that random undetectable attacks can
be accomplished by modifying only a much smaller number of
measurements than this value. It is well known that protecting the
system from malicious attacks can be achieved by making a certain
subset of measurements immune to attacks. An efficient greedy
search algorithm is then proposed to quickly find this subset of
measurements to be protected to defend against stealth attacks. It
is shown that this greedy algorithm has almost the same perfor-
mance as the brute-force method, but without the combinatorial
complexity. Third, a robust attack detection method is discussed.
The detection method is designed based on the robust principal
component analysis problem by introducing element-wise con-
straints. This method is shown to be able to identify the real
measurements, as well as attacks even when only partial observa-
tions are collected. The simulations are conducted based on IEEE
test systems.

Index Terms—Bad data detection (BDD), malicious data attack,
robust principle component analysis (PCA), smart grid security.

I. INTRODUCTION

C OMPARED with the traditional power grids, a smart grid
tends to be much more reliable, efficient, and intelligent

due to the remarkable advancements in sensing, monitoring,
control technologies, and also the tight integration with cyber
infrastructure and advanced computing and communication
technologies [1]. However, this integration can lead to new
vulnerabilities to cyber attacks on the power systems. Cyber
attacks are reported as one of the main potential threats to the
reliable operation of the power system [2], [3]. In this paper, we
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consider false data injection attacks (FDIAs) against the super-
visory control and data acquisition (SCADA) system in smart
grids.

A power grid transmission system is a sophisticated network
which connects a number of electric power generators to var-
ious consumers through extensive power lines. It is extremely
important to monitor the state of this complex system such that
various control and planning tasks can be performed and the
reliable operation of the power system is guaranteed. In power
systems, state estimation [4], [5] is used to estimate system state
variables through a number of power measurements and is a
useful and necessary function in energy management systems
(EMS).

The SCADA system obtains power status information such
as transmission line power flows, bus voltages, and also circuit-
braker signals through remote terminal units (RTUs). These
measurements are then used for the state estimation process
in EMS, which builds real-time electricity network models. In
smart grids, the complex network connections as well as the
Internet make SCADA systems susceptible to potential FDIAs,
in which adversaries aim to contaminate the measurements
collected from RTUs and bias the state estimation at the trans-
mission level to mislead the operation of the power system.
Fig. 1 presents a block diagram of the power grid, commu-
nication network, SCADA, and control center. It is critically
important to understand the behavior of adversaries so that
appropriate countermeasures can be designed to either protect
the system from attacks beforehand or identify the malicious
false data injections in the measurements.

Recently, the problem of FDIAs as well as countermeasures
has attracted a lot of attention among researchers. False data
in state estimation were first discussed by Schweppe et al. in
their pioneering work about state estimation [6]. It was not well
researched until Liu et al. [7] proposed that if adversaries pos-
sess the knowledge of power grid topology, they may inject
coordinated data attacks, which could evade detection by the
bad data detection (BDD) system in state estimator. Based on
this strategy, plenty of efforts have been made to design effec-
tive attack algorithms and the corresponding countermeasures,
such as [8]–[11].

Adversaries may launch attacks through hacking RTUs such
as sensors in substations. In consideration of the accessibility
of RTUs and also hacking cost, attackers always tend to con-
trol only a few RTUs to implement a successful attack [7].
Kim and Poor [8] developed a general optimization framework-
based formulation for constructing sparse attack vectors when
a subset of measurements is protected, while Ozay et al. [12]

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/
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Fig. 1. Illustration of the power grid, communication network, SCADA, and
control center. The warning signs indicate the vulnerabilities to FDIAs.

extended the sparse attack construction model to a distributed
framework. Sandberg et al. [13] considered sparse attacks with
injections into critical measurements, which are essential for
the observability of the power grids and sensitive to attacks.
In [14], methods of finding both strong stealth attacks and
also optimal weak malicious data attacks (when power grid
topology is unknown) with the aim of reducing the number
of compromised measurements were discussed. It has been
proposed that even when the power grid information is unavail-
able, stealth attacks can still be accomplished [15], [16]. Zhang
et al. [17] investigated the attack strategy with consideration of
communication rate constraint in cyber–physical systems.

There are two approaches to defend against the malicious
data attacks. The first is to protect the system beforehand
from being attacked by adversaries. This can be achieved by
either protecting a number of measurements to prevent stealth
attacks [18], [19], or monitoring state information directly by
the deployment of phasor measurements units (PMU) [8], [20].
In practice, it is not feasible to secure all measurements to pre-
vent attacks due to the high cost. Instead, stealth malicious
attacks can be prevented by protecting a carefully selected sub-
set of measurements. A challenge of this approach is to search
the effective small measurement subset to make them immune
to attacks. Bobba et al. [18] chose the subsets for small power
test systems using brute-force search.

The second approach to deal with malicious attacks is to
identify the injected false data in measurements and then either
abandon the contaminated data or correct them. Traditional
false data detection methods are based on residue test [6], [21].
They cannot protect state estimation from carefully designed
stealth attacks. Recently, with the advancement of smart grid,
new detection methods have been proposed. A survey of the
existing detection methods was provided in [22]. In [14], gener-
alized likelihood ratio test is introduced to detect weak FDIAs.
The cumulative sum (CUSUM) test-based detection mecha-
nism introduced in [16] is also designed for nonstealth attacks.
Esmalifalak et al. [23] discussed stealth false data detection
methods using machine learning. Graphical methods are used
to design defending mechanisms in [24]. In [11], an effective

method capable of detecting false data as well as recovering
the real state information was proposed. In [25], both the attack
and detection algorithms were discussed, but the subset protec-
tion method was not considered. Additionally, only preliminary
results regarding the attack strategies were presented in [25].
This paper substantially discusses the methods of sparse attack
construction, the strategy of system protection from attacks, and
the algorithm of stealth attack detection.

