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FINNIM: Iterative Imputation of Missing Values
in Dissolved Gas Analysis Dataset

Zahriah Sahri, Rubiyah Yusof, and Junzo Watada, Member, IEEE

Abstract—Missing values are a common occurrence in a
number of real world databases, and statistical methods have
been developed to deal with this problem, referred to as miss-
ing data imputation. In the detection and prediction of incipient
faults in power transformers using dissolved gas analysis (DGA),
the problem of missing values is significant and has resulted
in inconclusive decision-making. This study proposes an effi-
cient nonparametric iterative imputation method named FINNIM,
which comprises of three components: 1) the imputation order-
ing; 2) the imputation estimator; and 3) the iterative imputation.
The relationship between gases and faults, and the percentage of
missing values in an instance are used as a basis for the imputa-
tion ordering; whereas the plausible values for the missing values
are estimated from k-nearest neighbor instances in the imputa-
tion estimator, and the iterative imputation allows complete and
incomplete instances in a DGA dataset to be utilized iteratively
for imputing all the missing values. Experimental results on both
artificially inserted and actual missing values found in a few DGA
datasets demonstrate that the proposed method outperforms the
existing methods in imputation accuracy, classification perfor-
mance, and convergence criteria at different missing percentages.

Index Terms—Dissolved gas analysis (DGA), imputation order-
ing, iterative imputation, k-nearest neighbor (kNN), missing data
imputation, missing values.

I. INTRODUCTION

P OWER TRANSFORMERS are essential equipments to
transmit and distribute electrical energy through intercon-

nected power systems. While in-service, transformers may face
electrical or thermal disturbances that cause faults such as arc-
ing, partial discharge, and thermal to surface. These faults will
release several gases commonly known as fault gases: hydro-
gen (H2), acetylene (C2H2), ethylene (C2H4), methane (CH4),
ethane (C2H6), carbon monoxide (CO), and carbon dioxide
(CO2) that stay dissolved at above threshold values in the insu-
lating oil of a transformer. If left untreated for a long time, these
faults could induce transformer failure and disrupt power sup-
ply to industries, businesses, and homes; causing huge financial
losses or triggering worst impacts such as explosions, loss of
human lives, or environmental disasters. Therefore, to minimize
these risks, early detection of incipient faults in a transformer
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is of vital importance. In industrial practice and for oil-filled
transformers, dissolved gas analysis (DGA) is an efficient tool
for such purpose since it can give warning about an impending
problem, and helps provide an early diagnosis and identify the
necessary preventive actions. These are achieved through:

1) periodic sampling of insulation oil;
2) extracting the dissolved gases, calculating and analyzing

the concentration of these gases, their gassing rates, and
the ratios of certain gases;

3) identification of the possible fault types through con-
ventional methods such as International Electrotechnical
Commision (IEC) ratios, Rogers ratio, Doernenburg ratio,
and the Duval Triangle.

The above-mentioned diagnostic DGA ratio methods iden-
tify fault types using the ratios of certain fault gases and each
ratio is assigned to one or more numerical thresholds. These
thresholds are coded and mapped to specific faults. In some
cases, measured gas concentrations or ratios may be incom-
plete and thus do not match any predefined threshold. As a
result, fault that occurs inside a transformer may be classified
unknown or inconclusive [1]. One of the reasons for incom-
plete gas concentrations is missing values for some of the fault
gases. Missing values in DGA can occur for various reasons,
i.e., acetylene evaporates quickly, the existence of contamina-
tion on the surface of the platinum alloy of a gas meter, and
some transformer faults generate only a few but not all of the
fault gases. Apart from reducing the effectiveness of the DGA
ratio methods as stated earlier, missing values can also affect the
performance of machine learning algorithms that learns from
DGA data to diagnose faults, such as support vector machines
(SVMs), neural network, and fuzzy logic. As missing values
increase in a dataset, the prediction accuracy of the learning
algorithms decreases in tandem, as documented in [2] and [3].

This problem can be managed in many different ways from
simply deleting the DGA instances containing missing values,
although this may substantially reduce the number of available
instances, especially if the missing rate is high, to reporting only
complete instances (instances without missing values) of DGA,
although this is inappropriate because valuable information of
the incomplete instances (instances with missing values) is lost.
The best solution is to attempt to accurately estimate and fill-in
the missing values with available data (“imputation”), but to
our knowledge, only [4] estimated the missing values in DGA
dataset using SVM regression (SVR), which increased the accu-
racy of their Naive-Bayes classifier. However, their approach
requires dispersion of the continuous values of the fault gases
before estimation takes place, a preprocessing step that can
lead to information loss. In addition, only complete instances
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were used to estimate plausible values for the missing values,
whereas [5] and [6] have demonstrated that if the information
within incomplete instances is utilized as well, then the esti-
mation bias caused by the only few complete instances can
be reduced. There is, thus, a considerable need to develop an
efficient method to estimate missing values in a DGA dataset
minus the information loss and estimation bias found in [4] and
with the missing values being filled in, the reduced performance
of a learning algorithm is duly arrested.

