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Abstract—The reliability of control in cyber-physical systems
(CPSs) heavily depends on the network-induced delay. The prob-
lem of obtaining a maximum allowable delay bound has been
widely studied in the networked control systems (NCS) area. Once
the delay bound is derived, the remaining question is how to make
a network satisfy the bound. In this paper, we propose a robust
path selection algorithm, which exploits multipath diversity for
providing robust network performance against intrinsic random-
ness in delay. Our path selection algorithm gives the required
paths for any given robustness level parameterized by the reliabil-
ity violation probability. Based on extensive experimental results
with our testbed, we empirically show that the proposed scheme
can provide the required network quality of service (QoS) for
system robustness.

Index Terms—Cyber-physical systems (CPSs), network-induced
delay, network quality of service (QoS), path diversity, robust
optimization.

I. INTRODUCTION

R ECENTLY, the convergence of cyber and physical
spaces has transformed traditional embedded systems

into cyber-physical systems (CPSs), which are characterized
by tight integration and coordination among computation and
physical processes through networks [1]–[5]. In general, a CPS
consists of three main parts, i.e., cyber part as a computing core,
physical part as a control object (or plant in control terminol-
ogy), and networks as a communication medium between the
cyber and physical elements.

CPS will exceed traditional embedded systems in terms of
various aspects such as efficiency, safety, reliability, robustness.
Among the key characteristics of CPS, robustness is crucial
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for many CPS applications. In general, robustness refers to
the ability of performing without failure under a wide range
of conditions. However, due to system uncertainties such as
uncertain environment, inaccuracy in computation, and error-
prone physical devices, it is a challenge how to ensure system
robustness in practice.

In this paper, we study the problem of how to guarantee
the required robustness for network quality of service (QoS)
in CPS. Specifically, we focus on a robust multipath diversity
scheme that selects a proper number of multiple control paths,
with which the delay constraint for stability is guaranteed even
under uncertainty in round-trip time (RTT) of the network. The
overall architecture of the system is illustrated in Fig. 1, where
each physical component has sensors (S) and actuators (A), and
the computing elements as controllers (C) with memories (M)
receive sensed data from the sensors and send control pack-
ets to the actuators through a multipath network. Our main
contributions are as follows.

1) We formulate the multipath selection problem for net-
work QoS in a robust optimization framework. Our pro-
posed path selection algorithm gives the required paths
for any given robustness level parameterized by the relia-
bility violation probability.

2) In order to empirically validate the performance of the
proposed approach, we carry out experiments with a
testbed under various network scenarios for real-world
performance.

There exist substantial studies for exploiting multipath diver-
sity in the networking community, i.e., [6]–[10], just to name
a few. However, there exists little work on systematic robust
design for exploiting multipath diversity in order to guaran-
tee the required robustness by taking into account uncertainty
in RTT. Hence, our approach is complementary to the net-
worked control systems (NCS) research in the sense that our
scheme satisfies a given delay bound in a robust manner by
exploiting multipath diversity, while the delay bound require-
ment is obtained by the well-developed theory in the NCS field,
e.g., [11].

The iremainder of the paper is as follows. We provide an
overview of related work in Section II. In Section III, we
present a conventional optimization approach for multipath
diversity. Then, we explains why the conventional approach
is inevitably vulnerable to randomness in RTT in practice.
In Section IV, we introduce our robust optimization frame-
work in order to guarantee the required system robustness.
Then, we propose an algorithm for deriving the required
number of paths for any given robustness. We present our
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Fig. 1. Multipath cyber-physical system.

performance evaluation in Section V. Our conclusion follows in
Section VI.

II. RELATED WORK

Feedback control systems, in which the control loops are
closed through a real-time communication network, are called
NCS [11]–[22]. In [11], a method to obtain a maximum allow-
able delay bound for NCS is proposed. The authors of [12]
review studies on estimation, analysis, and controller synthe-
sis for NCS, which address various channel limitations in terms
of the data rate, sampling, network delay, and packet dropout.
A thorough treatment on NCS is given in [13], which provides
current and future research directions in NCS. More recently,
advances in industrial applications of NCS are well addressed
in the special issue of [14]. In particular, a detailed summary on
the effect of network-induced constraints is given in [15].

There also exist NCS studies focusing on various issues such
as network delay and packet drop as well as the capacity-
constrained channel. In [16], the author investigates optimal
estimation design for NCS with random delay and packet loss.
In particular, it is shown that the minimum error covariance esti-
mator is time varying and stochastic without converging to a
steady state. A very efficient suboptimal estimator is also pro-
posed. Furthermore, it is shown that these results do not rely on
the choice of specific communication protocols, as long as the
packet arrivals are stationary and independent and identically
distributed. In [17], the authors effectively show the advantages
of the new delay model, which contains multiple successive
delay components instead of a single delay. A finite discrete
distribution is introduced as a delay model in [18], in which a
very effective controller design procedure is proposed based on
mean-square asymptotic stability. In this study, we model the
network-induced delay as a single continuous random variable,
which differs from those adopted in [16]–[18].

Instead of the classical notion of Shannon capacity, a new
notion of “anytime capacity” is proposed for NCS with a noisy
communication link in [19]. Stabilization over signal-to-noise
ratio (SNR) constrained channels is investigated in [20], where
it is shown that there exist limitations to stabilize an unstable
plant over a constrained channel using finite-dimensional lin-
ear time-invariant feedback. In [21], problem of optimal linear

quadratic Gaussian (LQG) control over lossy links is studied,
which is optimal among all causal algorithms for any arbitrary
packet drop pattern. More recently, an LQG control problem
subject to packet loss and SNR limitation is properly analyzed
in [22], where the optimal solution for a general multi-input
single-output system under the “cheap” scenario is effectively
derived.