This paper has made three contributions: First, methods of
constructing stealth attacks are proposed for two typical sce-
narios. We consider a general scenario in which adversaries can
access arbitrary measurements to change arbitrary state vari-
ables in state estimation. To the best of our knowledge, there is
no feasible algorithm that can efficiently construct highly sparse
undetectable attack vectors in this case. In [7], it is observed
that the optimal undetectable attack vector to compromise the
minimum number of measurements can be found using brute-
force search. However, this is not practical due to the high
complexity. We propose an efficient and effective attack vec-
tor construction algorithm which can quickly generate highly
sparse attack vectors in this scenario.

Liu et al. [7] also have demonstrated that stealth attack vec-
tors always exist when the number of measurements that can be
contaminated exceeds a certain value. However, it is shown in
this paper that our proposed method can launch stealth attacks
by manipulating only a much smaller number of measurements
with high probability. Additionally, stealth attacks in a specific
scenario are also considered in this paper. An optimization-
based algorithm is introduced to generate sparse targeted attack
vectors to bias specified state variables with the consideration
that a subset of measurements is protected.

A fast greedy search method is then proposed to quickly find
a subset of measurements to be protected to defend against
stealth attacks. This fast method can find a subset with the
same size as brute-force search in nearly all cases. Finally,
inspired by Liu et al. [11], we introduce a detection algo-
rithm considering the noise case with partial observations. The
proposed algorithm extends the method in [11] to address
the problem of detecting stealth attacks as well as recovering
true state information with only partially collected contami-
nated measurements. The performance of the proposed algo-
rithms is investigated using IEEE test systems with software
MATPOWER [26].

This paper is organized as follows. Section II introduces
power system model and the stealth attack problem in state esti-
mation. In Section III, proposed attack strategies for different
scenarios are introduced. Section IV provides the measure-
ment protection algorithm and Section V presents the false
data detection method. Simulation results are presented in
Section VI. Section VII concludes the paper.

II. POWER GRID AND ATTACK MODEL

In this paper, we consider a power transmission grid which
consists of n+ 1 buses and l transmission lines. The net-
work connectivity of this power grid can be described by the
(n+ 1)× l oriented incidence matrix M, of which each col-
umn corresponds to the power line (i, j) and consists of all
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0s except the ith and jth elements having value of 1 and −1,
respectively [27]. The nonsingular diagonal matrix D ∈ R

l×l

describes the physical properties of the transmission grid with
diagonal entries equal to admittance of the transmission lines.
SCADA collects measurements from RTUs such as bus volt-
ages, bus power injections, and branch power flows from the
power grid and sends them to the state estimator to estimate the
state of the power system in the control center.

A. State Estimation

The state estimation problem is to use power measurements
to timely estimate the state of the power system. Specifically,
power system state refers to bus voltage angles θ and bus volt-
age magnitudes V . In the linearized dc power flow model [4
Ch. 2], bus magnitudes are assumed already known and are
all close to unity. Additionally, phase angle at reference bus
is set to zero radians; thus, estimation of only n bus voltage
angles [θ1, θ2, . . . , θn]

T is required. The measurements have the
following relationship with the state variables:

z = Hθ + e (1)

where z = [z1, z2, . . . , zm]
T denotes measurement vector and

H ∈ R
m×n is the measurement Jacobian matrix constructed

by H =

[
DMT

MDMT

]
. e = [e1, e2, . . . , em]

T represents the

Gaussian measurement noise and it is assumed to be zero-
mean for convenience [14]. Measurements include power flows
on l transmission lines and power injection at n buses. In
the dc power flow model, power from bus i to j can be
approximated as

Pij = (θi − θj) dij (2)

where dij is the admittance of the transmission line from bus
i to j. Thus, power flows on transmission lines are computed
by MDMT θ and power injections at buses are obtained from
DMT θ.

The state vector can be estimated from measurements using
the weighted least-square (WLS) method [4]. In particular,
system states are estimated as

θ̂ =
(
HTWH

)−1
HTWz = Kz (3)

where diagonal weighting matrix W has diagonal entries
equaling to the inverse of noise variances and K =(
HTWH

)−1
HTW.

B. False Data Injection Attacks

Malicious false data can be injected by manipulating the RTU
measurements to bias the estimated states. System measure-
ments with malicious data becomes

za = Hθ + a+ e (4)

where a = [a1, a2, . . . , am]
T denotes the attack vector.

Bad data in measurements can lead to incorrect state estima-
tion and cause severe outcomes. Traditional methods to detect
bad data are mostly based on the residue test. The residue vector
r refers to the difference between the obtained measurements
and the computed value from the estimated state

r = z −Hθ̂. (5)

For example, the largest normalized residue (LNR) test identi-
fies bad data if the absolute value of the largest element in r is
larger than a certain threshold τ , i.e., maxi |ri| > τ .