As an attempt to realize the above-mentioned objectives, we
introduce an efficient imputation algorithm called FINNIM that
iteratively imputes all missing values by utilizing complete and
incomplete instances in a DGA dataset. It has three differ-
ent components mainly: 1) imputation ordering; 2) imputation
estimator; and 3) iterative imputation. The task of imputation
ordering is to assign an imputation order to a missing value
in a dataset. The assignment is made based on the relation-
ship between gases and faults and the percentage of the missing
values in an instance. In the imputation estimator, the plausi-
ble values to replace the missing values are estimated using
the k nearest-neighbor (kNN) algorithm. This estimation pro-
cess is done iteratively in the third component, whereas for
the first iteration, the kNN instances are selected from com-
plete instances only, and the next imputations thereafter use all
instances (imputed and complete) until convergence is reached.
The primary contributions of this paper lies in the following.

1) A unified framework to impute missing values found in
a DGA dataset that simultaneously facilitates the prin-
ciple of DGA method applies a nonparametric approach
to predict the missing values and utilizes all information
contained in a DGA dataset.

2) A unified framework that works collectively to ensure that
the data distribution in a dataset is preserved after data
imputation.

3) An ordering of missing values, which preserves continu-
ous data and the feature–class relationship in a dataset.

Comparative studies between FINNIM and other well-
established methods such as single regression (REG), mean/
mode (MEAN), expectation-maximization (EM), and multiple
imputation (MI) are presented. The first comparison is made to
evaluate the convergence ability between our proposed method
and the EM method. Only these two methods apply iterative
imputation, thus the convergence comparison between the EM
method and the FINNIM. Next, the accuracy of each imputation
method is evaluated using the normalized root-mean-square
error (NRMSE) which calculates the deviation between the esti-
mated and the actual values. Imputation method with the lowest
NMRSE produces the most accurate estimates. According to
[7], one desirable characteristic of an imputation method is the
ability to improve the classification performance of a learning
algorithm. Therefore, the “before-and-after” experiment where
the accuracy of SVM learned on the original incomplete dataset
and that learned on the imputed dataset is compared to vali-
date the effectiveness of each imputation method in meeting
the aforementioned characteristic. Experimental results show
the robustness and effectiveness of the proposed method.

The remaining part of this paper consists of the follow-
ing. Section II details out the proposed method, i.e., FINNIM.

Fig. 1. FINNIM imputation accuracy on LITGY dataset.

TABLE I
DGA DATASET

The efficiency of the proposed method is demonstrated using
three different comparisons and the results are analyzed in
Section III. Section IV provides the conclusion of this paper.

II. FINNIM ALGORITHM

This section presents the FINNIM method that capitalizes on
the characteristics of DGA data and utilizes all available infor-
mation when estimating missing values in a DGA dataset. It
consists of three processes: 1) the imputation ordering; 2) the
imputation estimator; and 3) the iterative imputation process,
as shown in Fig. 1.

In general, a dataset D is represented as a set of data
points with label {Xi, yi}n(i=1), yi ∈ {1, . . . , c} as illustrated
in Table I where n is the number of instances, Xi = {fj}mj=1 is
an instance with m number of features, and the symbol? repre-
sents a missing value. An incomplete instance has one or more
missing values such as X1 and X3, whereas a complete instance
contains no missing values such as X2, X4, and X5. Let us call
Dt the subset of D that contains only complete instances and
Du is the subset of D that contains only incomplete instances.
Here, D represents a DGA dataset with n samples Xi where
each sample is labeled with a fault type yi and contains m
dissolved gases (fj).

A. Imputation Ordering

Table I has three missing values (denoted as X1f3, X3f1,
and X3f3) in different features and in different instances. This
raises the question whether imputing X1f3, X3f1, and X3f3
arbitrarily makes no difference to the estimation performance,
or giving a preference to one (e.g., X3f3) to be imputed first
will produce better estimation values for all. References [8], [9],
and [10] proved that the latter approach was better. Because a
DGA dataset may contain instances with multiple missing val-
ues as in Table I, this study proposes that all missing values in
the DGA dataset are ordered so as to provide the hierarchy of
imputation for each missing value.