Studies in NCS have been extended by focusing more on the
interaction between the physical and cyber components in CPS
[23]–[25]. In [23], the authors revisit the co-design problem
of real-time scheduling and control in embedded processors.
Instead of the traditional periodic control, they investigate an
event-triggered scheduler and show its benefit in terms of com-
putation. The authors in [24] extend the study in [23] and look
into the benefits of relaxing the periodicity assumption for NCS
in controller area networks (CAN). In [25], the authors propose
a novel system-level design approach for protocols supporting
control applications over wireless sensor networks. In partic-
ular, a similar reliability constraint as ours is imposed in the
optimization formulation of [25]. However, the adverse effect
of the uncertain network delay on system robustness has not
been considered in [25].

Multipath diversity has been widely studied in terms of mul-
tipath routing in sensor networks. For example, the tradeoff
between traffic overhead and reliability in multipath routing
has been investigated in [6], where each packet is split into k
subpackets with redundancy and only Ek subpackets (Ek < k)
are sufficient to reconstruct the original packet. In [7], the QoS
guarantee of reliability and timeliness has been studied, which
results in an efficient protocol that can guarantee end-to-end
requirements.

In [8], the authors provide an overview of path diversity
for multimedia streaming applications. They examine different
approaches for media coding and streaming over multiple paths
as well as architectures for achieving path diversity between
single or multiple senders and a single receiver. For delay-
sensitive applications with inelastic traffic, Javed et al. [9]
formulated an optimization problem that minimizes the end-to-
end delay between source and destination pairs while keeping
the congestion level at every link low and satisfying the band-
width demands required between the source and destination
pairs. In [10], Fashandi et al. consider a multipath network,
where each link is characterized as an erasure channel. For such
networks, they analyze the reliability performance of the “max-
imum distance separable” codes applied across multiple inde-
pendent paths. Recently, in [26], the authors studied a robust
delay-constrained routing problem. In this study, an approxi-
mate delay model based on the queueing theory under Poisson
traffic has been adopted in the formulation of a routing problem.

In summary, our work is complementary to the studies in
NCS, in that we propose a robust multiple-path selection algo-
rithm for satisfying a given delay bound by exploiting multipath
diversity, while the required delay bound is given by well-
established NCS analysis. In the meantime, our approach is
considerably different from existing studies on multipath rout-
ing problems, because it is a measurement-based adaptive
multipath selection algorithm to achieve the system robustness
against parameter uncertainty.
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Fig. 2. Timing constraint between the physical system and the controller. The
dotted arrow denotes the delivery of a control packet that is abandoned by the
physical system because RTT > τl.

III. MULTIPATH DIVERSITY FOR NETWORKED CONTROL

A. Model Description

We consider a CPS model, in which each controller com-
municates with the corresponding physical system through a
multipath network as shown in Fig. 1. In order to make the
physical system stable, the packet delivery time between the
controller and the physical system should be bounded by a cer-
tain value. Here, we assume that the timing constraint is given
as τc in advance.

The physical system measures its current state and sends it to
the controller at every τl as shown in Fig. 2. Then, the remotely
located controller responds to the physical system by sending
an appropriate control packet. We define the RTT as the time
interval between the departure time of a data packet and the
arrival time of the corresponding control packet at the physical
system. Then, in order to make the physical system operate in a
stable manner, the RTT is required to be bounded by the delay
constraint, i.e., RTT ≤ τc. Since the network delay is stochas-
tic in its nature, a probabilistic version of the condition is as
follows:

Υ := Prob [RTT > τc] < ε (1)

where Υ and ε refer to network reliability and reliability level,
respectively. If a control packet does not arrive in one loop time
τl or packet losses occur, we assume that the physical system
keeps control of the plant based on the previous control value.
In addition, we assume that there exist a sufficient number of
independent paths available for exploiting multipath diversity.1

It should be noted that the details of multipath routing protocols
are out of our scope.

B. Optimization Formulation

In this section, we investigate how to improve system reli-
ability by exploiting path diversity. First, in order to exploit
multipath diversity, we consider simultaneous duplicate trans-
mission, which sends duplicate packets through multiple paths.
Let N denote the total number of available independent paths.2

The physical system simultaneously sends duplicate data pack-
ets to the controller through a subset of N multiple paths at

1Our experimental results in Section V show that a small number of
independent paths are sufficient to guarantee the robustness of the system.

2We slightly abuse the notation and use N for both the set of available paths
and its cardinality throughout the paper.

every τl. Let S denote the set of selected paths for simultane-
ous transmission, which is a subset of N paths. In addition,
we introduce xi, a decision variable for Path i, i = 1, 2, . . . , N ,
where xi = 1, if i ∈ S and xi = 0, otherwise, i.e., xi indicates
whether Path i is selected for simultaneous transmission or not.

When the controller receives the data packet, it computes the
proper control input value for the physical system and sends
duplicate control packets back through the selected multiple
paths of S. Thanks to simultaneous transmission, the effec-
tive RTT experienced by the physical system is given by the
minimum value among the RTTs of |S| paths as follows:

RTTmin = min
i∈S

RTTi. (2)

By (2), the multipath version of the delay constraint in (1) is
given as

Υ = Prob [RTTmin > τc] < ε. (3)

As already mentioned, in (3), τc is the maximum allowable
delay in the control loop and ε is a design parameter given as
the required reliability level. We can further express (3) as

Υ = Prob [RTTmin > τc] =
∏
i∈S

Prob [RTTi > τc]

=
∏
i∈S

(1− Prob [RTTi ≤ τc]) . (4)

Hence, by putting (4) into (3) and introducing the natural
logarithm on both sides, we get∑

i∈S

ln(1− Prob [RTTi ≤ τc]) < ln ε. (5)

In the meantime, from the network viewpoint, we assume
that Path i has a weight of wi for message overhead. For
example, wi can simply be the hop count or could be a more
complicated measure that quantifies message overhead over
Path i. By letting wi inversely proportional to the end-to-end
bandwidth of Path i, we can also limit the effect of the duplicate
packets on the network throughput. Hence, we can determine
the values of wi according to network design principle. Then,
it is a reasonable objective for the system to minimize the sum
of the weights as long as the reliability constraint in (5) is sat-
isfied, i.e., we focus on the tradeoff between message overhead
and reliability level. Here, we do not differentiate among paths
and let wi = 1 for ∀i ∈ N . With this setting, because of the
constraint in (5), paths with smallest RTT are to be selected for
lower message overhead.