However, carefully designed malicious data attacks can
bypass residue-based BDD. If attackers have knowledge about
the power grid topology information, or H, they can inject
stealth attacks by constructing the attack vector such that [7]

a = Hc. (6)

The measurements can then be written as

za = H (θ + c) + e (7)

where c ∈ R
n is any arbitrary vector and denotes the errors

added to the state variables introduced by a. The attack is unde-
tectable as the residue r would not change compared to that
without attack a [7]. The system will regard the manipulated
state (θ + c) as the real value in the state estimator.

III. STEALTH ATTACK STRATEGIES

In order to evade detection in the control center, attack vec-
tors are designed to satisfy (6). Additionally, attackers would
tend to compromise as few measurements as possible in effort
to launch attacks with least effort. Therefore attack strategies
are expected to be able to construct highly sparse attack vec-
tors. The stealth sparse attacks were first discussed in [7], in
which the authors proposed that attackers can modify state vari-
ables in state estimation without being detected by modifying
a small number of carefully chosen RTU measurements. In this
paper, two methods are introduced to construct sparse attack
vectors for two typical scenarios: random attacks in which arbi-
trary measurements can be compromised and targeted attacks
in which specific state variables need to be biased.

A. Random Attacks

In this scenario, it is assumed that no measurements are pro-
tected, and the changes of state variables are not specified.
Attackers can hack arbitrary measurements to bias arbitrary
state variables. Thus, the aim is solely to find highly sparse vec-
tor a that satisfies (6). To the best of our knowledge, there is no
feasible algorithm that can efficiently construct sparse attack
vectors in this case. Since a is a linear combination of the
columns of H, it is possible to generate sparse vector by column
transformation of H. However, this method cannot guarantee
sparsity. It is demonstrated by Liu et al. [7] that a k-sparse
stealth attack vector always exist if k > m− n. We propose
a novel method that can construct a sparse attack vector with
much smaller k.
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Liu et al. [7] also proposed that a projection matrix
P = H

(
HTH

)−1
HT can lead to an equivalent criterion to

generate attack vector a satisfying (6)

Pa = H
(
HTH

)−1
HTHc = Hc

(P− I)a = 0.

Let B = P− I, then undetectable attack vector a satisfies

Ba = 0. (8)

This criterion can be used to generate attack vectors in certain
scenarios such as when a subset of measurements is protected
[7]. For random attacks, this criterion can also be utilized.
A straightforward way to find sparse attack vectors can be
formulated using the following optimization problem:

min ‖a‖0
s.t.Ba = 0, a �= 0 (9)

where l0-norm is the number of the nonzero elements in a. This
is a nonconvex problem and finding the solution to this problem
is highly complex. However, it is obvious that a feasible vector
a must be in the null space of matrix B, which is defined as

Null(B) = {v ∈ R
m |Bv = 0} . (10)

Rather than solving the complex problem in (9), we propose an
algorithm taking advantage of null space of B, which can be
easily computed.

Proposed algorithm. Measurements are always subject to
noise due to the errors in the measuring process and the noise
in the communication channels. The noise can be modeled as
Gaussian distributed with variance Σe. The system is usually
designed to be tolerant to measurement deviations within the
noise level. Additionally, vectors in the null space of B usually
comprise a small number of relatively large elements and the
majority are small value elements. It provides the possibility
for attackers to inject attack vectors designed based on vectors
in Null(B). Those small valued elements can be dealt with as
noise if their average energy, denoted as ΣB , is within the range
of the variance of the noise Σe, namely ΣB ≤ Σe. Therefore,
attackers only need to inject elements of large values in the
column vectors of Null(B) into the system and the number of
measurements to be compromised will be greatly reduced. We
define a shrinkage operation St as follows:

St (x) :=

⎧⎨
⎩

x

|x| − t
max (|x| − t, 0) , |x| �= t

x, |x| = t.
(11)

The attack vector construction procedure can then be
designed as follows. Given matrix measurement matrix H,
compute matrix B as well as the standard basis matrix U of
its null space Null(B) and choose vector u with the largest
variance from all column vector in U

u = argmax
i

(var (ui)) (12)

where ui denotes the ith column in U. Then, scale vector u up,
or down, till the maximal element reaches a designed attack

value C. The last step is to force the small elements below
threshold t to 0

a = St (εu) (13)

where ε = C
max(u) .

Algorithm 1 concludes the whole process of attack vector
construction. It is notable that threshold t should be carefully
chosen in the consideration of both sparsity and evading BDD.
A higher t can generate a sparser attack vector but also increase
the possibility of being detected. It is also notable that if the
noise is not zero-mean, the threshold t is chosen according
to the tolerable noise range. Since the measurement noise fol-
lows N (0, σ2), it is assumed that all noise variables are within
the range of [−3σ, 3σ] (otherwise it will be identified as bad
data). Thus, threshold t should not exceed 3σ. The following
proposition can assist in choosing threshold t.

Algorithm 1. Sparse stealth attacks construction

Input: H ∈ R
m×n, C > 0, t > 0.

Procedure:
1) Compute B = H

(
HTH

)−1
HT − I.

2) Get the standard basis matrix U of Null(B) so that i-th
column ui: Bui = 0.

3) Find column vector u in U: u = argmaxi(var(ui)).
4) Scale up/down vector u by ε: u′ = εu and ε = C

max(u) .
5) Shrink the vector using the threshold t to obtain the sparse

attack vector a: a = St (u
′).