DGA is a method that relies on the strong presence of a
few dissolved gases (features) to determine a fault type (class).
Thus, the stronger the relationship between a feature and the
class is, the more worthwhile it is to impute the missing val-
ues of that feature. Other imputation ordering techniques [9],
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[11] did not consider the relationship of features and classes.
For example, [9] proposed lexicographic ordering in which the
missing values were rearranged based on the number of missing
values in columns as the first criterion and the number of miss-
ing values in rows as the second criterion. This rearrangement
could distort the data distribution of a dataset, whereas several
authors [10], [11] have argued that it is more important that such
imputations produce a workable estimate that least distorts the
values that are actually present.

To preserve both the data distribution and the continuous val-
ues in a DGA dataset after the imputation process, this study
exploits the strong relationship between features and classes
(also known as feature–class relationship) as the main crite-
rion to produce the imputation order for each missing value in
a DGA dataset. In order to represent the degree of feature–class
relationship, each feature is given a weight I . Thus a method
that calculates I without having to discretize the continuous val-
ues into discrete values is preferred. One of the main issue of the
proposed imputation ordering method is to measure the weight
I which is actually the distance measure between features and
classes. Fisher score, one of the popular methods for determin-
ing the most relevant features for classification, is chosen for
measuring I since it works with multiclass dataset and continu-
ous data. In addition, to the best of our knowledge, Fisher score
has not been used as a criterion for generating imputation order
in the literature.

Let np denote the number of data points Xi in class p, p =
1, . . . , c, p ∈ yi. Let μp and σp be the mean and variance of the
class p, corresponding to the jth feature fj . Let μ and σ2 denote
the mean and variance of the whole dataset. Then, the weight I
for the feature fj is as follows:

Ij = F (fj) (1)

where F (fj) is the Fisher score of the jth feature and is defined
as follows:

F (fj) =

c∑
p=1

np(μp − μ)2

c∑
p=1

npσ
2
p

. (2)

Because a higher I indicates a stronger relationship, an
ordered list of features based on descending I is established
where missing values in features with higher I are imputed
earlier.

However, an I-ordered feature may contain more than one
missing value as in the features of Table I. This gives rise to
the question of which missing value in an I-ordered feature
should be imputed first. The fact that an imputation algorithm is
an instance-based learning algorithm has compelled us to con-
sider the missing rate of the instances as the secondary criterion,
where instances with lower missing rates get higher imputation
priority. Let nummiss denotes the number of missing values in
Xi and numfeature denotes the number of features in Xi. The
missing rate of an instance (denoted as Ri, where i is the index
of the instance) is defined as

Ri =
nummiss

numfeature
. (3)

Using (3), all missing values in an I-ordered feature are sorted
in ascending R. A missing value where its instance has the
lowest R gets imputed first.

Using Table I as an example, assume that each feature fj
has a weight Ij , such that I4 ≥ I3 ≥ I2 ≥ I1. Only f1 and f3
contain missing values, and since I3 ≥ I1, all missing values
in f3 are to be imputed first than the missing values in f1. f3
has two missing values at instance X1 and X3, respectively.
Therefore, the secondary criterion is applied and has resulted
in R1 ≥ R3. Thus, X1f3 is the first to be imputed, followed by
X3f3. Because f1 has only one missing value X3f1, R become
insignificant. Therefore, X3f1 is the last to be imputed.

The proposed ordering in this study has two benefits.
1) It utilizes the relationship between features and classes

which helps preserve the correlation between features and
classes.

2) It avoids discretization of continuous values which pre-
vents loss of useful information.

B. Imputation Estimator

The next step after obtaining the ranked list of missing
values from the imputation ordering component is to fill-in
the missing values with estimated values from the pool of
complete instances. Before doing so, this study adopts a few
considerations as follows.

1) The estimated values should be as close as possible to
the original (unobserved) values, so that the covariance or
correlation to other variables are preserved.

2) There is no preprocessing of continuous values, so that
loss of useful information is avoided.

3) Nonparametric method is preferred since parametric
methods are based upon certain assumptions such as the
population of data values and the prior distribution for
the model parameters. These assumptions are difficult to
realize in real-world applications.

As one of the popular nonparametric imputation methods,
kNN algorithm fulfills with all of the above-mentioned con-
siderations as evident in [2] and [7], thus becomes the proper
choice for the estimation task. This method searches the kNN
of the instances with missing value(s) and replaces the miss-
ing value(s) by the mean or mode value of the corresponding
feature values of the kNN. The quality of the estimated val-
ues obtained from the kNN approach largely depends on three
important parameters: 1) the choice of (k); 2) the number
of neighbors used; and 3) the appropriate distance metric.
Simulation results have demonstrated that for small datasets,
k = 10 is the best choice (Acuna and Rodriguez, [12]), whereas
Troyanskaya et al. ([13]) observed that kNN is insensitive to
values of k in the range 10–20. Therefore, this study replaces
the missing values with estimated values from 1 to 10 near-
est neighbors depending on the size of datasets. To get the
best k, a simulation is performed, by randomly changing the
observed values into missing values, estimating these missing
values based on different choices of k, and measuring the error
between the imputed and the actual observed values. The k that
produces the smallest error can be considered as the best. In
this study, the Manhattan distance is used to measure similarity
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between instances because of its simplicity in calculation and
easy decomposition into contributions made by each variable
(for the Euclidean distance, we would need to decompose
the squared distance). Most importantly, Manhattan distance
is more robust (since the distances are not squared) to the
influence of outliers compared to higher order distance metrics
including Euclidean distance and Mahalanobis distance.