Now, the overall optimization formulation for multipath
diversity is given as follows:

minimize
N∑
i=1

wixi

subject to
N∑
i=1

aixi ≤ b,

N∑
i=1

xi ≥ 1, xi ∈ {0, 1} (6)
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where ai = ln(1− Prob [RTTi ≤ τc]), b = ln ε, and wi is the
weight of Path i for message overhead.3

Since (6) corresponds to a general assignment problem, it
may seem straightforward to solve it and attain the optimal
solution at first glance. However, in fact, it is practically a
formidable task to obtain an exact value for ai’s due to their
probabilistic nature. In other words, since the distribution of
RTT is not exactly known, it is practically impossible to deter-
mine the precise value of ai, and there always exists a certain
level of uncertainty in ai.

The issue is that the uncertainty in ai’s in (6) may cause sig-
nificant deterioration on the performance of the solution. The
optimal solution found using some nominal values of ai’s may
not be optimal or even feasible at all. In practice, this situation
means that there always exists a certain probability with the
solution of (6) that the required reliability level is not satisfied
at all. Since reliability is a critical concern in many CPS appli-
cations, a natural question is how to formulate a robust version
of (6), which can tolerate uncertainty in ai’s.

To properly stress the critical adverse effect of uncertain ai’s,
we consider a simple, yet effective example when N = 1 and
wi = 1 in (6).4 Assume that a1 is a random variable with an
arbitrary symmetric distribution with mean equal to ā in the
interval of [ā− â, ā+ â] for some positive â. Then, the optimal
solution found with a nominal value of a1 = ā violates the con-
straint in (6) with a probability of 50%, which corresponds to a
highly fragile system. In other words, if the values of ai’s used
in solving (6) do not match with the actual values of ai’s, there
exists a certain probability of constraint violation. Our exam-
ple explains the case when the violation probability will be 0.5
if we solve (6) using the mean of ai while ai is a symmetric
random variable.

IV. ROBUST PATH DIVERSITY

A. Robust Optimization Formulation

In this section, we investigate how to develop a robust opti-
mization approach that can guarantee the required robustness
even under uncertainty in ai’s in (6). In particular, we reformu-
late (6) in a robust optimization framework by following similar
lines as in [27].

Let J be the set of coefficients ai, i ∈ J that are subject to
uncertainty, i.e., each coefficient ai is modeled as a random
variable, which takes values according to a symmetric distri-
bution with mean equal to the nominal value āi in the interval
of [āi − âi, āi + âi].5 Associating with ai, we further introduce
ηi as ηi = (ai − āi)/âi.

In addition, we introduce a design parameter Γ, where 1 ≤
Γ ≤ N , to adjust the robustness of the proposed approach
against the level of conservatism of the solution. In practice,
it is unlikely that all the ai’s deviate from the nominal values

3Note that both ai and b are negative coefficients. In order to keep the con-
ventional notation, we do not reverse the inequality by multiplying −1 on both
sides.

4For ease of explanation, we also omit the constraint of xi ∈ {0, 1}, which
is irrelevant to the essential effect of randomness in ai.

5We will relax this symmetric distribution assumption at the end of
Section IV-B.

due to uncertainty. Hence, our approach is to protect against all
cases up to Γ of the coefficients that are allowed to change. In
other words, by introducing Γ, we specify that only a subset
of the coefficients will change in practice in order to adversely
affect the solution.

Our robust formulation will deterministically guarantee a
feasible solution under the uncertainty in up to Γ coefficients
among N of those. By the construction of the robust formu-
lation, if up to Γ of the N coefficients ai change within their
bounds, the solution will remain feasible. Qualitatively speak-
ing, the design parameter Γ controls the tradeoff between the
probability of constraint violation in (6) and the performance
of the optimal solution. In other words, as we increase Γ,
the resulting solution of our robust formulation will be more
robust, but this conservative solution will adversely affect the
objective function and increase its value. For example, robust
optimization with Γ = 0 will degenerate into the conventional
optimization of (6) while that with Γ = N will give the most
robust solution with respect to the randomness in ai’s.

B. Derivation of Bounds for the Probability of Constraint
Violation

With the introduction of Γ as a design parameter for adjusting
the system robustness, a robust counterpart of (6) is given as
follows:

minimize
N∑
i=1

wixi

subject to

N∑
i=1

aixi + β(x,Γ) ≤ b,

N∑
i=1

xi ≥ 1, xi ∈ {0, 1}
(7)

where β(x,Γ) = max{K|K⊆N,|K|=Γ}
∑

i∈K âixi.6

The main difference between (6) and (7) is β(x,Γ), which
refers to the protection function. In (7), in order to incorporate
the worst-case effect by random ai’s, we additionally protect
the constraint by an amount of β(x,Γ). In other words, the left-
hand side of the constraint in (6) can get larger at most by an
amount of β(x,Γ) in (7) due to the randomness in ai’s.

Now, with the robust formulation of (7), we show that the
corresponding solution satisfies the reliability constraint with
a high probability even under the coefficient uncertainty. We
can further obtain an upper bound for the constraint violation
probability as a function of Γ as given in Theorem 1.

Theorem 1: Let x∗ be an optimal solution of (7) and K∗ be
the corresponding set that achieves the maximum for β(x∗,Γ).
Then, the probability that the constraint is violated satisfies the
following inequality:

Prob

(
N∑
i=1

aix
∗
i > b

)
≤ Prob

(
N∑
i=1

Γiηi ≥ Γ

)

6As already mentioned in the previous section, we use N for both the set of
available paths and its cardinality.
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where

γi =

⎧⎨⎩1, if i ∈ K∗
âi|x∗

i |
âr∗x∗

r∗
, if i ∈ N/K∗

and

ηi = (ai − āi)/âi, r∗ = argr∈K∗ min âr|x∗
r |.