Output: a.

Proposition 1: If an attack vector a is constructed using
Algorithm 1 with the shrinkage threshold t, the probability
of successfully evading detection by residue-based detection
algorithms in the system is at least

Pl(t) =
1

2

[
1 + erf

(
3σ − t

σ
√
2

)]
(14)

where erf(·) refers to the Gauss error function and σ is the
standard deviation of the Gaussian measurement noise.

Proof: Since the vector u is selected form Null(B), it
satisfies u = Hc, where c ∈ R

n. Let a = St (εu) = εu− ut.
The residual vector r′ when attack a is injected into system is
calculated as

r′ = za −Hθ̂a = z + a+ e−HK(z + a+ e)

= Hx+ εHc− ut + e−H(KHx+KεHc−Kut+Ke)

= Hx+ εHc− ut + e−Hx− εHc+HKut −HKe

= (I−HK)(e− ut). (15)

Equation (15) indicates that when an attack generated by
Algorithm 1 exists, it can be regarded that the random noise is
perturbed by small amounts. A very small element comparing
to σ in ut should not impact the noise level or the residue since
the shifted noise variable is still within the tolerable range. To
evaluate the probability of having no impact on noise level, we
consider the worst case when all elements in vector ut equal
the threshold t. In this case, it can be viewed as that the noise
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level is shifted down by an amount of t. The shifted noise e′

follows N (−t, σ2). Therefore, the probability when the shifted
noise variables are within the normal range of [−3σ, 3σ] can be
computed by

Pl(t) =

3σ∫
−3σ

1

σ2π
exp

(
− (k + t)

2

2σ2

)
dk. (16)

This probability can be evaluated using (14). In fact, as a large
number of elements in ut tend to be much smaller than t,
nondetection probability P (t) > Pl(t). Thus, proposition 1 is
proved. �

B. Targeted Attacks

In practice, adversaries may intend to modify specific state
variables. In this case, the amounts in the targeted subset in the
vector c are fixed. Sparse attack vector construction methods
for targeted attacks have been extensively explored in the litera-
ture, e.g., [7], [8], and [12]. Additionally, certain measurements
may be protected, and adversaries would not be able to compro-
mise these secured measurements. It is notable that protecting
all measurements may not be feasible due to the high cost.
Therefore, sparse attack vectors need to be carefully designed
to contaminate specific state variables without compromising
those protected measurements.

Let I denote the indices of state variables that are specifi-
cally attacked. Ī is the complementary set of I and denotes the
indices of state variables that can be arbitrarily chosen to launch
targeted attacks. Measurements Jacobian H is [h1,h2, . . . ,hn]
where hi denotes the ith column vector of H. A stealth attack
vector a can then be written as

a = Hc =
∑
i∈I

hici +
∑
j∈Ī

hjcj . (17)

In a targeted attack, the value of ci, i ∈ I is fixed and pre-
designed to be injected into the state variables. Let b =∑

i∈I hici, which is predesigned by attackers. The attack
vector a is then designed based on the fixed vector b. As
proposed in [7], (17) can be transformed using a projection
matrix P = H

(
HTH

)−1
HT . Since a− b = HĪcĪ , where

HĪ denotes the submatrix of H containing columns with index

in Ī, i.e., HĪ =
[
hj1 ,hj2 , . . . ,hj|Ī|

]
, where ji ∈ Ī for 1 ≤

i ≤
∣∣Ī∣∣. By left-multiplying both sides with PĪ , we have

PĪ (a− b) = PĪHĪcĪ

= HĪ
(
HT

ĪHĪ
)−1

HT
ĪHĪcĪ

= HĪcĪ = a− b (18)

where PĪ = HĪ
(
HT

ĪHĪ
)−1

HT
Ī .

We can then easily obtain that (PĪ − I)a = (PĪ − I)b, let
B = P− I, we have the following equivalent criteria for an
attack vector a to be stealth

BĪa = BĪb (19)

where BĪ = PĪ − I.

Since a subset of measurements is protected, those elements
in attack vector a should be restricted to 0. Let y = BĪb,
and assume that the pth measurement is secured, e.g., ap = 0.
Applying the l1-relaxation, the sparse attack vector can be
obtained by solving the following optimization problem:

min
c

‖Hc‖1
s.t.BĪHc = y

Hpc = 0 (20)

where Hp denotes the pth row of matrix H and minimizing l1-
norm of a vector ‖v‖1 =

√∑
i |vi| can promote v to be sparse.

This problem is well discussed in the field of compressive
sensing [28] and can be quickly solved.

IV. STRATEGIC PROTECTION

Increasing the number of protected measurements can make
the stealth attacks more difficult to be accomplished. It is obvi-
ous that stealth attacks can be completely prevented by securing
all measurements. However, it is not economical or necessary
to secure all measurement devices to defend against stealth
attacks. Bobba et al. [18] explored the minimal measurement
subset that is required to be protected to defend against attacks
using brute-force search. This method is time-consuming and
only feasible for small-sized power grids. In this section, an
efficient algorithm is proposed to quickly find measurement
protection subsets, which have the same sizes as that from
brute-force method in nearly all cases.

Let the set P ⊂ {1, 2, . . . ,m} be the measurement set that
are secured and the complementary set P̄ denotes the index of
those measurements that can be contaminated. Similar to (20),
adversaries can construct the sparse attack vector a by solving

min
c

∥∥∥HP̄c
∥∥∥
1

s.t.BĪHc = y

HPc = 0.