The steps of kNN estimation are as follows.
1) Choose k, the number of nearest neighbors to be selected.
2) Using the Manhattan distance metric, calculate the dis-

tance between the instance with the to-be-imputed miss-
ing value with another instance. Let Xi = {xi1, . . . , xim}
denotes the instance with the to-be-imputed missing
value, and Xq = {xq1, . . . , xqm} be the other instance.
The Manhattan distance between Xi and Xq is calculated
using

dist(Xi, Xq) =
m∑
j=1

|xij − xqj | (4)

where m is the number of features in Xi and Xq , xij is
the jth feature of instance Xi, and xqj is the jth feature
of instance Xq .

3) Repeat step 2) to compute the distance between Xi with
each remaining instance in the dataset.

4) Sort in ascending order (based on the calculated
Manhattan distance values), all Xq excludes Xi.

5) Select the top k instances from the sorted list as the kNNs
to Xi. These kNNs are XkNN = {X1, X2, . . . , Xk}.

6) Let xij be the to-be-imputed missing value in Xi. Then
the estimated value is obtained from

xij =

k∑
l=1

xlj

k
(5)

where k is the number of nearest neighbors, xlj is the jth
feature of instance Xl, and Xl ∈ XkNN.

C. Iterative Imputation

If the proposed imputation stops at the second component
of FINNIM, then all missing values are imputed only once.
This single-imputation approach, however, tends to overstate
precision because it omits the between imputation component
of variability [14]. MI, where several likelihood choices for
imputing the missing values are computed, incorporates data
variability by replacing a missing datum with two or more val-
ues representing a distribution of likely values. As such, this
study adds iterative imputation as the third component, where
each missing datum is imputed using the imputation estimator
iteratively until convergence is reached. This study adopts the
definition found in [8], which concludes that when the change
in estimated values in successive iterations is zero or trends to a
value which trends fast and stably to zero means that the method
has converged. This component is divided into first iteration and
successive iterations as elaborated below.

1) First Iteration: For the first iteration, many studies [5],
[6] used the MEAN method to fill in the missing values but this

method can distort the original data distribution since it causes
the missing values to be artificially close to each other. This
motivates us to use our imputation estimator as the imputation
method in the first iteration since it considers the data corre-
lation. In this iteration, a missing value xij in Du is selected
for imputation from the ordered list of missing values. Then,
the imputation estimator is executed. Here, the candidates for
the kNNs are selected from instances in Dt that have the same
label as the label of Xi. These steps are repeated to each miss-
ing value in Du. The final outcome of the first iteration is a
filled and complete dataset of Du. Let Du,1 be the filled and
complete dataset of Du and Du retains its original instances.

2) Successive Iterations: For the subsequent iterations, the
same steps in the first iteration are executed. However, the can-
didates for the kNNs of xij in Du are selected from instances
in (Dt +D(u,s−1)) that have the same label as the label of Xi.
If s is the current number of iteration, then Du,s−1 is the out-
come of the previous iteration. Each iteration s will produce
Du,s dataset. With the inclusion of the imputed instances, all
information are now used to estimate the missing values in a
DGA dataset. This phase stops when the change in the esti-
mated values drop to zero or does not drop all the way to zero
and only trends to a value which trends fast and stably to zero
in nonparametric models.

D. FINNIM Algorithm

Below is the summarized algorithm for FINNIM.

Algorithm 1.

input:
D = {Xi, yi}ni=1 // an incomplete dataset with n instances
output: Dcomp // complete and imputed dataset of D
begin
Imputation Ordering:

for each feature fj in Xi

Ij = Fisher-score of fj ;
end for
for each instance Xi in D
Ri = missing rate of Xi;

end for
for each missing value xij in fj

if fj has 1 xij

O(i, j) = Ij ; // O(i, j) is the imputation order of xij

else
O(i, j) = Ij +Ri;

end for
Drank = dataset that contains only missing values ranked by
O(i, j)

Imputation estimator
k = an integer;
xij = a missing value;
Xi = the instance that contains xij ;
for each instance Xq in D
calculate the Manhattan distance between Xi and Xq

using (4);
end for
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Algorithm 1. (Continued)

Dneighbours = all Xq sorted in ascending Manhattan distance;
DkNN = X1, X2, · · · , Xk //the top k Xq from Dneighbours ;
calculate the estimated value for xij using (5);