Proof: See the appendix. ��
From Theorem 1, we now have an upper bound of

Prob
(∑N

i=1 Γiηi ≥ Γ
)

for the probability of constraint viola-

tion in (7) as a function of the design parameter of Γ. It should
be noted that our goal is to derive a simple formula for calculat-
ing the constraint violation probability as a function of Γ. Now,
from Theorem 1 and the appendix in [27], we can further have
a very efficient approximate bound as follows:

Prob

(
N∑
i=1

aix
∗
i > b

)
≈ 1− Φ

(
Γ− 1√

N

)
(8)

where x∗ is an optimal solution of (7) and

Φ(θ) =
1√
2π

∫ θ

−∞
exp

(
−y2

2

)
dy.

Remark 1: Although the derivation in Theorem 1 assumes
the symmetric distribution of ai, the extended study in [28]
shows that (8) remains valid for any asymmetric distributions.
Hence, we can relax the initial assumption on the symmetric
distribution of ai.

C. Robust Multipath Selection Algorithm

1) Design Rationale for the Robust Algorithm: Based on
our analysis, we now derive a robust multipath selection
algorithm that can operate in real time. The main goal of the
proposed algorithm is to determine the minimum possible num-
ber of multiple paths that can satisfy the RTT constraint with a
high probability under uncertainty in RTT, as already described
in (7).

More specifically, the key characteristic of our algorithm is
to find the required number of additional paths Γ, which can
satisfy the robustness constraint with any given robustness level
of δ as follows:

Prob [Υ > ε] ≤ δ (9)

where the network reliability metric is Υ = Prob[RTTmin >
τc] as given in (1). By adjusting δ in (9), we can guarantee any
given level of robustness in an arbitrary manner.

The remaining issue is how to develop a simple, yet effective
iterative real-time algorithm based on our robust analysis.
As a starting point, we assume that the optimal solution
to the conventional formulation of (6) is given, which pro-
vides S selected paths as those with top S smallest mea-
sured RTT. Now, we decide additional paths that should be

Fig. 3. Relation between δ and Γ when N = 30.

added to S to guarantee (9). Let us consider that we cal-
culate the required number of additional paths from (8) as
follows7:

Γ =
√
N
(
Φ−1(1− δ) + 1

)
. (10)

Here, the rationale is as follows: Since S selected paths are
top S paths based on RTT measurement, we can expect that
additional Γ paths will probably be worse in terms of RTT than
already selected S paths. If so, it will actually match the solu-
tion to the robust formulation of (7). As an illustration, the
relation between Γ and δ when N = 30 is shown in Fig. 3.
As shown in figure, we can achieve virtually any arbitrary
robustness level by adding less than 20 paths.

2) RTT Probing: In order to select an appropriate num-
ber of multiple paths in an iterative manner, we begin with a
number of path candidates denoted by S, which will be contin-
uously adjusted as the characteristics of RTTs are discovered.
Here, we assume that the existing traffic in the network is suffi-
ciently high so that the probing packets are insignificant to the
RTT distribution. Initially, we inject M probing packets along
every path candidate and measure their RTTs. Note that after
this initial probing, if there exists any traffic on the selected
paths, passive measurement of RTTs using existing traffic flows
will be performed. Although there exists a tradeoff between
the delay to probing completion and probing traffic overhead,
the probing packet interval should be carefully decided. For
example, if each probing packet of 40 bytes is injected every
10 ms, the traffic overhead is 40 bytes/10 ms = 32 Kb/s, and
the probing completion time is 3 s for M = 300. From the
RTT measurements, we make a decision on whether or not the
selected paths can satisfy the delay constraint.

First, we introduce a binary variable dij for the measured
RTT of the jth probing packet on the ith path as follows:

dij :=

{
0, if RTTij ≤ τc
1, otherwise

where RTTij is the measured RTT for the jth probing packet
on the ith path. Then, let FN

j denotes the result of RTT
measurement for the jth probing packet as follows:

FN
j :=

∏
i∈S

dij .

7We can easily expect that the case of correlated paths will require more
paths for the same robustness level compared to the independent case. Here,
as we have already clearly mentioned in our problem formulation, we assume
that a certain number of independent paths are available. A comprehensive
analytical study on path correlation is a subject of future work.
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Fig. 4. Basic algorithm with the exponential RTT distribution when τc = 2 ms and ε = 0.01. (a) Probability density function (pdf) of RTT in each path. (b) The
number of selected paths with respect to the sample size. (c) ̂Υ with respect to the sample size (where the dotted line denotes the given required reliability of ε).
(d) Empirical robustness metric δ̂ with respect to the sample size.

Fig. 5. Number of selected paths ̂Υ and δ̂ of the basic algorithm with the exponential RTT distribution when τc = 2 ms and ε = 0.1. (a) The number of selected
paths with respect to the sample size. (b) ̂Υ with respect to the sample size (where the dotted line denotes the given required reliability of ε). (c) The empirical
robustness metric δ̂ with respect to the sample size.

Fig. 6. Robust path selection with the exponential RTT distribution when δ = 0.2 and Γ = 6. (a) The number of selected paths with respect to the sample size.
(b) ̂Υ with respect to the sample size (where the dotted line denotes the given required reliability of ε). (c) The empirical robustness metric δ̂ with respect to the
sample size (where the dotted line denotes the required robustness level of δ).
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Fig. 7. Basic algorithm with respect to the elapsed time (ε = 0.01 and M = 300). (a) The number of selected paths versus time. (b) ̂Υ versus time (where the
horizontal dotted line denotes ε). (c) δ̂ versus time.

Fig. 8. Robust path selection with respect to the elapsed time (ε = 0.01, M = 300, and δ = 0.2). (a) The number of selected paths versus time. (b) ̂Υ versus
time (where the horizontal dotted line denotes ε). (c) δ̂ versus time (where the horizontal dotted line denotes the required robustness level of δ).

Fig. 9. Networked control testbed.