(21)

If the protection set P is properly chosen, specific targeted
attack vectors would not exist. Namely, (21) would have no
solutions. Giving specified vector cI , which is the targeted
subset vector of c, the straightforward method is to protect
all measurements in the set corresponding to all nonzero ele-
ments in a that a = HIcI . In this way, it probably requires
a large number of measurements to be protected since a may
not be desirably sparse. Finding or computing the smallest pro-
tection set that can prevent targeted attacks is difficult. The
brute-force search method, which is discussed in [18], can guar-
antee finding the smallest possible sets. However, this method
is extremely complex and not feasible in practice.

When a certain measurement is secured, attackers need to
compromise more measurements or inject extra errors into the
rest of the measurements to launch targeted attacks. From (17),
we have

a = Hc = b+HIcĪ (22)

where b represents predesired injections. It is obvious that pro-
tecting certain measurements can always be more effective than
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others. For example, it is more important to secure the measure-
ments corresponding to the nonzero elements in b than others.
If a subset P of the total measurements is protected, we have

aP = bP +HP̄
I cĪ = 0 (23)

−bP = HP̄
I cĪ . (24)

If the rank of HP̄
I is smaller than protection size |P|, and the

augmented matrix with vector bP can increase the rank, namely
rank

([
HP̄

I |bP
])

= rank
(
HP̄

I
)
+ 1, then cĪ satisfying (24)

does not exist, indicating that the system is successfully pro-
tected from targeted attacks with b. Otherwise, when vector bP
cannot increase the rank of matrix HP̄

I , i.e., rank
([
HP̄

I |bP
])

=

rank
(
HP̄

I
)
, there exist solutions of cĪ , which means that

adversaries can still find attack vectors to launch targeted
attacks. The problem is then to find the best solution to obtain
highly sparse a. It is known from (22) that making a certain sub-
set P of the measurements immune to attacks can result in an
attack vector a which contaminates more state variables. This
makes the attacks more difficult to be accomplished. Therefore,
it can be deduced that protecting certain measurement would
result in a larger ‖a‖1 value than that of protecting another
measurement. Protecting these measurements would be more
effective than others and these measurements can be regarded
as critical measurements to targeted attacks. Based on this idea,
giving specified targeted state bias vector cI , we can design a
greedy method to search a small subset of these measurements
to be protected to defend from targeted attacks.

Algorithm 2 presents the greedy search method to find a
small protection subset of measurements with the knowledge of
existing protection set and targeted vector cI . At each iteration,
the algorithm assume that one more measurement is protected
and check the feasibility of constructing attack vector a. If the
stealth attack vector exists when every measurement is pro-
tected one by one, the algorithm increases the protection set by
selecting the most important measurement, which leads to the
largest value of ‖a‖1 when it is protected. The selection process
continues until stealth targeted attack vector does not exist.

Algorithm 2. Greedy subset searching Algorithm

Input: H, I, cI , P .
Initialize: BĪ = HĪ

(
HT

ĪHĪ
)−1

HT
Ī − I, y = BĪHIcI ,

P ′ = P , k = 1, Pk = P ′.
Iteration: At the k-th iteration:
Compute the complementary set P̄ of P ′.
For i = 1 :

∣∣P̄∣∣
Put the i-th entry in P̄ into Pk: Pk = P ′ ∪ P̄i.
Checking the feasibility of finding c from equation (21).
If feasible

Compute χi = ‖Hc‖1.
else

P ′ = Pk; Quit the iteration.
end

end
Find index i such that χi has the largest value.
Update set P ′ = P ′ ∪ P̄i.
Output: P ′.

For a large power grid system, it is not feasible to find the
smallest protection subset to prevent any of undetectable attacks
that satisfy a = Hc by brute-force search. Instead, we can pro-
tect the union set of those subsets selected for protecting every
single state variable. Our proposed method can quickly find
a small subset that protect the whole system from any stealth
attacks satisfying (6). The search procedure can be concluded
in Algorithm 3.

Algorithm 3. Minimal subset selection algorithm

Input: H.
Initialize: P = 0.
For i = 1 : n

Let I = {i}.
Find Pi using Algorithm 2.

end
P = P1 ∪ P2 ∪ . . . ∪ Pn.
Output: P .

This method cannot guarantee the smallest subset that can be
found, but it provides at least a quasi-optimal subset that con-
tains a slightly larger number of elements. Most importantly,
this method is fast and feasible in practice. In the worst case,
to find a protection set with k elements, the algorithm needs to
test the feasibility Ka times

Ka = mk − k (k − 1)

2
. (25)

This figure is much smaller than that using brute-force method,
where it needs to test

∑k−1
i=1

(
m
i

)
+ 1 combinations in the best

case to find the protection set with k elements. Although our
proposed algorithm may not find the global optimum solution,
it provides some flexibility. When it is not possible to protect
certain selected measurement device in practice, the algorithm
can find a suboptimal subset instead.

V. ROBUST DETECTION

Traditional residue testing-based false data detection meth-
ods cannot provide protection of state estimation from carefully
designed stealth attacks. Therefore, new detection methods
need to be designed to detect random errors as well as stealth
attacks. It is shown that a series of measurement data exhibit
low rank and sparse structure, which can be employed in
anomaly detection method [11]. In practice, measurements tend
to be contaminated with noise. Additionally, it may also happen
that some of the measurements are lost due to the measure-
ment device failures or disrupted communication links. In this
section, these situations are addressed.