First Iteration:
Dt = subset of D that contains complete instances only;
Du = subset of D that contains incomplete instances only;
s = 1;
for each missing value xij in (Drank ∩Du)
class = yi of Xi;
Dclass = subset of Dt that contains instances having label

==class;
execute the Imputation estimator using Dclass;

end for
D(u,s) = imputed and complete dataset of Du at iteration
s = 1;

Successive Iterations:
D = Dt +D(u,s−1)

repeat
for each missing value xij in (Drank ×Du)
class = yi of Xi;
Dclass = subset of D that contains instances having label

==class;
execute the Imputation estimator using Dclass;

end for
s = s+ 1;
D(u,s) = imputed dataset of Du at iteration s

until convergence
Dcomp = Dt +Du,s //complete and imputed dataset of D

end

III. EXPERIMENTAL DESIGN AND RESULTS

A. Experimental Design

In this study, three DGA datasets named LITZW, LITZM,
and LITGY that contained no missing values were downloaded
from [15]–[17], respectively. They were deliberately chosen to
help validate the accuracy of FINNIM, EM, MI, REG, and
MEAN. Randomly simulated missing values were then inserted
to each dataset, and the missing rates were fixed at 3%, 6%,
and 9%. Missing rate is the total number of missing values
over the total number of values in a dataset. Next, each method
independently imputed each simulated dataset. However, exper-
iments performed on datasets with randomly inserted missing
values may not truly reflect the nature of actual DGA data
missing values. All the five imputation methods were, there-
fore, tested on the IEC10DB and MAL datasets which contain
actual missing values. IEC10DB is a benchmark database that
contains actual missing values and is available at [18], whereas
the MAL dataset was obtained from a local utility company in
Malaysia that maintained power transformers all over Malaysia.
The characteristic of the five datasets are shown in Table II.

For the implementation of FINNIM, the number of near-
est neighbors were selected as k = 1, 2, 3, 4, 5 for the LITGY,
LITZM, and LITZW datasets, as most classes have less than 10

TABLE II
CHARACTERISTICS OF DGA DATASETS USED IN THIS STUDY

A, number of samples; B, number of dissolved gases; C, number
of fault types; D, percent of instances with missing values; E, total
number of missing values.

TABLE III
COMPARISON OF CONVERGENCE BETWEEN FINNIM AND EM USING

DATASETS WITH ACTUAL MISSING VALUES

TABLE IV
COMPARISON OF CONVERGENCE BETWEEN FINNIM AND EM USING

DATASETS WITH SIMULATED MISSING VALUES

instances. For the IEC10DB and MAL datasets, nearest neigh-
bors were restricted to k = 1, 3, 5, 7, 10. For the implementa-
tion of MI, the number of repetition was set to M = 5 because
according to [19], the MI method does not need a large number
of repetition for precise estimates. The number of iterations for
the EM method was manually selected for each dataset.

B. Evaluation on Convergence

Since FINNIM and EM are iterative imputation methods, it is
important to determine at which point additional iterations have
no meaningful effect on the imputed values, i.e., how to eval-
uate the convergence of the two algorithms. For datasets with
actual missing values, Table III shows the convergence results
where each cell represents the number of iterations needed to
converge. For MAL dataset, FINNIM with k = 1 and k = 5
required less number of iterations than EM. However, the other
three k needed more iterations than EM. For the IEC10DB
dataset, all k of FINNIM needed less number of iterations to
converge than EM.

For datasets with artificially inserted missing values,
Table IV shows the comparison of performances between
FINNIM and EM on these datasets. Here, both methods have
almost similar convergence performances where the num-
ber of iterations needed is mostly small for all values of
k. Nevertheless, FINNIM converged faster than EM in most
experimental settings. Only once did EM perform better than
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TABLE V
NRMSE FOR FINNIM USING DIFFERENT VALUES OF K

FINNIM on the LITGY dataset for all values of k and the miss-
ing rate was 3%. However, for the other two datasets, FINNIM
for all values of k required a few iterations lesser than EM to
converge. Overall, the results on all datasets showed that both
methods converge but FINNIM converged faster than EM in
most experimental settings. We note that, despite the big dif-
ference in the number of iterations needed to converge and the
various sizes of the datasets, both of the methods require very
minimal time to converge (seconds only) for all values of k
and for all missing rates on each datasets. It can be said that,
because time is insignificant, convergence rate is not so impor-
tant as what is more important is the accuracy of the imputed
values—how different are they compared to the actual observed
values. Section III-C evaluates the accuracy of the imputation
methods mentioned in this study in estimating missing values
in different datasets.