Fig. 10. Linear inverted pendulum used in the testbed.

TABLE I
NOTATION FOR THE SYSTEM PARAMETERS
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Hence, for the jth probing packet, FN
j = 0 if and only if

RTTmin ≤ τc, and FN
j = 1, otherwise. We can now empiri-

cally calculate the probability of constraint violation in (3) as
follows:

Υ̂ := ̂Prob [RTTmin > τc] =
1

M ′

M ′∑
j=1

FN
j (11)

where ̂Prob denotes empirical probability and M ′ is either M
for initial probing or the number of RTT measurements sampled
from existing traffic.

3) Selection of Multiple Paths: The basic operation of our
proposed multipath selection algorithm consists of the follow-
ing four steps.

1) Update the RTT measurements for each newly received
packet.

2) Adjust S according to the optimization result of the basic
algorithm in (6).

3) Compute Γ for satisfying the given robustness level.
4) Increase S by Γ more paths with the smallest hop count

among unselected paths.

Here, Γ =
√
N
(
Φ−1(1− δ) + 1

)
and Φ(θ) =

1√
2π

∫ θ

−∞

exp

(
−y2

2

)
dy is the cumulative distribution function of a

standard normal.
Algorithm 1 shows the detailed procedures of our algo-

rithm. Instead of solving the basic algorithm for each newly
received packet, we progressively increase or decrease the cur-
rently selected S by reevaluating Υ̂ empirically obtained in
(11). When Υ̂ < ε, we further reduce S by excluding the worst
path with the longest measured RTT. If the delay constraint is
still satisfied with the reduced S, the worst path is excluded
from S. The complexity of the algorithm is O(N logN). Note
that it needs to sort L paths with respect to RTT and can be
reused inside the if statement for each packet reception in
Algorithm 1.

In contrast, if Υ̂ > ε, we increase S. Since the RTT charac-
teristics for the paths to be added are not available in advance,
we synthetically generate the RTT measurements for the new
candidate path by randomly permutating dij’s of the path L
with the longest RTT without carrying out actual measurement,
which corresponds to a conservative yet effective approach.
Finally, S is increased by including Γ more paths for the
required robustness level.

Now, we look into the impact of the input parameters in
Line 1 of Algorithm 1. Since τc is the delay bound as given
in (1), as τc decreases, the computed value of Γ or equiv-
alently the number of additional paths will be increased to
satisfy the reliability constraint in a robust manner. In a simi-
lar manner, as ε or δ decreases, Γ will be increased because it
corresponds to increase in reliability level or robustness level,
respectively. In the meantime, as the total number of paths
N increases, the additional number of required paths Γ needs
to be increased for the same level of robustness according
to (10).

Algorithm 1. Procedures of the proposed multipath selection
algorithm, where S and Sr are the set of paths selected by the
basic algorithm and the robust algorithm, respectively

1: Input: τc, ε, δ, N
2: Output: S, Sr

3:
4: Compute Γ =

√
N(Φ−1(1− δ) + 1).

5: loop
6: Update dij , FN

j , Υ̂ for each packet reception.

7: S′ ← S, Υ̂′ ← Υ̂, L← null, H ← null
8: if Υ̂ < ε then
9: repeat

10: Select a path L with the longest RTT.
11: S′ ← S′\ {L}
12: Compute Υ̂′ for S′.
13: until Υ̂′ < ε
14: else
15: while Υ̂′ > ε do
16: Select a path H with the smallest hop count.
17: Select a path L with the longest RTT.
18: RTTH = randperm(RTTL)
19: S′ ← S′ ∪ {H}
20: Compute Υ̂′ for S′.
21: end while
22: end if
23: S ← S′

24: Select a set S′′ of Γ paths with the smallest RTT among
unselected paths.

25: Sr ← S ∪ S′′

26: end loop

V. PERFORMANCE EVALUATION

A. Simulation Results

We carry out performance evaluation for the proposed robust
multipath scheme over the conventional approach. In our sim-
ulation study, we set τc = 2 ms and ε = 0.01 unless otherwise
mentioned and denote the number of probing packets for RTT
measurement by M . In addition, without loss of generality,
the weight of the path decreases as the path id increases. In
our simulation, the total number of paths is 30, and the RTT
characteristic of paths is assumed to follow a certain random
distribution. With this simulation configuration, we can inves-
tigate the detailed behaviors of basic and robust algorithms by
varying system parameters. We will further demonstrate empir-
ical results with our emulation-based testbed in Section V-B.

1) Basic Path Selection: First, we show simulation results
for the basic formulation in (6) under the exponential RTT
distribution. By increasing the number of probing packets for
RTT measurement, which is denoted by M , we look into the
number of paths found by the basic approach, the probability
of constraint violation, and the system robustness level. Note
that δ̂ shown in figures is an empirical value of the left-hand
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side in (9), whereas δ in the right-hand side in (9) is a design
parameter for adjusting the robustness level.

As shown in Fig. 4, the basic approach iteratively finds
the required number of paths, which is reasonably maintained
around a certain value. However, as shown in Fig. 4(d), the
empirical probability that the required reliability level is vio-
lated, which is denoted by δ̂, is very large due to the uncertainty
in RTT. For example, in Fig. 4(d), the probability is over 20%
in most cases, which implies that the system can be unstable
with a high probability. Note that the simulation results reported
with respect to M are those made of a single run for each
value for M , because what is critical is to observe instability of
the networked system at each time instant rather than average
performance.

We further investigate the performance of the basic algorithm
under different parameter settings. In Fig. 5, we look into the
number of paths found by the basic algorithm when τc = 2 ms
and ε = 0.1. Note that the reliability constraint of Υ̂ ≤ ε is quite
often violated, which results in a large value of δ̂. We observe
that the basic algorithm works very poorly for small values of
M , because the short-term probing results are more susceptible
to parameter uncertainty.