Considering a time interval T , the power system obtains a
series of measurements [za1, za2, . . . , zaT ] at the time instants
t1, t2, . . . , tT . These measurements can form a matrix Za ∈
R

m×T , which can be decomposed as

Za = Z+A+E (26)

where Z ∈ R
m×T is the block of true measurements with each

column zi representing true measurements at time ti, A ∈
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R
m×T denotes the attack matrix formed by all instant sparse

attacks, and E represents the noise.
It is known that fast system dynamics are usually well

damped in the power system. This implies that the system states
would change gradually in a small period T , making the matrix
Z typically low rank. Additionally, malicious injection data
matrix A tends to be sparse. This is due to the fact that some of
the measurements may be protected and also because attackers
would launch attacks with least effort. Given corrupted mea-
surements matrix Za, it is possible to recover low-rank matrix Z
and sparse-attack matrix A by performing low rank and sparse
decomposition, which is well discussed in the robust principle
component analysis (PCA) problem [29], which solves

min ‖Z‖∗ + λ ‖A‖1
s.t. ‖Za − Z−A‖F ≤ δ (27)

where ‖·‖∗ denotes the nuclear norm, ‖·‖F denotes the
Frobenius norm, δ represents a small positive noise bound, and
λ is the regulation parameter. This problem is also addressed
in compressive sensing and matrix completion [30] literature.
Thus, true measurements can be recovered and the sparse per-
turbations including malicious attacks and other false data can
also be identified.

Unlike coordinated malicious attacks, the missing data in
the measurements can result in residue changes in (5). These
incomplete measurement data, as well as the measurements
with errors, would be identified as bad data by traditional
BDD algorithms. The proposed algorithm can not only detect
the missing and inaccurate measurement data but also detect
the carefully designed stealth attacks, which is undetectable
to traditional methods. More importantly, the proposed algo-
rithm can recover the true measurements from the incomplete
measurements.

In order to address the problem that only noise-contaminated
partial measurements are collected, the PCA problem can
be extended to the following form with element-wise error
constraints:

min ‖Z‖∗ + λ ‖A‖1
s.t. |PΩ (Za)− PΩ (Z+A)| 	 ε (28)

where 	 represents element-wise inequality and PΩ (·) denotes
a projection operation, in which all elements outside the set Ω
are forced to 0. ε is the matrix of entry-wise error bounds. It
is demonstrated in [31] that this problem is equivalent to the
following problem:

min ‖Z‖∗ + λ ‖T (A, ε̃)‖1
s.t.Za = Z+A (29)

where ε̃ has the same value as ε in the projection set Ω and infi-
nite outside set Ω, and the soft thresholding operation Tε (aij)
is defined as

T (aij , ε) = sign (aij) ·max {|aij | − ε, 0} . (30)

A variant of the augmented Lagrangian method (ALM),
which is also known as the alternating direction method of

multipliers (ADMM) algorithm [32], is used to solve the prob-
lem defined by (29). The Lagrangian corresponding to this
problem is

L (Z,A,Y,μ) = ‖Z‖∗ + λ ‖T (A, ε̃)‖1 + 〈Y,H〉+ μ

2
‖H‖22

(31)

where 〈·〉 denotes the Frobenius product, H = Za − Z−A
and μ > 0. λ can be set to

√
m/ |Ω|. We further define the

singular-value thresholding operation as

D (X, τ) = UT (Σ, τ)VT

where τ is the threshold and X = UΣVT . It is notable that
ADMM updates Z,A,Y separately only once in each iteration,
so it is efficient. The convergence of the whole algorithm is ana-
lyzed in [32], which states that the condition for convergence
requires

∑∞
1 μ−1

k = +∞ where μk denotes the value of μ in
the kth iteration. The whole process of solving (29) is shown in
Algorithm 4.

Algorithm 4. RPCA with entry wise constraints

Input: Zp
a =PΩ (Za) ∈ R

m×T , ε̃ ∈ R
m×T , λ.

Initialize Z = 0, A = 0, Y = 0, μ > 0, ρ > 1, k = 0.
while not converged

1) Update the value of low rank matrix Zk+1:

Zk+1 = D
(
Zp

a −Ak + Yk

μk
, μ−1

k

)
.

2) Compute the value of sparse matrix Ak+1 by minimizing:

F (A) = λ
μ ‖T (A, ε̃)‖1 − tr

(
Yk

μk
(A− (Zp

a − Zk ))
)
+

1
2 ‖A− (Zp

a − Zk )‖F .
3) Update the Lagrange multiplier Y:

Yk+1 = Yk + μk

(
Zp

a − Zk+1−Ak+1

)
.

4) Update μk+1 = ρ · μk.
5) Update k = k + 1.

end while
Return Z, A =T (A, ε̃).
Output Z, A.

It is notable that when incomplete measurements are col-
lected, Algorithm 4 will take the missing data to be sparse
anomalies and it can also recover the low-rank true measure-
ment matrix and sparse anomaly matrix. However, the recovery
accuracy would be impacted as the sparsity is changed. The
recovered sparse attack matrix can ignore those injected data
outside the observation set. Thus, it is more difficult to identify
all malicious attacks with partial observations.