C. Evaluation on Imputation Accuracy

The accuracy of a set of imputation methods was compared
by computing a statistic, quantifying the deviation between
the estimated and the true values for each imputation method.
These were done using NRMSE as recommended by [20]
for datasets with continuous variables. The imputation method
achieving the smallest NRMSE gives the most correct picture
of the complete data when estimated values were included.
NRMSE is defined by

NRMSE =

√√√√
∑n

i=1

∑m
j=1 [ẽij − eij ]

2

∑n
i=1

∑m
j=1 [eij ]

2 (6)

where eij is the original value, ẽij is the estimated value, and n
and m are the total number of rows and columns, respectively.
The more the NRMSE is, the less is the prediction accuracy.
These evaluations were done on the imputed LITGY, LITZM,
and LITZW datasets.

Because FINNIM used kNN algorithm to estimate the miss-
ing values, the effect of the value of k on the NRMSE was
evaluated and the best k for each dataset was identified. Table V
shows the calculated NRMSE for each k over three datasets.
It can be seen that for the three imputed datasets, lower and
higher values of k produced higher NRMSE. With lower k,
only a small set of correlated instances are used to estimate
the missing values while other highly correlated instances are
ignored. When k is high, instances which have either very low
or no correlation with the instance having missing values will be

Fig. 2. Imputation accuracy of FINNIM for the LITGY dataset.

Fig. 3. Imputation accuracy of FINNIM for the LITZM dataset.

Fig. 4. Imputation accuracy of FINNIM for the LITZW dataset.

included in the estimation process. Both scenarios decrease the
performance of FINNIM. For the LITGY dataset, k = 3 pro-
duced the least NRMSE, whereas k = 2 was FINNIM the most
accurate on the LITZM dataset, and FINNIM required k = 3 to
produce the best estimates on the LITZM dataset.

Next, we evaluated the efficiency of FINNIM and the four
established methods (EM, MI, REG, and MEAN). These com-
parisons were done using FINNIM at its best performances as
identified above. Figs. 2–4 illustrate the performance of each
method for each dataset. It is clear that FINNIM surpassed the
four methods for most of the experimental settings. FINNIM
was the most accurate at all missing rates for the LITZM
dataset. The efficiency of EM was comparable to FINNNIM
for all of the datasets. In fact, at 6% missing rate in the LITGY
and LITZW datasets, EM produced the least NRMSE values.
The MI method was the least efficient of all for all of the
datasets, followed by the REG and the MEAN methods. It can
be seen that the NRMSE values of FINNIM were the most sta-
ble over the whole range of tested missing rates in all of the
datasets, a testimony of the robustness of FINNIM. The EM
and the MEAN methods were comparably robust to FINNIM.
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TABLE VI
PEARSON CORRELATION COEFFICIENT FOR THE LITGY

TABLE VII
PEARSON LITZM

TABLE VIII
PEARSON LITZW

However, the REG and MI methods experienced high fluctua-
tions of NRMSE values over different missing rates, especially
at the 9% missing rate. Again, the MI was the least robust of all.

For more careful estimation of imputation efficiency, we
examined the structure of data after imputation. We calculated
the Pearson correlation coefficients for each feature between
original data and imputed data. The larger the correlation coef-
ficient is, the better the relationship between original complete
data and imputed data is preserved in a feature. Due to lack
of space, the correlation coefficients are shown only for each
imputation method and for each dataset at 9% missing rate.
Table VI–VIII show that the FINNIM method preserved the
structure of the original dataset better than the other four meth-
ods for many features of the three datasets. In fact, for all
features of the LITGY dataset, FINNIM was the most efficient.
Interestingly, the MI method was the worst method, congruent
with the NRMSE analysis. This column-wise comparison gives
us more specific information on the efficiency of imputation
method.

D. Evaluation on Classification Accuracy

To evaluate the performance of an imputation method that
imputes actual missing values in a dataset, a different approach
is required instead of the NRMSE. The fact that the actual
complete values are not known has made the NRMSE unsuit-
able for the evaluation task. This scenario motivates us to use
the classification accuracy of a machine learning algorithm as
the evaluation criteria, because one desirable characteristic of
an imputation method is the ability to improve the classifica-
tion performance of a learning algorithm [7]. The classification
accuracy is defined as

Accuracy =
nc

n
× 100% (7)

where nc is the number of instances whose class labels being
correctly predicted and n is the total number of instances in
a test set. Recently, a growing number of researchers have
applied SVM for the classification of faults in power trans-
formers and have reported higher classification accuracies with
SVM than other widely used learning algorithms, such as
the multilayer perceptron neural network, back-propagation
neural network, and fuzzy logic [21], [22]. Therefore, this
study chose the classification accuracy of SVM to measure
the performance of an imputation method on datasets with
actual missing values. First, imputed datasets and the origi-
nal incomplete datasets of IEC10DB and MAL were divided
into training and testing subsets where the number of instances
for each fault type on both subsets were divided into 70:30
ratio, respectively. Finally, SVM was trained on each training
set and its classification accuracy was evaluated by applying
the classification learnt model on the corresponding testing
set. On each dataset, this experiment was independently run
10 times and the classification accuracy was the average of
10 accuracies.