2) Robust Path Selection: Now, we show the performance
of the proposed robust algorithm. By adjusting δ, we show that
δ̂ = ̂Prob [Υ̂ > ε] remains below δ. As shown in Fig. 6(c), the
probability is smaller than the design parameter δ in the entire
range of M , which shows that the proposed algorithm indeed
guarantees the required robustness level.

We compare the robust algorithm with the basic one when
the distribution of RTT varies over time; initially, the RTTs on
the paths are moderate for 8 s, and then, they rapidly decrease
and is kept low for another 8 s. After that, the network is heavily
congested and thus the RTTs significantly increase. The system
parameters are set to N = 30 and M = 300.

Fig. 7(a) shows the number of selected paths with respect
to the simulation time. For the first 8 s, the basic path selec-
tion scheme selects about seven paths. For the next 8 s, the
RTT significantly decreases and the basic scheme subsequently
reduces the number of paths. When the network becomes heav-
ily congested from 16 to 24 s, the selected number of paths
changes accordingly. In this interval, the reliability constraint of
Prob [RTTmin > τc] ≤ ε is quite often violated, which results
in a large value of δ̂. On the other hand, in Fig. 8, we
show the performance of the robust algorithm with δ = 0.2.
From (10), Γ is obtained as 6. We observe that δ̂ is kept
lower than δ in the entire range with an exception of t = 16,
which results from the fact that the RTTs abruptly increase
when t = 16.

B. Experimental Study

1) Experimental Setup: In order to investigate the stabil-
ity as well as reliability of CPS in practice, we implement a
networked control testbed that consists of a physical plant, a
controller, and a network emulator. Instead of network hard-
ware with a fixed architecture, we use a network emulator in

order to show system performance under various network sce-
narios. As shown in the left-hand side in Fig. 9, we consider
a linear inverted pendulum as a typical physical system. For
remote control of the physical system, we implement a real-
time communication module in the plant and the controller. In
addition, we use a real-time network emulator that can emulate
various network scenarios at the packet level.

2) Linear Inverted Pendulum and Controller: A linear
inverted pendulum consists of a cart and a pole as shown in
Fig. 10. The pole is mounted on the cart that can swing in the
xy-plane. By feedback control, the plant actively balances the
pole in upright position by applying a force to the cart. Based
on the information about the location of the cart and the angle
of the pole with a quadrature encoder, we can get the feed-
back gain via the linear quadratic regulator method used in [29].
In particular, let y = (x, θ, ẋ, θ̇)T denote the state vector with
the notation given in Table I, then the system model and the
feedback gains are as follows:

ẏ = Ay + bV(t)

where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0

0 0 0 1

0 − 3mg

m+ 4M
−4(β + ζ)

m+ 4M
0

0
3(M +m)g

l(m+ 4M)

3(β + ζ)

l(m+ 4M)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
b =

(
0, 0,

4α

m+ 4M
,− 3α

l(m+ 4M)

)T

and V(t) = (70.7107, 142.5409, 50.6911, 26.9817) · y.
In this paper, in addition to the conventional inverted pendu-

lum, we implement an UDP communication module between
the physical plant and the controller using LabView [30] in
order to emulate various network scenarios for performance
evaluation. The inverted pendulum senses the cart location and
the pole angle every 30 ms and changes the dc motor input volt-
age when it receives a control packet from the controller. When
the plant does not receive any control packet in one-loop time, it
keeps control of the dc motor using the previous control value.

3) Network Emulator: In our testbed, for the network emu-
lator, we use EXata 2.1 from scalable networks, which can
design and modify all the protocol layers ranging from the
physical layer to the application layer through the C program-
ming language. It also supports arbitrary network topologies
and scenarios. Network emulation was performed in a random
network topology that has 15 available paths between the plant
and the controller. We randomly locate traffic generators in
the network, and each traffic generator generates packets with
500 bytes on average with an average inter-arrival time of 1 ms.
Both the packet size and the interval follow the exponential dis-
tribution. Each link has a symmetric 1 µs propagation delay
with the bandwidth of 10 Mb/s.
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Fig. 11. Cart location, pole angle, and RTTmin with the shortest-path selection scheme. (a) Cart location versus time. (b) Pole angle versus time. (c) Measured
RTTmin versus time, where the horizontal dotted line denotes τc (̂Υ = 0.715).

Fig. 12. Cart location, pole angle, and RTTmin with the maximum multipath selection scheme. (a) Cart location versus time. (b) Pole angle versus time.
(c) Measured RTTmin versus time, where the horizontal dotted line denotes τc (̂Υ = 0.005).

Fig. 13. Cart location, pole angle, and RTTmin with the proposed scheme. (a) Cart location versus time. (b) Pole angle versus time. (c) Measured RTTmin

versus time, where the horizontal dotted line denotes τc (̂Υ = 0.017).

4) Experimental Results: In our experimental study, we
set τl = 30 ms, τc = 3.5 ms, M = 300, ε = 0.02, and δ = 0.2
unless otherwise mentioned. In order to evaluate the perfor-
mance of the proposed algorithm, we compare it with two basic
schemes, i.e., the shortest-path selection and the maximum mul-
tipath selection, which uses all the available paths. In addition,
we check the relation between system perturbation and stability
by giving a disturbance voltage to the motor every 10 s after ini-
tial 20 s. In the experiment, as the network delay increases, the
system will become unstable and may fail to control the pole in
the upright position.

The performance of each algorithm is given in Figs. 11–13,
respectively. As shown in Fig. 11(c), the shortest path scheme
gives a poor reliability level of Υ̂ = 0.715. Also, with a small
perturbation to the pole at every 10 s after t = 20 s, the cart
location and the pole angle are severely disturbed. On the other
hand, from Figs. 12 and 13, both the proposed algorithm and

the maximal multipath selection scheme show reliable perfor-
mance in a satisfactory manner. In the meantime, it should be
noted that the traffic overhead of the maximal path-selection
scheme is almost three times larger than that of the proposed
scheme because the proposed scheme only uses five paths on
average while the maximal scheme employs all the 15 paths.
The proposed scheme selects an appropriate set of paths after
9 s, because it uses the maximum available paths until M num-
ber of history data are collected. After 9 s, the scheme selects
about five paths on average.