VI. NUMERICAL RESULTS

In this section, the algorithms introduced above are evalu-
ated by simulations performed based on the IEEE test systems
[33]. The MATLAB package MATPOWER [26] is used to sim-
ulate the power system. The convex optimization problems are
solved using the convex optimization toolbox CVX [34].
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Fig. 2. Probabilities of successful attack injections (a) under different SNRs for IEEE-57 bus system, SR is 0.4; (b) for different bus systems, SR is 0.4 and
SNR = 10 dB; (c) for different SRs in IEEE-57 bus system, SNR = 10 dB. (c) This figure utilizes random columns in Null(B) rather than that with largest
variance.

A. Performance of Stealth Attack Construction

The performance of Algorithm 1 which generates highly
sparse undetectable attack vectors is tested in different sce-
narios. Figs. 2 and 6 show the probabilities of successfully
generating undetectable attack vectors with different levels of
sparsity and different attack level ratios (ALRs), respectively.
An attack is regarded as successful when the maximum value
in residue vector does not exceed that without attacks. Sparsity
ratio (SR) is defined as k/m, where k is the number of nonzero
elements in a and m is the size of a. The ALR is defined as
the maximum attack value C to the mean value of the state
variables: C

mean(θ) . Generally, these figures reveal that there
are high probabilities for Algorithm 1 to successfully generate
highly sparse undetectable attacks.

The noise in the simulation is modeled as Gaussian dis-
tributed with zero-mean. The signal-to-noise ratio (SNR)
indicates the noise level compared with true measurements in
the simulation. The noise may be due to measuring devices and
process, or due to the communication channel noise. It is clear
in Figs. 2(a) and 6(a) that in a relatively noisy case, the prob-
ability of a successful attack is extremely high (close to 1). In
the low noise case, there is also high probability of injecting
a successful highly sparse undetectable malicious attack. The
algorithm is also assessed using different power grid system
models, which is shown in Figs. 2(b) and 6(b). It is notable
that in a larger bus system, Algorithm 1 can provide a better
performance even for extremely sparse attacks and high ALRs.
For example, the success ratio is around 90% for IEEE 118-bus
system to generate stealth attacks with SR lower than 0.1, com-
pared with 75% for IEEE 14-bus system shown in Fig. 2(b).
This probability is 100% for IEEE 118-bus system to gener-
ate attacks with ALR = 1 compared to 80% for IEEE 57-bus
system shown in Fig. 6(b). Therefore, it can be anticipated that
the algorithm would have a better performance in a real power
system, which is much larger than the tested systems.

Additionally, it can be seen from Fig. 2 that it is always
harder to inject sparser attacks while Fig. 6 reveals that attacks
with higher values would be more likely to be detected.
Figs. 2(c) and 6(c) display the performance when injecting
attacks with different SRs and ALRs. It is notable that in
Fig. 6(c), the algorithm utilizes randomly selected columns in

Fig. 3. Sparsity of a under different attack conditions.

TABLE I
NUMBER OF MEASUREMENTS IN PROTECTION SETS

FROM TWO METHODS

a basis matrix of Null(B) rather than that with the largest vari-
ance. The results imply that using randomly chosen columns
can also successfully inject undetectable attacks with high
probabilities.

It is known that stealth attacks having m− n nonzero entries
can always be found. In IEEE 57-bus system, this figure is 80,
for which the SR is about 59%. However, by using Algorithm
1, there is still a high probability that attackers can inject unde-
tectable attacks with SRs lower than 59%. Even for an attack
with SR lower than 0.05, the success rate is still around 80%
when the SNR is 10 dB and ALR is 0.5.

Targeted attack construction method in (20) is assessed under
different attack conditions in which different percentage of
total state variables are assumed to be modified. The targeted
set is randomly selected and the protected measurement is
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Fig. 4. Number of protected measurements to protect every single state variable from being targeted. (a) IEEE-9 bus system. (b) IEEE-14 bus system.

TABLE II
NUMBER OF TESTING TIMES FOR TWO ALGORITHMS TO FIND PROTECTION SUBSETS

Fig. 5. Probability of successful false data detection.

TABLE III
DETECTION PROBABILITY AND MEASUREMENTS DEVIATION WITH

PARTIAL OBSERVATIONS

also randomly chosen. It can be observed from Fig. 3 that, in
order to precisely alter specified state variables, the coordinated
attack vectors cannot be highly sparse. Thus, attackers need
to compromise a number of measurements to launch targeted
attacks. Highly sparse attacks can only be achieved when the
percentage of targeted state variables is extremely low for cer-
tain test systems. For example, SR can be less than 0.1 for IEEE

39-bus system when a small number of state variables are tar-
geted. The figure also shows that in some cases, SR of attacks
are 0. They correspond to the cases that: for certain targeted
set of state variables, no feasible attack vectors exist when the
pth measurement is protected. Therefore, it implies that when
certain carefully selected measurements are protected, attackers
may not be able to inject targeted attacks.

B. Performance of Strategic Protection

This section evaluates our proposed protection algorithm. To
compare the protection subset generated by the proposed algo-
rithm with that from brute-force method, we apply IEEE-9 bus
system, which contain 17 total measurements, and IEEE-14 bus
system with 33 total measurements. Table I shows the number
of measurements in protection subset found by two methods.
The results from the proposed algorithm for other larger test
systems are also provided. In the first two test systems, the
smallest protection sets generated from the proposed algorithm
contain only slightly more measurements than that from brute-
force method. In IEEE-14 bus system, the difference of this
number is quite small compared to the total number of 33
measurements. Thus, Algorithm 2 can find protection subsets
with similar number of elements but spend much less time than
brute-force method.