To identify which k improved the learning task of SVM the
most, we compared the performances of SVM using FINNIM-
imputed datasets with the original incomplete datasets and the
results are shown in Table IX. From this, we observe that on
the MAL dataset, FINNIM increased the SVM accuracies for
all values of k except at k = 1, which recorded lower accu-
racy than the original incomplete dataset. In the case of the
IEC10DB dataset, SVM performed better on all value of k than
the incomplete dataset. Both datasets reported k = 3 as the best
number of neighbor for estimating missing values. It can be
said that the increased performance of SVM for majority of k
on both of the datasets demonstrates that FINNIM indeed meets
the one desirable characteristic mentioned before.

Next, the effectiveness of each imputation method to improve
the classification accuracy of SVM was validated using the
“before-and-after” experiment where the accuracy of SVM
learned on the original incomplete dataset and that learned on
the imputed dataset was compared as shown in Table X. We
observe that in the case of the MAL dataset, only FINNIM man-
aged to increase the SVM performance, whereas the other four
methods behaved oppositely. For the IEC10DB dataset, only
three methods (FINNIM, EM, and REG) increased the classifi-
cation accuracy of SVM compared to the original dataset, with
FINNIM scoring the highest followed by the EM method and
lastly, the REG method.

We analyzed the statistical significance of differences in clas-
sification accuracies of SVM on the FINNIM-imputed datasets
and on the imputed datasets obtained from the other four
methods based on paired t-tests at the 95% significance level.
The significance is computed for each pair of compared algo-
rithms based on average classification accuracies across the two
datasets. The results are presented in Table XI. The results show
that on the MAL dataset, FINNIM improves the classification
accuracy of SVM significantly compared to the other methods.
This indicates FINNIM robustness over higher percentage of
missing values as shown on the MAL dataset. For the IEC10DB
dataset, FINNIM has significant advantage over the MEAN
method in improving SVM classification performance.
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TABLE IX
COMPARATIVE PERFORMANCES OF SVM ON THE FINNIM-IMPUTED DATASETS

TABLE X
COMPARATIVE PERFORMANCES OF SVM ON DATASETS IMPUTED

BY ALL METHODS

TABLE XI
STATISTICAL DIFFERENCE OF PAIRED METHODS USING PAIRED t-TEST

E. Analysis

Our proposed method offered better performance in con-
vergence complexity, imputation, and classification accuracies
than the other four established methods for datasets with arti-
ficially inserted missing values as well as for datasets with
actual missing values. FINNIM computational complexity was
comparable to EM—the other iterative method compared in
this study—especially on small datasets of DGA. Convergence
iterations differed on individual datasets but all experiments
took seconds to complete. Notably, the FINNIM method was
robust to different percentages of missing values contained in a
dataset. For the REG, MEAN, and MI methods, their efficiency
for imputing missing values were not maximized in that they
did not efficiently use the information of the instances having
missing values. The existence of missing values in an instance
limits the use of other observed values of that instance in these
well-known imputation methods. In our work, this problem
was improved using the imputed values iteratively for the lat-
ter nearest neighbor calculations and imputations. The iterative
reuse of imputed data did not propagate errors of imputation
as the missing rate increased which made FINNIM register the
best improvement of accuracy for datasets with high missing
rates where the NRMSE results of FINNIM were the lowest.

It can be seen that FINNIM preserved the original distri-
bution of a dataset better than the extant approaches. They
neither exploited the relationship between features and classes
nor assigned imputation hierarchy when imputing missing val-
ues in a DGA dataset. FINNIM, on the other hand, utilized
this feature–class relationship—the basis principle of the DGA
method—to determine imputation hierarchies for missing val-
ues during the imputation ordering phase. Using the imputation
order, features that strongly discriminated the classes were
imputed earlier than the less relevant ones, a step which made
FINNIM preserve correlations to other features better than
the existing approaches as shown in the Pearson coefficient
results. Moreover, selecting nearest neighbors having the same

class label with the instance of interest during the imputa-
tion estimator phase further enhanced the preserving ability of
FINNIM. Our proposed method also increased the performance
of a supervised machine learning algorithm, i.e., SVM. Over
various missing percentages and size of datasets, FINNIM-
imputed datasets managed to raise the accuracy of SVM higher
than the incomplete datasets. Especially, for the dataset with
high number of missing values, FINNIM surpassed the other
four methods significantly with p less than 0.001 and was
marginally significant to the incomplete one with p value (0.07)
close to 0.05. For the small dataset, SVM performance was
significantly better using FINNIM-imputed dataset than using
MEAN-imputed dataset.