Fig. 14 shows the effect of design parameters, where the
timing constraint is relaxed to τc = 6 ms. In this case, the pro-
posed scheme selects about two paths on average as shown in
Fig. 14(d), which is smaller than an average of five paths used
in the case of Fig. 13. Fig. 14 shows that less than three addi-
tional paths are sufficient for the required robustness while the
total available number of paths is 30.
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Fig. 14. Cart location, pole angle, RTTmin, and the number of selected paths of the proposed scheme when τc = 6 ms and ε = 0.02. (a) Cart location versus
time. (b) Pole angle versus time. (c) Measured RTTmin versus time (where the horizontal dotted line denotes τc). (d) The number of selected paths (̂Υ = 0.008).

VI. CONCLUSION

We have studied the problem of multipath diversity for CPS.
In particular, we have proposed a systematic multipath selection
algorithm, which can explicitly guarantee the required robust-
ness in spite of uncertainty in RTT while minimizing a given
cost function. Through experimental study with a testbed, we
have empirically demonstrated that the proposed scheme can
satisfy a given reliability level under uncertain RTT.

APPENDIX

Let x∗ be an optimal solution of (7) and K∗ be the cor-
responding set that achieves the maximum for β(x∗,Γ). By
following the lines in Proposition 2 in [27]

Prob

(
N∑
i=1

aix
∗
i > b

)
= Prob

(
N∑
i=1

aix
∗
i +

N∑
i=1

ηiâix
∗
i > b

)

≤ Prob

(
N∑
i=1

ηiâi|x∗
i | >

∑
i∈K∗

âi|x∗
i |
)

= Prob

⎛⎝ ∑
i∈N\K∗

ηiâi|x∗
i | >

∑
i∈K∗

âi|x∗
i |(1− ηi)

⎞⎠
where ηi = (ai − āi)/âi.

Since 1− ηi ≥ 0 and r∗ = argr∈K∗ min âr|x∗
r |, we further

have

Prob
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.

REFERENCES

[1] C. Lu, R. Rajkumar, and E. Tovar, “Guest editorial: Special section
on cyber-physical systems and cooperating objects,” IEEE Trans. Ind.
Informat., vol. 8, no. 2, p. 378, May 2012.

[2] R. Poovendran et al., “Special issue on cyber-physical systems [scanning
the issue],” Proc. IEEE, vol. 100, no. 1, pp. 6–12, Jan. 2012.

[3] K.-J. Park, R. Zheng, and X. Liu, “Cyber-physical systems: Milestones
and research challenges,” Comput. Commun., vol. 36, no. 1, pp. 1–7, Dec.
2012.

[4] X. Cao, P. Cheng, J. Chen, and Y. Sun, “An online optimization approach
for control and communication codesign in networked cyber-physical
systems,” IEEE Trans. Ind. Informat., vol. 9, no. 1, pp. 439–450, Feb.
2013.

[5] T. Vollmer and M. Manic, “Cyber-physical system security with deceptive
virtual hosts for industrial control networks,” IEEE Trans. Ind. Informat.,
vol. 10, no. 2, pp. 1337–1347, May 2014.

[6] S. Dulman, T. Nieberg, J. Wu, and P. Havinga, “Trade-off between traffic
overhead and reliability in multipath routing for wireless sensor net-
works,” in Proc. IEEE Wireless Commun. Netw., 2003, pp. 1918–1922.



PARK et al.: ROBUST PATH DIVERSITY FOR NETWORK QoS IN CYBER-PHYSICAL SYSTEMS 2215

[7] E. Felemban, C.-G. Lee, and E. Ekici, “MMSPEED: Multipath multi-
SPEED protocol for QoS guarantee of reliability and timeliness in
wireless sensor networks,” IEEE Trans. Mobile Comput., vol. 5, no. 6,
pp. 738–754, Jun. 2006.

[8] J. G. Apostolopoulos and M. D. Trott, “Path diversity for enhanced
media streaming,” IEEE Commun. Mag., vol. 42, no. 8, pp. 80–87, Aug.
2004.

[9] U. Javed, M. Suchara, J. He, and J. Rexford, “Multipath protocol for
delay-sensitive traffic,” in Proc. Ist Int. Conf. Commun. Syst. Netw., Jan.
2009, pp. 1–8.

[10] S. Fashandi, S. O. Gharan, and A. K. Khandani, “Path diversity over
packet switched networks: Performance analysis and rate allocation,”
IEEE/ACM Trans. Netw., vol. 18, no. 5, pp. 1373–1386, Oct. 2010.

[11] D.-S. Kim, Y. S. Lee, W. H. Kwon, and H. S. Park, “Maximum allowable
delay bounds of networked control systems,” Control Eng. Pract., vol. 11,
no. 11, pp. 1301–1313, 2003.

[12] J. P. Hespanha, P. Naghshtabrizi, and Y. Xu, “A survey of recent results
in networked control systems,” Proc. IEEE, vol. 95, no. 1, pp. 138–162,
Jan. 2007.

[13] P. J. Antsaklis and J. Baillieul, “Special issue on technology of networked
control systems,” Proc. IEEE, vol. 95, no. 1, pp. 5–312, Jan. 2007.

[14] L. Zhang, H. Gao, F. Lewis, and O. Kaynak, “Guest editorial: Advances in
theories and industrial applications of networked control systems,” IEEE
Trans. Ind. Informat., vol. 9, no. 1, pp. 303–305, Feb. 2013.

[15] L. Zhang, H. Gao, and O. Kaynak, “Network-induced constraints in net-
worked control systems—A survey,” IEEE Trans. Ind. Informat., vol. 9,
no. 1, pp. 403–416, Feb. 2013.

[16] L. Schenato, “Kalman filtering for networked control systems with ran-
dom delay and packet loss,” in Proc. Conf. Math. Theory Netw. Syst.,
2006, pp. 1509–1517.