Fig. 4 displays the number of elements in the smallest pro-
tection subsets to protect every single state variable from being
targeted by adversaries. The whole system protection subsets
shown in Table I are the unions of the protection subsets for pro-
tecting single variables. From both figures, it can be seen that
in most cases the proposed algorithm can find a protection sub-
set having the same size as that found by brute-force method.
The size differences are only 1 or 2 when the two methods find
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Fig. 6. Probabilities of successful attack injections (a) under different SNRs for IEEE-57 bus system, ALR is 0.5; (b) for different bus systems, ALR is 0.5 and
SNR = 10 dB; and (c) for different ALRs for IEEE-57 bus system, SNR = 10 dB.

subsets with different number of elements. This number is quite
small compared with the total number of 33 measurements in
IEEE-14 bus.

Table II compares the complexities of the two algorithms in
terms of the number of feasibility testing times. The results
correspond with the simulation shown in Fig. 4 in which mea-
surement protection subsets are searched for protecting every
single state variable. It is obvious that when the size of pro-
tection subset exceeds 3, the difference of the two methods
becomes significant. This difference is more significant when
the size of protection subset is bigger as the brute-force search
needs to exhaust all subset combinations with smaller sizes. It is
also clear that in a larger power system, the difference is much
larger for two algorithms to find a subset with same size as that
in a smaller system. The testing times of the proposed algorithm
will increase only slightly when the size of protection subset
and the system scale grow, which is also described by (25).
In a real power system, while brute-force method is infeasible
because of the combinatorial complexity, the proposed method
instead is fast and practical.

C. Performance of Detection

The performance of the detection algorithm is tested on IEEE
14-bus system and IEEE 57-bus system. The malicious attack
vectors are constructed using our proposed Algorithm 1. In
order to obtain sparsity in the rows of the attack block matrix,
different column vectors in the null space in Algorithm 1 are
utilized. The SR of the attacks is chosen as 15%. In Fig. 6(c),
it is shown that when SR = 0.15, traditional residual testing-
based algorithms will not be able to detect those attacks. Thus,
in the simulation, the algorithm is not compared with traditional
methods. Additionally, recently proposed algorithms such as
[23] do not deal with partial observations. These algorithms
do not address the problem of error contaminated measure-
ments as well. The detection method discussed in this paper
addresses both problems. Most importantly, it can not only
detect anomalies but also recover the true measurements from
partial-contaminated observations.

We use the false alarm rate (FAR) which is the probability
of positive alarm when there are no attacks. The noise per-
formance of the algorithm compared to RPCA with Frobenius
constraints in (27) has been extensively studied in [31]. In this

paper, we focus on identifying anomalies in different scenarios
when undetectable attacks are injected in power systems.

Fig. 5 shows the error tolerance performance in the IEEE
14-bus system. It is shown that when FAR exceeds 10%, the
algorithm can identify attacks with high probabilities which are
approaching 100%. This probability is still quite high in the
presence of highly dense noise (95%). When FAR decreases,
the system will absorb more noise and detection probability
decreases. It can be seen that there is still a high chance of
detecting anomalies: more than 90% when FAR decreases to
an extremely low level (0.025) under SNR = 10dB.

In the case where partial measurements are collected, miss-
ing data are regarded as sparse anomalies in Algorithm 4.
Additionally, nonzero entries in sparse matrix A can only be
confirmed as attacks when they are located in the observa-
tion set. This make identifications of attacks more difficult.
Algorithm 4 can circumvent this problem since it also recovers
the block of true measurements. We evaluate the attack detec-
tion probabilities as well as the deviation rate of the recovered
measurement variables, which is defined as ‖z− z′‖2 / ‖z‖2.
Table III shows the results when incomplete measurements
are collected based on the IEEE 57-bus system. The FAR
equals 0.05 and SNR is set to 8 dB. It can be seen that attack
detection probability declines greatly with increasing missing
observations. However, the recovered measurement variables
experience only small deviations. Therefore, the proposed algo-
rithm can successfully verify the true measurements, even in the
situation that only partial measurements are observed (Fig. 6).

VII. CONCLUSION

In this paper, we looked into the problem of malicious
FDIAs in power grid state estimation. We proposed stealth
attack construction strategies for different scenarios and also
introduced the countermeasures. It is shown that our proposed
random attack construction algorithm can generate extremely
sparse attack vectors. These optimal or quasi-optimal attacks
can be achieved with high probability of success. The tar-
geted undetectable attacks are obtained based on a optimization
framework. The results show that attack vectors in this scenario
cannot be extremely sparse, which is also discussed in litera-
ture. An efficient protection scheme is proposed in this paper
to find an effective measurement protection subset to defend
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from the stealth attacks. The simulation results reveal that this
subset searching algorithm can find a subset with almost the
same size as that from the brute-force method. Additionally, a
detection algorithm is introduced to detect the stealth attacks as
well as other false data. This algorithm considers the case in
which only partial measurements are collected in the presence
of noise. The performance is demonstrated via the simulation
results based on IEEE test power systems.
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