Meanwhile, the performances of the other four methods
largely depended on the individual datasets. To the best of our
knowledge, all the methods have not been well introduced in
the domain of power transformer fault diagnosis using DGA
method despite the fact that the EM and MI methods are the
state-of-the-art imputation methods. For small datasets such
as IEC10DB, LITGY, LITZM, and LITZW, the MI method
performed the worst both in imputation and classification accu-
racies. As stated in [19], the MI method relies on large sample
for unbiased estimates, therefore, we can conclude that the MI
method is not effective for imputing missing values in small
DGA datasets. If a research objective is to improve the learning
task of a supervised learning algorithm, the EM method can be
an alternative candidate for imputing missing values in small
DGA datasets, under consideration of its comparable effective-
ness to FINNIM in meeting the said objective, especially for
SVM. The EM method was comparable to FINNIM in produc-
ing accurate estimates in small DGA datasets. Moreover, the
EM method was as robust as FINNIM over various percentages
of missing values.

From the results, we can safely state that the compounded
effects of the three components of FINNIM helps exert rel-
atively more accurate imputation and classification than the
four imputation methods. We want to highlight that for small
DGA datasets, methods using incomplete and complete val-
ues (FINNIM and EM) achieved even better accuracy than the
method using only observed values (REG, MEAN, and MI). For
various type of datasets, researchers [5], [6] also demonstrated
the better performance of their proposed methods against com-
pared extant approaches. Using estimated values iteratively was
one of the key components for their methods. If iterative use
of estimated values is a shared concept in FINNIM [5], [6],
imputation ordering—a component of FINNIM—is not. The
contribution of this component in preserving data distribution
has been highlighted earlier.

Although FINNIM is built for the DGA datasets, we sug-
gest that for datasets having similar characteristics as the
DGA datasets and if the objective is to improve classifica-
tion accuracy of a learning algorithm, then imputing missing
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values using FINNIM can be considered as a preprocessing
step to improve data quality before learning process takes
place. Through data summarization, researchers in [23] pre-
sented robust and efficient rules and matched antecedents to
diagnose fault in welding dataset. For an instance with miss-
ing values, their method ignored those features with missing
values, which led to multiple rules and probabilities being
activated and estimated, and the class with the highest prob-
ability score is assigned to an unknown data point. Instead
of ignoring those features with missing values in the weld-
ing dataset, the researchers may apply our proposed method to
impute the missing values in the experimented dataset before
feature selection and rules extraction processes take place.
Imputing with our proposed method may reduce the complex-
ity of their approach—less rules and probabilities activation and
estimation—and may increase the performance of their method.

Missing data in the form of packet dropouts is one of the
problems commonly faced by networked system [24]–[26].
Missing data is also an issue faced by discrete-time systems as
mentioned in [27] and [28]. Majority of these studies, while
incorporating the missing data probability during the design
stage of their proposed solution, eluded from estimating the
missing data. Researchers [24] applied corrective sampling-
based (CS) algorithm which required no estimation of the
missing packets. However, the maximum number of missing
data tolerated by their CS depends on the value of sketch
length—one of the CS design parameters. This constraint may
limit the efficiency of their proposed method because it is dif-
ficult to estimate the number of missing values in any dataset
beforehand. This possible drawback can be avoided by esti-
mating the missing packets using our proposed method as a
preprocessing step to their CS algorithm. To solve H∞ filtering
problem for discrete-time systems, [27] proposed a measure-
ment that compensated the negative influence of missing data
by representing the missing data as a stochastic variable that
satisfied the Bernoulli binary distribution. Instead of assum-
ing the probability of the missing data occurrence, [27] can
apply the FINNIM algorithm to estimate the missing data as
alternative approach to handling missing data in discrete-time
systems.

IV. CONCLUSION

This paper has presented an efficient imputation method
named FINNIM that estimates missing values in DGA datasets.
Experiment results have demonstrated that FINNIM outper-
forms EM, MI, REG, and MEAN, in terms of imputation
accuracy, the classification accuracy, and the convergence cri-
teria. In particular, FINNIM lives up to one desirable char-
acteristic for an imputation method, i.e., the missing data
estimation improves the classification performance of a learn-
ing algorithm, i.e., SVM. In future, we aim to replace kNN
algorithm with SVR as the estimator in the second component
of FINNIM. First, set a feature with missing values as the out-
put attribute and the other features as the input attributes. Then,
predict all missing values in the output attribute using SVR.
Repeat these two steps for the other features. The imputation
ordering will consist of only I , which determine the sequence

for selecting a feature as the output attribute. The whole process
is iteratively executed according to steps in Section II-C.
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