[17] H. Gao, T. Chen, and J. Lam, “A new delay system approach to network-
based control,” Automatica, vol. 44, no. 1, pp. 39–52, 2008.

[18] H. Gao, X. Meng, and T. Chen, “Stabilization of networked control sys-
tems with a new delay characterization,” IEEE Trans. Autom. Control,
vol. 53, no. 9, p. 2142, Oct. 2008.

[19] A. Sahai and S. Mitter, “The necessity and sufficiency of anytime capacity
for stabilization of a linear system over a noisy communication link—Part
I: Scalar systems,” IEEE Trans. Inf. Theory, vol. 52, no. 8, pp. 3369–3395,
Aug. 2006.

[20] J. H. Braslavsky, R. H. Middleton, and J. S. Freudenberg, “Feedback sta-
bilization over signal-to-noise ratio constrained channels,” IEEE Trans.
Autom. Control, vol. 52, no. 8, pp. 1391–1403, Aug. 2007.

[21] V. Gupta, B. Hassibi, and R. M. Murray, “Optimal LQG control across
packet-dropping links,” Syst. Control Lett., vol. 56, no. 6, pp. 439–446,
2007.

[22] A. Chiuso, N. Laurenti, L. Schenato, and A. Zanella, “LQG cheap control
subject to packet loss and SNR limitations,” in Proc. Eur. Control Conf.,
2013, pp. 2374–2379.

[23] P. Tabuada, “Event-triggered real-time scheduling of stabilizing control
tasks,” IEEE Trans. Autom. Control, vol. 52, no. 9, pp. 1680–1685, Sep.
2007.

[24] A. Anta and P. Tabuada, “On the benefits of relaxing the periodicity
assumption for networked control systems over CAN,” in Proc. 30th
IEEE Real Time Syst. Symp., 2009, pp. 3–12.

[25] C. Fischione, P. Park, P. D. Marco, and K. H. Johansson, “Wireless
networking based control,” in Design Principles of Wireless Sensor
Networks Protocols for Control Applications, 1st ed. New York, NY,
USA: Springer, 2011, ch. 9, pp. 203–238.

[26] H. Hijazi, P. Bonami, and A. Ouorou, “Robust delay-constrained routing
in telecommunications,” Ann. Oper. Res., vol. 206, no. 1, pp. 163–181,
Jul. 2013.

[27] D. Bertsimas and M. Sim, “The price of robustness,” Oper. Res., vol. 52,
no. 1, pp. 35–53, Jan./Feb. 2004.

[28] X. Chem, M. Sim, and P. Sun, “A robust optimization perspective on
stochastic programming,” Oper. Res., vol. 55, no. 6, pp. 1058–1071,
2007.

[29] M. Landry, S. A. Campbell, K. Morris, and C. O. Auilar, “Dynamics of
an inverted pendulum with delayed feedback control,” SIAM J. Appl. Dyn.
Syst., vol. 4, no. 2, pp. 333–351, 2005.

[30] (2010). LabVIEW [Online]. Available: http://www.ni.com/labview/

Kyung-Joon Park (M’05) received the B.S. and M.S.
degrees in electrical engineering from the School of
Electrical Engineering, and the Ph.D. degree in elec-
trical engineering and computer science from Seoul
National University, Seoul, Korea, in 1998, 2000, and
2005, respectively.

From 2005 to 2006, he was a Senior Engineer
with the Samsung Electronics, Suwon, Korea. From
2006 to 2010, he was a Postdoctoral Research
Associate with the Department of Computer Science,
University of Illinois at Urbana-Champaign (UIUC),

Champaign, IL, USA. He is currently an Associate Professor with
the Department of Information and Communication Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea. His
research interests include modeling and analysis of cyber-physical systems and
design of medical-grade network protocols.

Dr. Park is a recipient of the Gold Prize in the Samsung InsideEdge
Thesis Competition in 2008. He is currently serving on the editorial boards
of Transactions on Emerging Telecommunications Technologies (Wiley).

Jaemin Kim received the B.S. degree in electrical
engineering from Pusan National University, Busan,
Korea, in 2010, and the M.S. degree in nanobio mate-
rials and electronics from the Department of Nanobio
Materials and Electronics, Gwangju Institute of
Science and Technology (GIST), Gwangju, Korea, in
2012.

He is currently a Researcher with the Agency for
Defense Development (ADD), Daejeon, Korea.

Hyuk Lim (M’03) received the B.S., M.S., and Ph.D.
degrees in electrical engineering and computer sci-
ence from the School of Electrical Engineering and
Computer Science, Seoul National University (SNU),
Seoul, Korea, in 1996, 1998, and 2003, respectively.

From 2003 to 2006, he was a Postdoctoral
Research Associate with the Department of Computer
Science, University of Illinois at Urbana-Champaign,
Champaign, IL, USA. He is currently an Associate
Professor with the School of Information and
Communications, Gwangju Institute of Science and

Technology (GIST), Gwangju, Korea. His research interests include analytical
modeling and empirical evaluation of computer networking systems, network
protocol design and performance analysis for wireless networks, measure-
ment and diagnostics for wired/wireless networks, and industrial internet and
cyber-physical systems.

Yongsoon Eun (M’03) received the B.A. degree in
mathematics, and the B.S. and M.S.E. degrees in
control and instrumentation engineering from Seoul
National University, Seoul, Korea, in 1992, 1994,
and 1997, respectively, and the Ph.D. degree in elec-
trical engineering and computer science from the
University of Michigan, Ann Arbor, MI, USA, in
2003.

From 2003 to 2012, he was a Research Scientist
with the Xerox Innovation Group, Webster, NY, USA,
where he worked on a number of subsystem tech-

nologies in the xerographic marking process and image registration method
in inkjet marking technology. Since 2012, he is an Associate Professor
with the Department of Information and Communication Engineering, Daegu
Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Korea. His
research interests include control systems with nonlinear sensors and actua-
tors, networked control systems, cyber-physical systems, and resilient control
systems.


